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Abstract

Background: Type II DNA topoisomerases (TOP2) regulate DNA topology by generating transient double stranded

breaks during replication and transcription. Topoisomerase II beta (TOP2B) facilitates rapid gene expression and

functions at the later stages of development and differentiation. To gain new insight into the genome biology of

TOP2B, we used proteomics (BioID), chromatin immunoprecipitation, and high-throughput chromosome

conformation capture (Hi-C) to identify novel proximal TOP2B protein interactions and characterize the genomic

landscape of TOP2B binding at base pair resolution.

Results: Our human TOP2B proximal protein interaction network included members of the cohesin complex and

nucleolar proteins associated with rDNA biology. TOP2B associates with DNase I hypersensitivity sites, allele-specific

transcription factor (TF) binding, and evolutionarily conserved TF binding sites on the mouse genome. Approximately

half of all CTCF/cohesion-bound regions coincided with TOP2B binding. Base pair resolution ChIP-exo mapping of

TOP2B, CTCF, and cohesin sites revealed a striking structural ordering of these proteins along the genome relative to

the CTCF motif. These ordered TOP2B-CTCF-cohesin sites flank the boundaries of topologically associating domains

(TADs) with TOP2B positioned externally and cohesin internally to the domain loop.

Conclusions: TOP2B is positioned to solve topological problems at diverse cis-regulatory elements and its occupancy

is a highly ordered and prevalent feature of CTCF/cohesin binding sites that flank TADs.

Keywords: Topoisomerase II beta, CTCF, Cohesin, BioID, ChIP-seq, ChIP-exo, Hi-C, Comparative genomics, Proteomics,

Topological associated domains, DNA supercoiling, Genome organization

Background

The type II topoisomerase (TOP2) enzymes resolve DNA

topology problems in core biological processes such as

transcription, replication, recombination, DNA repair,

chromatin remodeling, chromosome condensation, and

segregation [1–3]. TOP2 enzymes catalyze and rejoin

transient DNA double-stranded breaks (DSB) by allowing

one of the duplex DNA strands to pass through the other

[1–3]. Vertebrates possess two TOP2 genes, TOP2A and

TOP2B, that originate from an ancestral gene duplication

event [4, 5]. TOP2A and TOP2B are not functionally re-

dundant despite their structural and catalytic similarities

[6]. TOP2A is expressed in proliferating cells [7, 8] and

knocking out Top2a in mice leads to defects in nuclear

division and early embryonic lethality [9–11]. In contrast,

TOP2B is ubiquitously expressed and is upregulated

during cellular differentiation [7].

The full knockout of Top2b in mice leads to perinatal

lethality mediated by defects in neuronal differentiation

[12]. Conditional Top2b mouse knockout studies have

demonstrated TOP2B’s importance during retinal devel-

opment [13] and ovulation [14]. Studies using TOP2
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poisons have implicated TOP2B in spermatogenesis

[15–17] and lymphocyte activation [18]. In contrast to

these functional insights, the conditional ablation of

TOP2B in the adult heart resulted in few significant

gene expression changes [19]. Despite the growing num-

ber of tissues and developmental processes that require

TOP2B, the mechanisms by which this ubiquitous pro-

tein facilitates tissue-specific developmental processes

are still not well understood.

It has been proposed that TOP2B’s role in develop-

ment involves the activation or repression of specific de-

velopmental genes [20, 21]. Human TOP2B is required

for the activation of hormone sensitive genes through

the generation of transient double-stranded DNA breaks

at the promoter region [20, 22]. Most recently, TOP2B-

generated DSBs have been shown to be essential for the

activation of early response genes by neurotransmitters

[23]. Moreover, TOP2B has also been implicated in the

expression of long genes, presumably through its ability

to resolve positive supercoiling that arises during tran-

scription [24].

TOP2B is also actively studied in the context of can-

cer. For example, TOP2B-mediated cleavage occurs at

known chromosomal breakpoints in prostate cancer [25]

and has been observed near translocation breakpoints in

leukemia [26]. TOP2 proteins are prominent targets of

many widely used chemotherapy agents including doxo-

rubicin, etoposide, and mitoxantrone [27]. However,

these chemotherapeutic agents can cause secondary ma-

lignancies in non-neoplastic tissues (reviewed in [28]).

Whereas TOP2A is the intended target of these widely

used chemotherapeutic agents, mechanistic studies in

cell lines and animal models show that TOP2B-mediated

DNA cleavage is an important player in treatment-

related malignancies [19, 25, 29]. Intriguingly, heart-

specific ablation of TOP2B significantly reduced the

cardiotoxicity that normally occurs from doxorubicin

treatment [19].

Identifying the protein–protein and protein–DNA in-

teractions of TOP2B is essential for understanding its

roles in development, transcription, and cancer. Here we

report a comprehensive proximal protein interaction

network for TOP2B that includes several members of the

cohesin complex. Using ChIP-seq and ChIP-exo in com-

bination with high-throughput chromosome conform-

ation capture (Hi-C) data, we find that TOP2B interacts

with CTCF and the cohesin complex with a distinct spatial

organization at the borders of long-range chromosomal

domain structures.

Results

TOP2B interacts with CTCF and the cohesin complex

We first set out to characterize a TOP2B protein–pro-

tein interaction network. Topoisomerases are large and

relatively insoluble proteins [30] that present challenges

for classical affinity purification. To circumvent these

problems, we employed BioID, an in vivo interaction

mapping approach in which a bait protein of interest is

fused to a modified biotin ligase enzyme (BirA*) that leads

to covalent biotinylation of proteins in close proximity to

the expressed proteins (Fig. 1a). Biotinylated proteins can

be recovered under high stringency lysis and washes con-

ditions (detergents, salt, DNA shearing) that would not

normally be compatible with native purification (Fig. 1a).

BioID also provides increased sensitivity over standard pu-

rifications by enabling recovery of both the direct physical

interaction partners of the protein of interest as well as its

vicinal proteins in live cells and has been used previously

to detect novel chromatin associated complexes [31, 32]).

We performed BioID in HeLa cells with a TOP2B bait

protein tagged with a N-terminal BirA*-FLAG tag (n = 6).

Control experiments involved parental cells (no BirA*), a

BirA*-FLAG fused to green fluorescent protein (GFP-

bait), and a BirA*-FLAG tag fused to a nuclear localization

signal (NLS-bait) (see “Methods”). Mass spectrometry

revealed 737 proteins with at least two unique peptides

for the TOP2B bait (Additional file 1). We detected 25

high confidence interaction partners for TOP2B (SAINT

Bayesian false discovery rate (FDR) ≤5 %); Fig. 1b,

Additional file 1).

Supporting the sensitivity of the BioID method, we re-

covered several previously known interaction partners of

TOP2B: TOP2A forms active heterodimers with TOP2B

in HeLa cells [33]; TOP1 forms the DNA synthesome

complex with TOP2B during DNA replication [34]; CTCF

has been previously shown to interact with TOP2B in hu-

man breast cancer cell lines [35]; and ZNF451, a Smad3/4

transcriptional co-repressor [36] has been previously co-

purified with TOP2B using tandem affinity purification

mass-spectrometry [37]. Although we did not detect sig-

nificant interactions with HMGB1 (FDR = 17 %) impli-

cated in TOP2B-mediated transcriptional regulation [22],

we identified a canonical high mobility group (HMG) fam-

ily member HMGA1 and an HMG-like protein HDGF

[38], as well as additional 19 novel TOP2B interacting

proteins (FDR ≤5 %; Fig. 1b). TOP2B is known to localize

to the nucleolus [39] and our BioID experiments revealed

novel interactions of TOP2B with known nucleolar pro-

teins involved in rDNA gene regulation (DDX18, DDX31,

SDAD1, RRP15). Also among the novel TOP2B interac-

tions were several cohesin subunits (RAD21, STAG1,

STAG2, SMC1A) and cohesin-associated proteins (NIPBL,

PDS5A, PDS5B; Fig. 1b, c, Additional file 1). The specifi-

city of the CTCF and cohesin enrichments in TOP2B

over the controls were confirmed by repeating the

biotin labeling and capture experiments followed by

western blot using antibodies against RAD21 and CTCF

(Additional file 2: Figure S1).
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TOP2B is bound to critical points of genome control

To investigate whether the physical interactions of TOP2B

are also reflected at the genomic level, we profiled DNA

occupancy of TOP2B in primary mouse liver cells using

chromatin immunoprecipitation followed by DNA sequen-

cing (ChIP-seq). The mouse liver is an optimal TOP2B-

expressing tissue for our in vivo experiments as it provides

an abundant and relatively homogenous source of non-

dividing cells and is an actively used model for mammalian

gene regulation with a wealth of functional genomic

datasets available [40–42] (Additional file 2: Table S1

and Additional file 3).

As expected, we found an enrichment of TOP2B

binding at gene promoter regions (p <10–16, Fig. 2a)

[20–22, 25, 43] and at highly expressed genes (Fig. 2b).

TOP2B binding also coincided with histone marks of

active transcription (H3K4me3, H3K9ac) and en-

hancers (H3K27ac, H3K4me1), as well as binding sites

of liver-specific transcription factors (TFs) FOXA1,

ONECUT1, HNF1A, HNF4A, and CEBPA (q < 10–3,

Fig. 2c–e) [40, 41]. Supporting the proximal protein

interaction network obtained from human cells, TOP2B

co-localized with ChIP-seq binding sites for CTCF and

cohesin subunits RAD21, STAG1, and STAG2 in mouse

liver [40] (Fig. 2e).

To look for evidence of TOP2B interaction at rDNA loci

we aligned TOP2B ChIP-seq data to a single mouse rDNA

repeat. We observed a clear localization of TOP2B to the

spacer promoter region as well as along the length of the

rDNA transcribed region. At the spacer promoter, we also

detected a substantial overlap of TOP2B, CTCF, and cohe-

sin complex members (Fig. 2f).

A

B

C

Fig. 1 TOP2B interactome. a Overview of BioID method [31, 32]. In BioID, mutated Escherichia coli biotin protein ligase BirA* is fused with the

protein of interest (bait) resulting in vivo biotinylation of proximal and interacting proteins of the bait protein. Subsequent to cell lysis, biotinylated

proteins are captured by streptavidin and identified by mass spectrometry. b High-confidence interaction partners of TOP2B (n = 25, FDR ≤5 %) are

visualized as a network displaying the average spectral counts of a given prey protein. Known TOP2B interacting proteins are shown in bold. Cohesin

complex proteins (RAD21, NIPBL, PDS5A, PDS5B, STAG1, STAG2, SMC1A) and CTCF are indicated. c Enrichment Map network visualization of statistically

over-represented biological processes in the TOP2B interactome (FDR q <0.05). Nodes in the network represent enriched processes and

pathways that are grouped according to prevalent functional themes. Node size is proportional to the total number of genes within each

gene set. Genes corresponding to interacting proteins are shown
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Fig. 2 (See legend on next page.)
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Given its broad correlation with several actively regu-

lated epigenetic marks and TF binding sites, we asked

whether TOP2B’s occupancy at gene promoters, en-

hancers, and CTCF sites generally reflects its binding

preference for open chromatin. Using deeply sequenced

mouse liver DNase I hypersensitivity (DHS) data [44],

we found a strong correlation of TOP2B binding and

DHS signal profiles (Spearman ρ = 0.8, p <10–16; Fig. 3a,

Additional file 2: Table S2). This correlation of DHS and

TOP2B ChIP-seq signal was stronger than observed for

any of the 20 factors we tested (Additional file 2: Table S2).

Consistent with its preference for DHS regions, we

find that TOP2B occupancy is enriched at nucleosome-

free regions delineated by MNase-seq experiments

performed in mouse liver [45]. Specifically, nucleosome

positioning relative to TOP2B peak summits found at

proximal promoters (<1 kb from nearest TSS) is similar

to what we observed for several TFs (Fig. 3b, Additional

file 2: Figure S2). At distal TOP2B binding summits

(>1 kb from nearest TSS), we found a periodic nucleo-

some occupancy pattern that closely resembled the nu-

cleosome profiles around CTCF and RAD21 summits

(Fig. 3b, Additional file 2: Figure S2). As CTCF strongly

influences nucleosome positioning [46, 47], we analyzed

nucleosome positioning around distal CTCF peak sum-

mits that did not overlap TOP2B peaks. The amplitude

of periodic nucleosome occupancy around these non-

TOP2B CTCF sites was clearly reduced suggesting that

TOP2B occupancy is a biochemical feature of CTCF

binding sites showing strong nucleosomal positioning

(Fig. 3b).

TOP2B DNA occupancy is influenced by TF binding

Next, we characterized the sequence properties of

TOP2B bound regions using de novo motif discovery

(see “Methods”). The most abundant motif recovered

closely resembled the CTCF motif and was identified at

~17 % of TOP2B binding sites (Fig. 3c, Additional file 4).

Two recent studies also identified an enrichment of CTCF

motifs at TOP2B binding sites in mouse neurons [23] and

in human MCF7 cells [48] demonstrating that CTCF

motifs are a common feature of TOP2B occupied re-

gions in multiple tissues. In addition, we repeated the

de novo motif discovery after excluding joint binding

sites of TOP2B and CTCF. We also recovered motifs

similar to tissue-enriched factors HNF4A and CEBPA,

as well as ESR1 which was previously reported as being

enriched in MCF7 TOP2B ChIP-seq [48] data. These data

collectively show that motifs of tissue-enriched TFs are

also a common feature of TOP2B binding (Fig. 3c,

Additional file 4).

To gain insight into whether changes in sequence spe-

cific TF binding correlate with the binding of TOP2B,

we analyzed the allele-specific binding of CTCF, HNF4A,

and TOP2B obtained from ChIP-seq experiments in

livers from F1 mice (C57BL6/J female × A/J male) (Fig. 3d).

We found that the ratio of allele-specific TOP2B ChIP-seq

reads (shown as C57BL6/J allele frequency) correlates with

the ratio of allele-specific CTCF ChIP-seq reads (r = 0.403,

p <10–16) (Fig. 3e). We identified 495 CTCF/TOP2B co-

bound sites with significant allele-specific bias of CTCF

reads (binomial p value <0.05, see “Methods” for details)

(Fig. 3f). At these sites, TOP2B and CTCF showed prefer-

ence for the same allele and the allelic ratios of CTCF

and TOP2B ChIP-seq reads were significantly skewed

compared to CTCF/TOP2B sites with no allele specific

CTCF binding (p <10–16, one-sided Wilcoxon rank sum

test; Fig. 3f ). Similarly, the allele specificity of TOP2B

and HNF4A was also correlated at HNF4A/TOP2B

bound sites (r = 0.546, p <10–16) (Additional file 2:

Figure S3). In summary, although TOP2B has previ-

ously been suggested to have a DNA binding motif

[49], we instead propose a model where TOP2B inter-

acts with DNA that is actively bound by a variety of

sequence-specific TFs without the need for specific motif

recognition sequences.

(See figure on previous page.)

Fig. 2 Genomic annotation of TOP2B binding sites in mouse liver. a Genome-wide distribution of TOP2B binding sites compared to the general

distribution of mouse genomic regions. Promoter regions were defined as 3 kb upstream from transcription start site (TSS); downstream is defined

as 3 kb from transcription end site (TES). b Aggregate TOP2B liver ChIP-seq read density (x-axis) across liver-expressed genes separated into high,

medium, and low expression categories (y-axis). ChIP-seq read density is shown as reads per million mapped reads (RPM). c Genome browser

view for ChIP-seq signal tracks for TOP2B and a variety of liver-enriched TFs, members of the cohesin complex and histone modifications (y-axis,

RPM). d Fraction of peaks for various factors that overlap TOP2B peaks (red bars) (p values <10–16). e Hierarchical clustering of genome-wide binding

intensities (reads per kilobase per million mapped reads (RPKM)) for TOP2B and a variety of factors. Color intensity represents pair-wise Pearson

correlation coefficients. Red lines indicate the main clusters: actively transcribed regions (i.e. H3K36me3, H3K79me2), genome architectural

regions (i.e. RAD21), enhancers (i.e. ONECUT1), and promoters (i.e. H3K4me3). f TOP2B localizes to rDNA loci in mouse liver. The top panel

shows a schematic representation of a single mouse rDNA repeat relative to the transcription start site of the rDNA repeat (x-axis; based off of GenBank

BK000964). Normalized ChIP-seq read counts of TOP2B, CTCF, RAD21, STAG1, STAG2, and H3K4me3 are shown on the y-axis. rDNA mappability track

from Zentner GE et al. [78] is plotted as a heatmap below the genome tracks with black representing bases that are 100 % mappable.

The TSS is labeled with an arrow. The 18S, 5.8S, and 28S coding regions are shown as large rectangles. The external transcribed spacer;

(ETS), internal transcribed spacer (ITS), spacer promoter (SP), upstream control element (UCE), and core promoter element (CPE), are shown as narrow

rectangles. The intergenic spacer (IGS) is shown as a thin line
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TOP2B co-localizes with evolutionarily conserved CTCF/

cohesin binding sites

To investigate whether CTCF and cohesin sites occupied

by TOP2B possess unique biochemical and evolutionary

features, we first explored the genomic co-occupancy of

these proteins. TOP2B was found at approximately half of

the CTCF/RAD21 sites (20,251 TOP2B, CTCF, and RAD21

triple sites versus 20,057 CTCF/RAD21 double sites

(Fig. 4a). In contrast, we identified only 393 TOP2B/CTCF

sites, indicating that TOP2B/CTCF interactions occur

almost exclusively in the context of cohesin occupancy.

In order to gain insight into functional properties

imparted directly or indirectly by TOP2B occupancy at

CTCF/cohesin sites, we compared several genomic fea-

tures between TOP2B/CTCF/RAD21 “triple sites” and

CTCF/RAD21 “double sites.” Triple sites have signifi-

cantly higher CTCF and RAD21 ChIP signal compared

to CTCF/RAD21 double sites (fold change >2, one-sided

Wilcoxon rank sum test, p <10–16; Fig. 4b). Triple sites

are also more likely to be occupied by CTCF in multiple

tissues. For example, 68 % of triple sites overlap with

CTCF binding sites shared in seven or more tissues [41],

in contrast to only 37 % of CTCF/RAD21 double sites

(p <10–16, one-sided Fisher’s exact test; Fig. 4c).

Evolutionary conservation of gene regulatory regions is

frequently used as a proxy for functional importance.

We asked whether CTCF sites classified as triple sites in

mouse were more evolutionarily conserved than CTCF/

RAD21 double sites. Using genomic evolutionary rate

profiling (GERP) [50] to measure DNA constraint, we

found that triple sites were more conserved than CTCF/

RAD21 double sites (Fig. 4d). We confirmed that the

peak of DNA constraint over the region upstream of the

CTCF core motif corresponds to the previously de-

scribed CTCF upstream motif [42, 51]. We found that

the upstream motif is present in a minority (~13 %) of

our CTCF peaks, which is consistent with previously re-

ported results [42, 51]. We observed that the “core + up-

stream CTCF motif” containing triple sites have a clear

increase in DNA constraint at the upstream motif loca-

tion compared to the “CTCF core motif only” triple sites

(Additional file 2: Figure S4a). We also observed that

HNF4A binding sites that co-occur with TOP2B binding

sites show higher ChIP-seq signal and DNA constraint

than sites without TOP2B binding (Additional file 2:

Figure S4b–d).

We then asked whether TOP2B binding at CTCF/

RAD21 binding sites corresponds to shared orthologous

CTCF sites using CTCF ChIP-seq data previously ascer-

tained for human, macaque, rat, and dog liver tissue

[42]. We found that 45 % of CTCF peaks in triple sites

were shared in at least one non-rodent species (see

“Methods”) in contrast to 21 % of CTCF/RAD21 double

sites (Fisher’s exact test, p <10–16; Fig. 4e; Additional file 2:

Table S3). In addition, we also found that mouse HNF4A/

TOP2B co-bound sites are more likely to be shared in a

non-rodent species compared to HNF4A-only sites (26 %

and 11 %, respectively, Fisher’s exact test, p <10–16;

Additional file 2: Table S4; Additional file 2: Figure S4e).

Since rodent-specific transposable B2 SINE (Short In-

terspersed Element) sequences are a source of lineage-

specific CTCF binding sites in rodent genomes [42, 52],

we asked whether TOP2B binding enriched for recently

evolved CTCF binding events derived from B2 elements

that have been fixed in the rodent lineage. Indeed, we

found that B2 SINE-derived CTCF sites that occur in

the context of triple sites were more likely to be shared be-

tween mouse and rat (42 %) compared to CTCF/RAD21

double sites (26 %) (Fisher’s exact test, p <10–16; Fig. 4f;

Additional file 2: Table S3). Thus TOP2B genomic occu-

pancy appears to be a distinguishing feature of functionally

relevant TF binding events.

TOP2B and RAD21 are spatially organized around CTCF

peaks

CTCF binds an asymmetric DNA motif with orientation

dependent activities [40, 53–56]. To investigate the bind-

ing of TOP2B and RAD21 relative to CTCF, we charac-

terized the relative order of TOP2B, CTCF, and RAD21

ChIP-seq binding sites in a ±100 bp region around the

CTCF motif. Peak summits were used as proxies for

binding sites and genomic distances between the binding

(See figure on previous page.)

Fig. 3 TOP2B preferentially interacts with open chromatin. a Correlation of TOP2B ChIP-seq and DNase I hypersensitivity sequencing signal densities

across mouse chromosome 19 (Spearman rho = 0.86). Gene density and GC content are also shown. b Nucleosome occupancy profiles for all TOP2B

and CTCF peaks (All) centered on the peak summit are shown for proximal (≤1 kb from TSS, red lines) and distal peaks (>1 kb from TSS, blue lines).

Profiles for TOP2B peaks not overlapping CTCF peaks (no CTCF), CTCF peaks not overlapping TOP2B peaks (no TOP2B), TOP2B and CTCF peaks not

overlapping RAD21 peaks (no RAD21) are also shown. c De novo motif discovery using all TOP2B peaks (50 bp upstream/downstream of the summit)

and TOP2B peaks not overlapping CTCF peaks. d Genome browser view of example CTCF bound regions that show allele-specific bias towards the

C57BL/6J genome (left panel) and A/J genome (right panel) (y-axis, number of allelic reads). e Correlation of C57BL/6J allele frequencies for CTCF (x-axis)

versus TOP2B (y-axis) at TOP2B/CTCF co-occupied regions. f TOP2B (blue) and CTCF (red) C57BL/6J allele frequencies (blue) at TOP2B/CTCF co-occupied

regions, categorized based on CTCF allelic binding preference (see “Methods”). C57 > A/J indicates sites with CTCF preference for the C57BL/6J allele,

A/J > C57 indicates preference for the A/J allele, and C57 ~ A/J indicates sites with no significant allelic-specific bias. The TOP2B allelic frequencies for

both C57BL/6J and A/J enriched CTCF binding sites were significantly different than the TOP2B allelic frequencies in C57 ~ A/J category (p <10–6;

one-sided Wilcoxon rank-sum test)
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sites and the center of CTCF motif were calculated, cor-

recting for orientation of the motif (Fig. 5a). We found

that TOP2B and RAD21 were spatially organized on op-

posite sides of the G-rich CTCF binding motif. TOP2B

was positioned 5′ of the motif, with the median distance

to the motif center being 15 bp, and RAD21 was posi-

tioned 3′ of the motif center, with a median distance of

12 bp. This spatial organization was apparent in the ma-

jority of triple sites (53.6 %, p <10–16, Fisher’s exact test)

(Fig. 5b; Fig. 5c). This order also holds true when exam-

ining the binding of other cohesin complex subunits,

STAG1 and STAG2 (Additional file 2: Figure S5a, b).

Additionally, the motif of YY1 [57], an established co-

factor of CTCF [58], and one of our significant TOP2B

interacting proteins (Fig. 1b) was found 3′ of the G-rich

CTCF motif (Additional file 2: Figure S5c). In contrast,

no significant orientation bias was apparent in the bind-

ing of TOP2B and RAD21 around the binding motif of

HNF4A (Additional file 2: Figure S5d).

To determine the precise spatial organization of triple

sites, we performed ChIP-exo experiments [59] for

TOP2B, CTCF, and RAD21 in mouse liver cells (Fig. 5d, e).

ChIP-exo recovered the majority of CTCF peaks identified

with ChIP-seq (76 %) (Additional file 2: Figure S6a). ChIP-

exo for TOP2B and RAD21 recovered fewer peak regions

than was obtained by ChIP-seq (16 % and 17 %, respect-

ively (Additional file 2: Figure S6a)), as would be expected

for factors that do not bind to specific DNA motifs. Im-

portantly, the majority of the identified TOP2B and

RAD21 ChIP-exo peaks overlapped with CTCF ChIP-exo

peaks (82 % and 92 %, respectively) (Additional file 2:

Figure S6b).

In order to obtain insights into the exonuclease protec-

tion signal of TOP2B and RAD21 relative to the CTCF

motif at single base pair resolution, we plotted an average

number of 5′ nucleotides of ChIP-exo reads aligned to

each base pair around oriented CTCF motifs (Fig. 5e). We

analyzed ChIP-exo signals separately at CTCF/RAD21

double sites and CTCF-only sites. Due to the correlation

we observed for TOP2B binding and DNase I hypersensi-

tivity signal, we also plotted mouse liver DNase I signal

[41] alongside our ChIP-exo data. We recapitulated known

exo-nuclease protection patterns for CTCF [51]. We also

detected distinct patterns for TOP2B and RAD21. Relative

to triple sites, the RAD21/CTCF double sites and CTCF-

only sites showed less exo-nuclease protection signal and

less DNase I hypersensitivity signal. Importantly, CTCF

ChIP-exo protection profiles can be seen within our

TOP2B ChIP-exo and RAD21 ChIP-exo protection pro-

files. These results indicate that, similar to what has been

reported for CTCF and cohesin interactions [60], TOP2B

can bind directly with DNA and also cross-link to DNA-

bound CTCF.

Our ChIP-exo protection signal further confirmed the

orientation-specific binding of RAD21 and TOP2B rela-

tive to CTCF (Fig. 5e). Specifically, ChIP-exo for RAD21

showed exonuclease protection at positions +13 to +26

(13–26 bp downstream) of the center of CTCF core

motif (Fig. 5e). TOP2B ChIP-exo revealed a protection

signal within positions –13 to –27 (13–27 bp upstream)

of the center of the CTCF core motif. This TOP2B

ChIP-exo protection signal was primarily observed on

the reverse strand directly adjacent to the previously re-

ported DNase I cleavage site located at –12 to –13 from

the center of CTCF core motif that occurs on the posi-

tive strand (Fig. 5e; [61]). This raises the possibility that

CTCF binding promotes DNA strand-specific interac-

tions for TOP2B and DNase I enzymes.

Since the TOP2B ChIP-exo protection signal overlaps

with the location of the upstream CTCF motif, which

can be bound by CTCF zinc fingers 9–11 [51], we asked

whether the presence of CTCF upstream motif would

result in a distinct TOP2B ChIP-exo protection signal.

We found that the upstream motif is present in a minority

(~13 %) of our CTCF peaks, which is consistent with pre-

viously reported results [42, 51]. Our CTCF ChIP-exo

profile within the “core plus the upstream CTCF motif”

peaks showed the previously reported increase in ChIP-

exo protection signal at positions –16 (reverse strand) and

–25 (forward strand) [51] (Additional file 2: Figure S7).

We also observed the previously reported decrease in

DNase I signal at the –17 position [61]. Interestingly, we

found that TOP2B ChIP-exo protection signal that we ob-

served using all CTCF peaks (between positions –13 and

–27) was less pronounced within the “core plus the up-

stream CTCF motif” peaks (Additional file 2: Figure S7). A

notable exception was the specific increase in signals at

the –16 position (reverse strand) and the –25 position

(See figure on previous page.)

Fig. 4 Genomic features of combinatorial TOP2B, CTCF, and RAD21 binding. a Overlap of TOP2B, CTCF, and RAD21 ChIP-seq binding regions

defines seven different categories of peaks. b Comparison of CTCF, RAD21, and TOP2B ChIP-seq reads (RPKM) for each of the categories defined

in (a). Outliers (>95th percentile) are not shown. c Pan-tissue analysis of CTCF binding for triple sites (black), double sites (dark gray), and CTCF-only

sites (white). d DNA sequence constraint of triple (black), double (green), and CTCF only sites (yellow) as determined by average GERP score (y-axis).

CTCF peaks were oriented based on the direction of CTCF motif (G-rich orientation is shown). e Cross-species comparison of mouse triple (n = 20,381),

double (n = 20,049), and CTCF-only sites (n = 8301) with CTCF ChIP-seq peaks mapped in human, macaque, rat, and dog. Stacked bar plots show the

proportion of peaks based on the degree of conservation (mouse only, mouse and rat only, and mouse plus one non-rodent (beyond rodents)).

f Conservation of mouse triple (n = 1329), double (n = 6582), and singleton (n = 2957) CTCF sites that contain rodent-specific B2 SINE elements
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Fig. 5 TOP2B, CTCF, and RAD21 binding is spatially organized. a Distribution of TOP2B, CTCF, and RAD21 ChIP-seq peak summits relative to the

center of the CTCF core motif (black arrow). Distributions before (left) and after (right) ordering the CTCF peaks according to the orientation of the

CTCF motif are shown and are significantly different (p value <10–16). b Number of triple sites with different TOP2B/CTCF/RAD21 binding orders

relative to the center of the CTCF motif. Counts are shown before and after accounting for the CTCF motif orientation. c Genome browser tracks

showing the ChIP-seq signal of TOP2B, CTCF, and RAD21 in two example regions on chromosomes 16 and 3. The top track shows the location of

CTCF core motif, with the direction of it indicated by white arrows. Black bars above ChIP-seq signal tracks indicate peak locations with the yellow

lines showing the location of peak summits. d Overview of ChIP-exo. After chromatin immunoprecipitation of cross-linked and sonicated chromatin,

lambda exonuclease treatment selectively digests the 5′-phosphorylated strand of dsDNA. The resulting digestion leaves strand-specific footprints of

the bound protein (labeled TF in the cartoon). DNA sequencing of these ChIP-exo fragments can reveal the border of where the DNA was protected

by the bound protein. ChIP-exo results can be visualized by counting the pile-ups of the 5′ ends of DNA sequence reads (we have labeled the

forward strand blue and the reverse strand red). e ChIP-exo protection signal profiles for CTCF, RAD21, and TOP2B ChIP-exo and DNase-seq

(DGF) experiments. Average numbers of 5′ nucleotides of ChIP-exo reads (blue: forward strand; red: reverse strand) are plotted separately for

triple, double, and singleton CTCF sites at each base pair (+/– 50 bp) relative to the center of the CTCF core motif. The number of regions

used to generate each plot is labeled in the top right corner. The relative position of the CTCF core motif is shown
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(forward strand), both of which correspond to the enhanced

CTCF protection signal observed when the upstream motif

is present. Overall, this analysis confirms the close associ-

ation between TOP2B and CTCF and raises the possibility

that TOP2B-DNA interactions are affected by the binding

of CTCF zinc fingers 9–11 to the upstream CTCF motif.

Triple sites are enriched at chromosomal domain borders

CTCF and cohesin proteins are key architectural compo-

nents of the genome that anchor long-range interactions

that structure chromosomal domains [62–64]. Multi-

species comparisons of chromosomal structure have

identified an enrichment of evolutionarily conserved

CTCF binding sites at chromosomal domain borders

[56]. Given our observation that TOP2B co-localizes

with CTCF and cohesin in a specific orientation, we

asked whether triple sites are enriched at the boundaries

of orientation-specific chromosomal domains.

Using recently published mouse liver Hi-C datasets [56],

we studied contact insulation profiles [62] centering at

triple sites and compared these to CTCF/RAD21 double

sites. Triple sites were significantly associated with

large-scale chromosomal domain boundaries compared to

CTCF/RAD21 sites that lacked TOP2B binding (Fig. 6a).

We measured the average contact insulation at triple sites

according to the Hi-C data and observed a strong deple-

tion of contacts across these sites at multiple genomic

scales, further supporting their localization between two

large-scale loops (Fig. 6b). In agreement with our findings

on TOP2B/CTCF/RAD21 triple sites from ChIP-seq

and ChIP-exo experiments, triple sites showed a higher

level of contact insulation compared to double sites,

even though the contact insulation patterns for triple

and double sites were similar.

Consistent with other reports [54, 56], we found a

strong enrichment of CTCF binding to the G-rich motif

orientation at the 5′ boundary of domains and a corre-

sponding abundance of CTCF binding to the C-rich

motif orientation at the 3′ boundary (Fig. 6c). Together

with our ChIP-seq and Chip-exo data, this points to op-

posite sequential organizations of TOP2B-CTCF-RAD21

sites at the two borders of chromosomal domains with

TOP2B positioned external and cohesin internal to the

domain loop, which could be involved in the formation

and maintenance of large-scale chromatin structures.

Given the prominent localization of TOP2B binding at

domain boundary CTCF/cohesin sites, we propose that

similar to its known function at gene promoters, TOP2B

also helps resolve topological constraints around key

architectural building blocks of the genome.

TOP2 proteins facilitate supercoiling at CTCF binding sites

To test the possibility that TOP2 proteins are involved

in supercoiling at CTCF sites we reanalyzed the

supercoiling domain data of Naughton et al. [65].

Naughton et al. used biotinylated TMP (bTMP) incorp-

oration into the DNA of human retinal pigment epithe-

lial cells to show that chromosome-wide supercoiling,

and more specifically supercoiling at TSS, requires the

activity of RNA polymerase II as well as topoisomerase I

and II proteins [65]. After recapitulating these results at

the TSS (Additional file 2: Figure S8), we asked whether

supercoiling at CTCF sites also required RNA polymer-

ase II and TOP2 proteins. Indeed, we found that DNA

supercoiling at CTCF sites was: (1) lost after treatment

with the RNA polymerase II inhibitor alpha-amanitin;

(Fig. 7a); (2) is reduced in the presence of TOP2 (ICRF-

193) or TOP1 (campothecin) inhibitors (Fig. 7b); and (3) is

not affected by topoisomerase inhibition when transcrip-

tion is inhibited simultaneously (Fig. 7c). In contrast, no

specific supercoiling pattern was observed at randomly se-

lected genomic intervals (Fig. 7, dashed lines). Although

TOP2 poisons affect both TOP2B and TOP2A, this ana-

lysis together with the close association of TOP2B with

CTCF raises the possibility that TOP2B can facilitate the

remodeling of DNA supercoiling at CTCF sites.

Discussion

Extending the TOP2B interactome

We present the first effort to characterize TOP2B’s pro-

tein–protein interactome. BioID enabled us to characterize

a network of TOP2B proximal protein interactions that are

consistent with its localization and function. Most notably,

we identified members of the cohesin complex as well as

CTCF as significant proximal interacting proteins. From a

protein domain perspective, our BioID results show several

interactions with zinc finger containing proteins, many of

which are novel and relevant to known TOP2B biology

(ZNF362, ZNF512, YY1, CTCF, PHF2, and MORC2). For

example, MORC ATPases have been shown to be involved

in heterochromatin silencing in eukaryotes [66] and follow-

ing DNA damage, MORC2 can facilitate chromatin re-

modeling and promote gamma-H2AX induction [67]. As

another example, PHF2 is a tumor suppressor that is re-

quired for the anticancer effects of doxorubicin in cell lines

with active p53 [68]. Finally, CBX8 is part of the polycomb

repressive complex 1 (PRC1) [69] involved in the transition

from a polycomb-repressed to active chromatin state dur-

ing ES cell differentiation [70].

TOP2B shuttles between the nucleoplasm and nucle-

olus and this shuttling involves an RNA interaction with

its C-terminal domain [39]. Our BioID results reflect

TOP2B’s nucleolar localization. Several of the TOP2B

interacting proteins have known nucleolar localization

including the: (1) DEAD/DEAH box helicase domain-

containing protein DDX18, which is mutated in human

AML [71] and implicated as a driver of endocrine resist-

ance in breast cancer cells [72]; (2) DDX31 which helps
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Fig. 6 (See legend on next page.)
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regulate ribosomal RNA (rRNA) gene transcription in

the nucleolus of renal cell carcinomas [73]; and (3) human

proteins involved in rRNA processing in the nucleolus

(SDAD1 [74] and RRP15 [75]).

TOP2 poisons can affect RNA polymerase I (Pol I)

transcription at rDNA loci and this has been shown to

involve TOP2A [76]. In addition to TOP2B signals

across the coding region of rDNA loci, we detected two

distinct TOP2B peaks immediately upstream of the spa-

cer promoter. The spacer promoter associates with Pol I

and controls the transcription of an intergenic spacer

rRNA that in turn regulates the rDNA promoter in trans

[77]. The location of the most distal TOP2B spacer pro-

moter enrichment coincides with activating and repres-

sive histone modifications, TF binding, and Pol I in

mouse ES cells [78, 79]. We also observe histone modifica-

tions, cohesin subunits, and TFs enriched in this region in

mouse liver. The more proximal TOP2B peak, located

~90 bp upstream of the spacer promoter, coincides with a

known CTCF binding site that has been implicated in

regulating chromatin at the spacer promoter [78, 79].

Consistent with our findings at other CTCF triple sites,

RAD21 signal was found just upstream and TOP2B was

found downstream of this CTCF motif (which is in its C-

rich orientation relative to the rRNA coding region). Given

that the spacer promoter region can regulate gene expres-

sion in an orientation specific manner in vitro [80], and the

importance of CTCF orientation in the regulation of the

HOX [81] and protocadherin clusters [82], it will be inter-

esting to test whether CTCF orientation at the spacer pro-

moter affects gene regulation and topology at rDNA loci.

TOP2B associates with open chromatin and active gene

regulatory regions

It is a long-held hypothesis that TOP2 is attracted to a pre-

existing combination of DNA sequence and/or chromatin

structure [83]. A model where TOP2 binding occurs as a

consequence of open chromatin is supported by studies in

budding yeast that demonstrated that nucleosome removal

enables Top2 binding at specific sites whereas the loss of

Top2 does not greatly affect nucleosome positioning [84].

The hypothesis that chromatin structure is a major

A CB

Fig. 7 DNA supercoiling around CTCF binding sites. a Comparison of DNA supercoiling around CTCF binding sites in untreated human retinal pigment

epithelial cells (RPE-1), after 5 h inhibition of RNA polymerase with alpha-amanitin and after 2 h of recovery from inhibition. b Changes

in DNA supercoiling after 5 h treatment with TOP2 inhibitor ICRF-193 or TOP1 inhibitor camptothecin compared to untreated RPE-1 cells.

c DNA supercoiling around CTCF sites after simultaneous inhibition of transcription and topoisomerases in RPE-1 cells. Direction of CTCF motif is indicated

by the arrow. The signal on randomly generated genomic intervals is shown as dashed lines and compared with the observed signal (solid lines), all p values

are <10–16 (Kolmogorov–Smirnov test). Data and methods used to generate this original analysis were previously published by Naughton et al. [65]

(See figure on previous page.)

Fig. 6 Relationship between TOP2B/CTCF/RAD21 sites and Hi-C structure. a TOP2B, CTCF, and RAD21 co-bound sites localize to chromosomal

domain borders. ChIP-seq tracks for TOP2B, CTCF, and RAD21 as well as binding sites classified as co-occupied for all three proteins are shown

alongside a Hi-C matrix of intra-chromosomal interactions from mouse liver at an example region on chromosome 1 (left panel). The genome-wide

relative position of TOP2B/CTCF/RAD21 triple sites (blue) and CTCF/RAD21 double sites (red) within mouse Hi-C domains (right panel). b Average

contact insulation profiles of CTCF/RAD21 sites with (top panels) and without (bottom panels) TOP2B in mouse Hi-C data. The profiles are also

shown after separation based on CTCF motif orientation in the genome (last two columns, the CTCF motif is shown above the corresponding

column). c Binding sites classified as co-occupied for TOP2B/CTCF/RAD21 are shown after separation based on CTCF motif orientation (G-rich

orientation, “- strand,” light blue; C-rich orientation, “+ strand,” dark blue) relative to an example Hi-C region on chromosome 12 (left panel).

Genome-wide analysis of co-occupied sites, separated based on CTCF motif orientation and their relative position within domains (right panel).

ChIP-exo profiles centered on CTCF motifs at sites close to domain borders (within 10 % of the full domain size) are also shown
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determinant of TOP2B binding is supported by the fol-

lowing observations: (1) TOP2B occupancy is strongly

correlated with DNase I hypersensitive sites; (2) TOP2B

occupancy is correlated with allele-specific binding of

various TFs; and (3) TOP2B binds to nucleosome-free

regions at both proximal and distal promoter sites.

TOP2B-bound open chromatin regions have distinct

functional properties. For example, while it is known that

CTCF and cohesin play major roles in genomic regulation,

CTCF/cohesin sites co-bound by TOP2B showed stronger

ChIP-seq signal, are more likely to be evolutionarily con-

served, and are enriched at chromatin domain boundaries

compared to CTCF/cohesin only sites. HNF4A binding

sites co-bound with TOP2B are also enriched for

conserved orthologous HNF4A binding. Thus TOP2B

co-occupancy not only occurs at chromatin regions that

exhibit topological stress induced by genome regulatory

function (e.g. promoters and enhancers), but also includes

regions of the genome that are fundamentally important

for chromatin architecture.

Positioning of TOP2B at promoter, enhancer, and

topologically associating domain (TAD) boundaries sug-

gests mechanisms by which tissue-specific DNA damage

could be imparted. If TOP2B-induced DSBs are not

faithfully re-ligated, adjacent genomic regions are poten-

tially susceptible to genome rearrangements [85], which

can give rise to fusion genes and oncogenesis [26, 86].

Interestingly, CTCF/cohesin sites are frequently mutated

in cancer [60] and somatic substitutions accumulate im-

mediately adjacent to the CTCF core motif (10–14 bp

upstream of center of the G rich CTCF motif ). This

position overlaps with both the DHS signal and TOP2B

ChIP-exo signal near the CTCF motif (Fig. 5c). DNA

mutations in cancer cells strongly correlate with DHS

sites from the tissue of origin (r = 0.8) [87]. While there

are many possible explanations for how DNA damage

could be biased towards DHS and cohesin/CTCF sites,

it is intriguing to speculate whether TOP2B occupancy

could influence tissue-specific mutational processes be-

yond chromosomal rearrangements.

Spatial organization of TOP2B/CTCF/RAD21 at

chromosomal domain borders

CTCF/cohesin sites anchor both chromosomal domains

(also known as TADs) [88, 89] as well as local gene loops

[62, 64, 90]. Directional CTCF binding is a prominent

and evolutionarily conserved feature of chromosomal

domain borders [54, 56, 91]. Collectively our proteomics

and ChIP data clearly reveal the close association be-

tween TOP2B, cohesin, and CTCF, raising the question

of whether TOP2B contributes to the long-range contact

networks anchored by these architectural proteins. Indeed,

using Hi-C datasets from mouse liver samples [56], we

show an enrichment of triple sites at borders of

chromosomal domains. Our ChIP-seq and ChIP-exo ana-

lyses (Fig. 5) show a striking spatial organization of triple

sites relative to the G-rich CTCF motif. This organization

places TOP2B at the base of the domain loop, with cohesin

being inside the domain loop.

TADs contain supercoiling domains whose borders

are also enriched for CTCF binding sites [65]. Based on

TOP2B/CTCF protein–protein and protein–DNA in-

teractions and our analysis of DNA supercoiling at

CTCF binding sites in the presence of TOP2 poisons

[65] (Fig. 7), we suggest that TOP2B can facilitate DNA

supercoiling at CTCF binding sites in a transcription-

dependent manner.

Conclusions

We only have a basic understanding of how the ubiqui-

tously expressed TOP2B selectively regulates gene ex-

pression in vivo. Detailed information about protein–

protein and DNA–protein interactions of TOP2B is im-

portant for understanding its role in development, rapid

gene expression, and chemotherapeutic responses. We

identified cohesin and several other chromatin proteins

that are in close proximity to TOP2B in vivo. We dem-

onstrated that TOP2B binding occurs at evolutionarily

conserved TF binding sites and topological domain

boundaries. The prevalent occupancy of TOP2B at con-

served gene regulatory and chromatin architectural re-

gions indicates that TOP2B is intrinsically positioned to

function at actively utilized points of genome control.

Methods
Construct and stable HeLa cell culture generation

Construct for TOP2B gene was generated via Gateway

cloning into pDEST 5′ BirA*-FLAG-pcDNA5-FRT-

TO. TOP2B (accession #NM_001068) was cloned into

pDONR223 entry vector using pooled human cDNA

and sequence verified. TOP2B bait protein tagged with a

N-terminal BirA*-FLAG tag (n = 6 replicates) was stably

expressed in Flp-In T-REx HeLa cells as described [31].

Parental Flp-In T-REx HeLa cells (n = 6) and stable cells

expressing BirA*-FLAG fused to a green fluorescent

protein (GFP; n = 3) or to a nuclear localization se-

quence (NLS; n = 3) were used as negative controls

for the BioID experiments and processed in parallel

to the TOP2B bait expressing cells. Stable cell lines

were grown to 80 % confluence before expression was in-

duced via 1 μg/mL tetracycline and biotinylation by the

addition of 40 μM biotin for 24 h. Subsequently, cells were

washed and harvested in ice-cold PBS and frozen at −80 °C

until purification.

Proximity biotinylation coupled with mass-spectrometry

Equal quantities of starting material were used for each

BioID experiment. HeLa cell pellets were thawed in
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1.5 mL ice-cold modified RIPA buffer (50 mM Tris–HCl

(pH 7.4), 150 mM NaCl, 1 % NP-40, 1 mM MgCl2,

1 mM EGTA, 0.1 % SDS, and 0.4 % sodium deoxcycho-

late). Sigma protease inhibitor cocktail (P8340, 1:500)

and PMSF (1 mM) were added prior to use. The lysates

were sonicated at 4 °C using three 5 s bursts at 35 %

amplitude with 3 s pauses. Samples were treated with

250 U of TurboNuclease (BioVision) for 15 min followed

by removal of insoluble material by centrifugation at

20,000 g. The supernatant was transferred to a new tube

and 30 μL of pre-washed streptavidin-sepharose bead

slurry (GE Healthcare, Cat 17-5113-01) was added. Bio-

tinylated proteins were captured on the beads for 4 h at

4 °C with rotation. The beads were washed once with

1 mL of 2 % SDS in 25 mM Tris (pH 7.4), once with

1 mL of standard RIPA buffer, once with 1 mL of TNNE

(50 mM Tris-HCl (pH 7.4), 150 mM NaCl, 0.1 % NP-40,

1 mM EDTA). Lastly, the beads were washed three times

with 1 mL of 50 mM ammonium bicarbonate, pH 8.0

(ABC). Following the final wash, the beads were pelleted

and any excess liquid was aspirated off. The proteins

captured on the beads were resuspended in ABC, re-

duced with 5 mM DTT at 50 °C for 30 min, and alky-

lated using 50 mM iodoacetamide for 20 min at room

temperature in the dark. The proteins were digested

overnight with gentle rotation at 37 °C with 1 μg of tryp-

sin (Sigma, T7575) in a total volume of 50 μL. In the fol-

lowing morning, an additional 0.5 μg of trypsin was

added for an additional incubation of 2–4 h. The beads

were pelleted and the peptide supernatant was trans-

ferred to a fresh tube. The beads were rinsed twice with

75 μL HPLC-grade water and the wash fraction was

combined with the supernatant. The peptide solution

was acidified with 50 % formic acid to a final concentra-

tion of 5 % and the samples were dried in a centrifugal

evaporator. Tryptic peptides were re-suspended in 15 μL

5 % formic acid and stored at −80 °C until analyzed by

mass spectrometry. Mass spectrometry and data analysis

were carried out as described previously [31]. Briefly,

using an Eksigent Autosampler, 5 μL of the tryptic pep-

tides were loaded at 400 nl/min on to a 75 μm× 12 cm

fused silica capillary tubing packed with 3 μm-C18

(ReproSil-PurC18-AQ). Peptides were subjected to

nano-LC-ESI-MS/MS, using a 90 min reversed phase

(5–35 % acetonitrile, 0.1 % formic acid) buffer gradient,

delivered at 200 nl/min and analyzed on a TripleTOF

5600 (AB SCIEX). The instrument performed a 250 ms

MS1 TOF survey scan from 400–1300 Da followed by

20 100 ms MS2 candidate ion scans from 100–2000 Da

in high sensitivity mode.

MS data analysis

Raw mass spectrometry files were stored, searched, and

analyzed using the ProHits laboratory information

management system (LIMS) [92]. The WIFF data files

were converted to MGF format using WIFF2MGF and

subsequently converted to an mzML format using Pro-

teoWizard (3.0.4468) [93] and the AB SCIEX MS Data

Converter (V1.3 beta). The mzML files were searched

using Mascot (v2.3.02) and Comet (2014.02 rev.2) [94],

essentially as described by Lambert et al. [31].

Briefly, the spectra were searched against a total of

72,230 proteins consisting of the NCBI human and

adenovirus complements of the RefSeq database (v57,

forward and reverse sequences), supplemented with

“common contaminants” from the Max Planck Institute

(http://maxquant.org) and the Global Proteome Machine

(GPM; http://www.thegpm.org/crap/index.html).

The database parameters were set to search for tryptic

cleavages, allowing up to two missed cleavage sites per

peptide, MS1 mass tolerance of 40 ppm with charges of

2+ to 4+, and an MS2 mass tolerance of +/− 0.15 amu.

Carbamidomethylation on cysteine was selected as a

fixed modification and deamidated asparagine/glutam-

ine and oxidized methionine were selected as variable

modifications.

The results from each search engine were analyzed

through TPP (the Trans-Proteomic Pipeline, v4.7) [95]

via the iProphet pipeline [96]. SAINTexpress version 3.3

[97] was used with default parameters to calculate statis-

tical significance of each potential protein–protein inter-

action relative to control samples. Only proteins identified

with minimally two unique peptides ions and a minimum

iProphet probability of 0.95 were considered. The bait rep-

licates (n = 6) were compressed to three samples, meaning

that after SAINTexpress was run on each sample indi-

vidually, the three highest SAINTexpress scores were av-

eraged for the final scoring and Bayesian FDR assessment.

To increase the stringency in the identification of true

positives, the 12 controls were also compressed to four;

in this case, the compression is performed before run-

ning SAINTexpress by selecting the four highest spec-

tral counts for each prey protein for modeling [98]. All

control samples were deposited in the Contaminant

Repository for Affinity Purification (www.crapome.org)

[98] and assigned the following identifiers: CC831,

CC834, CC835, CC838, CC842 (BirA*-FLAG-GFP),

CC837, CC840, CC841 (BirA*-FLAG-NLS) and CC832,

CC833, CC836, CC839 (parental cells). For western blot

confirmation of BioID results, we carried out the BioID

protocol as described above. After the last wash, the

streptavidin beads were re-suspended in 60 uL of Laemmli

sample buffer containing 200 uM Biotin and boiled for

5 min then resolved on 8 % SDS-PAGE. Twenty mi-

croliters of sample was loaded for each western blot

lane. The membranes were probed for RAD21 (ab992,

Abcam), STAG1 (ab4457, Abcam), and CTCF (07-

729, Millipore) and developed using BioRad Gel Doc
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XR system. For each immunoprecipitation the equal

amount of material collected from 10-cm tissue cul-

ture dishes was used.

Functional enrichment and data visualization

Significantly enriched pathways were computed with

the g:Profiler software [99], using ordered enrich-

ment analysis on significance-ranked proteins and

custom filtering (3–1000 proteins in the pathway, at

least two interacting proteins per pathway, FDR cor-

rected q <0.05; Additional file 1). Biological pro-

cesses from Gene Ontology, pathways from the

KEGG and Reactome databases, and protein com-

plexes from the CORUM database were included in

the analysis and other functional annotations were

filtered. Pathways were visualized using Cytoscape

software using the Enrichment Map plugin [100].

Mouse tissue material

Mouse liver material for ChIP-seq and ChIP-exo

Post-mortem liver material from male C57BL/6 × A/J

mice (aged ~6–8 weeks) were kindly provided by Dr.

Duncan Odom (Cambridge Research Institute). C57BL/

6J mice (aged ~6–8 weeks) post-mortem livers used for

ChIP-seq and ChIP-exo were kindly provided by Dr.

Jayne Danska. Fresh liver tissue was fixed for 20 min in

1 % formaldehyde as described previously [101].

ChIP-seq

ChIP-seq experiments were performed as described

previously [101]. The following antibodies were used:

anti-TOP2B (sc-13059, Santa Cruz Biotechnology; n = 5),

anti-CTCF (07-729, Millipore; n = 4), anti-RAD21 (ab992,

Abcam; n = 2), anti-H3K36me3 (13C9 monoclonal kindly

provided by Hitoshi Kimura; n = 1), anti-H3K4me3

(ab8580, Abcam; n = 1), anti-H3K4me2 (07-030, Millipore;

n = 1). The DNA was end-repaired, dA-tailed, ligated

to the sequencing adapters, PCR amplified by 16 cy-

cles using multiplexing index primers (NebNext),

size selected (200–350 bp, PippinPrep, Sage Science),

quantified with 2100 Bioanalyzer (Agilent), and

50 bp reads were sequenced with the HiSeq2500

(Illumina).

ChIP-exo

We used an Illumina ChIP-exo protocol [102] adapted

from the original protocol described by [59, 102]. ChIP

was performed as described previously until and including

the RIPA buffer washes at step 38 [101]. Seven micro-

grams of antibody against the TOP2B, CTCF, and RAD21

was used for each biological replicate. Two biological rep-

licates for TOP2B and RAD21 ChIP-exo experiments and

one biological replicate for CTCF were used for down-

stream analysis.

Public data resources

Publicly available datasets used in this study include:

mouse liver ChIP-seq of multiple liver expressed regula-

tory factors and histone modifications (Data accession:

E-MTAB-941) [40], mouse liver ChIP-seq of histone

modifications from mouse ENCODE (Data accession:

GSM1000153, GSM1000140) [41], mouse liver DHS-seq

(dccAccession: wgEncodeEM002906) [103], mouse liver

RNA-seq (Data accession: GSM1015152) [104], and nu-

cleosome occupancy data (Data accession: GSM717558)

[45], CTCF ChIP-seq data of mouse, human, rat, and

dog liver tissues (Data accession: E-MTAB-437) [42], and

supercoiling profiling data (Data accession: E-GEOD-

43450) [65]. CTCF binding regions in multiple adult mouse

tissues were obtained from the mouse ENCODE database

[41]. Published CTCF peaks from human retinal pigment

epithelial cells (HRPEpiC) [105] were obtained from

(GSM749673). Data quality control results and a full list of

links to processed files are available (Additional file 3).

Read alignment and quality control of ChIP-seq data

ChIP-seq sequencing reads were trimmed to 36 bp

and aligned to the reference mouse genome assembly

(mm9, GRCh37) available at UCSC genome browser

database using the Burrows-Wheeler Aligner (http://

bio-bwa.sourceforge.net/) [106] with default parame-

ters. To remove sequencing and mapping artifacts, we

discarded all reads mapping to regions of the ENCODE

blacklist (https://sites.google.com/site/anshulkundaje/

projects/blacklists). Only uniquely mapped reads were

used for further analysis.

Quality of the datasets processed from the raw se-

quencing reads was assessed following the ENCODE

ChIP-seq guidelines [107]. Quality control information

with references and accession numbers are available

(Additional file 3). Peak calling for quality control was

performed using MACS2 software [108] without input

and with significance cutoff q = 0.01.

Validation of TOP2B antibodies was performed using

RIME (rapid immunoprecipitation mass spectrometry of

endogenous proteins) [109]. RIME assay was performed

as previously described using mouse liver tissue from

8-week-old mice. Fifteen micrograms of antibody (TOP2B

sc-13059 (n = 2) or IgG sc-2027 (n = 1)) was used for each

ChIP (Additional file 2: Figure S9).

Peak calling

The reads of biological replicates and corresponding in-

put samples were merged for peak calling. Read counts

and peak numbers used in our analyses are listed in

Additional file 2: Table S1. Peaks from ChIP-seq data

were called using the MACS2 method [108] with the

significance cutoff of q = 0.01 and fold change cutoff

of 5. The “–keep-dup” option was set to “all” to keep
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duplicated reads. For histone modifications and RNA

polymerase II binding, peaks were called with add-

itional “—broad –broad-cutoff 0.05” options. To com-

pare ChIP-seq and ChIP-exo peaks, the SWEMBL

(www.ebi.ac.uk/~swilder/SWEMBL) peak caller was

used with parameter “-R 0.005.”

Genomic annotation of TOP2B binding

The genomic distribution of TOP2B binding was

annotated using the cis-regulatory element annota-

tion system (CEAS) [110]. p values were calculated

with R using the one-sided binomial test. The over-

lap of TOP2B ChIP-seq binding sites with binding

sites of other factors was calculated using bedtools

intersect [110]. The significance of the overlaps was

accessed using Genomic Association Test (GAT)

[111] with 1000 simulations. All q values were

smaller then 10–3.

Using pairwise Pearson correlation coefficients as a

distance measurement, we clustered multiple ChIP-seq

experiments using hierarchical clustering and visualized

the result as a heatmap with the R bioconductor package

DiffBind [112]. Peak regions for all factors were first

merged to a consensus peak set. Read counts per million

mapped reads (RPKM) of each factor across this consen-

sus peak set were computed.

Profiling TOP2B ChIP-seq signal over gene bodies

Processed RNA-seq gene expression values for mouse

liver (GSM1015152) [104] were log transformed and

separated into three groups based on the mean ± SD of

the values (high, medium, and low expression). TOP2B

ChIP-seq signal (RPM, normalized to regions length)

was plotted across gene bodies of the three groups of

genes using the NGSplot package [113].

Profiling TOP2B ChIP-seq signal on rDNA

To analyze the binding of TOP2B and other factors

at rDNA loci, we constructed a customized mouse

genome with the single rDNA repeat sequence in-

cluded as an extra chromosome. Mouse rDNA se-

quence and structure were obtained from GenBank

accession no. BK000964. Reads were aligned to this

customized genome using bwa with default parame-

ters. Only uniquely mappable reads were used for

downstream analysis. Reads were extended to 150 bp

prior to plotting. After normalizing to the number of

mapped reads for each ChIP-seq and input experi-

ment, input reads were subtracted from ChIP-seq

reads at each base pair of the rDNA repeat. Plotting

was performed using R package “Sushi” [114]. Mapp-

ability data was obtained from Zentner et al. and dis-

played as a heatmap below the tracks with black

representing 100 % mappability [78].

Comparing ChIP-seq with DHS, gene density and GC

content

Aligned Dnase I Digital Genomic Footprinting (DGF)

data for mouse liver were obtained from the ENCODE

database (see Additional file 3). Only uniquely mapped

reads were used and ENCODE blacklist regions were ex-

cluded from the genome. For both the DGF data and

ChIP-seq data, numbers of reads in every 10 kb across

the whole genome were counted. Pairwise Spearman

correlation between DGF and ChIP-seq data was calcu-

lated based on these values. Similarly, gene density and

GC content was calculated for all 10 kb windows across

the genome. For visualization, values larger than 99.5 %

percentiles were removed and a smoothing spline curve

was fit to the data using R. Finally, smoothed values

were scaled and centered on 0 before plotting.

Nucleosome occupancy profile

Coordinates of nucleosomes previously mapped in

mouse liver were used [45]. Nucleosome regions

mapped to the mouse reference genome mm8 were

lifted over to mm9 using liftOver tool and chain files

from UCSC database [115]. ChIP-seq peak summits

of each factor were separated into two categories:

proximal (< ±1 kb) and distal (> ±1 kb) relative to

the TSS of transcripts annotated in Ensembl database

(build 37). Each summit was extended to 1.5 kb towards

both 5′ and 3′ directions. The extended proximal summit

regions were ordered based on the direction of the nearest

transcript so that the direction of transcription always

pointed to the right. The nucleosome positions were

mapped to the extended regions around the summits and

the average number of nucleosomes mapped to each pos-

ition was plotted separately for proximal and distal bind-

ing regions of each factor.

De novo motif discovery

Regions 50 bp upstream and downstream of TOP2B

peak summits were extracted and used for de novo motif

discovery (Fig. 3c) using the RSAT peak-motifs method

with default settings [116].

Detection and analysis of triple sites

At least 1 bp overlapping binding regions of TOP2B,

CTCF, and RAD21 were determined with bedtools

merge function [117]. Merged regions were then anno-

tated according to the co-occupying factors. Numbers of

overlapping peaks of these three factors are shown in

the three-way Venn diagram. The merged regions co-

occupied by the three factors were referred as “triple

sites.” For each factor, the binding intensity (RPKM of

each peak region) of the original peaks annotated by dif-

ferent overlapping patterns was calculated and plotted as

boxplots. p values were calculated with Wilcoxon rank
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sum test followed by multiple testing corrections using

the Benjamin–Hochberg method.

Comparing CTCF peaks across multiple tissues

All mouse liver CTCF peaks identified in this study were

overlapped with the CTCF peaks identified in 14 tissues

of 8-week-old adult mice (bone marrow, bone marrow

derived microphage, cerebellum, cortex, heart, kidney,

liver, lung, MEF, olfactory bulb, small intestine, spleen,

testis, thymus) by the Ren lab as part of the mouse EN-

CODE release (Additional file 3). Each peak was anno-

tated by the tissues in which it overlapped with least one

ENCODE CTCF peaks. If the peaks were shared in more

than seven tissues, it would be defined as “constitutive”

across tissues. Fisher’s exact test was applied to deter-

mine if the triple site CTCF peaks are more likely to be

constitutive compared to other CTCF peaks.

Evolutionary conservation of triple sites

CTCF peak regions were scanned for the CTCF core

motif using the RSAT matrix-scan method [116] with

the command “matrix-scan -v 1 -quick -i -m -matrix_-

format transfac -origin start -bginput -markov 1 -2str

-uth pval 0.0001 -return pval.” A window of 150 bp up-

stream and downstream of the motif center was then ex-

tracted and ordered based on the motif direction.

Average GERP score of each bp around the motif sum-

mits were then calculated and plotted. We used the

mouse GERP score track available in the UCSC Genome

Browser Database: ftp://hgdownload.cse.ucsc.edu/gbdb/

mm9/bbi/All_mm9_RS.bw.

Conservation analysis was based on the detection of

the CTCF ChIP-seq peaks found in mouse in the ortho-

logous regions in human, rat, and dog using Ensembl

Compara API (build 70). In order to match the genome

assembly used in Ensembl 70, CTCF peaks identified in

mm9 were lifted over to mm10 using the liftOver tool

and the chain file provided by UCSC Genome Browser

Database [115]. Triple sites, CTCF-RAD21 double sites,

and CTCF singleton sites were divided into three

phylogenetic categories: Mouse only; shared in mouse

and rat (Rodents only); and shared in mouse and/or rat

and at least in one non-rodent species (dog, human)

(Beyond rodents). Fisher’s exact test was used to test if

numbers of deeply conserved sites (Beyond rodents)

were significantly different between different categories

of CTCF peaks.

B2 SINE element analysis

The Repeatmasker method (Smit AFA, Hubley R: Repeat-

Modeler Open-1.0.2008-2010; http://www.repeatmasker.org)

was run on the genome sequences of CTCF peaks. Only

peaks having the B2 SINE repeat overlapping their peak

summits were included in the analysis.

Directionality analysis of triple sites

Triple site regions were scanned for the CTCF core

motif using the RSAT matrix-scan method [116] as de-

scribed above. If multiple motifs were found within one

peak region, only the motif with the highest weight was

used. The genomic distances between CTCF core motif

center and nearest peak summits of CTCF, RAD21, and

TOP2B in triple sites were calculated. The distributions

of distances were visualized as violin plots before and

after orienting all CTCF motifs to the G-rich direction.

Wilcoxon rank sum tests were used to compare between

the distances before and after orientating CTCF motif.

The orders of CTCF motif center, RAD21 and TOP2B

peak summits were listed according to the distances calcu-

lated before and after correcting for CTCF motif direction,

and plotted as bar plots. Fisher’s exact tests were used to

compare the likelihood of observing peaks with certain or-

dering before and after orientating CTCF motif.

ChIP-exo analysis

Sequencing reads for ChIP-exo experiments were

aligned without trimming. All reads were used in the

analysis. ChIP-seq of the same factors was performed in

parallel for comparison. We applied the SWEMBL peak

caller algorithm that is sensitive for point-source data

(http://www.ebi.ac.uk/~swilder/SWEMBL/). Peak over-

laps were performed and plotted using DiffBind [112].

The ChIP-exo Profiler method [118] was used to gener-

ate TOP2B, CTCF and RAD21 ChIP-exo-seq and DGF

sequencing read profiles around the CTCF binding

motif. Specifically, CTCF binding regions identified pre-

viously by the triple site analysis were scanned with the

CTCF core motif. Next, flanking regions of 50 bp up-

stream and downstream from the center of CTCF core

motif were retrieved and ordered based on the motif dir-

ection. Regions with less than ten mapped ChIP-exo

reads were discarded. To calculate the average 5′ coverage

at each nucleotide position around the CTCF motif, num-

bers of first 5′ nucleotides of ChIP-exo reads mapped to

each position were counted and divided by total number

of regions. Reads from forward and reverse strands were

mapped separately. To control for the effect of sequence

composition, the CTCF core motif was permuted ten

times using RSAT permute-matrix function [119]. Motif

scanning and read profiling were also performed for each

of the permuted matrices to build a random background

(shown as shaded polygons on Fig. 5e).

Allele-specific binding analysis

ChIP-seq data from an F1 mouse (C57BL/6 female ×A/J

male) were used to investigate the allele-specific binding

preferences of TOP2B at locations bound by specific TFs

in mouse liver. Single nucleotide polymorphisms (SNPs)

obtained from the Sanger Mouse Genomes Project version
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2 were used to acquire a list of SNPs between the A/J and

reference (C57BL6/J) genomes [120]. Aligned reads were

processed with the WASP pipeline [121] to remove reads

with potential alignment bias between parental genomes

and remove duplicate reads. Reads overlapping SNP po-

sitions (allelic reads) were then separated based on their

parent of origin using the ALEA pipeline [122]. In

doing so, we considered only reads that overlapped an

informative allele and that could be mapped unambigu-

ously to one parent.

Considering only the overlapping regions of the TOP2B

and the TF in question, we counted the number of allelic

reads mapped to each parental genome to determine an

allele frequency. Peaks showing significantly biased allelic

read distribution (binomial p <0.05) were annotated based

on the mouse strain possessing TF-preferred allele. A

one-sided Wilcoxon ranked sum test was used to compare

the allele frequency of each factor between allelic biased

regions and non-biased regions.

Hi-C data analysis

The Hi-C data were obtained from Vietri Rudan et al.

(GSE65126) [56]. Please refer to that work for details

about the Hi-C libraries, normalization methods, and

contact insulation analysis. The relative distribution of

CTCF within TADs was calculated as the distance of

each CTCF site from the center of its domain. Half the

size of the domain was added to convert it to a measure

of distance from the edge of the domain and this value

was subsequently divided by the size of the domain.

DNA supercoiling analysis

Processed files containing DNA microarray probe inten-

sities were obtained from ArrayExpress (E-GEOD-43450).

Data were processed as previously described with normal-

ized bTMP incorporation calculated as log2(bTMP cell

/bTMP input) – log2(bTMP genomic DNA – bTMP in-

put) [65]. GENCODE hg19 gene annotation was used to

extract TSS positions. CTCF sites from human retinal pig-

ment epithelial cells (HRPEpiC) [105] were used. For each

probe, the nearest TSS or CTCF motif center within a

CTCF peak was found, the distance from the probe to the

feature was calculated with regard to the direction of tran-

scription or the CTCF motif. Distances were binned by

100 bp and median intensity of the binned probes was

calculated. Finally, a rolling mean method with a sliding

window of size = 10, step = 2 was applied prior to plotting

data. Same number of genomic regions was randomly

generated and probe intensity around these regions were

calculated in the same manner. The random selection was

performed 10 times and an average value was used as the

random background, which is plotted as a dashed line

with corresponding colors. The Kolmogorov–Smirnov test

was used to compare between the random background

and the actual profile (dashed versus solid lines of same

colors in each panel of Fig. 7 and Additional file 2:

Figure S6. All p values were smaller than 10–16.
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