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Topography driven spreading 
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Abstract 

Roughening a hydrophobic surface enhances its non-wetting properties into super-

hydrophobicity. For liquids other than water, roughness can induce a complete roll-up of a 

droplet. However, topographic effects can also enhance partial wetting by a given liquid into 

complete wetting to create super-wetting. In this work, a model system of spreading droplets 

of a non-volatile liquid on surfaces having lithographically produced pillars is used to show 

that super-wetting also modifies the dynamics of spreading. The edge speed-dynamic contact 

angle relation is shown to obey a simple power-law and such power laws are shown to apply 

to naturally occurring surfaces. 
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Liquids and droplets of liquids are of great importance in many processes ranging from 

ink-jet printing to DNA technologies. Understanding how droplets sit on solid surfaces and 

how they spread out to form films is relevant to problems as diverse as ring-stain formation 

due to the drying of spilt drops of coffee1 to microfluidics2. However, solid surfaces are 

rarely smooth and flat, but are usually rough or have undulations, pores or other surface 

structure. In recent years, the effect of surface topography on wetting has become the focus of 

much interest since the demonstration in 1996 by Onda et al3 of a hydrophobic fractal-like 

surface. Since then, these super-hydrophobic surfaces have been constructed in a wide variety 

of ways, from lithographic fabrication4 to transformation of simple plastics5. Super-

hydrophobic surfaces have a range of interesting properties from droplet impact with a time 

of contact independent of speed6 and to drops rolling down these surfaces under capillary 

forces at a speed faster than a solid sphere would roll under gravity7. In nature, some plants, 

such as Nelumbo nucifera (L.) Druce, structure the surface of their leaves so that their 

chemical hydrophobicity is enhanced into super-hydrophobicity8 and, in the Namibian desert, 

a beetle, Stencora sp., controls the topography of its back surface together with regions of 

chemical hydrophobicity and hydrophilicity to collect drinking water from fog-laden wind.9 

Super-hydrophobic principles also apply to other liquids whose equilibrium contact angles 

can also be enhanced by surface roughness or texture. While the topographic enhancement of 

contact angles to create non-wetting surfaces has been extensively studied, the opposite effect 

of topography induced reduction in droplet contact angles and increases in the rate of droplet 

spreading to create super-wetting and super-spreading effects has not been so extensively 

studied. 

For a droplet, hydrophobicity and wetting is governed by the balance of forces at the 

contact line arising from the three interfacial tensions, γSV, γSL and γLV, occurring at the solid-

vapor, solid-liquid and liquid-vapor interfaces, respectively. Projecting the liquid-vapor force 

horizontally using the contact angle θ and establishing a horizontal force balance gives 

Young’s Law, 

 
LV

SLSVs
e γ

γγθ −
=cos  (1) 

where θe
s is the equilibrium contact angle. An alternative view to balancing forces is to 

consider the interfacial tensions as surface energies per unit area of the interface. In this 

approach the effect of increasing the area covered by the contact line by a small amount, ∆A, 
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is to replace the solid-vapor interface by a solid-liquid interface and so change the surface 

free energy by (γSL-γSV)∆A. In addition, the movement of the liquid creates an additional 

liquid surface area of ∆Acosθ resulting in a surface free energy increase of γLV ∆Acosθ .10  If 

the surface free energy is to be at a minimum then the overall change in surface free energy 

must vanish and this gives Young’s Law for the equilibrium contact angle (Eq. (1)). 

Roughness, or topographic structuring, of the surface modifies this argument because the 

solid surface has a larger area, r∆A, than the horizontal projection of the area, where r is a 

roughness factor and is greater than one. Whilst the roughness alters the surface free energy 

change at the solid interface, it does not alter the liquid-vapor contribution.  In energetic 

terms, the overall effect of topography is to result in an equilibrium contact angle on a rough 

surface, θe
r, given by Wenzel’s equation,11 

 s
e

r
e r θθ coscos =  (2) 

Wenzel’s equation predicts that roughness will emphasise the intrinsic wetting behavior 

of a surface as determined by its surface chemistry. Enhancement of both non-wetting and 

complete wetting are predicted. If the contact angle on the smooth surface is larger than 90o, 

roughness will further increase the observed contact angle, but if it is less than 90o roughness 

will reduce the observed contact angle. The changes in hydrophobicity induced by roughness 

can be large with equilibrium contact angles of ∼ 115o on flat surfaces being converted to 

angles in excess of 165o on rough surfaces. Moreover, Wenzel’s equation suggests that on a 

rough surface, complete wetting will be achieved for all partial wetting liquids satisfying 

cosθe
s>1/r. 

In practice, super-hydrophobic surfaces do not entirely follow Wenzel’s equation, but 

involve incomplete liquid penetration so that the droplet sits on a composite air-solid surface; 

the contact angle on a smooth surface for which roughness results in non-wetting behavior is 

then reduced below 90o.12 In this form of super-hydrophobicity (or, if the liquid is not water, 

super-non-wetting) the equilibrium contact angle is determined by the fraction of area of the 

solid tops, ϕs, in the planar projection of the area rather than the roughness r. The equilibrium 

contact angle is then given by the Cassie-Baxter equation,13,14 

 ( )εθϕεθ ++−= s
es

r
e coscos  (3) 
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where ε=1. In a similar manner, it can be anticipated that the complete wetting predicted by 

Wenzel’s equation will only occur if the surface texture can completely imbibe the volume of 

the deposited droplet. If it cannot then an equilibrium droplet may form on a composite 

liquid-solid surface and a Cassie-Baxter type of equation, Eq. (3), but with ε=-1 will likely be 

valid.15 

In this work we show that similar considerations leading to modification of equilibrium 

angles can be applied to the dynamics of liquids spreading on rough or textured surfaces. 

When a droplet spreads on a smooth and flat surface a Poiseuille flow occurs and a viscous 

dissipation proportional to ηvE
2/θ is created, whereη is the viscosity and vE is the edge speed 

of the drop.10 This dissipation is equal to FvE where the driving force F is proportional to the 

unbalanced component of the liquid-vapor surface tension: γLV(cosθe
s - cosθ ). For small 

angles and complete wetting surfaces (θe
s =0o) this gives the Hoffman-de Gennes Law with 

the edge speed proportional to the cube of the dynamic contact angle, i.e. vE∝θ3. Roughness 

will modify the driving force to γLV (rcosθe
s - cosθ) and with the viscous dissipation we 

predict that for small angles an additional term directly proportional to the dynamic contact 

angle occurs,16 i.e.  

 ( ) ( ) 2/1 22 s
eE rrv θθθθ −+−∝  (4) 

The derivation leading to this equation ignores any topography induced modification to 

the logarithmic cut-off term occurring in the viscous dissipation.10 It is also known that a pre-

wetting film can spread ahead of the macroscopic droplet and the thickness of this film, 

whether the drop effectively spreads on a composite solid-liquid surface and the effect of any 

slippage have not been included. Nonetheless, eq. (4) provides a first approximation of how 

dynamic wetting may be modified by surface topography. For complete wetting (θe
s=0o), the 

effect of roughness is predicted to produce a transition from a cubic law to a linear law16 and 

the spreading of the droplet to become determined by the topography. We emphasise here 

that the topography changes the surface free energies involved in droplet spreading and so the 

predicted effects are not simply about a film of liquid spreading within the channels defined 

by the topography. 
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To test the prediction for topography induced super-wetting we created multiple sets of 

surfaces structured with circular pillars of diameter 15 µm arranged in a square lattice with a 

30 µm lattice parameter across an area of size 1 cm × 1 cm. The heights of the pillars were 

increased systematically until a maximum height of 70 µm, equal to an aspect ratio greater 

than four, was achieved; above this height maintaining vertical side walls for the pillars 

became difficult. These surfaces were fabricated by patterning a layer of SU-8 photoresist 

(Fig. 1). Equilibrium measurements for drops of water gave contact angles of 84o on the flat 

SU-8 and 144o on the tallest of the patterned surfaces compared to a predicted 146o from Eq. 

(3); when hydrophobised these angles were 115o, 155o and 155o, respectively. We therefore 

conclude that these surfaces demonstrate super-hydrophobic properties of the Cassie-Baxter 

type (Eq. (3)). We also investigated the wetting and non-wetting properties of these surfaces 

for a range of liquids by measuring the equilibrium contact angles using small droplets whose 

volume (∼1 µl) could be entirely accommodated within the texture of the surfaces. We 

observed complete wetting (i.e. film formation) on tall SU-8 pillar surfaces for liquids, such 

as ethylene glycol, which have contact angles as high as 51o on the flat SU-8 surface.17 From 

this we conclude that a Wenzel type enhancement of complete wetting can occur on these 

surfaces. 

The experiments on dynamic wetting used video-profiles of the spreading of small 

droplets (initial volume ∼ 1 µl) of non-volatile PDMS (polydimethylsiloxane) oils of 

viscosity 10 000 cSt; PDMS completely wets the flat SU-8 surface. The size of these droplets 

was less than the capillary length so that surface tension dominates and the shape of the 

droplet is a spherical cap. From the side-

profile images of the drop we determined the 

volume, contact diameter and dynamic 

contact angle, and confirmed the validity of 

the spherical cap shape assumption. The drop 

volume remained constant over much of the 

spreading time, but the final stage in the 

spreading was characterised by the PDMS 

draining into and filling the surface structure. 

Visually the separation between the droplet 

spreading regime and draining into a film 

FIG. 1. Scanning electron microscope images of 
lithographically structured surfaces showing a square 
lattice of 15 µm diameter cylindrical pillars with a 30 
µm lattice parameter: (a) view of a field of pillars, 
and (b) close-up view of the pillars. 
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was clear for the surfaces with the tallest patterns. On these patterns the surface structure can 

be seen in the images, via the surface reflected light, during the period the droplet spreads 

from initial contact angles of in excess of 70o down to around 30-35o. As the latter angles 

occur, the reflected view of the structure of the surface is lost in the image as a film 

completely fills the pattern at the droplet edge and spreads out in advance of the droplet. 

During this final stage the drop dynamics changed due to the loss of drop volume and the 

complication of the drop spreading on a pre-wetting film of the oil. The speed of the droplet 

spreading for drops of similar volume was visibly faster on the textured surfaces than the flat 

surfaces. Previous studies of spreading of droplets of PDMS on smooth and abraded glass 

surfaces have been reported by Cazabat and Cohen18, but these studies mainly involved data 

for low contact angles and the film spreading stage. In their work, contact area was measured 

rather than drop profile. The technique used to produce the abraded surfaces would also have 

resulted in a constant roughness factor, whereas in our case the roughness factor is varied 

systematically in a highly controlled manner. 

When the volume of a spreading droplet is constant the edge speed can be converted 

into a rate of change of the angle. For a spherical cap shaped droplet, the edge speed-dynamic 

contact angle relation for a rough or textured surface becomes, 

 ( ) ( )[ ]2/1 223/7 s
err

dt

d θθθθ −+−−∝  (5) 

For a smooth (r=1) and complete wetting surface (θe
s=0o) this equation integrates to give a 

simple (Tanner’s) power law behaviour, θ ∝ (t+to)
-n with n=3/10 for the dynamic contact 

angle.10,16 If the surface roughness dominates, a simple power law behaviour should still be 

observed, but with an exponent of n=3/4.  In the intermediate regime the exponent n will lie 

between these two values. Similarly, the edge speed-dynamic contact angle relation (Eq. (4)) 

will appear to follow a power law vE∝ θ p with the exponents related by n = 3/(3p+1). 

Equation (5) also predicts that for sufficiently high values of r, liquids which are partially 

wetting on a smooth surface, but complete wetting on the rough surface, may also follow a 

power law with n=3/4. 
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A typical log-log plot of the edge 

speed (determined numerically from the 

contact diameter) and dynamic contact 

angle is shown in Fig. 2; the solid line 

indicates the initial trend of the slope p. 

Data equivalent to Fig. 2 where obtained a 

minimum of six times for each height of 

pattern and repeated on several separately 

fabricated surfaces of the same height 

pattern. Figure 3 shows the log-log plot of 

the dynamic contact angle data to, 

corresponding to the data in Fig. 2 and its 

fit to θ=A/(t+ to)
n; the percentage change in 

volume with time is also given and shows 

that the fit no longer follows the data once the volume loss exceeds ∼1 % of the initial drop 

volume. Analysis of the oscillations in the edge speed indicates that successive maxima and 

minima correspond to changes in contact diameter of the drop equal to the lattice parameter 

(i.e. 30 µm); this is due to microscopic stick-slip motion of the droplet edge reflecting the 

lattice of the pillars.  

Figure 4 summarises the complete data set for the spreading exponents of PDMS oils 

on the multiple surfaces. The data points for the exponent, p, (xxx symbols and left hand 

axis), show that as the height of the pillars 

increases in the power-law changes from 

p=3 towards p=1 as predicted Eq. (4). 

Exponents p determined using the edge 

speed-contact angle method are slightly 

lower than those determined using fits to the 

dynamic contact angle variation with time, 

but in both cases the trend from cubic to 

linear is unambiguous. The dynamic contact 

angle-time exponent n variation with pillar 

height ((ooo) indicated by the right-hand 

FIG. 3. A log-log plot of the dynamic contact angle and 
time with a fit of θ∝1/(t+to)

0.614 for the experiment on 
the textured surface corresponding to the data in Fig. 2. 
The percentage change in drop volume is also shown 
(lower curve and right-hand axis). 
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FIG. 2. A log-log plot of the edge speed-dynamic 
contact angle relationship for a polydimethylsiloxane 
droplet on a surface with 15 µm diameter pillars of 
height 45 µm and lattice parameter 30 µm (×××
symbols); the slope of this data during the initial 
spreading  (p=1.296) is also shown. The upper solid 
curve with a slope of p=3 is data for a smooth surface 
(shifted upwards by 0.5 for clarity).   
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axis) shows a change from Tanner’s Law 

n=3/10 towards n=3/4 as predicted by Eq. 

(5). The insets in Fig. 4 show the 

equilibrium shapes of drops of water on flat 

and tall patterned surfaces and illustrate 

that as increasing pattern height causes 

equilibrium non-wetting of water it can 

also cause result in faster spreading 

dynamics for droplets of other liquids. In a 

final set of experiments, we investigated 

whether a naturally occurring super-

hydrophobic surface would also, when 

presented with a complete wetting liquid, 

demonstrate dynamic contact angle 

behaviour consistent with eq. (4). PDMS 

oil drops spreading on a sprout leaf (brassica oleracea), which has an equilibrium contact 

angle to water in excess of 165o, resulted in exponents p∼2, thus indicating topography driven 

spreading. 

Our measurements support the idea that a super-hydrophobic surface can also act as a 

super-wetting surface. Moreover, complete wetting liquids spread on these surfaces at a 

greater speed than on flat surfaces and their dynamics follow a simple power law behavior. 

This modification of complete wetting and spreading has significance for processes such as 

inking, where enhanced spreading is desired, and in coating processes were the maximum 

coating speed is determined by the dynamic contact angle reaching 180o. In addition, current 

attempts to create super-hydrophobic self-cleaning surfaces (e.g. for use in automobile 

windows) may suffer as a result of the surface roughness/structuring causing difficulty in 

removing films of oil. Finally, in nature the surface topography used by some plants (and 

beetles), to achieve water-repellent and self-cleaning surfaces may lead to a greater 

susceptibility to man-made environmental contamination. 
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FIG. 4. Exponents p extracted from the edge speed-
dynamic contact angle data (×××) for spreading of 
polydimethylsiloxane oils on textured surfaces; the 
dotted curve indicates the trend from a cubic to linear 
form with increasing pillar height. Each data point is 
an average of experiments on several drops and 
surfaces. The dynamic contact angle-time exponent n 
variation with pillar height (ooo) is indicated by the 
right-hand axis. The inset images show the equilibrium 
shape of water droplets on the flat surface (θe=84o), 
and a surface consisting of 52 µm tall pillars (θe=142o). 
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Figure captions 

FIG. 1. Scanning electron microscope images of lithographically structured surfaces showing 

a square lattice of 15 µm diameter cylindrical pillars with a 30 µm lattice parameter: (a) view 

of a field of pillars, and (b) close-up view of the pillars. 

FIG. 2. A log-log plot of the edge speed-dynamic contact angle relationship for a 

polydimethylsiloxane droplet on a surface with 15 µm diameter pillars of height 45 µm and 

lattice parameter 30 µm (××× symbols); the slope of this data during the initial spreading  

(p=1.296) is also shown. The upper solid curve with a slope of p=3 is data for a smooth 

surface (shifted upwards by 0.5 for clarity).   

FIG. 3. A log-log plot of the dynamic contact angle and time with a fit of θ∝1/(t+to)
0.614 for 

the experiment on the textured surface corresponding to the data in Fig. 2. The percentage 

change in drop volume is also shown (lower curve and right-hand axis). 

FIG. 4. Exponents p extracted from the edge speed-dynamic contact angle data (×××) for 

spreading of polydimethylsiloxane oils on textured surfaces; the dotted curve indicates the 

trend from a cubic to linear form with increasing pillar height. Each data point is an average 

of experiments on several drops and surfaces. The dynamic contact angle-time exponent n 

variation with pillar height (ooo) is indicated by the right-hand axis. The inset images show 

the equilibrium shape of water droplets on a) the flat surface (θe=84o), and b) a surface 

consisting of 52 µm tall pillars (θe=142o). 
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FIG. 1. Scanning electron microscope images of lithographically structured surfaces showing 

a square lattice of 15 µm diameter cylindrical pillars with a 30 µm lattice parameter: (a) view 

of a field of pillars, and (b) close-up view of the pillars. 
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FIG. 2. A log-log plot of the edge speed-dynamic contact angle relationship for a 

polydimethylsiloxane droplet on a surface with 15 µm diameter pillars of height 45 µm and 

lattice parameter 30 µm (××× symbols); the slope of this data during the initial spreading  

(p=1.296) is also shown. The upper solid curve with a slope of p=3 is data for a smooth 

surface (shifted upwards by 0.5 for clarity).   
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FIG. 3. A log-log plot of the dynamic contact angle and time with a fit of θ∝1/(t+to)
0.614 for 

the experiment on the textured surface corresponding to the data in Fig. 2. The percentage 

change in drop volume is also shown (lower curve and right-hand axis). 

 

FIG. 4. Exponents p extracted from the edge speed-dynamic contact angle data (×××) for 

spreading of polydimethylsiloxane oils on textured surfaces; the dotted curve indicates the 

trend from a cubic to linear form with increasing pillar height. Each data point is an average 

of experiments on several drops and surfaces. The dynamic contact angle-time exponent n 

variation with pillar height (ooo) is indicated by the right-hand axis. The inset images show 

the equilibrium shape of water droplets on the flat surface (θe=84o), and a surface consisting 

of 52 µm tall pillars (θe=142o). 


