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Topography of the Northern
Hemisphere of Mercury from
MESSENGER Laser Altimetry
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Laser altimetry by the MESSENGER spacecraft has yielded a topographic model of the northern
hemisphere of Mercury. The dynamic range of elevations is considerably smaller than those of Mars
or the Moon. The most prominent feature is an extensive lowland at high northern latitudes that
hosts the volcanic northern plains. Within this lowland is a broad topographic rise that experienced
uplift after plains emplacement. The interior of the 1500-km-diameter Caloris impact basin
has been modified so that part of the basin floor now stands higher than the rim. The elevated
portion of the floor of Caloris appears to be part of a quasi-linear rise that extends for
approximately half the planetary circumference at mid-latitudes. Collectively, these features
imply that long-wavelength changes to Mercury’s topography occurred after the earliest phases
of the planet’s geological history.

T
he topography of a planet provides fun-

damental information about its internal

structure and geological and thermal evo-

lution. Ranging observations made from orbit by

the Mercury Laser Altimeter (MLA) (1) on the

MErcury Surface, Space ENvironment, GEo-

chemistry, and Ranging (MESSENGER) (2)

spacecraft have provided a precise, geodetically

referenced topographic model of the northern

hemisphere of the planet as well as a character-

ization of slopes and surface roughness over a

range of spatial scales.

From MESSENGER’s eccentric, near-polar

orbit (2), the MLA (3) illuminates surface areas

averaging between 15 and 100 m in diameter,

spaced ~400 m apart along the spacecraft ground

track. The range from the spacecraft to the sur-

face is converted to a measurement of radius

from the planet’s center of mass via the deter-

mination of MESSENGER’s orbit. Radius is then

converted to topography (Fig. 1A) by subtracting

the radius of the gravitational equipotential

or geoid obtained from Doppler tracking of

MESSENGER (4). The radial precision of indi-

vidual measurements is <1 m, and the accuracy

with respect to Mercury’s center of mass is

better than 20 m (Table 1). MLA can success-

fully range at distances up to 1500 km from

Mercury’s surface when operating at nadir, and

from ~1000 km at angles up to 40° from the

vertical (5). As of 2 December 2011, more than

4.3 million independent measurements of surface

elevation had been obtained.

Elevations in Mercury’s northern hemisphere

exhibit an approximately symmetric, unimodal

hypsometric distribution and a dynamic range

of 9.85 km (Fig. 2), considerably less than the

global dynamic range for the Moon (19.9 km)

or Mars (30 km) (6, 7). Mercury contains nu-

merous large impact structures (8, 9) that influ-

ence the hemispheric shape but do not markedly

affect the hypsometry.

Mercury’s high bulk density, presumably the

result of an iron-rich core that constitutes an un-

usually large mass fraction of the planet (10),

yields a surface gravitational acceleration com-

parable to that of Mars for a body intermediate in

size between Mars and the Moon. For at least

some topography-producing forces, a higher grav-

itational acceleration results in less variation in

elevation, which can account for the difference

in topographic dynamic range between Mercury

and the Moon. However, Mercury’s shallow

core-mantle boundary, at a depth of <400 km

below the surface (4), could have affected vis-

cous flow in Mercury’s mantle and may have

influenced the growth and relaxation of the

largest structures (11). Shield-building volcanism

and large-scale extension contribute substantially

to the dynamic range of topography on Mars but

have no evident counterparts on Mercury. Indeed,
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if the topography associated with Tharsis and

Valles Marineris is excluded, the dynamic range

of the remaining topography on Mars can be

approximated by the rim-to-floor depth of the

Hellas basin. This figure is comparable to the

dynamic range of topography on Mercury and

is consistent with a gravitational influence on

topographic relief for terrestrial planetary bodies.

A spherical harmonic fit of planetary shape

(12) (table S1) confirms an elliptical form of the

equator, with a long axis close to the prime me-

ridian (12) (fig. S1), as well as an offset between

the center of mass and center of figure in the

equatorial plane (5, 13). This distinctive feature

of the planetary shape reflects a hemispheric

difference in internal structure that could poten-

tially arise from large-scale variations in crustal

thickness or density, mantle density, or topography

along Mercury’s core-mantle boundary.

A north-polar projection of topography

(Fig. 1A) shows irregular lowlands at high

northern latitudes that are ~2 km deeper than

the surrounding terrain. Portions of the boundary

of the northern lowlands appear to follow seg-

ments of rims of degraded impact basins, but the

large extent of the lowlands and the irregular

shape of the remainder of the boundary suggest

that additional processes were involved in the

formation of relief. The northern lowlands are

marked by a negative free-air gravity anomaly

and are in a state of approximate local compen-

sation (e.g., underlain by thinner than average

crust) (4), although the area is likely not in strict

local mass balance because of contributions to

topographic support from flexural and mem-

brane stresses. Barring some sort of offsetting

structure near the south pole, the large area of

low topography at high latitudes raises the pros-

pect that the region may have migrated to the

pole during a reorientation of the planet’s prin-

cipal inertia axes driven by the shallow mass

deficit (14). If the present location of the northern

lowlands is a consequence of polar wander, then

the implied planet-scale reorientation must have

occurred at a time when the outer portions of

Mercury were sufficiently cool and mechanical-

Fig. 1. (A) Polar stereographic projection of topography (local radius minus the
radius of the HgM002 geoid, the gravitational equipotential referenced to the
mean equatorial radius) (4) from the north pole to 5°S. The locations of selected
major impact structures are shown as black circles. (B) Polar stereographic

projection of median differential slope (15) on a baseline of length 3.2 km, from
the north pole to 50°N latitude. The green line shows themapped boundary of the
northern smooth plains (16); the black line corresponds to the topographic
contour of–1.24 km. Bothmaps include data collected through 24October 2011.

Table 1. Geodetic parameters for Mercury derived from MLA topography.

Parameter Value

Reference radius (km) 2440

North polar radius (km)* 2437.57 T 0.01

Equatorial mean radius (km)† 2439.83 T 0.05

Northern hemisphere mean radius (km)‡ 2439.59 T 0.05

Shape dynamic range (km) 9.848

Shape accuracy (m) T25

High point (km)§ 11.222°N, 164.752°E +4.024

Low points (km)§

Rachmaninoff, 27.417°N, 57.215°E

Polar crater, 85.446°N, 62.440°E

–5.815

–5.824
Hypsometric mean (km)§ –0.589

Hypsometric median (km)§ –0.616
Hypsometric mode (km)§ –0.700

(a – b)/a || (514 T 52) × 10−6

f2 (°E)# –18.6 T 4

CoF-CoM x (km)** 0.133 T 0.052

CoF-CoM y (km)** 0.193 T 0.051

*Average of all MLA observations within 10° of north pole. †Average of all MLA observations within 15° of equator. ‡Mean
planetary radius from a spherical harmonic least-squares fit to all observations with a Kaula constraint applied. §Relative to
the reference radius. ||a and b are, respectively, the semimajor and semiminor axes of the ellipse fit to shape measurements
within 15° of the equator. #Longitude of the equatorial semimajor axis of the ellipse fit to near-equatorial shape. Longitude
0° coincides with one of the hot poles of Mercury, which is on the axis of minimum moment of inertia, and 90° on the equator
is in the direction of the intermediate axis of inertia. **CoF-CoM is the offset of the center of figure (CoF) from the center of
mass (CoM), the origin of the coordinate system for gravity and topography; x and y are the components of offset in Mercury’s
equatorial plane in the direction of 0° and 90°E, respectively.
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ly strong to preserve a nonhydrostatic response

to topographic stresses, as well as the present

configuration of inertial axes.

A map of median differential slope (15)

derived from the topographic measurements

(Fig. 1B) illustrates that kilometer-scale slopes

are generally much lower within the northern

lowlands than in the surrounding areas. The low-

lands are partially filled with a smooth plains

unit that occupies more than 6% of Mercury’s

surface (16). On the basis of its geological char-

acteristics, the plains have been interpreted as a

product of flood volcanism early in Mercury’s

history marked by high rates of eruption of high-

temperature lavas (16). Elemental composition

measurements made with MESSENGER’s X-Ray

Spectrometer (XRS) indicate that the northern

plains are similar in composition to basalts on

other terrestrial bodies (17, 18). The diameters

of partially to fully buried craters on the plains

unit imply that plains thicknesses, at least lo-

cally, exceed 1 to 2 km (16). The black curve

in Fig. 1B shows that the boundary of the

smoothed plains and of the area of low dif-

ferential slope is reasonably well matched along

a substantial portion of its length by a constant

elevation relative to the geoid. These relation-

ships suggest that the flood volcanism that

created the northern plains involved highly fluid

lavas.

At present, however, the northern smooth

plains deviate from a level surface. In partic-

ular, the northern lowlands host a regional

topographic rise (centered near 68°N, 33°E)

that is ~950 km in diameter and is elevated by

~1.5 km above its surroundings. This northern

rise is characterized by a large (~150 mGal)

positive gravity anomaly (4). This value is only

slightly less than the magnitude of the anomaly

that would be predicted by topography alone and

suggests at most limited compensation (e.g., by

thickened crust) (4). The northern rise does not

display kilometer-scale slopes distinguishable

from the rest of the northern plains (Fig. 1B),

and the size-frequency distributions of super-

posed impact craters indicate that the age of

the rise surface is indistinguishable from that

of the surrounding plains (19). Moreover, topo-

graphic profiles through volcanically buried

craters on the rise indicate that the flooded

floors tilt away from the highest point on the

rise (20). These observations indicate collective-

ly that at least a portion of the rise topography

postdates the emplacement of the plains. The

implied vertical motions following plains em-

placement could be the result of lithospheric

deformation, magmatic intrusion, or mantle dy-

namic uplift.

The Caloris basin (centered at 31°N, 160°E),

1550 km in diameter (21), is the best preserved

and presumably youngest of the large impact

basins on Mercury (8, 22). A terrain model of

the Caloris region derived from stereo images

acquired during MESSENGER’s first Mercury

flyby (23) displayed basin-concentric rings and

suggested long-wavelength undulations of the

basin interior surface, but the lack of long-

wavelength geodetic control in the model ren-

dered these undulations uncertain. The MLA

Fig. 2. Histogram of northern
hemisphere elevations, relative
to a sphere of radius 2440 km,
projected onto an equal-area
grid from 4°S to 83.5°N. The
red line is a smooth curve fit
to the observations; the red
bar indicates T1 standard de-
viation from the mean.

Fig. 3. (A) Average along-track tilts of the floors of impact craters
(arrows) within and in the vicinity of the Caloris basin superimposed on
regional topography. Tilts are obtained from representative MLA tracks
across each crater and constitute the projection of total tilt onto the

vertical plane containing the track. Arrow length is proportional to tilt.
Dashed line shows the ground track of the profile in (B). (B) Profile
MLASCIRDR1107292041 across the 100-km-diameter crater Atget dem-
onstrates northward tilt of the crater floor.
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topographic model, in contrast, is precisely

controlled and enables confident characteriza-

tion of long-wavelength topography. MLA ob-

servations confirm that the northern floor of

Caloris is elevated relative to other parts of the

basin interior, so much so that in places the

floor lies above the basin rim (Fig. 3). This

portion of the floor of Caloris appears to be

part of a quasi-linear rise that trends generally

west-southwest–east-northeast and extends

over approximately half the circumference of

Mercury at mid-latitudes (Fig. 1A). The floors

of younger impact craters within and near Caloris

(Fig. 3) display departures from the horizontal

that generally correlate with regional tilts im-

parted by the long-wavelength topography of

the region and are consistent with modifica-

tion of Mercury’s long-wavelength topogra-

phy some time after the formation of Caloris

and the emplacement of its interior and ex-

terior volcanic plains.

The changes in long-wavelength topogra-

phy within the Caloris basin and northern plains,

and perhaps elsewhere on Mercury, occurred

after both the end of heavy impact bombard-

ment and the emplacement of the largest ex-

panses of volcanic plains on the planet. One

possible source of long-wavelength topogra-

phy is the isostatic response to variations in

crustal thickness. However, the oldest terrains

on Mercury display crater size-frequency dis-

tributions at large crater diameters similar to

those on the most densely cratered parts of the

Moon (24). Thus, crustal formation substan-

tially predated long-wavelength topographic

change and cannot explain the observations. A

second possible source of such long-wavelength

change in topography is mantle convection (25).

However, recent mantle convection simulations

(26) constrained by internal structure models

consistent with Mercury’s long-wavelength grav-

ity field (4) and by the latitudinal distribution of

surface insolation do not produce surface de-

formation of the magnitude required to explain

the observed topography. Another contribution

to topographic change is volcanic and magmatic

loading of the lithosphere along with its flexural

response, which has a predictable pattern. Fi-

nally, long-wavelength changes in topography

could be a deformational response to interior

planetary cooling and contraction (27). Evidence

for topographic changes during Mercury’s evo-

lution is consistent with evidence from the geom-

etry of ridges and lobate scarps that these features

accommodated surface strain over a substan-

tial fraction of Mercury’s geological history

(28). Observations of the topography add to

the growing body of evidence that Mercury

was a tectonically, volcanically, and dynami-

cally active planet for much of its evolution.
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ESCRT-III Governs the Aurora
B–Mediated Abscission Checkpoint
Through CHMP4C
Jeremy G. Carlton,* Anna Caballe, Monica Agromayor, Magdalena Kloc, Juan Martin-Serrano†

The endosomal sorting complex required for transport (ESCRT) machinery plays an evolutionarily
conserved role in cytokinetic abscission, the final step of cell division where daughter cells are
physically separated. Here, we show that charged multivesicular body (MVB) protein 4C (CHMP4C),
a human ESCRT-III subunit, is involved in abscission timing. This function correlated with its
differential spatiotemporal distribution during late stages of cytokinesis. Accordingly, CHMP4C
functioned in the Aurora B–dependent abscission checkpoint to prevent both premature resolution
of intercellular chromosome bridges and accumulation of DNA damage. CHMP4C engaged the
chromosomal passenger complex (CPC) via interaction with Borealin, which suggested a model
whereby CHMP4C inhibits abscission upon phosphorylation by Aurora B. Thus, the ESCRT
machinery may protect against genetic damage by coordinating midbody resolution with the
abscission checkpoint.

T
he final separation of daughter cells during

cytokinesis is the ancestral function of

the endosomal sorting complex required

for transport (ESCRT) machinery (1–5) which

also acts to resolve equivalent membrane scission

events in multivesicular body (MVB) forma-

tion (6, 7) and human immunodeficiency virus–

1 (HIV-1) budding (8, 9). Midbody recruitment

of ESCRT-III, the filament-forming scission ma-

chinery, is an essential event in cytokinesis that is

thought to provide constrictive force during ab-

scission (2, 10–12). An Aurora B–dependent
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