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RESEARCH Open Access

Topography of FUS pathology distinguishes
late-onset BIBD from aFTLD-U
Edward B Lee1,2,3*, Jenny Russ1,2,3, Hyunjoo Jung1,2,3, Lauren B Elman1,6, Lama M Chahine1,6, Daniel Kremens7,

Bruce L Miller5, H Branch Coslett1,6, John Q Trojanowski1,3,4, Vivianna M Van Deerlin1,3,4 and Leo F McCluskey1,6

Abstract

Background: Multiple neurodegenerative diseases are characterized by the abnormal accumulation of FUS protein

including various subtypes of frontotemporal lobar degeneration with FUS inclusions (FTLD-FUS). These subtypes

include atypical frontotemporal lobar degeneration with ubiquitin-positive inclusions (aFTLD-U), basophilic inclusion

body disease (BIBD) and neuronal intermediate filament inclusion disease (NIFID). Despite considerable overlap,

certain pathologic features including differences in inclusion morphology, the subcellular localization of inclusions,

and the relative paucity of subcortical FUS pathology in aFTLD-U indicate that these three entities represent related

but distinct diseases. In this study, we report the clinical and pathologic features of three cases of aFTLD-U and two

cases of late-onset BIBD with an emphasis on the anatomic distribution of FUS inclusions.

Results: The aFTLD-U cases demonstrated FUS inclusions in cerebral cortex, subcortical grey matter and brainstem

with a predilection for anterior forebrain and rostral brainstem. In contrast, the distribution of FUS pathology in

late-onset BIBD cases demonstrated a predilection for pyramidal and extrapyramidal motor regions with relative

sparing of cerebral cortex and limbic regions.

Conclusions: The topography of FUS pathology in these cases demonstrate the diversity of sporadic FUS inclusion

body diseases and raises the possibility that late-onset motor neuron disease with BIBD neuropathology may

exhibit unique clinical and pathologic features.

Keywords: Frontotemporal dementia, Frontotemporal lobar degeneration, Motor neuron disease, Amyotrophic

lateral sclerosis

Background

Since the discovery of missense mutations in the fused-

in-sarcoma (FUS) gene that are pathogenic for familial

amyotrophic lateral sclerosis (ALS), a variety of clinically

and pathologically diverse neurodegenerative diseases

have been found to demonstrate FUS-positive inclusions

in central nervous system (CNS) neurons [1-18]. Rare

juvenile and adult onset forms of ALS exhibit basophilic

inclusions which are immunoreactive for FUS protein,

sometimes but not always associated with FUS mutations

[3,4,6-8,10,11,13,14,18]. In addition to ALS, rare forms of

frontotemporal lobar degeneration (FTLD) also exhibit

tau-negative, TDP-43 negative, FUS-positive inclusions in

the absence of FUS mutations [1,2,5,9,11,14-17]. FTLD is

a general pathologic term for a group of heterogeneous

diseases characterized neuropathologically by progressive

neurodegeneration with a predilection for frontal and tem-

poral lobes and clinically by frontotemporal dementia

(FTD) with or without motor neuron disease (MND). The

current classification of FTLD variants with underlying

FUS pathology combines three entities formerly known as

atypical FTLD with ubiquitinated inclusions (aFTLD-U),

basophilic inclusion body disease (BIBD) and neuronal

intermediate filament inclusion disease (NIFID) into an

umbrella category of FTLD with FUS inclusions now

known as FTLD-FUS [12].

aFTLD-U cases show characteristic tau-negative, TDP-

43-negative and FUS-positive inclusions [9,11,15,17].

aFTLD-U cases are generally sporadic, early-onset, and

present clinically as aggressive forms of behavioral
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variant FTD with prominent psychobehavioral symp-

toms. Inclusions in aFTLD-U exhibit a variety of morph-

ologies including dystrophic neurites (DN), numerous types

of neuronal cytoplasmic inclusions (NCI), and characteristic

neuronal intranuclear inclusions (NII) [9,11,15,17]. While

aFTLD-U cases may exhibit a few basophilic inclusions in

subcortical regions, BIBD exhibits numerous intraneuronal

basophilic inclusions on hematoxylin and eosin (H&E)

stained sections that are FUS positive [3-6,11,13,14]. In

addition to these basophilic inclusions, FUS immunohisto-

chemistry of BIBD brain tissue reveals FUS-positive NCIs

in a wide anatomic distribution including the neocortex

and hippocampus. NIIs are rare to absent in BIBD and un-

like aFTLD-U and NIFID these rare NIIs do not exhibit

vermiform morphology [11,14]. The clinical phenotype of

BIBD is varied ranging from pure ALS without dementia

(i.e. the aforementioned juvenile- or adult-onset cases of

sporadic ALS with basophilic inclusions) to ALS with de-

mentia to pure FTD. NIFID is a rare disorder with varied

clinical manifestations in which inclusions tend to be eo-

sinophilic and are immunoreactive for class IV neuronal

intermediate filaments and FUS [1,2,5,9,11,16,19].

Recent clinicopathologic series of various FTLD-FUS

cases reported distinct pathologic features of aFTLD-U,

BIBD and NIFID thereby supporting the notion that these

three diseases represent related but distinct pathologic en-

tities [5,9,11]. To further highlight the diversity of FTLD-

FUS subtypes, we report here the clinical and pathologic

findings of three cases of aFTLD-U and two cases of late-

onset BIBD which have not been previously described in

detail. Sampling throughout the neuraxis demonstrated

that the topographic distribution of FUS pathology was

distinct between these few cases aFTLD-U and late-onset

BIBD, suggesting that although they share a common mo-

lecular pathology (i.e. FUS positive inclusions), there is

considerable heterogeneity amongst the sporadic FUS in-

clusion body diseases. Furthermore, the two late-onset

BIBD cases exhibit clinical and pathologic features that

are distinct from most reported cases of BIBD suggesting

that late-onset sporadic ALS with BIBD neuropathology

may represent an extreme example on one end of the

diverse spectrum of sporadic FUS inclusion diseases.

Results

Five cases with FUS neuropathology including three

cases of aFTLD-U and two cases of BIBD were identi-

fied from the greater than 1500 cases in the University of

Pennsylvania CNDR Brain Bank. As summarized in Table 1,

this included three cases of aFTLD-U (designated as cases

F1-3) and two cases of BIBD (designated as cases B1 and

B2). The aFTLD-U patients were clinically diagnosed with

behavioral variant FTD with age of onset between 42 to 47

years. Cases F2 and F3 also exhibited evidence of parkin-

sonism and MND. The BIBD cases B1 and B2 were

clinically diagnosed with amyotrophic lateral sclerosis-plus

syndrome (ALS-plus) with a late age of onset of 65 and 75

years. Case B1 showed no evidence of parkinsonism or cog-

nitive dysfunction but developed diffuse chorea. Case B2

exhibited both parkinsonism and FTD.

Gross and histologic findings

All three aFTLD-U cases showed gross cerebral atrophy

affecting the frontal lobe, temporal lobe, and the caudate

nucleus. Depigmentation of the substantia nigra was

also observed. Histologic examination confirmed the pres-

ence of neurodegeneration most profoundly affecting the

frontal neocortex, orbitofrontal cortex, temporal cortex,

cingulate gyrus, amygdala, hippocampus (with hippocam-

pal sclerosis in cases F1 and F2), parahippocampal gyrus,

basal ganglia (caudate nucleus and globus pallidus) and

substantia nigra. Inclusions were not appreciated on H&E

stained sections aside from a rare nigral basophilic inclu-

sion in case F3.

BIBD showed mild to no gross cerebral atrophy. Histo-

logic examination demonstrated severe loss of spinal

motor neurons. Corticospinal tract degeneration was not

appreciated in case B1 but was severe in case B2. Case

B1 also demonstrated neurodegeneration most pro-

minently affecting the dorsal midbrain, locus ceruleus,

substantia nigra, and globus pallidus. Case B2 showed

mild to no neuronal loss outside of the pyramidal motor

system. In both cases, basophilic to achromatic NCIs

were readily identified on H&E or cresyl violet stained

sections involving multiple brain regions including the

primary motor cortex, ventral spinal cord, inferior olive,

dentate nucleus of the cerebellum, basis pontis, substantia

nigra and globus pallidus (Figure 1 and data not shown).

Immunohistochemical stains for β-amyloid, tau protein,

TDP-43 and α-synuclein together with thioflavin S stains

performed on all five cases excluded other neurodegenera-

tive diseases including AD, FTLD with TDP-43 or tau in-

clusions, and Lewy body disorders. Neurofibrillary tangles

were only observed in cases F2, B1 and B2 corresponding

to Braak stage I, II and III, respectively. Neuritic plaques

were absent in all cases except for rare neuritic plaques in

the cingulate and angular gyri of case B1.

FUS Inclusion morphology

FUS immunohistochemistry was performed on sections

throughout the neuraxis to compare the morphology

and topography of FUS inclusions in aFTLD-U versus

BIBD. As previously described by others, FUS IHC of

the aFTLD-U cases studied here revealed inclusions with

various morphologies. NCIs exhibited morphologies ran-

ging from compact round inclusions (Figure 1A), to

tangle-like inclusions (Figure 1B), larger conglomerate

inclusions (Figure 1C), and crescentic perinuclear aggre-

gates (Figure 1D). Abundant numbers of NIIs could be
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identified including characteristic vermiform (Figure 1E)

or circular NIIs (Figure 1F). DNs of various lengths in-

cluding longer DNs with apparent swollen morphology

were also present (Figure 1G). In contrast, FUS inclu-

sions in BIBD were nearly all cytoplasmic and included

annular or crescentic NCIs, compact round NCIs, larger

conglomerate NCIs and occasional tangle-like NCIs

(Figure 1H-M). A single spinal NII was identified in case

B2, while NIIs were not seen in case B1. Inclusions in all

cases did not stain with antibodies that recognize

neurofilament protein, thereby ruling out the possibility

of NIFID (data not shown). However, inclusions in all

cases did stain with antibodies that recognize ubiquitin,

transportin 1, TAF15 and EWS consistent with the ab-

sence of pathogenic FUS mutation (data not shown). Se-

quencing of the FUS gene revealed no pathogenic FUS

mutations in these five cases.

FUS Inclusion topography

To visualize the distribution of FUS inclusions, their

relative abundance was graded on a scale of 0 (absent)

to 3 (severe) in all CNS regions examined here to

generate pseudocolored topographical maps of the bur-

den of FUS pathology in each case (Figure 2). All three

cases of aFTLD-U showed a similar distribution of FUS

pathology with prominent involvement of frontal and

temporal cortex, hippocampus, parahippocampal gyrus,

orbitofrontal cortex, cingulate gyrus, basal ganglia and

midbrain (Figure 2A-C). In contrast, the topography of

the FUS pathology in the two BIBD cases appeared dif-

ferent (Figure 2D-E) with prominent involvement of the

pyramidal motor system (primary motor cortex, spinal

cord) and extrapyramidal motor areas (inferior olive,

basis pontis, substantia nigra, locus ceruleus, red nucleus,

dentate nucleus of the cerebellum, globus pallidus,

striatium, subthalamic nucleus, thalamus). Case B1 showed

limited FUS pathology in neocortical regions (Figure 2D)

while case B2 showed no neocortical FUS pathology

(Figure 2E). Limbic regions including the parahippocampal

gyrus, amygdala and hippocampus exhibited rare to no

FUS pathology. These topographical maps were generated

using a composite score for both NCIs and NIIs. An ana-

lysis of neocortical regions based solely on the density of

NCIs yielded similar results in that the three cases of

Table 1 Clinical features of aFTLD-U and BIBD cases

Case Clinical
diagnosis

Additional
clinical
features

Autopsy
diagnosis

Brain
weight (g)

Age of
onset

Age of
death

Gender Clinical synopsis

F1 bvFTD aFTLD-U 1130 42 48 F

Inappropriate behavior, loss of interests, obsessive
compulsive behaviors, decreased language output,
hyperorality. MMSE at presentation 24/30. EMG
normal.

F2 bvFTD
Parkinsonism
and early
MND

aFTLD-U 1200 47 56 M

Inappropriate affect with diminished social skills and
aggression, decreased language output. Hyperorality
and compulsive behaviors. Motor exam showed mild
parkinsonism (increased tone and mild bradykinesia).
MMSE at presentation 27/30. EMG with early motor
unit dropout.

F3 bvFTD
Parkinsonism
and MND

aFTLD-U 1241 46 51 M

Change in personality with progressive apathy, loss
of interests, disinhibition with inappropriate laughter,
decreased and slow language output, obsessive
compulsive tendencies. Motor exam initially showed
mild rigidity and brisk deep tendon reflexes without
weakness, atrophy or fasiculations. Later developed
Hoffman reflexes and pathologically brisk deep
tendon reflexes in all four extremities, atrophy of
intrinsic hand muscles and tongue, and stiff/slow
gait

B1
PMA

variant of
ALS-Plus

Chorea BIBD 1229 65 72 F

Progressive gait disorder, arm/hand weakness,
muscle atrophy, dysarthria. Subsequent choreaform
movements of head/neck with milder involvement
of limbs/trunk. No cognitive dysfunction. EMG
showed denervation and fibrillations. Died of
neuromuscular respiratory failure.

B2 ALS-Plus
Parkinsonism
and FTD

BIBD 1569 75 78 M

Progressive weakness with parkinsonian gait, tremor
of right hand, micrographia. Logopenic, poor oral
trails, only producing three words beginning with
the letter “f” in one minute, MMSE initially 28/30 with
only one out of three words for delayed recall task.
EMG showed denervation and fibrillations.
Developed muscle atrophy, fasiculations. Died of
neuromuscular respiratory failure.
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aFTLD-U exhibited more neocortical NCIs than the two

BIBD cases, and so the difference in FUS inclusion density

was not due to differences in inclusion type or localization

(data not shown). Again, the near absence of NIIs in the

two cases of BIBD contrasted starkly with the NIIs in mul-

tiple brain regions in aFTLD-U.

To further explore the spatial topography of FUS path-

ology and with the caveat that very few cases were

available for study, pathology grades for each brain region

were averaged for aFTLD-U or BIBD and values for the

forebrain were plotted from anterior to posterior

(Figure 3A). aFTLD-U demonstrated a gradient of FUS

inclusions with greater pathology involving anterior cere-

brum relative to posterior cerebrum. Notably, this effect

was not only due to the predilection for frontal and tem-

poral cortex or due to the relative sparing of the visual

Figure 1 Morphology of FUS inclusions in aFTLD-U and late-onset BIBD. Images of representative FUS inclusions from (A-G) aFTLD-U and

(H-M) BIBD cases are shown. FUS IHC of aFTLD-U revealed various aggregates including (A) compact round NCIs in the dentate gyrus of the

hippocampus, (B) tangle-like inclusions in frontal neocortex, (C) a conglomerate aggregate in a substantia nigra neuron, (D) perinuclear crescentic

inclusions in frontal neocortex, (E) numerous vermiform NIIs in the medullary olive nucleus, (F) a ring shaped NII in a cerebellar dentate nucleus

neuron and (G) a swollen DN in the entorhinal cortex. H&E stain of BIBD cases revealed basophilic inclusions including aggregates involving (H)

the cerebellar dentate nucleus and (I) the primary motor cortex. Cresyl violet stain also stained BIBD inclusions including (J) an aggregate within a

spinal motor neuron. FUS immunohistochemistry of BIBD cases revealed NCIs of various morphologies including (K) conglomerate aggregates

within a substantia nigra neuron and round NCIs involving the (L) dentate nucleus of the cerebellum and (M) pontine nuclei. Scale bars for

(A) 20 μm, (B-D, F-G) 10 μm, (E) 50 μm, (H-K) 10 μm and (L-M) 200 μm are shown.
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cortex. For example, more anterior deep grey structures

(caudate, globus pallidus) were more severely affected than

the thalamus. In contrast, BIBD demonstrated a spatially

restricted pattern with the most pathology towards the

center of the anterior-posterior axis (namely the motor

cortex, basal ganglia and thalamus) with relative sparing of

the more anterior and posterior regions of the cerebrum.

To further explore the spatial distribution of FUS

pathology, average pathology scores for the brainstem

and spinal cord were plotted along the rostral to caudal

axis (Figure 3B). aFTLD-U showed a predilection to-

wards FUS pathology in the rostral brainstem with less

FUS pathology caudally. In contrast, BIBD showed uni-

form FUS pathology along the entire rostral to caudal

axis.

Finally, functionally similar brain regions were defined

which relate to the clinical symptoms seen in FTD and

MND, namely limbic regions, cerebral cortex (non-

isocerebral cortex versus neocortex), extrapyramidal motor

regions, and the pyramidal motor system. Average aFTLD-

U versus BIBD FUS pathology scores were determined for

these functionally distinct brain regions to determine

whether aFTLD-U and BIBD exhibits differential involve-

ment of these select anatomic areas (Figure 3C). aFTLD-U

showed the most FUS pathology in limbic regions (amyg-

dala, hippocampus, parahippocampal gyrus, cingulate gyrus

and orbitofrontal cortex), followed by non-isocerebral cor-

tex (allocortex, periallocortex and proisocortex), neocortex,

extrapyramidal motor regions (striatum, globus pallidus,

thalamus, midbrain/substantia nigra, pons, locus ceruleus,

dentate nucleus of the cerebellum, medullary olive), and

motor regions (primary motor cortex, ventral spinal cord).

BIBD showed the opposite rank order in terms of FUS

pathology, with greatest involvement of the pyramidal

motor system followed by the extrapyramidal motor re-

gions, neocortex, non-isocerebral cortex, neocortex and

limbic regions.

Discussion

FUS is one of three RNA- and DNA-binding proteins

that comprise the FET protein family [20]. Together

with EWS and TAF15, these FET proteins share struc-

tural similarities including the propensity to aggregate,

and they all are components of fusion oncogenes associ-

ated with sarcomas and leukemias [20-22]. FUS is pre-

dominantly nuclear but does shuttle between the

nucleus and cytoplasm, and is known to bind to a large

number of RNA molecules to regulate mRNA splicing

and stability [23-28]. Mutations in the FUS gene cause

rare forms of ALS (ALS-FUS) in which motor neuron

degeneration is associated with FUS immunoreactive in-

clusions [8,18]. There is heterogeneity of FUS pathology

in ALS-FUS depending either on the type of FUS muta-

tion and/or age of onset, ranging from round basophilic

FUS positive NCIs to tangle-like FUS positive NCIs to-

gether with glial cytoplasmic inclusions [10]. Pathogenic

mutations most often occur within conserved regions of

exon 15 around the area that encodes a nuclear

Figure 2 Topography of FUS inclusions in aFTLD-U and late-onset BIBD. The density of FUS inclusions throughout the brain and spinal cord

were graded on a 3 point scale and then color coded as green (0, absent), green-yellow (0.5+, rare), yellow (1+, mild), orange (2+, moderate) and

red (3+, severe). Pathology grades were used to generate topographical maps for (A-C) aFTLD-U and (D-E) BIBD cases. Brain regions are labeled

as follows: 1 frontal cortex, 2 orbitofrontal cortex, 3 primary motor cortex, 4 primary sensory cortex, 5 superior and middle temporal cortex,

6, parietal cortex, 7 occipital cortex, 8 cingulate gyrus, 9 midbrain, 10 pons, 11, medulla, 12 spinal cord, 13 dentate nucleus, 14 amygdala,

15 entorhinal cortex, 16 anterior striatum, 17 globus pallidus, 18 posterior striatum, 19 thalamus, 20 subthalamic nucleus, 21 substantia nigra,

22 hippocampus, 23 dorsal medulla, 24 inferior olive, 25 cerebellum.
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localization signal, and these mutations affect the binding

of FUS to transportin 1, a protein known to facilitate the

shuttling of various RNA-binding proteins including FET

proteins into the nucleus, suggesting that the abnormal

localization of FUS is linked to neurodegeneration [29-33].

There is a known clinical and pathologic overlap be-

tween ALS and FTD, and this overlap is demonstrated

by the fact that various forms of FTLD including aFTLD,

BIBD and NIFID exhibit FUS immunoreactive inclusions

[14-16]. Unlike the inclusions seen in ALS-FUS, the FUS

immunoreactive inclusions in these sporadic forms of

FTLD are also immunoreactive for EWS, TAF15 and

transportin 1 as reported elsewhere [34-37] and as de-

scribed here. The neuropathology of FTLD-FUS is also

heterogeneous but is clearly distinct from ALS-FUS due

to increased diversity of inclusion morphology such as

the presence of vermiform NIIs in aFTLD-U and NIFID,

and a broader anatomic distribution of FUS pathology

[10,11]. In addition to being distinct from ALS-FUS, de-

tailed neuropathologic reports indicate that there are

features which may be used to distinguish between the

three FTLD-FUS subtypes, supporting the idea that

aFTLD, BIBD and NIFID are related but distinct entities

[5,9,11]. In particular, the presence of vermiform NIIs in

aFTLD-U and the near absence of NIIs is BIBD appears

to be one feature which can be used to distinguish

aFTLD-U from BIBD [11].

Many neurodegenerative diseases show a stereotyped

neuroanatomic progression of pathology including tau

protein in AD, amyloid plaque pathology in AD and

α-synuclein pathology in Parkinson’s disease (PD) [38-40].

While the number of cases studied worldwide is too small

to make definitive judgments of the pathologic spread of

FUS pathology, the few cases presented here suggest that

the topography of FUS pathology in aFTLD-U is distinct

from the topography of FUS pathology in late-onset BIBD.

Figure 3 Neuroanatomic distribution of FUS pathology in aFTLD-U and late-onset BIBD. (A) FUS pathology grades for brain regions were

averaged for aFTLD-U versus BIBD and forebrain regions were plotted from anterior brain regions (mid-frontal and orbitofrontal cortex) to

posterior brain regions (visual cortex). aFTLD-U scores are shown with black squares while BIBD scores are shown with open circles. (B) Average

FUS pathology grades for brainstem and spinal cord regions were plotted from rostral to caudal. Cerebellum scores represent grades from the

dentate nucleus only, and does not reflect the absence of pathology in the cerebellar folia. aFTLD-U scores are shown with black squares while

BIBD scores are shown with open circles. (C) Average FUS pathology grades for various groups of brain regions are shown for aFTLD-U (black

bars) and BIBD (clear bars). Limbic regions included amygdala, hippocampus, parahippocampal gyrus, orbitofrontal cortex and cingulate gyrus.

Nonisocerebral cortex regions included parahippocampal gyrus, cingulate gyrus and orbitofrontal cortex. Neocortical regions included mid-frontal

cortex, superior and inferior temporal cortex, angular gyrus, motor cortex, sensory cortex and visual cortex. Extrapyramidal motor regions included

basal ganglia, thalamus, midbrain including substantia nigra, pons including locus ceruleus, dentate nucleus of the cerebellum and the medullary

inferior olive nucleus. Motor regions included the motor cortex and the ventral spinal cord grey matter. (D) The hypothetical spread of FUS

pathology is shown based on the topography of FUS inclusions which emphasizes the more widespread involvement of the brain in aFTLD-U

with a predilection for anterior forebrain, cerebral cortex and limbic brain regions compared to the pattern of FUS pathology in BIBD which

involves primarily pyramidal and extrapyramidal motor regions with relative sparing of other brain regions. Although speculative, the topographic

distribution of FUS pathology suggests that aFTLD-U and late-onset BIBD exhibit differences in the spread of FUS pathology.
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aFTLD-U pathology is most severe in anterior limbic

and neocortical regions with a gradual diminution of

pathology along the anterior-posterior and rostral-caudal

axes (Figure 3D). In contrast, late-onset BIBD shows the

most severe FUS pathology in pyramidal and extrapyram-

idal motor regions with FUS pathology involving the

spinal cord, brainstem and deep grey structures, and rela-

tive sparing of neocortex (aside from motor cortex) and

limbic areas (Figure 3D). Although additional cases are in-

evitably required to extend the findings reported here on

these rare forms of FTLD, our findings suggest that there

is a clinical and pathologic spectrum of FUS disease with a

common molecular pathology (i.e. FUS inclusions), but

with rather disparate pathologies both in terms of the sub-

cellular localization and the neuroanatomic distribution of

FUS inclusions.

The clinical manifestations of FUS pathology are varied,

ranging from pure FTD to pure MND [5,9,11,14-17]. The

two BIBD cases presented here were diagnosed with ALS-

plus syndrome in which MND is associated with one or

more clinical phenomena (i.e. dementia, parkinsonism)

that have been considered by some to exclude the diagno-

sis of ALS [41-45]. However, it is now accepted that 10%

of ALS patients manifest clinical features of FTD and up

to 50% have measureable frontotemporal cognitive deficits

[46]. Since reported cases of BIBD represent a spectrum

ranging from pure MND to pure FTD, categorizing all

BIBD cases as a subtype of FTLD-FUS does not seem to

reflect the clinical and pathologic features of BIBD, par-

ticularly given that clinical signs of frontotemporal dys-

function may not be seen and frontal or temporal lobe

degeneration may be absent. Better understanding of the

molecular events underlying inclusion formation, and the

downstream consequences of FUS abnormalities will help

determine the similarities and disparities which define

these heterogeneous diseases.

The three cases of aFTLD-U presented here are simi-

lar to those described by previous clinical and pathologic

case series and reports of aFTLD-U [9,11,15,17]. In con-

trast, the two cases of BIBD presented here are clinically

and pathologically unique. Most reported cases of BIBD

exhibit an earlier onset of disease and a more wide-

spread neuroanatomic distribution of FUS pathology

[3-6,11,13,14]. The largest reported series of BIBD with

FUS pathology included a total of 8 cases with an aver-

age age of onset of 46 years (ranging from 29 to 57) and

an average age of death of 53 years (ranging from 39 to

68) [11,14]. This series included five cases of dementia

(four of which were behavioral variant of FTD), two

cases of ALS without dementia, and one case of progres-

sive supranuclear palsy-like parkinsonism without de-

mentia. These cases, together with nearly all additional

published BIBD cases, exhibit a wide neuroanatomic

distribution of FUS pathology including moderate to

numerous numbers of NCIs in nearly every brain region

analyzed including the frontal cortex and hippocampus.

NIIs were absent to rare, and NCIs exhibited a wide var-

iety of morphologies including crescentic, annular, granu-

lar, round, tangle-like and irregular. In contrast, the two

BIBD cases reported here represent extreme examples in

terms of age of onset (65, 75) and age of death (72, 78).

The predominant clinical phenotype of these two BIBD

cases was that of MND. Although NCI morphology was

similar to that already reported for BIBD, the near absence

of FUS pathology in limbic regions including the hippo-

campus and parahippocampal gyrus, and the relative spar-

ing of cerebral cortex is not typical of BIBD.

Only two additional cases of BIBD without hippocampal

FUS inclusions have been reported, [4,13] and they were

clinically diagnosed with pure ALS without cognitive or

exptrapyramidal features, while also being the two oldest

cases of BIBD in the literature with age of onset at 73 and

75 (age of death of 75 and 79). The first case was reported

as grossly unremarkable with microscopically evident

motor neuron degeneration in association with basophilic

inclusions [4]. FUS immunoreactive inclusions were ob-

served in pyramidal and extrapyramidal motor systems in-

cluding the anterior horn of the spinal cord, substantia

nigra, oculomotor nuclei, red nuclei, inferior olivary nu-

clei, facial nuclei, pontine nuclei, dentate nuclei, hypoglos-

sal nuclei, vestibular nuclei and locus coerulei [4]. The

second case showed no gross evidence of cerebral atrophy,

microscopically evident motor neuron degeneration, histo-

logically evident basophilic inclusions, an absence of NIIs,

and abundant round FUS immunoreactive NCIs involving

the brainstem, spinal cord, thalamus and dentate nucleus

[13]. The anatomic distribution of FUS pathology in these

two late-onset BIBD cases are similar to the two cases

presented here, including the predilection for pyramidal

and extrapyramidal motor regions, the paucity of limbic

and neocortical pathology, and sparing of the hippocam-

pus. Indeed, the two previously reported cases and the

two current cases are the four oldest cases of BIBD in the

literature. Given that only four cases (including the two

presented in the current study) of late-onset BIBD have

been described, it remains to be seen whether old age at

onset is a definite feature of BIBD cases in which FUS

pathology preferentially affects motor regions with relative

sparing of cerebral cortex and limbic structures. The

MND-predominant clinical phenotype and the distribu-

tion of FUS pathology in these four cases of late-onset

BIBD are somewhat similar to the clinicopathologic fea-

tures of ALS-FUS. However, key distinctions between

ALS-FUS and the late-onset cases of BIBD is the generally

earlier onset of ALS-FUS, the absence of FUS mutation

in late-onset BIBD, and the co-aggregation of FUS,

EWS, TAF15 and transportin 1 in late-onset BIBD

[3,6-8,10,18,35-37].
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Care should be taken not to overanalyze data based on

a limited number of cases. In particular, our analysis in

which pathology scores were averaged according to

histopathologic diagnosis was used as a means to under-

stand the differences between the three cases of aFTLD-

U and the two cases of BIBD reported here. As such, this

analysis may not reflect the diversity or uniqueness of

aFTLD-U and BIBD in general. For example, there is a

possibility of selection bias in that the two cases of BIBD

were phenotypically characterized by motor neuron dis-

ease and therefore may not be representative of BIBD in

general which is phenotypically diverse. BIBD cases with

motor neuron disease tend to show degeneration of

motor systems (as observed in our cases) while BIBD

cases with frontotemporal dementia show severe degen-

eration in the frontal cortex [11,14,47-52]. Although the

density of FUS inclusions does not necessarily correlate

precisely with the degree of neurodegeneration, we ob-

served fewer neocortical FUS inclusions in BIBD com-

pared to aFTLD-U, in contrast with larger case series

which reported more FUS inclusions in the frontal cor-

tex of BIBD relative to aFTLD-U which may reflect the

broader clinical spectrum captured in previous case

series. The clinical and pathologic heterogeneity of BIBD

is remarkable and the two cases of BIBD reported here

appear to represent one end of the spectrum of BIBD.

Clearly, further experience is required to better under-

stand this diversity. However, despite the issues associ-

ated with the low number of cases (representing <0.4%

of the 1500+ cases in the CNDR Brain Bank), our ana-

lysis of these cases serves to highlight the diversity of

FUS inclusion body diseases.

Conclusions
We report here that the morphology and topography of

FUS inclusions in aFTLD-U versus late-onset BIBD ap-

pear to be distinct. The rarity of these cases makes de-

finitive judgment about the spatial topography or the

staging of FUS neuropathology difficult. However, the

spatial topography of AD and PD pathology supports

the notion that inclusions form and progressively spread

in a predictable neuroanatomic sequence. Experimental

evidence has demonstrated that diverse neurodegenera-

tive disease misfolded proteins and the inclusions they

form can be propagated by direct inoculation of

misfolded proteins, apparently via cell to cell transmis-

sion [53-62]. With the exception of prion diseases, this

cell to cell transmission appears not to be infectious, at

least for AD, PD and FTLD-Tau [63], but rather may

regulate the spatial distribution and spread of pathology.

FUS pathology in aFTLD-U and BIBD is topographically

heterogeneous, but largely affects the brain regions

linked to symptomatology, suggesting that the clinical

phenotype in these diseases is dictated in part by

differential spread of FUS pathology. Although the mo-

lecular basis for the pathologic diversity of sporadic FUS

inclusion body diseases is entirely unknown, the clinical

and pathologic features of the cases presented here sug-

gest that late-onset BIBD may represent a unique or ex-

treme example of sporadic MND within the diverse

spectrum of FUS proteinopathies.

Methods

Clinical data

Brief summaries of the clinical features of each patient

studied here are provided in Table 1.

Neuropathologic analyses

Neuropathologic analysis was performed according to the

standardized procedures of the Center for Neurodegenera-

tive Disease Research (CNDR) Brain Bank at the University

of Pennsylvania as previously described [64]. Briefly, brain

and spinal cord regions were fixed in neutral buffered for-

malin, and 6 μm thick sections were cut from paraffin-

embedded tissue. CNS tissue samples were obtained from

the following regions for study here: mid-frontal cortex,

orbitofrontal cortex, primary motor cortex, primary sen-

sory cortex, superior and middle temporal cortex, parietal

cortex (angular gyrus), occipital (primary visual) cortex, an-

terior cingulate gyrus, amygdala with parahippocampal

gyrus, anterior striatum, posterior striatum with globus

pallidus, thalamus, hippocampus with parahippocampal

gyrus, cerebellum including dentate nucleus, midbrain in-

cluding substantia nigra, pons including locus ceruleus,

medulla including inferior olive and cervical spinal cord.

Thoracic, lumbar and sacral spinal cord was also examined

for BIBD cases.

Closely adjacent series of sections from each CNS region

were stained with hematoxylin and eosin, thioflavin S, and

Kluver-Barrera methods as well as by immunohistochem-

istry (IHC) using standard ABC methods with microwave

antigen retrieval and a mouse monoclonal anti-FUS anti-

body (ProteinTech, Chicago, IL). We also confirmed the

presence of FUS pathology in multiple additional sections

using a rabbit polyclonal anti-FUS antibody (rabbit anti-

FUS, Sigma Aldrich, St. Louis, MO). Microscopic slides

were examined and the extent of FUS pathology was rated

for each region on an ordinate scale (0 absent, 0.5 rare, 1

mild, 2 moderate and 3 severe) using previously described

criteria for FUS pathology [11]. Inclusions were further

characterized by IHC using antibodies specific for ubiqui-

tin (1510, Chemicon, Temecula, CA), transportin 1 (D45,

Sigma), TAF15 (rabbit anti-TAFII68, Bethyl Laboratories)

and EWS (G-5, Santa Cruz Biotechnology, Santa Cruz,

CA). IHC also was performed with additional antibodies

including NAB228 (anti-Aβ), [65] SYN303 (anti-α-

synuclein), phospho409/410-specific anti-TDP43 (1D3),

[66] PHF1 (anti-phospho-tau) and RMO24 (anti-phospho-
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neurofilament-H) to exclude the presence of other neuro-

degenerative diseases including Alzheimer’s disease (AD),

synucleinopathies, FTLD-TDP, FTLD-Tau and NIFID.

Neuropathologic criteria for the diagnosis of BIBD in-

cluded the presence of numerous basophilic inclusions

in a wide neuroanatomic distribution on H&E stained

sections which were immunoreactive for FUS protein.

The diagnosis of aFTLD-U was based on the presence of

ubiquitin and FUS positive inclusions which could not

be seen on H&E sections, and the paucity of basophilic

inclusions on H&E stained sections. No cases of NIFID

were found in the CNDR Brain Bank based on the ab-

sence of at least moderate numbers of neurofilament im-

munoreactive inclusions in cerebral neocortex or limbic

regions.

Genetic analyses

DNA was extracted from brain tissue using QIAsymphony

DNA Mini Kit (Qiagen) following the manufacturer’s

protocol. Standard Sanger sequencing was used to evalu-

ate the entire coding region of FUS and adjacent intronic

regions for cases B1 and B2, and mutation hot spot exons

14 and 15 for cases F1-3 (Beckman Coulter Genomics,

Danvers, MA). Primers are available on request. Data were

analyzed using Mutation Surveyor software (Softgenetics,

State College, PA).

Consent

The University of Pennsylvania Institutional Review

Board has reviewed the CNDR Neurodegenerative Dis-

ease Autopsy Brain Bank protocols and has confirmed

that these studies do not meet the criteria for human

subjects research because according to 45 CRF § 45.102

(f ), a human subject is defined as a living individual.

However, all patients reported here were pre-consented

for autopsy prior to death including the use of tissues

for scientific study. At time of death, consent for aut-

opsy was reobtained from next-of-kin.
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