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We report an idealized numerical study of a melting and freezing solid adjacent to
a turbulent, buoyancy-affected shear flow, in order to improve our understanding of
topography generation by phase changes in the environment. We use the phase-field
method to dynamically couple the heat equation for the solid with the Navier–Stokes
equations for the fluid. We investigate the evolution of an initially flat and horizontal
solid boundary overlying a pressure-driven turbulent flow. We assume a linear equation
of state for the fluid and change the sign of the thermal expansion coefficient, such that
the background density stratification is either stable, neutral or unstable. We find that
channels aligned with the direction of the mean flow are generated spontaneously by
phase changes at the fluid–solid interface. Streamwise vortices in the fluid, the interface
topography and the temperature field in the solid influence each other and adjust until a
statistical steady state is obtained. The crest-to-trough amplitude of the channels is larger
than approximately 10δν in all cases, with δν the viscous length scale, but is much larger
and more persistent for an unstable stratification than for a neutral or stable stratification.
This happens because a stable stratification makes the cool melt fluid buoyant such that
it shields the channel from further melting, whereas an unstable stratification makes the
cool melt fluid sink, inducing further melting by rising hot plumes. The statistics of flow

† Email address for correspondence: louis.couston@ens-lyon.fr

© The Author(s), 2021. Published by Cambridge University Press. This is an Open Access article,
distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/
licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium,
provided the original work is properly cited. 911 A44-1

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

10
64

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

mailto:louis.couston@ens-lyon.fr
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/jfm.2020.1064&domain=pdf
https://doi.org/10.1017/jfm.2020.1064


L.-A. Couston and others

velocities and melt rates are investigated, and we find that channels and keels emerging in
our simulations do not significantly change the mean drag coefficient.

Key words: geophysical and geological flows, turbulent flows, solidification/melting

1. Introduction

Melting and freezing processes between ice and water play an important role in the
environment. For instance, the melting of ice shelves, i.e. floating glacial ice, can lead to
reduced buttressing of the grounded polar ice sheets and increased sea-level rise (Pritchard
et al. 2012; Rignot et al. 2013; Kennicutt 2019), while freezing of high-latitude oceans
by a cold atmosphere results in sea-ice formation, increased albedo and increased ocean
salinity through brine rejection (Wells, Hitchen & Parkinson 2019). Icebergs, ice shelves
and sea ice are kilometre-scale objects with long lifetimes but their evolution is controlled
by heat and salt fluxes across millimetre-thin ice–water boundary layers, which fluctuate
rapidly (Dinniman et al. 2016). The front of a marine-terminating glacier can melt as
fast as several metres per day horizontally (as recently reported for the LeConte Glacier,
Sutherland et al. 2019), but an ice shelf around Antarctica typically melts at a rate of only
a few centimetres per day or less (Dutrieux et al. 2014). On the other hand, ocean currents
are most often turbulent and exhibit temporal variabilities on fast time scales of just a
few seconds (Davis & Nicholls 2019), such that phase changes between ice and water are
multi-physics phenomena with large scale separation.

An important consequence of phase changes is that topographical features can emerge
at the ice–water interface when the rate of melting and freezing is spatially variable.
Basal channels (Stanton et al. 2013; Gourmelen et al. 2017) and terraces (Dutrieux et al.

2014) have been observed at hundreds-of-metre to kilometre scales under ice shelves,
the underside of icebergs exhibit ablation channels at the metre scale and scallops at
the tens-of-centimetre scale (Hobson, Sherman & McGill 2011), and, more generally,
rough features can be seen from the centimetre scale to tens-of-metre scale under sea
ice (Wadhams, Wilkinson & McPhail 2006; McPhee 2008; Lucieer et al. 2016) and up
to the kilometre scale under ice shelves (Nicholls 2006). The interplay between flow
dynamics and phase changes leading to the generation and persistence of topographical
features in the environment is of fundamental importance. The presence of topography
can significantly affect the long-term flow dynamics as well as the average melting or
freezing rate of the ice boundary, as suggested by, for example, the large spatial variability
of melting of basal terraces (Dutrieux et al. 2014) and recent laboratory experiments on
ice scallops (Bushuk et al. 2019).

Buoyancy forces play an important role in the coupling between phase changes, flow
dynamics and topography generation. Buoyancy forces can be stabilizing or destabilizing
depending on the relative orientation between the gravitational acceleration vector and the
density gradient. In polar seas, cold and fresh melt water near the ice boundary is lighter
than the surrounding water, such that buoyancy forces are restoring below a horizontal ice
boundary (e.g. below an ice shelf) and drive upwellings along a vertical ice face (e.g. at the
front of a marine-terminating glacier). In a cold freshwater system the thermal expansion
coefficient of water is negative, i.e. it is negative for temperatures 0 ◦C < T < 4 ◦C at
atmospheric pressure (Thoma et al. 2010), such that buoyancy forces are stabilizing for
water under an ice cover (e.g. as in a frozen lake) but destabilizing for water above ice
(e.g. for a supraglacial lake or river).

911 A44-2

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

10
64

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.1064


Melting and freezing in a turbulent shear flow

For a system dominated by destabilizing buoyancy forces, the interplay is strong between
fluid dynamics and phase topography. In a thermally stratified fluid with finite depth below
a solid phase, the unstable density stratification sets up a large-scale circulation known
as Rayleigh–Bénard convection with alternating warm upwelling and cold downwelling
regions. The warm upwellings drive stronger melting than the cold downwellings, such that
a topography can emerge from spatially variable heat fluxes. The topography enhances the
large-scale circulation, such that a positive feedback is obtained and the flow dynamics
and solid boundary become phase locked (Rabbanipour Esfahani et al. 2018; Favier,
Purseed & Duchemin 2019). Dissolution of a phase boundary, i.e. with phase changes
driven by concentration gradients rather than temperature effects, in a gravitationally
unstable fluid can also lead to convective motions and the generation of three-dimensional
topography (even in the absence of a large-scale circulation), as shown by experiments
(Kerr 1994; Sullivan, Liu & Ecke 1996) and numerical simulations (Philippi et al. 2019).
Streamwise patterns also emerge in dissolution experiments when the phase boundary is
not perpendicular to gravity but inclined (Allen 1971; Cohen et al. 2020).

Despite the existence of many studies on pressure-driven and shear flows (Kelly 1994;
Zonta & Soldati 2018), the possibility for topography to emerge between a horizontal
boundary layer flow and a solid phase, i.e. perpendicular to gravity, is not well understood,
at least compared with the case of topography generation by Rayleigh–Bénard convection.
Boundary layer flows strongly affected by shear, such as under ice shelves, are yet as
common (if not more) as buoyancy-driven flows in the environment, such that there
is significant interest in predicting their ability to generate topographical features (or
roughness) at horizontal ice boundaries and the impact the sustained topography can
have on overall melt rates. Using laboratory experiments, Gilpin, Hirata & Cheng (1980)
demonstrated the existence of an interfacial instability and the generation of ripples at an
ice boundary below a horizontal turbulent boundary layer water flow. The experiments had
a modest unstable density stratification owing to the negative thermal expansion coefficient
of freshwater at low temperatures (Toppaladoddi & Wettlaufer 2019). However, Bushuk
et al. (2019), who conducted an experiment similar to Gilpin et al. (1980), argued that the
buoyancy forcing can be neglected in the large velocity regime of the experiments, thus
confirming the possibility for topography generation in the absence of vertical convection.
The necessary condition for an interfacial instability to develop, regardless of the type of
density stratification, is that the maximum of mass transfer from the solid to the fluid due to
a heat flux or concentration gradient (resulting in ablation) at the boundary be shifted by
−90◦ to +90◦ compared with the maximum (crest) of boundary topography (Hanratty
1981). Recently, Claudin, Durán & Andreotti (2017) demonstrated that such a shift is
possible for a horizontal neutral turbulent flow and proposed a saturation mechanism for
the finite amplitude of two-dimensional scallops. Three-dimensional effects and buoyancy
forces are expected to play an important role in topography generation and melting rates
but were not considered in the study of Claudin et al. (2017), which also relied on
parameterized flow nonlinearities. Thus, additional efforts are necessary to improve our
understanding of the physical mechanisms leading to the generation and saturation of
phase topography by horizontal shear flows.

Here, we investigate the generation of topography at a phase boundary adjacent to a
shear flow affected by buoyancy via direct numerical simulations. We focus on the case
of an initially flat and horizontal solid, i.e. perpendicular to gravity, and investigate the
influence of density stratification on the topography obtained and the coupled fluid–solid
dynamics. Our numerical model solves the evolution of the fluid and solid phases
simultaneously using the phase-field method. The phase-field method is a one-domain
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two-phase fixed-grid method that was originally developed by the metallurgy community
for relatively smooth flows (Wang et al. 1993; Karma & Rappel 1998; Beckermann
et al. 1999), but which was recently applied to the case of vigorous convective flows
(Favier et al. 2019; Purseed et al. 2020). Other methods that simultaneously solve for
the evolution of a fluid phase and a solid phase include the enthalpy method (Ulvrová
et al. 2012), the level-set method (Gibou et al. 2007), the lattice-Boltzmann method
(Rabbanipour Esfahani et al. 2018) and two-domain moving-boundary methods (Ulvrová
et al. 2012). The main advantage of the phase-field method over these other methods is
that it can be implemented relatively easily in any fluid solver.

Our study aims to contribute to the physical understanding of topography generation
by shear flows at horizontal boundaries and the associated changes in mean melt rates,
as most recently investigated theoretically by Claudin et al. (2017) and experimentally
by Bushuk et al. (2019). Numerical constraints force us to consider an idealized set-up
however, such that our fluid and solid phases are not exactly representative of water and ice.
Notably, we assume that the fluid and solid have the same thermodynamical and transport
properties, e.g. the same thermal conductivity, and we consider an anomalously warm
fluid in order to minimize the time scale separation between the turbulent dynamics and
generation of boundary topography. Due to computational constraints, the external flow in
our simulations is also weaker than what may be expected for scallops to emerge (Claudin
et al. 2017; Bushuk et al. 2019).

The main result of our paper is that topographical features spontaneously emerge at
the ice–water interface due to uneven melting of the solid boundary by the shear flow.
We investigate the effect of background density stratification and we demonstrate that the
topography is dominated by keels and channels that are aligned with the direction of the
mean flow in all cases.

We organize the manuscript as follows. In § 2 we describe the phase-field method, the
dimensionless equations and the numerical method. In § 3 we present and discuss the
direct numerical simulation results obtained for three different background stratifications.
In § 4 we discuss the link between our results and geophysical applications and explain
why we did not observe three-dimensional scallops. In § 5 we conclude. Finally, in
appendices A–D, we provide additional details about the method and results.

2. Model

2.1. Phase-field method

We investigate the generation of topography due to uneven melting and freezing
at a fluid–solid interface. The solid is fixed and located above the fluid where a
Poiseuille/channel flow develops due to an external pressure gradient (see figure 1).
The initial thickness of the fluid (respectively solid) layer is H (respectively H/2), such
that the channel full depth is 3H/2. The domain length (in the direction of the flow)
is Lx = 4πH and the transverse width is Ly = 2πH. We define a Cartesian coordinate
system (x, y, z) centred on the bottom of the channel with the z-axis vertically upward,
i.e. opposite to gravity, and use superscripts ( f ) and (s) to denote variables in the fluid and
the solid, respectively. The fluid velocity u

( f ) and pressure p( f ) evolve according to the
Navier–Stokes equations under the Boussinesq approximation. For simplicity, we assume
that the solid and fluid phases have the same thermodynamical and transport properties,
i.e. the same reference density ρf , the same specific heat capacity at constant pressure
cp and the same thermal conductivity k. Thus, the temperatures T( f ) and T(s) evolve
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Figure 1. (a) Simulation snapshot showing the temperature field in the fluid (red colourmap) and the solid
(blue colourmap) for neutral stratification (Ri∗ = 0) at late time, i.e. such that it is representative of the
statistical steady state. The arrows along the four vertical transects and across the front face x = lx (displayed
over a limited number of points for clarity) show the velocity vectors. The velocity vectors all point primarily
in the direction of the mean flow, +x̂. (b) Zoom-in on a region of (a). (c) Variation of the phase field from
φ = 1 in the fluid to φ = 0 in the solid along the vertical solid line drawn in (b). The non-dimensional lengths
in the x, y and z directions are lx = 4π, ly = 2π and lz = 1.5, respectively.

according to the same advection–diffusion (energy) equation, which turns into the heat
equation where the velocity is zero. We consider a generic linear equation of state for the
fluid, i.e. not specific to water, with the density related to temperature through

ρ( f ) = ρf

(
1 − αT( f )

)
, (2.1)

with α the thermal expansion coefficient. For a pure component flow, the fluid–solid
interface must be at the temperature of melting, denoted by Tm, and the movement of
the interface is governed by the Stefan condition, i.e.

T( f ) = T(s) = Tm, (2.2a)

ρsLvn = q( f )
n − q(s)

n = −kf n̂ · ∇T( f ) + ksn̂ · ∇T(s), (2.2b)

where ρs is the reference density of the solid, vn is the interface velocity in the direction
normal to the interface and directed toward the solid phase (supported by unit vector n̂), L
is the latent heat of fusion per unit mass, qn is the heat flux in direction n̂, ks (respectively
kf ) is the thermal conductivity of the solid (respectively fluid) and ∇ is the gradient
operator (Worster 2000). We recall that we assume the same properties for the two phases,
i.e. in our case kf = ks = k and ρs = ρf in (2.2). Note that the properties of water and ice
are different under typical atmospheric pressure and near-freezing temperature conditions,
i.e. ρf ≈ 999 kg m−3, cpf ≈ 4200 J kg−1 K−1 and kf ≈ 0.6 W m−1 K−1, while ρs ≈ 917
kg m−3, cps ≈ 2100 J kg−1 K−1 and ks ≈ 2.2 W m−1 K−1. The relative differences are
small however, i.e. within a factor of four or less, such that we do not expect fundamental
differences between the physics in our model and real processes involving water and ice in
nature.

Here we use a volume-penalization method (Angot, Bruneau & Fabrie 1999), which is
a type of immersed boundary method, combined with the phase-field method, in order
to solve for phase-change processes and the evolution of the variables in the fluid and the
solid simultaneously. Specifically, we solve the Navier–Stokes equations in the Boussinesq
approximation and the advection–diffusion (energy) equation for temperature combined
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with an equation for the fluid fraction φ, i.e.

∂u

∂t
+ φ (u · ∇) u = ν∇2

u − 1
ρf

∇p + αgT ẑ + Π

ρf

x̂ − (1 − φ)

τp

u, (2.3a)

∂T

∂t
+ φ (u · ∇) T = κ∇2T − L

cp

∂φ

∂t
, (2.3b)

∂φ

∂t
= a∇2φ + bφ(1 − φ) [2φ − 1 + c(T − Tm)] , (2.3c)

∇ · u = 0, (2.3d)

with u = (u, v, w), p and T defined in both the fluid and the solid, i.e. assuming that the
fluid and solid phases form a single domain, such that we can drop the superscripts ( f )

and (s). In (2.3), ν is the constant kinematic viscosity, g is the standard gravity, Π is the
imposed pressure-gradient force and κ = k/ρf /cp is the constant thermal diffusivity; τp,
a, b and c are parameters related to volume penalization and the phase-field method, which
we define later, and ẑ and x̂ are the unit vectors of the z- and x-axes, respectively. Note that
the third term on the right-hand side of (2.3a) represents the buoyancy force.

The fluid fraction, φ, also known as the phase-field variable or order parameter,
satisfies a forced diffusion equation (2.3c) with parameters tuned such that φ transitions
continuously from 1 in the fluid to 0 in the solid, across a diffuse interface whose thickness
is artificial and must be smaller than all physical length scales in the problem, including the
viscous length scale (cf. appendix A). The fluid fraction φ is introduced in the momentum
(2.3a), energy (2.3b) and continuity (2.3c) equations, in order to modulate locally the
importance of each physical process based on the component’s phase. For instance, the
last term on the right-hand side of (2.3a) is a linear (penalization) damping term, which is
active in the solid but inactive in the fluid, while the second term on the right-hand side
of the energy equation (2.3b) is a heat sink or source that represents the consumption or
release of latent heat associated with melting or freezing. In the limit of an infinitesimally
small diffuse interface thickness of the phase field, it has been shown that the dynamics of
the fluid–solid interface governed by (2.3) converges to the exact Stefan conditions (2.2),
and that the fluid velocity converges to 0 at the fluid–solid interface, thus mimicking a
no-slip boundary. Here we multiply by φ the advective terms in (2.3a) and (2.3b), such that
they are zero in the solid phase. Previous studies have used both damped and undamped
advective terms and we discuss the impact of our choice on the results in appendix B.

2.2. Dimensionless equations

Equations (2.3) can be non-dimensionalized in order to identify the set of independent
control parameters. Following previous studies (e.g. Favier et al. 2019), we use the
thermal diffusive time scale τκ = H2/κ as a normalizing time scale, i.e. the dimensionless
variables, denoted by tildes, are defined as

(x, y, z) = (Hx̃, Hỹ, Hz̃), t = τκ t̃, u = uκ ũ,

T = Tm + ∆TT̃, p = ρf u2
κ p̃, φ = φ̃,

}
(2.4a–f )

with uκ = κ/H the diffusion velocity scale, and ∆T = Tb − Tm is the temperature
scale with Tb the dimensional temperature on the bottom boundary. The time scale
τκ is particularly relevant for discussing the long-term dynamics of the system since
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temperature evolves in the solid through diffusion. We will use the shorter friction time
scale to describe relatively rapid processes, such as convection in the fluid (see § 2.3).

Substituting variables (2.4a–f ) into (2.3) and dropping tildes, we obtain the
dimensionless equations

∂u

∂t
+ φ (u · ∇) u = Pr∇2

u − ∇p + PrRaT ẑ + 2Pr2Rex̂ − Pr
(1 − φ)

Γ
u, (2.5a)

∂T

∂t
+ φ (u · ∇) T = ∇2T − St

∂φ

∂t
, (2.5b)

∂φ

∂t
= A∇2φ + Bφ(1 − φ)(2φ − 1 + CT), (2.5c)

∇ · u = 0. (2.5d)

The control parameters in (2.5) are the Prandtl number, Pr, which compares kinematic
viscosity to thermal diffusivity, the centreline Reynolds number, Re, which compares the
pressure-gradient force to viscous dissipation, the Rayleigh number, Ra, which compares
buoyancy forces to viscous and thermal dissipation, and the Stefan number, St, which
compares the available sensible heat to the latent heat. They are related to the physical
parameters through

Pr = ν

κ
, Re = ΠH3

2ρf ν2 , Ra = αg∆TH3

νκ
, St = L

cp∆T
. (2.6a–d)

The additional parameters Γ = τpνH2/κ2, A = a/κ , B = b/(κ/H2) and C are
non-physical and prescribed based on numerical constraints of the volume-penalization
and phase-field methods (cf. appendix A). The problem is fully specified once Pr, Re, Ra

and St are known and the boundary conditions are prescribed. Here we enforce a no-slip,
fixed-temperature condition at the top of the ice, i.e. u = 0 and T = Tt < 0 at z = 1.5.
We impose free-slip, fixed-temperature conditions on the bottom boundary, i.e. ∂zu =
∂zv = w = 0 and T = 1 at z = 0, such that we simulate only one half of a full channel
flow (to reduce computational costs). The dimensionless melting temperature is T = 0.
The initial interface position is z = 1 and we note that (lx, ly, lz) = (4π, 2π, 1.5), the
domain lengths in dimensionless space. The initial condition in the fluid is a half-channel
laminar Poiseuille flow superimposed with divergence-free white noise for the velocity
fluctuations.

We will generally discuss our results in terms of the steady-state friction (or shear)
Reynolds number, Re∗, and the friction Richardson number, Ri∗, i.e.

Re∗ =
√

2Re =
√

ΠH3

ρf ν2 , Ri∗ = −Ra

PrRe
= −2ρf α∆Tg

Π
, (2.7a,d)

since they are more commonly used than Re and Ra in turbulent channel flow studies
(García-Villalba & del Álamo 2011; Zonta & Soldati 2018). The key difference between Re

and Re∗ is that the former is based on the velocity on the bottom free-slip boundary of the
channel in the laminar regime, which is [ΠH2(1 − z2/H2)/(2ρf ν)]|z=0 using dimensional
variables, while the latter is based on the friction velocity, which is

√−τw =
√

ΠH/ρf ,
with τw the mean wall shear stress, again using dimensional variables. Here, we favour
the friction Richardson number over the Rayleigh number as the control parameter, even
when the stratification is unstable, because they are both input parameters and because the
wall shear stress is an important driver of turbulence in all cases. The importance of shear
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forces compared with buoyancy forces can be estimated from the Monin–Obukhov length,
which is

LMO = Re3
∗Pr2

Nu Ra
, (2.8)

in terms of dimensionless variables and which is often reported in mixed-convection
experiments (Pirozzoli et al. 2017; Blass et al. 2020), with Nu the Nusselt number, which
we define later (see (2.9a–c)). The Monin–Obukhov length estimates the distance from
the boundary within which shear is as important or more important than buoyancy. In
our simulations, we always have LMO > 0.97, such that shear is a significant source of
turbulence throughout the domain.

We investigate the effect of background density stratification on the generation of
topography at the fluid–solid interface by considering three distinct values of Ri∗, i.e.
Ri∗ = 40, Ri∗ = 0 and Ri∗ = −40, for which the stratification is stable, neutral and
unstable, respectively. For simplicity and computational expediency, all other parameters
(except Tt) are fixed such that the flow is (moderately) turbulent and phase changes are
relatively rapid, i.e. we set Re∗ = 150 (Re = 11 250), Pr = 1 and St = 1. For each Ri∗,
we set Tt such that the initial heat flux in the ice, −Tt/2, is almost equal to the heat
flux in the fluid when there is no melting. As a result, the fluid–solid interface position
does not move significantly in time (at least initially) and we can maximize numerical
resolution around the interface with a fixed grid. For reference, the Rayleigh number for the
unstable stratification case (Ri∗ = −40) is Ra = 4.5 × 105, which is above the instability
onset for Rayleigh–Bénard convection rolls in the streamwise direction (Ra ≈ 1101) of
thermally stratified plane Poiseuille flow (Chandrasekhar 1961; Gage & Reid 1968). Note
that changing the sign of Ri∗ can be obtained by changing the sign of the thermal expansion
coefficient α, which indeed can be either positive or negative depending on the fluid state.
We discuss the geophysical relevance of our choice of parameters, including α, in § 4.

We solve (2.5) using the open-source pseudo-spectral direct numerical simulation
(DNS) code DEDALUS (Burns et al. 2020). We use 256 Fourier modes in the x and y

directions and a compound Chebyshev basis with a total of 288 modes in the z direction
unless stated otherwise. The use of a compound Chebyshev basis allows us to have a
stretched grid in the vertical direction with refined (respectively coarse) resolution near the
mean fluid–solid interface (respectively in the fluid bulk). Here, the Chebyshev collocation
grid has a resolution equal to approximately one-fourth of a wall unit ∆z+ = 1/Re∗ ≈
0.0066 at and around the fluid–solid interface and equal to approximately one wall unit in
the fluid bulk, whereas the Fourier collocation grids have a uniform resolution of roughly
7 and 3.5 wall units in x and y, which is within the recommended resolution for channel
flow simulations (see e.g. Moin & Mahesh (1998) and appendices A and C for more
details). We use a two-step implicit–explicit Runge–Kutta scheme for time integration. The
Courant–Friedrichs–Lewy condition is typically set to 0.2 in the transient initial stage and
0.4 later on. At statistical steady state, the time step is typically 103–104 times smaller than
the friction time scale 1/(Re∗Pr), which is equal (in terms of dimensional variables) to H

divided by the steady-state friction velocity. We run each simulation for approximately
4 diffusive time scales, or 600 friction time scales, which takes roughly 2 million time
steps, such that the total cost of the simulations is of the order of 1 million CPU hours.
Figure 1(a) shows a snapshot of the temperature field in the fluid (red colourmap) and
the solid (blue colourmap), as well as the velocity vectors (arrows) at select locations
for Ri∗ = 0. Figure 1(c) shows the variations of the phase field along the thick solid line
drawn in figure 1(b). The transition from φ = 1 in the fluid to φ = 0 in the solid occurs
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Stratification Ri∗ ReI
b ReIII

b NuI qs NuIII ξ III

(
ξ−
δν

,
ξ+
δν

)
103CI

D 103CIII
D

Stable 40 2720 2630 3.02 2.83 3.09 1.042 (2.4,2.2) 5.9 6.7
Neutral 0 2290 2240 4.58 4.48 4.75 1.025 (5.2,4.1) 8.6 9.2
Unstable −40 1970 1910 6.74 6.69 7.75 1.037 (30,15) 11.3 12.7

Table 1. Simulation parameters and selected output variables. The output bulk Reynolds numbers ReI
b and

ReIII
b and Nusselt numbers NuI

b and NuIII
b are volume-averaged and time-averaged over 50 friction time units

before the end of stages I and III, respectively. Here qs is the conductive heat flux through the ice imposed as
an initial condition at the beginning of stage II; ξ III , ξ− and ξ+ are the mean interface position, the maximum
amplitude of the keels and the maximum amplitude of the channels averaged over 50 friction time units at
the end of stage III; CI

D and CIII
D are the drag coefficients averaged over 50 friction time units at the end of

stage I and stage III, respectively. Note that Re∗ = 150, Pr = 1 and St = 1 in all simulations. Also, Ri∗ = −40
corresponds to Ra = 4.5 × 105.

over a very thin diffuse interface of thickness ≈0.007. Simulation parameters and output
variables are provided in table 1.

2.3. Variables of interest

We define the friction velocity, the bulk velocity and the Nusselt number as

u∗ = 〈φ〉
√

−(τd + τν + τw)

∣∣∣∣
z=1.5

, ub = 〈u〉
〈φ〉 , Nu = 〈q〉, (2.9a–c)

respectively (cf. details in appendix B), where the overbar denotes the horizontal average
and 〈·〉 ≡

∫
V

dV/V denotes the volume average, such that 〈φ〉 is the mean fluid fraction and
ub is the bulk velocity of the fluid phase. In (2.9a–c), τd, τν and τw are the linear damping,
viscous and Reynolds shear stresses, and q = wT − ∂zT is the heat flux. At statistical
steady state, the full shear stress τ̄ = (τd + τν + τw) is approximately a linear function
of z and q is approximately depth invariant, in agreement with channel flow simulations
of a pure fluid (cf. appendix B for details on stresses and depth-independent variables
using the phase-field method). Since τ̄ is a linear function of z, u∗ can be estimated from
the full shear stress as

√
−τ̄ at any depth as long as it is properly rescaled by the height

at which it is estimated. Here, we use the shear stress at the top boundary z = 1.5 in
(2.9a–c) for convenience but with pre-multiplying coefficient 〈φ〉 ≤ 1, such that u∗ is
truly the friction velocity at the mean interface position (cf. (2.9a–c)). We denote by ξ

the fluid–solid interface position, where

ξ(x, y) =
∫ lz

0
φ dz, (2.10)

such that ξ̄ = 〈φ〉 (note that one could alternatively define ξ such that it satisfies φ(z =
ξ) = 0.5 or T(z = ξ) = 0), and we denote the melt rate by ṁ = ∂tξ . The drag coefficient
of the fluid–solid boundary is defined as the ratio of the dimensionless wall shear stress u2

∗
divided by the dynamic pressure u2

b/2, i.e.

CD = 2
(

u∗
ub

)2

(2.11)

(García-Villalba & del Álamo 2011; Pirozzoli et al. 2017). The temporal fluctuations of
the variables of interest will be mainly reported in terms of the friction time t∗ = Re∗Prt.
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Occasionally, we will show vertical profiles of variables in terms of the distance from the
interface, which we denote by χ(t, x, y) = ξ(t, x, y) − z.

3. Results

The key findings of our work are that (i) streamwise topographical features emerge
from uneven melting and freezing at a phase boundary when the flow is driven by a
pressure gradient, and that (ii) the type of density stratification affects the characteristic
amplitude and spanwise wavelength of the streamwise patterns. Thus, after a discussion
of the evolution of global flow variables in § 3.1, we directly present the results of the
topographical features generated at the fluid–solid boundary in § 3.2. We then investigate
the interplay between the turbulent flow, the topography and phase changes in §§ 3.3 and
3.4, and finally discuss the evolution of the mean interface position and the statistics of
melting and freezing in § 3.5.

3.1. Simulation stages and global flow variables

We show in figure 2 the friction velocity u∗, the bulk velocity ub and the Nusselt number
Nu for stable (top figure), neutral (middle figure) and unstable (bottom figure) stratification.
Each simulation is broken down into three main stages, which are highlighted by different
colours in figure 2 (note that we do not discuss the results shown in grey, which correspond
to the spin-up of the fluid phase without buoyancy effects). The first stage of interest
(stage I for tIb∗ ≤ t ≤ tIc∗ ) is shown in blue and corresponds to the spin-up of the fluid phase
with buoyancy effects turned on. Importantly, stage I neglects the solid phase, which is
substituted with a simple isothermal no-slip boundary, for computational expediency. The
second key stage (stage II for tIc∗ < t ≤ tII∗ ) is shown in orange and corresponds to the
part of the simulation that includes the solid phase with volume penalization turned on,
but neglects melting or freezing, such that the solid always occupies 1 ≤ z ≤ 1.5 and the
phase field is prescribed as φ = 0.5

{
1 − tanh

[
2(z − 1)/δ

]}
, where δ is the thickness of

the diffuse interface. The final third stage (stage III for t > tII∗ ) is shown in green and
highlights results obtained when all effects are considered, i.e. buoyancy is turned on,
there is both the fluid and the solid and phase changes are enabled (cf. additional details
on the simulation stages in appendix C). The temperature in the solid is initialized at the
beginning of stage II as

T = −qs(z − 1), 1 ≤ z ≤ 1.5, (3.1)

where qs is the initial conductive heat flux through the solid, by imposing the
fixed-temperature condition T = Tt = −qs/2 at the top of the solid. The difference
between the heat flux in the fluid and the conductive heat flux in the solid in stage II
controls whether the fluid–solid interface melts or freezes once phase changes are turned
on in stage III. Here, we set qs to be slightly smaller than the heat flux in the fluid at the
end of stage I, which we denote by NuI , such that the solid melts slowly at the beginning of
stage III in all three simulations (see further discussion in § 3.5). The bulk Reynolds and
Nusselt numbers at the end of stages I and III are defined as

ReI
b =

∫ tIc∗

tIc∗ −∆∗

ub dt∗
Pr∆∗

, ReIII
b =

∫ tIII∗

tIII∗ −∆∗

ub dt∗
Pr∆∗

,

NuI =
∫ tIc∗

tIc∗ −∆∗

Nu dt∗
∆∗

, NuIII =
∫ tIII∗

tIII∗ −∆∗

Nu dt∗
∆∗

,

⎫
⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(3.2a–d)
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Figure 2. Time history of the friction velocity u∗ and bulk velocity ub (left axis) and of the Nusselt number Nu

(right axis) for (a) stable (Ri∗ = 40), (b) neutral (Ri∗ = 0) and (c) unstable (Ri∗ = −40) density stratification.
We report the friction time t∗ = Re∗Prt on the horizontal axis and show ub/20 instead of ub as ub/20 and
u∗ have the same order of magnitude. Each full simulation can be broken down into a series of stages of
increasing complexity, which are shown by different colours and are separated by vertical dashed lines. The
overall procedure is shown schematically in the top panel. There is an intermediate stage t∗ ∈ [tIb∗ , tIci

∗ ] in (a)
during which Ri∗ = 20. See the text and appendix C for more details.
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with ∆∗ = 50, and are reported with qs in table 1. Note that Reb ≪ Re because the flow
is turbulent and, hence, experiences enhanced friction at the wall compared with the same
flow in the laminar regime.

Buoyancy effects are turned off for t∗ ≤ tIb∗ , such that the results of figure 2 are exactly
the same for all three simulations until t∗ = tIb∗ . Upon turning on buoyancy, i.e. for
t∗ ≥ tIb∗ (blue), the Nusselt number and bulk velocity deviate from the neutral case (middle
figure), but with opposite behaviours: Nu decreases while ub increases with stabilizing
buoyancy effects (top figure), and Nu increases while ub decreases with destabilizing
buoyancy effects (bottom figure). The friction velocity, on the other hand, remains close
to u∗/Pr ≈ Re∗ in all three cases. The effect of background stratification on bulk velocity
and heat fluxes are well known from channel flow studies (García-Villalba & del Álamo
2011; Pirozzoli et al. 2017), and the important point is that the heat flux is the variable that
changes the most with buoyancy effects. Here, NuI = 3.02, 4.58 and 6.74 for Ri∗ = 40,
0 and −40, respectively (cf. table 1). It is worth noting that while Nu remains the same
between stage I and stage II (in a time-average sense), u∗ and ub show some variations
as a result of turning on volume penalization and adding a solid phase. The large dip
of u∗ at t∗ ≈ tIc∗ is merely the result of a sudden deceleration of the mean flow close to
the interface, due to the addition of linear damping, which is transient, as can be seen
from the rapid return of u∗ to its statistically steady-state value of u∗ ≈ 150. The drop of
the bulk velocity is similarly due to the added linear damping. However, unlike the dip
in u∗, the drop in ub persists at all times, implying that volume penalization results in
anomalous drag on the mean flow. Here, the relative drop of bulk velocity is of the order
of 5 % and the profiles of temperature and velocity close to the fluid–solid interface in
stage II reproduce closely those obtained in stage I (see appendix A). Therefore, we
consider the discrepancy to be small enough not to warrant a computationally costly
increase in resolution or further tuning of the phase-field parameters. When melting
is turned on, i.e. for t∗ > tII∗ (green), global flow variables show different behaviours
depending on Ri∗. For the stable case, u∗, ub and Nu exhibit moderately large fluctuations
(as in previous stages), but do not exhibit any time-mean deviation (top figure). For the
neutral case, we find a small increase in u∗, ub and Nu (middle figure). For the unstable
case, we find that u∗ and ub increase slightly, while Nu increases substantially (bottom
figure). The analysis presented in the next sections explains these behaviours. Eventually,
all simulations reach a statistical steady state.

We show in figure 3 the temporal evolution of another global variable, namely,
the drag coefficient, CD, which is of significant interest in inferring melt rates from
resolved variables in coarse models (using, for instance, the three-equation model;
see Holland & Jenkins 1999). The drag coefficient is of order 10−2 and decreases
(respectively increases) significantly at t∗ = tIb∗ , i.e. when the stratification becomes stable
(respectively unstable). The decrease (respectively increase) of CD results from an increase
(respectively decrease) of the potential energy barrier in stirring the mean shear and
bringing momentum upward with increasing stable (respectively unstable) stratification
and is in agreement with previous studies (García-Villalba & del Álamo 2011; Pirozzoli
et al. 2017). In stage II, CD increases because ub decreases moderately upon turning
on volume penalization (cf. figure 2). In stage III, CD has similar values to stages I
and II (cf. reported values in table 1), showing that it is not modified by the topographical
features obtained in DNS, perhaps because they are aligned with the main flow direction
(see § 3.2).
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Figure 3. Drag coefficient CD as a function of time t∗ for unstable, neutral and stable stratification. The
colours highlight different simulation stages as in figure 2.

3.2. Spontaneous generation of channels and keels

The mean interface position does not vary significantly in our simulations, due to our
choice of initial and boundary conditions for the solid, but uneven melting by the
turbulent flow still generates large-amplitude topography, which we discuss in this section.
We denote variables averaged in the x direction by a tilde (˜) and variables averaged in the
x direction minus the horizontal mean by a prime (′), such that e.g. ξ ′ = ξ̃ − ξ̄ represents
the spanwise variations of the streamwise-averaged topography around the horizontal
mean.

We show snapshots of the two-dimensional fluid–solid interface ξ at the end of stage III
in figure 4(a–c) for stable, neutral and unstable stratification, respectively (cf. movies 1–3
in the supplementary material available at https://doi.org/10.1017/jfm.2020.1064 to see
the temporal evolution of the interface). In all three cases, the topography is dominated
by channels (troughs in the solid; brown colour) and keels (excursions of solid into the
fluid; green colour) aligned with the streamwise direction. We reach a statistical steady
state relatively quickly in all cases after turning on phase changes, such that the patterns
in figure 4(a–c) are representative of the interface topography throughout most of stage III
(see movies 1–3 in the supplementary material). We show in figure 4(d–f ) the Hövmoller
diagrams of the channels and keels by plotting ξ ′ in the (t∗, y) plane for all of stage III.
It can be seen that the characteristic amplitudes of the channels and keels saturate almost
immediately for stable and neutral stratification and well before the end of stage III for
unstable stratification. The steady-state amplitude of the biggest channels, ξ+ (maximum
of ξ ′), and the steady-state amplitude of the deepest keels, ξ− (minus the minimum of ξ ′),
increase with decreasing Ri∗ (i.e. from figure (d) to ( f )). The crest-to-trough amplitude
is roughly 5, 10 and 45 times the viscous length scale δν = 1/Re∗ for stable, neutral and
unstable stratification, respectively (note that δν is roughly equal to the diffuse interface
thickness; cf. appendix A). Thus, the crest-to-trough amplitude is of the same order
as the viscous sublayer thickness, which is approximately 5δν , for stable and neutral
stratification, but extends beyond the buffer layer and into the log layer for the case of
unstable stratification (figure 4c, f ).

Figure 4(d–f ) shows that the viability of channels and keels increases with decreasing
stratification: channels and keels are short lived with stable stratification but long lived
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Figure 4. (a–c) Interface topography between the fluid and the solid at the final time of the simulation.
Channels in the ice are highlighted in brown while keels are highlighted in green. (d–f ) Spanwise variations
of interface topography ξ ′ = ξ̃ − ξ̄ normalized by the viscous length scale δν = 1/Re∗ and as functions of t∗.
The top, middle and bottom rows show the results for stable, neutral and unstable stratification, respectively.

with unstable stratification. For stable stratification (figure 4d), the separation of scales
between the topography lifetime (about 10 friction time units) and the diffusion time scale
across the solid layer (about 100 friction time units) suggests that the interface evolution
is purely driven by the flow dynamics. For neutral stratification, figure 4(e) shows that
channels and keels can drift, merge, split, decay and spontaneously appear over time
scales of tens to hundreds of friction time units, highlighting a possible interplay between
interface evolution and the fixed-temperature condition at the top solid boundary. For
unstable stratification (figure 4f ), the channels and keels become time invariant and their

911 A44-14

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

10
64

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.1064


Melting and freezing in a turbulent shear flow

amplitudes saturate because of the top solid boundary condition, which plays a key role in
the interface evolution as discussed in the next sections.

3.3. Coupled dynamics of the fluid and solid phases

The emergence of channels and keels can be the result of either (i) a passive response
of the interface to uneven melting patterns driven by the turbulent flow, or (ii) a fully
coupled interplay between fluid turbulence, interface topography and temperature in the
solid. Here, we investigate the relevance of regimes (i) and (ii) for each of our simulations
by looking at both the flow dynamics and the temperature field in the solid.

Figure 5 shows the x-averaged vertical heat fluxes in both the fluid and the solid for
stable (top panel), neutral (middle panel) and unstable stratification (bottom panel) at a
late time when a statistical steady state is reached. In the lower figure of each panel,
we show the heat map of the vertical heat flux q̃ = w̃T − ∂zT̃ in the fluid and of the
conductive heat flux −∂zT̃ in the solid (note that we subtract NuIII in order to highlight
fluctuations and that −∂zT̃ provides a more accurate measure than q̃ for the heat flux
in the solid; cf. appendix B). In all three simulations, the spanwise fluctuations of the
vertical heat flux are one order of magnitude (or more) larger in the fluid bulk where
convection is active than in the solid where there is no movement. This suggests that the
fluid flow has the capacity to induce transient melting or freezing hot spots and generate
topography on short time scales, whereas temperature diffusion in the solid is moderate
and primarily passive since it acts on long diffusive time scales of the order of 100 friction
time units. The upper figure of each panel shows the melt rate ˜̇m as a function of y

(dotted blue line), as well as the vertical conductive heat fluxes in the fluid (solid red
line) and solid (dashed green line) right below and above the interface, as illustrated in
the top right panel. As expected, the melt rate is positive when the heat flux coming from
the fluid exceeds the heat flux going through the solid, i.e. when the red solid line is
above the green dashed line. In figure 5(c), for instance, melting occurs on the left-hand
side of each of the two channels (y ≈ 2.5 and y ≈ 5.6) because the local, instantaneous
heat flux coming from the fluid (red solid line) exceeds the heat flux going through
the solid (green dashed line). Note, however, that melting and freezing events balance
each other on long time scales in the simulation with unstable stratification such that, in
agreement with figure 4( f ), the channels do not migrate in the spanwise direction. The
spanwise fluctuations of −∂zT̃ are moderately (respectively slightly) larger in the fluid
than in the solid for stable (respectively neutral) stratifications. This suggests that the
fluid dynamics controls the topography for stable and neutral stratification. In fact, we
can observe that most local maxima of −∂zT̃ in the fluid near the boundary shown by
the red solid lines in the line plots of figure 5 correspond to large upwelling events in
the fluid bulk (see e.g. y ≈ 4 for the top panel and y ≈ 0 for the middle panel). However,
heat fluxes in the solid still play a key role since there would be no freezing for a solid
with a uniform temperature field. Heat flux fluctuations increase in the solid phase as well
as in the fluid phase with decreasing Ri∗ (i.e. from top to bottom row): enhancement of
heat flux fluctuations are the result of buoyancy effects in the fluid and of larger interface
deformation in the solid. All heat maps show that −∂zT̃ − NuIII in the solid is generally
positive (green) over a channel and negative (pink) over a keel. In the case of stable and
neutral stratification, −∂zT̃ − NuIII decays from large fluctuation values near the interface
to almost 0 near the top boundary, suggesting no significant influence of the top boundary
on the temperature field in the solid (i.e. increasing the ice thickness while adjusting the
top temperature to conserve the heat flux would not change the results). On the other hand,
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Figure 5. Panels of vertical heat fluxes for (a) stable, (b) neutral and (c) unstable stratification at time t∗ ≈ 500
representative of the statistical steady states. The lower figure of each panel shows the x-averaged vertical heat
fluxes −∂zT̃ − NuIII in the solid (pink–green colourmap) and q̃ − NuIII in the fluid (spectral colourmap), the
x-averaged interface position ξ̃ (black solid line), and the velocity vectors (ṽ, w̃) in the fluid (black arrows)
and the conductive heat flux (−∂yT̃, −∂zT̃) in the solid (red arrows). The upper figure of each panel shows
the vertical conductive heat flux −∂zT̃ − NuIII at a distance 3δν = 0.02 above (green dashed lines) and below
(solid red lines) the interface, and the melt rate (blue dotted lines), as illustrated in the upper right panel where
the grey shading highlights the thickness of the diffuse interface.
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Melting and freezing in a turbulent shear flow

in the case of unstable stratification (figure 5c), −∂zT̃ fluctuations remain large near the top
boundary, suggesting that there is a backreaction from the fixed-temperature top-boundary
condition, T = −qs/2 at z = 1.5, on the interface evolution. The backreaction from the top
boundary for unstable stratification is obtained because the position of the channels and
keels becomes rapidly stationary (in contrast to the stable and neutral cases), such that the
temperature field in the solid has time to adjust diffusively and balance the growth of the
channels and keels (cf. appendix D for more details on the temperature field in the solid).
The steadiness of the fluid dynamics and interface topography for unstable stratification
can be seen to result in overlapping heat fluxes in the top figure of the bottom panel.

The emergence of streamwise channels and keels is consistent with the well-documented
presence of near-wall streamwise streaks and vortices in stratified shear flows (Pirozzoli
et al. 2017; Zonta & Soldati 2018), but their amplitude clearly varies with Ri∗. In the
case of stable stratification (figure 5a), buoyancy effects inhibit the generation of large
topographical features, such that channels and keels have small amplitudes and do not
feed back onto the flow (which is further discussed in § 3.4). In the case of neutral
stratification, buoyancy is turned off, such that the solid boundary deforms more and can
affect the flow dynamics. Figure 5(b) shows that the heat flux in the fluid close to the
boundary is usually larger where there are channels (e.g. y ≈ 1.5, 2.5) than where there
are keels (e.g. y = 0.9), suggesting a topographic influence on the flow. For the case of
unstable stratification (figure 5c), two streamwise rolls aligned with the direction of the
flow and filling the entire depth dominate the fluid dynamics. These flow features are
reminiscent of Rayleigh–Bénard convection rolls as observed in channel flow simulations
with unstable stratification (Pirozzoli et al. 2017), which here appear locked within the
interface deformation pattern (figure 5c).

The interplay between the solid boundary and the flow dynamics for the case of unstable
stratification is further highlighted in figures 6 and 7. Figure 6 shows the Hövmoller
diagram of the heat flux in the middle of the fluid (figure 6a) and at 3 wall units below
(figure 6b) and above the interface (figure 6c). Two mid-depth streamwise rolls whose
positions are locked are evident from t∗ ≈ 370 onward in figure 6(a), which is about the
same time as when the two channels and keels become large in figure 4( f ). Similar rolls
can be inferred for t∗ < 370 but are weaker and meander. The two strong rolls for t∗ ≥ 370
are locked with the topography (cf. figure 4f ) and support large conductive heat fluxes with
similar patterns right below the interface (cf. figure 6b), which further demonstrates that
global modes control the interface dynamics for an unstable stratification. The conductive
heat fluxes coming from the fluid are yet eventually balanced by the conductive heat fluxes
through the solid (figure 6c), which adjust diffusively as the interface deforms, such that
there is no net melting (figure 6d) beyond the initial transient of stage III. The decrease
of conductive heat flux below the interface between tIc∗ and tII∗ in figure 6(b) is due to the
heat flux imbalance at the beginning of stage II (cf. appendix A) and has no incidence on
the subsequent melting dynamics. Note that the temporal resolution is relatively coarse
in figure 6(a–d) because these figures required the full three-dimensional data sets (due
to interpolations in z for figure 6b,c), which we saved at a low frequency to minimize
disk usage. Also, the patchiness of the melt rate in figure 6(d) is due to the interaction
of the ice boundary with individual turbulent bursts, including small-scale eddies, which
drive intermittent melting and freezing events but have no long-term effect on topography
generation.

Figure 7 shows the spanwise spectrum of q̃ (left axis) in the middle of the fluid (solid
lines) and near the solid boundary (dashed lines) at the end of stages I (red) and III (black)
for the unstable case. In all cases, the spectrum peaks at wavenumber Lyky/(2π) = 2,
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Figure 6. (a) Heat flux anomaly q′ = (wT)′ − T ′
z in the fluid at z = 0.5 and conductive heat flux anomaly −T ′

z

(b) in the fluid at χ = −0.02 (3 wall units) below the interface and (c) in the solid at χ = +0.02 above the
interface as functions of (t∗, y) for the simulation with unstable stratification. The two vertical dashed lines
highlight the times at which we turn on volume penalization and melting. (d) Melt rate ˜̇m averaged in the
streamwise direction as a function of (t∗, y).
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Figure 7. Spanwise spectrum of the heat flux q̃ in the fluid at z = 0.5 (solid lines) and at χ = −0.04 below
the interface (dashed lines). Black and red colours highlight the spectra obtained in stage I and III, respectively
(with 100 friction time units averaging). The blue dotted line shows the spectrum of ξ̃ averaged over the last
100 friction time units of stage III.

which is close to the critical wavenumber Lykc/(2π) = 3.11 of convection instability
(λc = 2.016), suggesting that Rayleigh–Bénard convection is already active in stage I.
However, with melting turned on, the peak is significantly amplified, especially for the
spectrum near the boundary (dashed lines), which also shows amplification of higher
harmonics, consistent with the spectrum of the interface itself (dotted blue line; right axis).
These results suggest that Rayleigh–Bénard rolls are energized more than any other fluid
features once melting is turned on, because they best couple with the interface topography
evolution as a result of melting and freezing. Note that the spectra of the heat flux near the
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Figure 8. Vertical profiles of the streamwise velocity U and vertical velocity r.m.s. wrms averaged in x and
t∗ (over at least 50 friction time units) for stable (two leftmost columns), neutral (two middle columns) and
unstable (two rightmost columns) stratification. The top panels show the full horizontal average of U and wrms,
i.e. when they are also averaged in y, and the mean interface position ξ̄ at the end of stage III (dotted lines).
The bottom panels show the full horizontal averages of U and wrms as well (dotted lines), but also U and wrms

under the largest keel (downward triangles) and channel (upward triangles), i.e. they are not averaged in y, as
functions of 1 − χ , where χ is the distance from the interface. In (l), the green (respectively blue) thick and
thin dashed lines show the vertical profiles shifted away from the largest keel (respectively channel) by 0.25
and 0.5 units in the +y direction.

boundary and of the interface have a sawtooth-like pattern due to the non-sinusoidal shape
of the interface and numerical confinement in the spanwise direction.

We next show in figure 8(a–f ) (top row) the vertical profiles of the mean streamwise
velocity U and of the root-mean-square (r.m.s.) vertical velocity, wrms, where here the
mean and r.m.s. are defined using a horizontal and temporal average. The results are shown
for all three stages and for stable (two leftmost columns), neutral (two middle columns) and
unstable (two rightmost columns) stratification. The vertical profiles are never symmetric
with respect to the half-fluid depth position, which is z = 0.5 in stages I and II. This is
because our velocity boundary conditions across the fluid layer are different, i.e. no-slip
on the top boundary (which can be the fluid–solid interface) and free-slip on the bottom.
For stable and neutral conditions, there is a strong overlap of all curves, suggesting that the
topography does not influence the mean profiles, while for unstable stratification, there is
a small deviation of the stage III profiles (solid lines). Note that a log–log plot of the mean
velocity and temperature profiles near z = 1, which we show in figure 14 in appendix A,
clearly shows that the flows follow the law of the wall on the top no-slip fluid boundary in
stages I and II.
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We investigate in figure 8(g–l) whether the mean profiles vary in the spanwise direction
in such a way that they correlate with the x-averaged interface topography. To do so we
consider the mean profiles under the largest keel (downward triangles) – i.e. at y = yk,
where yk is the minimum in y of ξ̃ at each time step – separately from the mean profiles
under the largest channel (upward triangle) – i.e. at y = yc, where yc is the minimum in y

of ξ̃ at each time step – where mean now denotes streamwise and temporal averaging.
For stable stratification, there is no difference between the profiles under keels and
channels. However, for neutral and unstable stratification, the two profiles depart in such a
way that the streamwise velocity is larger under channels than under keels, and the vertical
velocity r.m.s. (defined using a temporal and (x, y) average for each χ ) is larger under
keels than under channels. These results indicate a noticeable influence of the topography
on the flow. For the case of neutral stratification, the separation of the profiles is maximum
for χ < 0.3 and then vanishes, suggesting a local influence of the topography on the flow
dynamics, while for unstable stratification, the effect of the topography is felt throughout
the entire depth due to coupling with the Rayleigh–Bénard rolls. It may be noted that the
profiles of wrms under the largest keels and channels are larger than the plane-average
profile shown by the dotted line in figure 8(l). This is expected because Rayleigh–Bénard
convection promotes both localized intense upwellings and intense downwellings under
channels and keels. In fact, away from the main channel and keel the profiles decrease
rapidly, as can be seen from the blue and green lines.

In order to gain further insight into the statistics of the flow interacting with the melting
boundary, we show in figure 9 the probability density functions (p.d.f.s) of the streamwise
velocity (a,d,g), the vertical velocity (b,e,h) and the temperature gradient (c, f,i), for stable
(a–c), neutral (d–f ) and unstable (g–i) stratification. For the velocities, the p.d.f.s are
shown both in the middle of the fluid, at z = 0.5, and near the boundary, at z = ξ − 0.04
(i.e. 6 wall units into the fluid). We find little difference between stages I (dashed lines)
and III (solid lines) for the streamwise and vertical velocities, suggesting limited influence
of the topography on the overall flow morphology, although the streamwise velocity in
figure 9(g) has a negative tail with higher probability density in stage III than in stage I.
The temperature gradient at the fluid–solid interface (figure 9c, f,i) does vary noticeably
between stage I and stage III. However, this difference is due to the phase-field method
rather than to a fundamental change in flow morphology since the p.d.f.s in stages III and
II (not shown) show significant overlap.

While phase changes and the emergence of topographical features have little effect
on the p.d.f.s, most p.d.f.s display flow-driven left–right asymmetries, which are worth
highlighting. Most importantly, the p.d.f. of the temperature gradient at the fluid–solid
interface has a rapidly decaying positive tail and a slowly decaying negative tail. This
asymmetry is obtained in all stages and hence is a feature of the flow rather than a
consequence of topography generation, and suggests that the phase-change dynamics
should be itself asymmetric (which we show in § 3.5). The p.d.f.s of the streamwise
velocity near the boundary are also asymmetric, featuring a slowly decaying positive tail
and a rapidly decaying negative tail. We have further separated the p.d.f.s of the velocities
in figure 9 based on the sign of the local temperature anomaly (compared with the
plane and temporal mean). Blue curves denote p.d.f.s obtained for a negative temperature
anomaly, i.e. representative of fluid patches influenced by the cold top boundary, while
red curves denote p.d.f.s obtained for a positive temperature anomaly, i.e. representative
of fluid patches influenced by the warm bottom boundary. The cold temperature p.d.f.s are
shifted to the left of the warm temperature p.d.f.s for the streamwise velocity (left column),
which suggests that negative streamwise velocity is more often associated with cold fluid
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Figure 9. Probability density functions of the streamwise velocity fluctuations u − ¯̄u (leftmost panels), vertical

velocity fluctuations w − ¯̄w (middle panels) and temperature gradient fluctuations ∂zT − ∂zT (rightmost
panels), for stable (top row), neutral (middle row) and unstable (bottom row) density stratification, with the
double overbar denoting the horizontal and temporal average. The p.d.f.s of u − ¯̄u and w − ¯̄w are shown at

z = 0.5 and z = ξ − 0.04 (6 wall units below the interface), while the p.d.f.s of ∂zT − ∂zT are shown at the
interface z = ξ . We use dashed lines and solid lines to highlight the results obtained in stage I and stage III,
respectively. Blue and red represent the p.d.f.s of u − ¯̄u and w − ¯̄w conditioned on negative and positive local
temperature fluctuations, in order to separate the p.d.f.s of warm fluid patches from those of cold fluid patches.

coming from the top boundary. Also, for the vertical velocity at z = ξ − 0.04 (right panels
of the middle column), the positive tail of the warm temperature p.d.f.s (red) is larger than
the negative tail of the cold temperature p.d.f.s (blue), suggesting more extreme warm
upwelling events than cold downwelling events just outside of the viscous sublayer. These
results demonstrate that the near-wall flow dynamics have multiple asymmetries, which
may be related to the asymmetry in the temperature gradient at the boundary.

3.4. Reversing the stratification

In the case of stable stratification, the cool melt fluid (at freezing temperature) is more
buoyant than the warmer surrounding fluid, such that it rises and accumulates in the middle
of the channels. Thus, channels and keels are limited to small amplitudes in figure 5(a)
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because of a negative feedback between channel generation and the melt dynamics, which
halts channel growth. In the case of unstable stratification the opposite is true, i.e. the cool
melt fluid is denser than the surrounding fluid and, hence, is evacuated from channels. This
yields a positive feedback between channel generation and melt dynamics, which results
in the large-scale topographical features seen in figure 5(c) (which saturate over time due
to thermal adjustment in the solid).

The hypothesis of the cool melt fluid pooling in channels and inhibiting their growth
for stable stratification is difficult to verify with the results discussed previously because
of the small interface deformation obtained for Ri∗ = 40. Therefore, we have run a fourth
simulation starting from the final time of the simulation with unstable stratification (and
large interface deformation), but with an increasing Richardson number such that the fluid
becomes stably stratified and interacts (transiently) with the initially large topographical
features. We impose the stable stratification through several intermediate steps so that the
flow does not relax to a laminar state. Specifically, we use

Ri∗(t∗) = −40[1 − f (t∗, 5)] + 20[2 + f (t∗, 12) + f (t∗, 19)], (3.3)

with f (t∗, τ∗) = tanh(t∗ − tIII∗ − τ∗), such that Ri∗ starts from ≈−40 at t∗ = tIII∗ and
reaches ≈40 for t∗ > tIII∗ + 19. We show the results of this run in figure 10, where blue/red
highlight x-averaged temperature values in the solid/fluid phase, while arrows denote
x-averaged velocity vectors (ṽ, w̃) in the ( y, z) plane. Figure 10(a) shows the results at time
t∗ = tIII∗ + 1 (tIII∗ = 526), i.e. when Ri∗ ≈ −40. The stratification is unstable such that the
flow features strong upwelling of warm fluid below the channels and strong downwelling
of cool fluid along and under the keels, akin to Rayleigh–Bénard rolls locked into the
deformed interface pattern. A pair of counter-rotating streamwise rolls is clearly visible
below each of the two channels. These rolls persist until Ri∗ ≈ 0, which is in agreement
with recent simulations of mixed convection that have shown that streamwise rolls
extending throughout the full depth of a channel (without phase changes) are obtained for
a wide range of negative Richardson numbers (Pirozzoli et al. 2017). Figure 10(b,c) show
the results at times t∗ = tIII∗ + 13 and t∗ = tIII∗ + 21, i.e. when Ri∗ ≈ 0.7 and Ri∗ ≈ 39,
respectively. At these times, the stratification is stable and the cool melt fluid produced
at the keels converges toward the channels’ centreline. The Rayleigh–Bénard large-scale
rolls have vanished and are replaced with weaker vortices of finite vertical extent, which
are most vigorous close to the interface where they are driven by the (positive) buoyancy
anomaly of the melt fluid at the tip of the keels. The heat flux through the fluid goes
down and freezing occurs everywhere such that the solid front advances into the fluid.
Importantly, freezing is faster in the channels because of the convergence of the buoyant
cool melt fluid and higher conductive heat fluxes in the solid (as the solid is thin above
channels), which leads to rapid refreezing of the initial channels. While Ri∗ > 0 increases,
the properties of the boundary-attached vortices (e.g. vertical extent and intensity) are the
result of a complex interplay between the amplitude of the interface topography and of the
stratification strength. The increasing stratification drives an increasing positive buoyancy
anomaly of the melt fluid but also increasingly damps global modes (García-Villalba & del
Álamo 2011), while the decreasing topography amplitude is expected to result in flattening
and weakening vortices. Ultimately, the topography disappears and the vortices weaken
significantly.

3.5. Melting

In this section we discuss the evolution of the mean interface position ξ̄ with time and
the statistics of melting ṁ = ∂tξ at the statistical steady state. We first show the evolution
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Figure 10. Temperature field averaged in the x direction in the fluid (red colourmap) and in the solid (blue
colourmap) at times (a) t∗ = 527, (b) t∗ = 539 and (c) t∗ = 547 for the restratifying simulation. The black
arrows show the velocity field (ṽ, w̃). The thick solid line shows the x-averaged interface position ξ̃ .

of ξ̄ in DNS as a function of time in figure 11(a) for all three simulations (solid lines).
For a solid with spatially uniform temperature equal to the melting temperature Tm, we
would expect a faster increase of ξ̄ with time for an unstable than for a stable stratification,
since the heat flux in the fluid is larger when buoyancy forces are destabilizing rather than
restoring. However, as indicated in § 2, we have imposed a conductive heat flux in the
solid (qs) slightly less than the mean heat flux through the fluid (NuI) at the beginning
of stage III, i.e. when we turn on melting, such that the leading-order melt rate is not
controlled by the Nusselt number of the fluid-only simulations but by the difference NuI −
qs. This difference is 0.19, 0.1 and 0.05 for stable, neutral and unstable stratification (cf.
table 1), such that the initial increase of ξ̄ is faster for stable than for unstable stratification.
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Figure 11. (a) Time history of the mean interface position for stable, neutral and unstable stratification (thick
solid lines). The dotted (respectively dashed) lines show the position of the interface predicted by the reduced
model (3.4) with NuI (respectively NuIII) as the heat flux in the fluid. The dash–dot line shows the result of
the higher-order model (D1), (D10) for unstable stratification. (b) Time history of the heat flux relative to
NuI , i.e. (Nu − NuI)/NuI (solid lines). We use a rolling mean over a window of ∆∗ = 20 friction time units
in order to remove some of the most rapid large-amplitude oscillations. The horizontal dashed lines show
(NuIII − NuI)/NuI .

Figure 11 shows that ξ̄ saturates over time. This happens because the conductive heat flux
in the ice increases as ξ̄ increases (in a plane-averaged sense), since the solid becomes
thinner, such that it eventually balances the heat coming from the fluid.

Under the assumption of small interface deformations, it is possible to predict the
evolution of the mean interface position over time using a reduced model. As a first
approximation, we consider that the topography has no effect on the temperature in the
solid, i.e. we assume that the heat flux through the solid is simply equal to the temperature
difference between the interface and the top boundary divided by the mean solid thickness
h (cf. details in appendix D, which hinges on an assumption of a quasi-steady state). Then,
the evolution equation for ξ̄ becomes

dξ̄

dt
= q f − h0qs

h
, (3.4)

where h0 = 1/2 is the initial ice thickness, q f is the heat flux in the fluid and we recall
that ξ̄ = ξ0 = 1 at t = tII∗ . For simplicity, we take q f to be a constant diagnosed from
the simulations. The results of (3.4) for q f = NuI , i.e. obtained when setting q f to the
average heat flux before melting is turned on, are shown by the dotted lines in figure 11(a).
The overlap between the reduced model and DNS results at early times is good for
unstable stratification (as expected) but is poor for stable and neutral stratification. The
disagreement with q f = NuI at early times arises because the temperature in the solid is
slightly above 0 because of volume penalization, such that there is some artificially large
melting at the beginning of stage III (cf. appendix A). At later times, the DNS results
and the model results shown by the dotted lines diverge because the heat flux Nu increases
rapidly once melting is turned on, as can be seen in figure 11(b). For unstable stratification,
the agreement with q f = NuI is relatively good until t∗ ≈ tII∗ + 50 (cf. red dotted line),
i.e. right until the Rayleigh–Bénard rolls are energized and a large-scale topography
emerges (cf. § 3.3).

In order to account for the increase in heat flux through the fluid enabled by melting and
the generation of topography, we show with dashed lines in figure 11(a) the result of (3.4)
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with q f = NuIII , which is the heat flux at the statistical steady state with melting turned
on. For stable and neutral stratification, there is good agreement between the model results
and the mean interface position at late times. For unstable stratification, however, (3.4)
with q f = NuIII overestimates the final value of ξ̄ − 1 by a factor of two (approximately),
suggesting that topography plays a non-negligible role on the heat flux in the solid.
We show in figure 11(a) a prediction of ξ̄ for unstable stratification obtained using a
more accurate higher-order model (red dash–dot line), which takes into account interface
deformation (cf. appendix D). The higher-order prediction overlaps well with the DNS
results at late times, demonstrating that melting and the generation of topography changes
the heat flux through both the fluid and the solid. The topography makes the solid more
efficient at evacuating heat because the anomalous (increased) heating obtained above the
channels (i.e. where the solid is thin) exceeds in absolute value the anomalous (reduced)
heating obtained above the keels (i.e. where the solid is thick), which is a nonlinear effect
in the topography amplitude obtained for any topography with top-down symmetry (e.g. a
sinusoid). The higher-order model takes into account this nonlinear effect in topography
amplitude and predicts a steady-state solid layer thickness larger than that predicted by the
low-order model without topography for the same forcing heat flux q f .

We finally show in figure 12 the p.d.f.s of interface deformation and melt rate at the
statistical steady state, i.e. past the initial transient during which topographical features
emerge and the solid melts on average. At the statistical steady state, the p.d.f.s of interface
position become roughly time invariant. The mean interface position reaches a plateau (cf.
figure 11a) because the mean amount of freezing balances the mean amount of melting at
every time step, and the standard deviation, or topography amplitude, saturates (as can
be seen in figure 4( f ) for the unstable case). For stable stratification, the steady-state
p.d.f. of interface deformation is almost symmetric with respect to the mean and appears
approximately Gaussian (figure 12a). This suggests that channels and keels are symmetric
to each other with respect to the mean interface position for the stable case. For neutral
stratification, a small asymmetry develops, i.e. the median shifts toward small positive
deformations (channels) and the tail of extreme negative deformations (keels) increases
slightly. The same asymmetry is amplified for unstable stratification, with a narrow peak
appearing to the right of the 0 mean and the negative tail increasing further. In other words,
as the stratification becomes unstable, patterns grow in size and the width-to-height ratio
of channels increases (broad and flat) while the width-to-height ratio of keels decreases
(narrow and deep). The asymmetry in the p.d.f.s of interface topography is consistent with
the observation from figure 4 that channels are typically flatter and more widespread than
keels.

The p.d.f.s for the melt rate ṁ are shown in figure 12(b). The temporal and spatial

average, ¯̇̄m, which is subtracted from the p.d.f., is close to 0 in all cases, since the mean
amount of melting is balanced by the mean amount of freezing at the statistical steady
state. The p.d.f.s of melt rate are asymmetric, i.e. similar to the p.d.f.s of heat flux at
the top of fluid-only channel simulations (see dashed lines in figures 9c, f,i). The median
is shifted to the left of the mean, i.e. toward negative values representative of freezing
events, and the positive tail is enhanced compared with the negative tail. In other words,
the interface is typically freezing slowly (ṁ < 0), but occasionally melts rapidly (ṁ > 0).
We remark that the asymmetry of the melt rate p.d.f.s is not due to the asymmetry of
the interface p.d.f.s since the p.d.f.s of melt rates inside channels (upper triangle) and
along keels (lower triangles) are similar, but is instead a generic feature of melting by
a turbulent fluid. Indeed, while the turbulent flow can drive rapid melting independently
of what happens in the solid, freezing necessarily involves slow diffusive processes in
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Figure 12. Probability density functions of (a) the interface position ξ and (b) the melt rate ṁ, for neutral,
stable and unstable stratification. Double overlines denote temporal (100 friction time units) and spatial
averaging. In (b) we show the p.d.f.s for the full melt rate (solid lines), the melt rate along channels (upper
triangles) and the melt rate along keels (lower triangles).

the solid. Additionally, the near-wall dynamics, which features coherent structures such as
streamwise streaks and vortices, is itself asymmetric, as can be seen from the p.d.f.s of
the temperature gradient in figure 9. Thus, it is not surprising that the melt rate p.d.f.s are
asymmetric. While beyond our goal, it would be worthwhile in the future to try to identify
flow features controlling the shape of the melt rate p.d.f.s.

4. Geophysical discussion

Due to the large computational costs of coupled fluid–solid simulations, all control
parameters in this study were held fixed, i.e. we considered Re∗ = 150, Pr = 1 and
St = 1, except for the friction Richardson numbers, which we varied in order to test the
effect of density stratification on topography generation. Our simulation with a positive
(respectively negative) Richardson number Ri∗ = 40 (respectively Ri∗ = −40), i.e. with
stable (respectively unstable) stratification, assumes a negative (respectively positive)
thermal expansion coefficient. Cold freshwater has a negative (respectively positive)
thermal expansion coefficient at low (respectively high) pressure (Thoma et al. 2010).
Thus, our stable simulation is qualitatively similar to the flow of freshwater below an
ice cover at low pressure (as is the case in an ice-covered lake), whereas our unstable
simulation is qualitatively similar to the flow of freshwater below an ice cover at high
pressure (as is the case in a deep subglacial lake). In the case where the solid is below
the fluid, the stratification is reversed, i.e. the unstable simulation results are applicable
to the flow of cold freshwater above ice at low pressure (as is the case in supraglacial
rivers). Our stable simulation is also qualitatively similar to the flow of salt water under
ice shelves. The melt water under ice shelves is cooler but also fresher than the ambient
ocean water, such that it is positively buoyant. In fact, salinity and temperature can be
combined, assuming that they have the same effective diffusivities, into a single variable
known as thermal driving, which has a negative expansion coefficient (Jenkins 2016).

In order to minimize resolution requirements and observe large topographical changes
in a relatively small amount of time, we have considered a flow that is only moderately
turbulent, weakly stratified and anomalously warm. If we assume that the working fluid
is water, i.e. L = 3 × 105 J kg−1 and cp = 4 × 103 J kg−1 K−1, then St = 1 implies
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that the bottom boundary is held at 75 ◦C. If we further assume that H = 10 cm and
ν = κ = 10−6 m2 s−1, i.e. considering an anomalously high thermal diffusivity such that
Pr = 1, then our simulation runs correspond to about 10 hours in real time, the bulk
velocity is 2 cm s−1 and the thermal expansion coefficient is 5 × 10−7 K−1 in absolute
value, which is quite small for water. These calculations highlight that there is clearly a
significant gap between the control parameters in our simulations and in nature. Our set of
experiments is also limited to three different runs, such that we cannot offer a quantitative
prediction of what would be observed in the environment. Nevertheless, Rayleigh–Bénard
rolls have been observed for a wide range of Rayleigh numbers and Reynolds numbers in
mixed-convection simulations with unstable stratification (Pirozzoli et al. 2017), such that
large-scale channels and keels driven by these rolls may be expected in most conditions
with unstable stratification, for example in supraglacial rivers or deep subglacial lakes,
especially when the external flow is weak. The transverse wavelength of channels and keels
maintained by global rolls is expected to be of the same order as the fluid depth, as is the
case in our unstable simulation (cf. figure 10(a), in which each wavelength accommodates
two counter-rotating rolls with a diameter equal to the mean fluid depth). We note
that our unstable simulation has low Ra = 4.5 × 105 and Re∗ = 150 compared with
state-of-the-art simulations of mixed convection (Pirozzoli et al. 2017; Blass et al. 2020),
but more importantly has a relatively small bulk Richardson number Rib = RaPr/Re2

b ≈
0.1 (defined as positive for an unstable stratification) and large Monin–Obukhov length
LMO ≈ 1 (normalized by H). Thus, channels and keels can be expected for a broad range
of bulk Richardson numbers of unstably stratified shear flows, i.e. Rib ≥ 0.1, and to grow
in size as Rib increases. In the limit Rib → ∞, channels and keels may be expected
to eventually disappear. Indeed, as Rib → ∞, the mean flow vanishes and buoyancy
effects dominate, such that three-dimensional domes and cusps should emerge in place
of streamwise features (Rabbanipour Esfahani et al. 2018). Interestingly, large channels
have also been observed at the base of ice shelves. However, these channels are unlikely
to originate from Rayleigh–Bénard rolls but rather from transverse perturbations of, for
example, the subglacial discharge or ice thickness at the grounding line (Dallaston, Hewitt
& Wells 2015), since the stratification is in this case stable.

For stable and neutral stratifications, we also observed channels and keels. Channels
and keels with stable stratification (Ri∗ ≥ 0) are carved by boundary-attached momentum
streaks rather than by global modes, however, such that their transverse wavelength is
shorter than for the case of unstable stratification (although here the difference is weak
given the small Re∗), and their amplitude is either equal to or smaller than the viscous
sublayer thickness, i.e. small. The shape and size of the small channels and keels obtained
for Ri∗ ≥ 0 are in stark contrast with the three-dimensional scallops, which have been
observed in stably stratified polar oceans and neutral laboratory experiments. Scallops
observed in the field and investigated in laboratory experiments have amplitudes of the
order of a few centimetres and wavelengths of the order of a few tens of centimetres,
i.e. they are tall and wide features compared with the viscous sublayer thickness, which
is typically smaller than 1 mm in nature (Bushuk et al. 2019). Previous experimental
and theoretical works have found that the friction Reynolds number based on the
scallop wavelength λ usually satisfies Reλ∗ = Re∗λ/H ≥ O(1000–10 000) and have always
reported a scallop wavelength smaller than the fluid depth, i.e. λ < H (Blumberg & Curl
1974; Thomas 1979; Claudin et al. 2017). Considering the upper limit λ = H means that
scallops are predicted to emerge for Re∗ ≥ O(1000–10 000) in water, which is at least one
order of magnitude higher than what we selected for our study and difficult to achieve
numerically. Note, however, that the minimum Re∗ leading to scallop formation may be
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different for a fluid with control parameters Pr = 1 and St = 1 (as is the case in this
work) instead of Pr ≈ 10 and St ≈ 75, as is the case for water, and may also vary with
the stratification strength.

5. Concluding remarks

We have shown that streamwise channels and keels spontaneously emerge as the dominant
topographical features of a fluid–solid boundary when the flow is pressure-driven,
turbulent and thermally stratified with Re∗ = 150, Pr = 1 and St = 1. We have
investigated the effect of the background density stratification and found that the
amplitude of the channels and keels increases with decreasing stratification. For unstable
stratification (Ri∗ = −40), the channels and keels couple strongly with Rayleigh–Bénard
rolls, which are energised and locked within the interface deformation pattern. For neutral
stratification, a similar correlation is obtained between the flow dynamics and the interface
deformation pattern. However, the full-depth rolls are replaced with smaller and weaker
boundary-attached momentum streaks, which do not provide a clear locking mechanism,
i.e. the topography drifts. For neutral (Ri∗ = 0) and stable stratification (Ri∗ = 40), the
channels and keels saturate either because of the absence of a positive feedback between
topography and momentum streaks or because stabilizing buoyancy forces inhibit channel
growth. For unstable stratification, the saturation is due to the fact that we impose the
temperature at the top boundary. With an imposed heat flux at the top, the entire solid
would melt rapidly and entirely provided that the stratification is unstable (not shown),
which means that the choice of boundary conditions at the top of the solid can be critical.
Note that the growth of the fluid layer for unstable stratification is due to the positive
feedback that melting has on the effective Rayleigh number of the convective fluid. As the
solid melts, the effective Rayleigh number increases, leading to further melting, which is
stopped only if diffusion in the solid can eventually balance the increasing heat flux in the
fluid.

The analysis of the melt rate statistics indicates that there is an asymmetry in melting
and freezing, which may be related to the different melting/freezing dynamics (freezing
relying primarily on slow diffusive processes in the solid) but also asymmetries in the flow
statistics. Specifically, melting is highly localized and intense while freezing is widespread
but weak. While beyond the scope of this study, it would be useful to identify whether
coherent features of the near-wall turbulent flow, such as streamwise streaks and vortices,
correlate preferentially with either melting or freezing events.

The drag coefficient changes significantly depending on the type of stratification but is
only weakly affected by the generation of topographical features, which is not unexpected
in our case since streamwise channels and keels are smooth in the direction of the flow.
Capturing three-dimensional topographical features, such as scallops, which do affect
momentum and heat transfers (Bushuk et al. 2019), in coupled fluid–solid simulations
would be a major achievement, which could complement fluid-only simulations at planar
ice boundaries (Gayen, Griffiths & Kerr 2016; Keitzl, Mellado & Notz 2016a,b; Mondal
et al. 2019; Vreugdenhil & Taylor 2019). However, as discussed in § 4, scallops may
require much higher Reynolds numbers to form than Re∗ = 150. In fact, the minimum
Re∗ for scallops could be too high for a phase-field method on most supercomputers. The
cheapest test for evaluating the minimum Reynolds number leading to scallops would be
to start the simulations with a longitudinally wavy boundary and investigate the initial
evolution. The runtime would be reduced to a minimum. However, a high resolution
(higher than say 10243 with a spectral code) would still be required. It is noteworthy that
simulations of a pure fluid at a fixed wavy boundary would already be useful in helping to
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verify or refine the most recent theoretical predictions on scallop formation and saturation
(Claudin et al. 2017) and estimate the effect of the stratification strength, which has not
yet been considered. We remark that capturing scallops in a water environment would
require not only higher Re∗ but also higher St and Pr, which would both incur significant
computational overheads. Higher Pr results in thinner thermal boundary layers, which
could impact the near-wall dynamics and, for example, the asymmetry between melting
and freezing. Higher St results in slower melt rates, which could significantly change how
interface patterns couple with transient flow features. In the case of unstable stratification,
we might still expect that Rayleigh–Bénard rolls couple with the interface deformation
pattern for high St, since they are relatively stationary flow features at least in the strong
shear regime (Pirozzoli et al. 2017). For neutral stratification, however, the interface
evolves over time scales similar to those of the flow dynamics for St = 1 (figure 4e), such
that increasing St might significantly decrease the sensitivity of the interface topography
to fluid anomalies. Finally, freshening effects, which are critical to ice–ocean interactions,
would require adding slowly diffusing salt to the simulations, which constitutes yet another
significant challenge for multi-phase DNS.

From a fundamental physics viewpoint, it would be interesting to investigate in detail
how topographical features are modified when phase changes are driven by dissolution
rather than by melting. The fluid–solid boundary conditions (Stefan condition) and scalar
diffusivities are different between dissolution and melting experiments. However, similar
longitudinal and rippled patterns have been observed in both cases (e.g. Allen (1971)
for dissolution). It would be also worthwhile to explore the effect of phase changes and
topographical features on the onset of global modes and the large-scale organization of
mixed-convection flows, which are of interest to many fields of physics and engineering
(Kelly 1994; Pabiou, Mergui & Bénard 2005; Blass et al. 2020). Finally, it would be useful
to investigate potential analogies between ice patterns due to melting and freezing and
the formation of sand ripples and dunes, which have been and continue to be extensively
studied (e.g. Charru, Andreotti & Claudin 2013; Courrech du Pont, Narteau & Gao 2014).

Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/jfm.2020.1064.
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Appendix A. Phase-field method

The phase-field method transforms the discontinuous two-phase two-domain problem into
a continuous two-phase one-domain problem, which can be solved numerically using a
pre-existing fluid code. In order to reproduce the original problem correctly, the resolution
and parameters A, B, C and Γ of the phase-field equations (2.5) must satisfy several
constraints (Hester et al. 2020), which can be verified a posteriori by diagnosing the
flow properties in the solid and fluid phases. Here, for our choice of resolution, we have
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Figure 13. Kinetic energy in the solid divided by kinetic energy in the fluid as a function of time t∗. Red,
gold and blue colours denote results obtained for unstable, neutral and stable stratification, respectively.

A = 6/(5St), B = (16/δ2) × 6/(5St) and C = 1, with δ chosen such that it is equal to two
times the local grid size at z = 1 (initial interface position). Also, Γ = (δ/2.648228)2 and
we require time steps to be always smaller than Γ/2.

We first assess the effect of the phase-field method and choice of parameters on the flow
variables by showing in figure 13 the ratio of the kinetic energy averaged over the solid
volume, KEs, divided by the kinetic energy averaged over the fluid volume, KEf . Figure 13
shows that KEs/KEf < 10−4 and that the fluctuations are within a factor of two of the
mean, i.e. velocities in the fluid penetrate only very weakly into the solid and do not burst
significantly.

We now further comment on the resolution requirements and our choice for the grid
size and time step. We recall that δ is the thickness of the diffuse phase-field interface
over which φ transitions from 1 in the fluid to 0 in the solid (see figure 1c). Here δ is an
artificial length scale, such that it must be smaller than any physical length scale in the
problem, while at the same time being larger than the grid size since it must be resolved
numerically. For a boundary layer flow with Pr = 1, the smallest length scale close to
the interface is the viscous sublayer thickness, which is typically equal to a few times the
viscous length scale δν = 1/Re∗. Here, we chose to have δ ≈ δν in all simulations, i.e.
δ is equal to 1 wall unit ∆z+ = δ, such that the diffusive interface for the phase field is
comprised within the viscous and thermal sublayers, as can be seen in figure 14. In order to
resolve the diffusive interface, we selected a vertical Chebyshev basis with enough modes
such that the collocation grid has a resolution dz near the mean interface position equal to
or less than δν/2. The damping time scale Γ in (2.5) is set to Γ = (δ/2.648228)2 in order
to cancel first-order errors in the phase-field model (Hester et al. 2020).

Figure 14(a–c) shows a semilog plot of the wall-normalized velocity U+ (left axes)
and wall-normalized temperature T+ (right axes) as functions of wall units z+ (z+ ≥ 0
denote positions in the fluid while z+ < 0 denote positions in the solid) in stages I and
II for stable, neutral and unstable stratification, respectively. In the viscous and thermal
sublayers, which extend from z+ = 0 to z+ ≈ 5, we expect a linear scaling for both U+

and T+ with z+, shown by the solid dashed lines. This linear scaling is perfectly satisfied
by the DNS results in stage I (blue circles and blue crosses) as well as the DNS results in
stage II (orange circles and crosses), except for |z+| < δ (shown by the vertical solid lines),
i.e. within the diffuse interface, which is expected since this is where the dynamics is
artificially controlled by the phase-field equation. It may be noted that T+ (orange crosses)
is anomalously large for z+ < δ and in fact deviates from the true solution (blue crosses)
slightly outside the diffuse interface. This discrepancy is due to the fact that the heat flux
in the fluid is larger than the heat flux in the solid in stage II. The interface being fixed
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Figure 14. Wall-normalized velocity U+ = Pr u/u∗ (circles, left axes) and temperature T+ = u∗T/(PrNu)

(crosses, right axes) expressed in terms of wall units as functions of the wall coordinate z+ = u∗(1 − z)/Pr

for (a) stable, (b) neutral and (c) unstable stratification. Blue symbols denote results obtained for the simple
channel flow configuration (i.e. for t∗ ∈ [tIb∗ , tIc∗ ]) whereas orange symbols denote results obtained with volume
penalization (i.e. for t∗ ∈ [tIc∗ , tII∗ ]). The plus symbols show the temperature profiles obtained with volume
penalization but shifted to the right, i.e. into the fluid, by replacing z+ with z+ + 2.5, z+ + 1.16 and z+ + 0.78
for stable, neutral and unstable stratification. The overbars denote horizontal averaging and time averaging over
20 friction time units. The vertical dotted lines show z+ = −δ, 0, δ, where δ is the diffuse interface thickness.

in stage II, the heat imbalance results in the heating of the solid, such that T+ = 0 occurs
at z+ < 0 away from the fixed interface position z+ = 0 (note that we use a symmetric
logarithmic scale with a linear threshold at |z+| = 0.1). By shifting the temperature profile
to the right such that T+ = 0 is aligned with z+ = 0 (red pluses), we recover a perfect
linear scaling for the temperature within both the thermal fluid sublayer and the solid.
Outside of the linear sublayer and the buffer layer, the mean vertical profiles exhibit a
logarithmic behaviour.

Far from the top boundary, that is, for z+ ≈ 100, U+ shows a steeper scaling with z+

for stable stratification than for neutral or unstable stratification. This is a consequence
of buoyancy effects, which tend to decrease (respectively increase) stirring of the mean
flow when the stratification is stable (respectively unstable) (García-Villalba & del Álamo
2011).

Appendix B. Depth-independent variables

At a statistical steady state, stratified pressure-driven flows between solid boundaries have
linearly varying shear stress τ̄ = τν + τw, with τν = ∂zu the viscous stress and τw = −wu

the Reynolds stress, and depth-independent heat flux q̄ = wT − ∂zT , where the overbar
denotes horizontal and time averaging. These conservation equations for the vertical
fluxes of momentum and heat are at the origin of the definitions of the friction velocity

and Nusselt number, which typically read as u∗ =
√

−(τν + τw)

∣∣∣
z=1

and Nu =
∫ 1

0 q̄ dz

(assuming z = 1 is the top of the fluid), respectively. With the phase-field method, these
conservation equations are modified and some of the modifications are reflected in the
definitions of u∗ and Nu in (2.9a–c). In particular, u∗ in (2.9a–c) includes the linear
damping term τd = −

∫ z

0 (1 − φ)u/Γ dz′/z that comes from the last term on the right-hand
side of (2.5a). The true conservation of vertical momentum and heat fluxes based on
governing equations (2.5) read as

∂z(τ + τ̃ ) = −2Pr2Re, ∂z(q + q̃) = 0, (B1a,b)
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where τ̃ and q̃ are the anomalous stress and heat flux due to damping of the advective
terms in (2.5), i.e.

τ̃ =
∫ z

0
−(1 − φ)(u · ∇)u dz′/z, q̃ =

∫ z

0
−(1 − φ)(u · ∇)T dz′/z. (B2a,b)

The existence of anomalous stress and heat fluxes means that the friction velocity and
Nusselt numbers as defined in (2.9a–c) are based on a total stress and heat flux, which are
not rigorously linearly varying or depth invariant.

We show in figure 15(a–c) the Reynolds stress τw, the viscous stress τν , the linear
damping stress τd and the Reynolds stress plus the anomalous stress τw + τ̃ for stable,
neutral and unstable stratification, respectively. Importantly, τw and τw + τ̃ overlap well,
showing that the anomalous stress is negligible. The results of figure 15(d–f ) further
confirm that the anomalous stress is negligible in all simulations: the (approximate)
total stress (solid lines) decreases linearly with z in all stages and overlaps well with
τw + τν + τd + τ̃ , i.e. the total stress (thin dashed lines) that includes the anomalous
stress. We show in figure 15(g–i) q̄ (solid lines) and q + q̃ (thin dashed lines). For stable
and neutral stratification (top and middle rows), q̄ and q + q̃ are constants with depth
and overlap perfectly, suggesting that the anomalous heat flux is negligible. For unstable
stratification (bottom row), we obtain similar results for stages I and II. For stage III,
however, q̄ is not perfectly constant, but deviates from q + q̃ and peaks at z ≈ 1.15, which
is roughly the height of the channels. The relative discrepancy between q̄ and q + q̃ is of
the order of 5 % and is a result of the damping of the advective terms in the momentum
and heat equations (2.5). We expect that this discrepancy would decrease with increased
resolution. Previous studies have alternatively considered advective terms with the same
damped form as here, with a divergence damped form, i.e. (u · ∇)(φu), or without any
damping. There is no proof that any of these methods is more efficient than the other two.
However, we would recommend using either one of the latter two methods, i.e. not the
method used in this paper, in order to simplify the analysis of the shear stress and heat
flux.

Appendix C. Additional details on the simulation stages

In this section we give additional details on the simulation stages and sub-stages.
For t ≤ tIc∗ (including stage I), we solve (2.5a), (2.5b) and (2.5d) with φ ≡ 1 and a
no-slip isothermal top-boundary condition, i.e. u = 0 and T = 0 at z = 1. We use a
straightforward half-channel flow configuration, i.e. without a solid domain, with 64
Chebyshev modes in the vertical direction. In stage II we add a solid layer of thickness
0.5 on top of the fluid domain and we use a compound Chebyshev basis stitched at z = 1.2
with 256 (respectively 32) Chebyshev modes in the lower (respectively upper) region. The
compound Chebyshev basis allows us to have a high vertical resolution near the interface’s
initial position. We solve (2.5a), (2.5b) and (2.5d) with φ prescribed, i.e. not varying in
time (cf. the main text). In stage III we solve (2.5) with all variables freely evolving and
we use the same spectral resolution as in stage II.

Our simulations until t = tIc∗ can be broken down into three sub-stages. In stage Ia, i.e.
for t∗ < tIa∗ (cf. light grey colour in figure 2), we run a low-resolution (128 Fourier modes
in the x and y directions and 32 Chebyshev modes in the z direction) spin-up simulation of
an initially laminar flow superposed with three-dimensional velocity perturbations and no
buoyancy effects (Ri∗ = 0). In stage Ib, i.e. for tIa∗ ≤ t∗ < tIb∗ , we increase the resolution

911 A44-32

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

10
64

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.1064


Melting and freezing in a turbulent shear flow

1.50

1.25

1.00

0.75

0.50

0.25

0

1.50

1.25

1.00

0.75

0.50

0.25

0

1.50

1.25

1.00

0.75

0.50

0.25

0

1.50

1.25

1.00

0.75

0.50

0.25

0

1.50

1.25

1.00

0.75

0.50

0.25

0

1.50

1.25

1.00

0.75

0.50

0.25

0

1.50

1.25

1.00

0.75

0.50

0.25

0

1.50

1.25

1.00

0.75

0.50

0.25

0

1.50

1.25

1.00

0.75

0.50

0.25

0

0 6 8 10

0 7.5 10.0 12.5

–30 000 –20 000 –20 000 20 000–10 000 0 0 4 6 8

Stresses Full stress τ̄ Heat flux q̄

z

z

z

(a)

(b)

(c)

(d)

(e)

( f )

(g)

(h)

(i)

–30 000 –20 000 –10 000

–30 000 –20 000 –10 000

–20 000 20 0000

–20 000 20 0000

Figure 15. (a–c) Reynolds stress τw (dotted lines), viscous stress τν (dashed lines), linear damping stress
τd (solid lines) and Reynolds stress plus anomalous stress τw + τ̃ (for stages II and III; black dashed lines)
averaged in time over 20 friction time units and horizontal planes as functions of depth z for stable, neutral and
unstable stratification, respectively (see the text for more details). Blue, orange and green colours denote results
obtained in stages I, II and III, respectively (same in (d–f ) and (g–i)). (d–f ) Total stress, i.e. τw + τν + τd (solid
lines), and total stress plus the anomalous stress, i.e. τw + τν + τd + τ̃ (thin black dashed lines), averaged in
time over 20 friction time units and horizontal planes as functions of depth z for stable, neutral and unstable
stratification, respectively. Note that the full stress is shifted to the right by 10 000 (20 000) between stage II
and stage I and between stage III and stage II for the case of stable (unstable) stratification for clarity as all
curves overlap otherwise. (g–i) Heat flux q (solid lines) and heat flux plus anomalous heat flux q + q̃ (thin
black dashed lines) averaged in time over 20 friction time units and horizontal planes as functions of depth z

for stable, neutral and unstable stratification, respectively. Note that the heat flux is shifted to the right by 2.5
(5) between stage II and stage I and between stage III and stage II for the case of stable (unstable) stratification
for clarity.
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(256 Fourier modes in the x and y directions and 64 Chebyshev modes in the z direction)
but keep Ri∗ = 0 (cf. dark grey colour in figure 2). In stage I we turn on buoyancy effects
(tIb∗ ≤ t∗ < tIc∗ ; cf. blue colour in figure 2), i.e. we use

Ri∗(t) = Ri∗ tanh
(

t∗ − tIb∗
)

, (C1)

such that Ri∗ transitions smoothly (over the time scale of one friction time unit) from 0 at
the end of stage Ib to the target value listed in table 1. Note that in the case of stabilizing
buoyancy effects, we found that the turbulent flow relaxes to a laminar state when using
(C1). In order to avoid this we used an intermediate stage with a more moderate target
Ri∗ = 20 (sub-stage Ici) before transitioning to Ri∗ = 40, using a similar equation as (C1).

Appendix D. Higher-order interface evolution model

In this section we derive a reduced model for the evolution of the mean interface position ξ̄ ,
or ice thickness h = h0 − (ξ̄ − ξ0), with h0 = 1/2 and ξ0 = 1 the initial ice thickness and
interface position, which takes into account interface deformation. Under the steady-state
assumption (instantaneous temperature diffusion), the evolution of ξ̄ is controlled by the
difference between the input heat flux from the fluid, q f , and the mean heat flux at the ice
top, qtop, i.e.

dξ̄

dt
= q f − qtop. (D1)

At the leading order we assume that the interface is flat such that qtop = h0qs/h, which
yields (3.4). At higher order, we take into account interface deformation, which can change
qtop, using regular perturbation (Favier et al. 2019). Specifically, we seek a solution of the
x-averaged steady-state heat equation, i.e. (dropping the tilde for x-averaged variables)

∇2T = 0, ξ( y) ≤ z ≤ Lz, (D2a,b)

T = −h0qs, z = Lz, (D3a,b)

T = 0, z = ξ( y), (D4a,b)

using a perturbation series of the form

T( y, z) = T(0)(z) + T(1)( y, z) + T(2)( y, z) + · · · , (D5)

with ∂yT(0) ≡ 0 and T(i) ∼ O(ǫi), where ǫ ≪ 1 is the dimensionless amplitude of the
interface deformation. For simplicity, here we approximate the interface deformation as

ξ( y) = ξ̄ + ǫ cos ky. (D6)

The leading-order solution is

T(0) = −
(

z − ξ̄

Lz − ξ̄

)
h0qs, (D7)

the first-order solution is

T(1) =
(

ǫh0qs

Lz − ξ̄

)
cos kx

sinh k (Lz − z)

sinh k
(
Lz − ξ̄

) , (D8)
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and the second-order solution is

T(2) = ǫ2h0qs

2
(
Lz − ξ̄

)
tanh k

(
Lz − ξ̄

)
[(

Lz − z

Lz − ξ̄

)
+ cos 2kx

sinh 2k (Lz − z)

sinh 2k
(
Lz − ξ̄

)
]

. (D9)

Thus, the second-order-accurate formula for the mean heat flux at the top of the ice reads
as

qtop = −∂zT(z = Lz) ≈ h0qs

h

[
1 + ǫ2k

2h tanh kh

]
, (D10)

which differs from the leading-order heat flux only at second order. The prediction for the
evolution of the mean interface position for unstable stratification with q f = NuIII , which
is shown by the red dash–dot lines in figure 11(a), is based on (D1) with qtop given by (D10)
and with ǫ = 0.137 and k = 2 (as obtained from best-fit of the true interface topography at
steady state for unstable stratification). We note that the quasi-steady-state assumption may
affect the prediction of the transient evolution of the mean interface position adversely but
has no effect on the final value, which is the primary goal of the reduced model.
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