
Topoisomerase II Does Not Play a Scaffolding Role in the Organization 

of Mitotic Chromosomes Assembled in Xenopus Egg Extracts 

Tatsuya Hi rano  and  Timothy  J. Mitchison 

Department of Pharmacology, University of California, San Francisco, California 94143-0450 

Abstract. We have investigated the role of topoisom- 
erase II (topo II) in mitotic chromosome assembly and 

organization in vitro using Xenopus egg extracts. When 

sperm chromatin was incubated with mitotic extracts, 

the highly compact chromatin rapidly swelled and con- 

comitantly underwent local condensation. Further 

incubation induced the formation of entangled thin 
chromatin fibers that eventually resolved into highly 

condensed individual chromosomes. This in vitro 
system made it possible to manipulate mitotic chromo- 

somes in their assembly condition without any isola- 

tion or stabilization steps. Two complementary ap- 

proaches, immunodepletion and antibody blocking, 

demonstrated that topo II activity is required for chro- 
mosome assembly and condensation. Once condensa- 

tion was completed, however, blocking of topo II ac- 

tivity had little effect on the chromosome morphology. 

Immunofluorescent studies showed that topo II was 

uniformly distributed throughout the condensed chro- 

mosomes and was not restricted to the chromosomal 

axis. Surprisingly, all detectable topo II molecules 

were easily extracted from the chromosomes under 
mild conditions where the shape of chromosomes was 

well preserved. Our results show that topo II is essen- 

tial for mitotic chromosome assembly, but does not 

play a scaffolding role in the structural maintenance of 

chromosomes assembled in vitro. We also present evi- 

dence that changes of DNA topology affect the distri- 
bution of topo II in mitotic chromosomes in our 
system. 

T H~ structural organization of chromatin changes dra- 
matically in the cell cycle. At the onset of mitosis, 
dispersed chromatin in the interphase nucleus is in- 

duced to condense, eventually producing mitotic chromo- 
somes. Highly organized packing of chromatin into the con- 
densed chromosomes and their proper interaction with the 
mitotic spindle are essential to ensure the fidelity of subse- 
quent chromosome segregation. Although recent technical 
advances have made it possible to visualize spatial and tem- 
poral coordination of the dynamic chromatin behavior by 
real-time analysis in vivo (Hiraoka et al., 1989), little is 
known about the molecular mechanisms underlying dynamic 
changes of large scale chromosome structure during the pro- 
gression of the cell cycle. 

Amphibian egg extracts provide an ideal system to inves- 
tigate chromosome assembly and its structural changes in 
vitro, Using a Rana pipiens egg extract, Lohka and Masui 
(1983) originally developed an in vitro system in which 
sperm chromatin was induced to form interphase nuclei and 
then converted into condensed chromosomes. More re- 
cently, it has been demonstrated that, in cell cycle-specific 
Xenopus egg extracts, naked DNA is capable of acting as a 
template for assembly of both interphase nuclei (Newmeyer 
et al., 1986; Blow and Laskey, 1986; Newport, 1987) and 
mitotic chromosomes (Hirano and Mitchison, 1991). 

Topoisomerase II (topo H) t is an enzyme that regulates 
the topological structures of DNA by transient breakage and 
rejoining of double-stranded DNA. Genetic studies in yeasts 
have shown that topo II is required for condensation as well 
as segregation of mitotic chromosomes (Uemura et al., 
1987). Involvement of topo II in condensation has also been 
suggested by in vitro experiments using Xenopus egg ex- 
tracts: addition of a topo II inhibitor VM-26 blocked con- 
densation of both rat liver nuclei (Newport and Spann, 1987) 
and chromosome-like structures assembled around naked 
DNA (Hirano and Mitchison, 1991). One problem with 
these inhibitor experiments is that it is not clear if the inhibi- 
tion of condensation was due to a specific inhibition of topo 
II activity or a nonspecific effect of protein-linked DNA gaps 
induced by the drug treatment (Chen et al., 1984). Recently 
the requirement for topo II in chromosome condensation has 
been demonstrated in vitro by specific immunodepletion 
using somatic cell and Xenopus egg extracts (Wood and 
Earnshaw, 1990; Adachi et al., 1991). These studies used in- 
terphase nuclei with variable levels of endogenous topo II as 
substrates and showed that chromosome condensation is 
closely correlated with the level of topo 1I present in the reac- 

1. Abbreviations used in thispaper: EtBr, ethidium bromide; topo II, topo- 
isomerase II. 
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tion. Specifically topo H-depleted extracts were able to in- 
duce HeLa nuclei to condense, but failed to produce mitotic 

chromosomes from chicken erythrocyte nuclei which have 
a low level of endogenous topo I/. 

In addition to its catalytic activity, topo II may also play 
a structural role in the maintenance of mitotic chromosomes 
since it has been identified as a major component of the chro- 
mosome scaffold (Earnshaw et al., 1985; Gasser et al., 

1986). The chromosome scaffold was originally character- 
ized as a residual framework of metaphase chromosomes af- 
ter histone extraction (Paulson and Laemmli, 1977) and is 
thought to anchor the chromatin loop domains (reviewed by 
Gasser et al., 1989). DNA sequences that preferentially bind 
to the chromosome scaffold (called scaffold-associated re- 

gion [SAR]) was found to contain a cluster of topo II cleav- 
age consensus. Taken together, it has been proposed that 
topo II plays a scaffolding role in the organization of the 
chromatin loops via a direct interaction with SAR (Gasser 

and Laemmli, 1987). 
The existence of the scaffold structure in intact mitotic 

chromosomes has, however, remained controversial. The 
original harsh conditions for scaffold preparation have been 
suspected to potentially induce formation of an artifactual 
aggregation of proteins (Okada and Comings, 1980; Had- 
laczky et al., 1981; Paulson, 1989). Recent analyses using 
mAbs raised against the chromosome scaffold fraction re- 

vealed that the fraction consists not only of chromosomal 
proteins, but also of other proteins that normally bind to the 
mitotic spindle (reviewed by Earnshaw, 1991; Compton et 
al., 1991, 1992). Substantial changes of antigen distribution 
may be induced in drug-arrested mitotic cells in vivo before 

chromosome isolation. Thus, alternative experimental 

procedures will be required for dissecting mitotic chromo- 
somes in a condition where they are actually assembled. 

In this report, we used sperm chromatin, which was found 
to lack detectable amounts of endogenous topo II, to inves- 
tigate the specific role of topo II in mitotic chromosome as- 
sembly and organization in vitro. Using Xenopus egg extracts 

in which the level of active topo II molecules can be im- 
munochemicaUy manipulated, we present evidence that topo 
II is required for mitotic chromosome assembly and conden- 
sation, but does not play a scaffolding role in the structural 
maintenance of chromosomes assembled in this system. We 
also show that this in vitro system is useful for manipulating 

mitotic chromosomes in their assembly condition without 

any isolation or stabilization steps. 

Materials and Methods 

Preparation of Mitotic Extracts 

Mitotic extracts were prepared from eggs of Xenopus lae~'s as described 
previously (Newport and Spann, 1987; Murray et al., 1989; Hirano and 
Mitchlson, 1991) with minor modifications. In brief, mitotic crude extracts 
were prepared by crushing unfertilized eggs in EB (80 mM ~-glycerophos- 
phate, pH 7.3, 15 mM MgC12, 20 mM EGTA and 1 mM DTF, with 10 
~g/ml leupeptin, chymostatin, and pepstatin). The crude extracts were fur- 
ther fractionated by ultracentrifugation at 50,000 rpm for 2 h at 4~ (TLS- 
55 rotor; Beckman Instruments, Inc., Palo Alto, CA). The soluble fractions 
were carefully removed using a 20-gange needle, and recentrifuged at 50,000 
rpm for 30 rain to remove residual membranes. 50-~d aliquots were frozen 
in liquid nitrogen and stored at -80~ (high-speed supernatants). We found 
that in some batches of extracts slight dilution of extracts (up to 2-fold) pro- 
duced better results than those obtained from undiluted extracts. Twofold 

dilution of extracts did not affect the efficiency of nucleosome assembly on 
a closed circular plasmid DNA as judged by a supercoiling assay. 

Preparation of Sperm Chromatin 

Demembranated Xenopus sperm chromatin was prepared by the method de- 
scribed by Gurdon (1976), and stored in 30% glycerol at -80~ 

Cloning of cDNAs Encoding Xenopus Topo H 

To prepare specific antisera against the Xenopus topo II protein, we isolated 
cDNAs encoding Xenopus topo II and bacterially expressed fusion proteins 
to be used as antigens. We selected two amino acid stretches of topo 11 that 
are completely conserved among four eukaryotic species (Giaever et ai., 
1986; Uemura et al., 1986; Tsai-Pflugfelder et al., 1988; Wyckoff et al., 
1989) and designed a set of polymerase chain reaction (PCR) primers. 
Primer 1 encodes the amino acid sequence LAQNFVG (amino acid 770-776 
in human topo II) on the coding strand, and primer 2 encodes the sequence 
NGAEGIG (amino acid 850-856) on the noncoding strand. The nucleotide 
sequence of primer 1 is 5'GATGGATCC(TC)T(ATCJC)GC(ATCJC)CA(AG) 
AA(TC)TT(TC)GT(ATGC)GG3' (1,024-fold degenerate). The sequence for 
primer 2 is 5' GACCTGCAGCC(ATG)AT(ATGC)CC(TC)TC(ATGC) 
GC(ATC~)CC(AG)TT3' (768-fold degenerate). All nucleotides in paren- 
theses were included at that position. 

Poly(A) + RNA was isolated from Xenopus eggs using FastTrack mRNA 
isolation kit (Invitrogen, San Diego, CA) according to manufacturer's in- 
struction, cDNA produced from the RNA with oligo(dT) priming was used 
as a template for PCRs. A reaction amplified a single band with an expected 
length of 270 bp. A Xenopus embryo kgtl0 cDNA library (kindly provided 
by E. Amaya and M. W. Kirschner, University of California, San Francisco, 
CA) was screened using this PCR fragment as a probe and two classes of 
cDNA were obtained. The first class of cDNA (designated XT-1) was •6.5 
kb long and contained the entire length of topo II coding region. The second 
class (designated XT-2) was ,~3 kb long and was missing the NH2-terminal 
half of coding region. Alignment of these two sequences and those of human 
topo II isotypes (Chang et al., 1989) revealed that XT-1 and XT-2 appear 
to encode the ce (170-kD form) and/3 (180-kD form) type of topo II, respec- 
tively. We also found that XT-1 (topo II c0 was highly expressed in prolifer- 
ating cells such as eggs and embryos, whereas XT-2 (topo II/~) was predom- 
inantly expressed in nonproliferating Go cells such as liver. This is in good 
agreement with the differential expression pattern of topo II isotypes 
reported in mammalian cells (Woessner et al., 1991) and supports the con- 
clusion described above. 

Preparation of Anti-topo H Antisera 

A fusion protein containing a COOH-terminal domain of topo II a was ex- 
pressed in E. coil using T7 RNA polymerase-dependent expression system 
(Smdier et al., 1990). A 3.8*kb Hind~I fragment of the Xenopus topo II 

cDNA was subcloned into a cloning vector pGEM7Zf(+) (Promega 
Corp., Madison, WI). The resulting plasmid pXT115 was digested with 
BglII and BamI-II, and a 3.0-kb BglII-BamHI fragment was ligated into an 
expression vector pETllc (Smdier et ai., 1990) to generate pXT135, which 
can express an in-frame fusion ofT'/gene 10 product (11 amino acids) and 
a COOH-terminal domain (,,0800 amino acids) of topo II c~. The plasmid 
was introduced into an E. coli strain BL21(DE3), which contained the T7 
RNA polymerase gene under the control of/ac UV5 promoter. Expression 
of the fusion protein was induced for 3 h by the addition of 1 mM isopropyl- 
~-thiogaiactopyranoside (IPTG) and inclusion bodies were isolated as de- 
scribed by Sambrook et al. (1989). The insoluble materials were resolved 
in preparative SDS-polyacrylamide gels, and after brief staining with 
Coomassie blue, fusion protein bands were cut out. The polypeptides were 
electroeluted in 20 ram sodium phosphate, pH 7.5, containing 0.1% SDS, 
dialyzed against TBS (20 mM Tris-HC1, pH 7.5, 150 mM NaC1), and used 
as antigens. Immunizations and bleeds were carried out by the Berkeley An- 
tibody Company (Richmond, CA). Two antisera from different rabbits rec- 
ognized a common polypeptide of 180 kD, which corresponds well to the 
reported size of Xenopus egg topo II (Luke and Bogenhagen, 1989). One 
of them recognizing a single band of 180 kD on blots was used for depletion 
experiments. Affinity purification of anti-topo II antibodies was performed 
as follows. The gel-purified fusion protein was dialyzed against 0.1 M 
MOPS, pH 7.5, and was coupled to Affigel 10 agarose (Bio-Rad Laborato- 
ries, Richmond, CA) according to the manufacturer's instructions. An anti- 
topo II antiserum was passed over the fusion protein column three times, 
and the column was washed initially with TBS and then with 20 mM Tris- 
HC1, pH 7.5/0.5 M NaC1. Anti-topo II IgG was eluted with 0.2 M glycine- 
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HCI, pH 2.5. The peak fractions were pooled, dialyzed against TBS, and 
stored at 4"C. The affinity-purified anti-topo II IgG was found to inhibit 
decatenation activity of topo II in vitro. 

Immunodepletion of Topo H 

Protein A-Sepharose CL-4B (Sigma Chemical Co., St. Louis, MO) was 
washed five times with TBS, mixed with an equal volume of either rabbit 
antiserum raised against the COOH-terminal domain of the Xenopus topo 
II c~ or preimmune serum collected from the same rabbit, and incubated at 
4~ for 1-2 h. The Sepharose was washed three times with TBS and twice 
with EB. After the final wash, residual buffer was removed as completely 
as possible using a 23-gauge needle. Undiluted extract was added to an 
equal volume of the antibody-loaded Protein A-Sepharose and incubated on 
ice for 1 h with occasional agitation. The treated extract was then separated 
from the Sepharose by centrifugation, and used as the depleted extract. To 
confirm the specificity of depletion, topo H-depleted extracts were also pre- 
pared using affinity-purified anti-topo II IgG (see above) and used in some 
experiments. 

Assays for Topo H Activity and Nucleosome Assembly 

Topo II activity was assayed for the ability to decatenate kinetoplast DNA 
(Marini et ai., 1980). Kinetoplast DNA (TopoGEN, Inc., Columbus, OH) 
was added to twofold diluted extracts at a final concentration of 10 #g/rni 
and incubated at 23"C. At appropriate intervals, the reactions were termi- 
nated by adding 20 vol of stop solution (20 mM Tris-HCl, pH 8.0, 20 mM 
EDTA, 0.5% SDS, and 500 #g/ml Proteinase K). After incubation at 55~ 
for 60 rain, the reaction mixture was deproteinized with phenol and the 
DNA was precipitated with ethanol. After centrifugation the pellet DNA 
was dissolved in 12 #i of TE (10 mM Tris-HCl, pH 8.0, and 1 mM EDTA), 
and electrophoresed on a 0.8% agarose gel. Nucleosome assembly was ex- 
amined by a supercoiling assay as described previously (Hirano and Mitchi- 
son, 1991). 

Assays for Mitotic Chromosome Assembly 
and Condensation 

Standard reactions for mitotic chromosome assembly contained 20 #1 of mi- 
totic extract (high-speed supernatant), 1 #1 of sperm chromatin (final con- 
centratiun of 2 x 10 ~ nuclei/ml), and an ATP-reganerating system (final 
concentration of 1 mM ATP, 10 mM creatine phosphate, and 50 #g/ml crea- 
tine kinase). Reactions wee incubated at room temperature (230C) for up 
to 3 h. To monitor structural changes of sperm chromatin, aliquots were 
removed at different time points, mixed with an equal vol of fixative (50% 
[wt/vol] glycerol, 3.7% formaldehyde, and 1 #g/ml, I-Ioechst 33258 in 
MMR), and observed by fluorescent microscopy (Photoscope HI; Carl 

Zeiss, Inc., Thornwood, NY). MMR consisted of 100 mM NaCI, 2 mM 
KC1, 1 mM MgSO4, 2 mM CaC12, 0.1 mM EGTA, and 5 mM Hepes, 
pH 7.8. 

Topo H Readdition and Antibody Blocking 

Highly purified Drosophila topo H was a generous gift of J. Swedlow 
(University of California, San Francisco, CA). This enzyme was purified 

from Drosophila embryos by the method of Sheltun et al. (1983). On SDS- 
PAGE, it consists of a predominant band of 170 kD and two minor bands 
(135 and 155 kD) that are most likely to represent degradation products of 
the major band. Based on Luke and Bogenhagen (1989) and our quantitative 
immunoblot analyses, we estimate that topo II concentration in our high- 
speed supernatants is ,,02 #g/ml. We found that the addition of Drosophila 
topo II at the physiological concentration was sufficient to restore condensa- 
tion activity in topo H-depleted extracts (at a final concentration of 1 #g/ml 
topo II in twofold diluted extracts; see Fig. 3). For antibody blocking experi- 
ments, 1/10 vol of TBS containing different concentrations of affinity- 
purified anti-topo II IgG were added. As negative controls, the same con- 
centrations of normal rabbit IgG (Sigma Chemical Co.) were used. VM-26 
(4'-demethylepipodophyllotoxin thenylidane-/5-v-gluceside; a generous gift 
of Bristol-Meyers, Syracuse, NY) was dissolved in DMSO as a stock solu- 

tion of 10 mM and diluted with EB immediately before use. We found that 
the final DMSO concentration of up to 1.0% did not affect mitotic chromo- 
some assembly and condensation. 

Immunofluorescence and Immunoblotting 

Immunofluorescent staining was performed as described previously 
(Hirano and Mitchison, 1991). For topo II staining, afffinity-purified anti- 

topo II IgG was used at a concentration of 1 ~g/ml. MPM-2 (generously 
provided by P. N. Rao, The University of Texas, M.D. Anderson Cancer 
Center, Houston, TX; Davis et al., 1983) was used at a dilution of 1:500. 
Immunoblotting was performed as described by Harlow and Lane (1988) 
using ECL (enhanced chemiluminescence) detection system (Amersham 
Corp., Arlington Heights, IL). 

Extraction of Mitotic Chromosomes in 
Assembly Mixtures 

Mitotic chromosomes were assembled in the standard assembly mixtures 
(prepared in EB) for 2 h and then mixed with an equal vol of EB containing 
increasing concentrations of NaCI. The treatment buffer contained EB plus 
2 • concentrated NaCl so that buffer composition of the final mixture was 

adjusted to EB plus lx  NaCI. After a 10-rain incubation at room tempera- 
ture, the chromosomes were fixed and processed for immunofluorescence. 
Alternatively, assembly mixtures were layered on EB containing 30% su- 
crose and spun at 12,000 rpm for 15 rain. After washing interface five times 
with EB, chromosomes recovered in the pellet were suspended in a 
SDS-sample buffer and analyzed by immnnoblotting. Dextran sulfate ex- 
tractiun was performed in the same way. In some experiments, chromo- 

somes were pretreated with metal ions before extraction. 

Results 

Structural Rearrangements of Sperm Chromatin in 
Mitotic Extracts 

Lohka and Masui (1984) originally found that an amphibian 
egg extract prepared in the presence of EGTA was able to 
directly convert sperm chromatin into a condensed state. We 

have investigated in detail intermediate stages of mitotic 
chromosome assembly and condensation using Xenopus egg 
mitotic extracts. Demembranated sperm chromatin exhibits 

a highly compact, snake-like shape (Fig. 1 a). Upon incuba- 

tion with mitotic extracts, this compact chromatin rapidly 
swelled, increasing more than threefold in both length and 

width, and concomitantly underwent local condensation 
(Fig. 1 b). After 60 min, thin chromatin fibers (0.2-0.4 #m 

in diameter) became clearly visible in a chromatin mass 
(Fig. 1 c). The fibers were entangled with each other, making 
it difficult to trace the entire length of a single individual 
fiber. After 90-120 min, condensation proceeded and 
thicker, rod-shaped chromosome structures (~0.8 #m in di- 
ameter) were obsered (Fig. 1 d). At this time point, in- 
dividual chromosomes were clearly resolved, which were 
clustered in a mass (Fig. 1 d) or dispersed into the extract 
(Fig. 1 e). The number of chromosomes observed in each 
mass corresponded roughly to that of the haploid genome of 
Xenopus/aev/s (n = 18; Tymowska and Kobel, 1972). Not 
surprisingly, we did not find sister chromatids in the chromo- 
some because sperm chromatin was directly induced to con- 
dense in the absence of DNA replication in this assay. The 
condensation state of the final products was similar to that 
of mitotic chromosomes that were induced to condense after 
DNA replication was completed in interphase nuclei (data 
not shown, see also Sawin and Mitchison, 1991). The struc- 
tural changes of sperm chromatin proceeded in a highly syn- 
chronous manner: at most time points all chromatin struc- 
tures were in a similar condensation state. We classified the 
discrete stages in chromatin rearrangement as follows: (a) 
swelling of highly compact sperm chromatin; (b) local con- 
densation; (c) formation of entangled thin fibers; and (d) 
resolution of highly condensed chromosomes. Although the 
first two stages simultaneously occur in mitotic extracts, we 
were able to distinguish them experimentally in terms of 
topo II requirements as shown below. 
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Figure 1. Structural rearrangements of sperm chromatin in mitotic 
extracts. Demembranated sperm chromatin exhibits a highly com- 
pact snake-like shape (a). The chromatin was incubated with a mi- 
totic extract at 230C. After 30-rain (b), 1-h (c), and 2-h (d and e) 
incubations, condensation intermediates were fixed and stained 
with Hoechst 33258. Individual chromosomes were often found 
dissociated from a mass of condensed chromosomes (e). Bars: (a, 
b, c, and d) 10/~m; (e) 5 tzm. 

lmmunodepletion of Topo H from Extracts 

We wished to ask whether topo II plays an essential role in 
chromosome assembly and condensation in this assay. The 
most direct approach to address this question is either to de- 
plete topo II molecules from extracts or to block topo II ac- 
tivity by the addition of anti-topo II antibodies. For this pur- 
pose, we cloned the Xenous topo II cDNAs and prepared 
specific anti-topo II antisera against bacterially expressed 
recombinant proteins (see Materials and Methods). In the 
course of this study, we found that Xenopus has two isotypes 
of topo II, cr and/3, as recently found in mammalian cells 

(Drake et al., 1989; Chung et al., 1989). Northern and 
Western blot analyses using isotype-specific probes revealed 
that only the c~ type of topo II is expressed in Xenopus eggs 
although the/3 type was predominantly detected in Xenopus 
liver nuclei (our own unpublished results). Consistent with 
this result, when topo II o~ was depleted from egg extracts, 

no residual topo II activity was detected (see below). Taken 
together, we concluded that the expression of topo II/~ is ex- 
tremely low (<1% of o~) or absent in Xenopus eggs. On an 
immunoblot against Xenopus egg extracts, anti-topo II o~ rec- 
ognized a single band of 180 kD (Fig. 2 a), that corresponded 
well to that of Xenopus topo II biochemically characterized 

in oocytes and eggs (Benedetti et al., 1983; Luke and Bogen- 
hagen, 1989). Sperm chromatin was found to lack detectable 
levels of both isotypes of endogenous topo II as judged by 

Figure 2. Immunodepletion of topo II. (a) Immunodepletion of 
topo 1I polypeptides from extracts. A mitotic extract was treated 
with an anti-topo II antiserum or with a preimmune serum to pre- 
pare topo II--depleted and mock-depleted extracts, respectively. 
Equal volumes of these extracts and an untreated extract were sub- 
jected to 7.5 % SDS-PAGE, blotted on a nitrocellulose paper, and 
probed with the anti-topo II antibody. (b) Immunodepletion of topo 
II activity. Kinetoplast DNA was incubated with the mock- 
depleted, topo H-depleted, and untreated extracts at 23~ After 
5-, 15-, and 60-min incubations, aliquots were taken and the reac- 
tions were terminated. The DNA was deproteinized and analyzed 
on a 0.8% agarose gel. In mock-depleted and untreated extracts, 
catenated DNA (catenated) was rapidly decatenated to produce re- 
laxed minicircles and then converted into supercoiled ones as a re- 
sult of nucleosome assembly (decatenated). (c) Nucleosome as- 
sembly in the topo H-depleted extract. Nucleosome assembly 
activity was measured as supercoiling of relaxed circular plasmid 
DNA. Relaxed plasmid DNA was added to the mock-depleted, 
topo H-depleted, and untreated extracts at a final concentration of 
10/zg/ml and incubated at 230C. After 0, 1/2, 1, and 3 h, aliquots 
were taken and the reactions were terminated. The DNA was ana- 
lyzed as in b. L fully supercoiled DNA; L, relaxed circular DNA; 
II, nicked circular DNA. 

immunoblotting and immunofluorescent staining (data not 
shown). In this paper we investigated the role of topo II o~ 
that is recruited from egg extracts to sperm chromatin. For 

simplicity we use the word '~opo IT' to refer to topo II c~ 
throughout the text unless otherwise indicated. 

We used the anti-topo II antisera to deplete topo II poly- 
peptides from egg extracts. By treating a mitotic extract with 
protein A-Sepharose beads that had been preloaded with an 
anti-topo II antiserum, >95 % of topo II polypeptides were 
depleted from the extract as judged by immunoblotting (Fig. 
2 a). As a negative control, a preimmune serum collected 
from the same rabbit was used to prepare a mock-depleted 

extract. Topo II activity in the extracts was assayed for the 
ability to decatenate kinetoplast DNA (Fig. 2 b). In un- 
treated and mock-depleted extracts, kinetoplast DNA was 
rapidly decatenated and converted into minicircles. In con- 
trast, in topo H-depleted extracts, no deeatenation activity 
was detected even after longer incubation. We also found 
that topo II depletion has no effect on the efficiency of nu- 
cleosome assembly on a closed circular plasmid DNA (Fig. 
2 c). This is consistent with the previous reports that the tor- 
sionai stress induced on a circular plasmid DNA during nu- 
cleosome assembly in vitro is mostly removed by topoisom- 
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Figure 3. Topo II is required for mitotic chromosome assembly and 
condensation. Highly compact sperm chromatin (a) was mixed 
with a topo H--depleted mitotic extract (b, d, and f) ,  and the same 
extract complemented with highly purified Drosophila topo II at a 
final concentration of 1 t~g/ml (c, e, and g). This concentration of 
topo II was comparable to the physiological level (see Materials and 
Methods). After 30-min (b and c), 1-h (d and e), and 2-h ( f  and 
g) incubations, chromatin structures were fixed, and stained with 
Hoechst 33258. Bar, 10 #m. 

erase I (topo I) rather than topo II (Almouzni and M~chali, 
1988). 

Topo H Is Required for Mitotic Chromosome Assembly 
and Condensation 

The requirement for topo II in chromosome assembly and 
condensation was examined using the topo II-depleted mi- 
totic extracts. In the absence of topo II, highly compact 
sperm chromatin (Fig. 3 a) rapidly swelled but the subse- 
quent structural changes were completely blocked (Fig. 3, b, 
d, and f ) .  The swollen chromatin was uniformly stained with 
Hoechst, and showed no indication of local condensation or 
formation of thin chromatin fibers even after longer incuba- 
tion (at least 5 h). We obtained identical results using ex- 
tracts depleted with another anti-topo 1I antiserum collected 
from a different rabbit or with afffinity-purified anti-topo II 
IgG (see Materials and Methods). In mock-depleted extracts 
prepared using the preimmune serum, sperm chromatin 

Figure 4. Localization of topo II on condensation intermediates. 
Sperm chromatin was incubated with topo H-depleted (a and b) and 
mock-depleted mitotic extracts (c-h). After 15 min (c and d), 1 h 
(e and f) ,  and 2 h (a, b, g, and h), chromatin structures were fixed, 
and stained with Hoechst 33258 (a, c, e, and g) and afffinity-purified 
anti-topo II (b, d, f, and h). Bar, 10/~m. 

showed the identical structural changes to those observed in 
untreated extracts (data not shown). 

Another control for the specificity of depletion is to add 
back purified topo II molecules. The addition of highly 
purified Drosophila topo II into the topo II-depleted extracts 
at a physiological concentration (see Materials and Methods) 
restored the condensation activity (Fig. 3, c, e, and g). The 
time course of structural changes in the complemented ex- 
tract was very similar to those observed in untreated ex- 
tracts. After a 2-h incubation highly condensed individual 
chromosomes were formed. Final condensation state of 
these chromosomes was indistinguishable from that pro- 
duced in control extracts (Fig. 1 d and Fig. 3 g). These 
results show that topo II is not required for the swelling step 
but is essential for the subsequent stages of chromosome as- 
sembly and condensation. 

Localization of Topo H and MPM-2 Antigens on 
Mitotic Chromosomes 

We next investigated the localization of topo II molecules 
that are recruited from extracts onto chromatin structures by 
immunofluorescence. In topo II-depleted mitotic extracts, 
anti-topo 1I did not stain decondensed snake-shaped chroma- 
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Figure 5. Localization of topo H and MPM-2 antigens on highly 
condensed chromosomes. Sperm chromatin was incubated with 
mock-depleted mitotic extracts for 2.5 h. Assembled chromosomes 
were fixed, and stained with Hoechst 33258 (a and c), affinity-puff- 
fled anti-topo II (b), and a mAb MPM-2 (d). Bar, 10 #m. 

tin structures as expected (Fig. 4 b). In contrast, chromatin 
structures incubated with mock-depleted extracts were 
strongly stained with anti-topo H. Topo II molecules ap- 
peared on the chromatin from early stages of condensation 
(Fig. 4 d), and were uniformly distributed on the entire 
length of entangled thin chromatin fibers (Fig. 4 f )  and of 
highly condensed chromosomes (Fig. 4 h). The staining pat- 
terns of these structures with anti-topo II were very similar 
to those with a DNA binding dye Hoechst (Fig. 4, c, e, and 
g). In fully resolved chromosomes, topo II was distributed 
throughout the whole structures and was not restricted to the 
chromosomal axis (Fig. 5 b). Exogenously added Drosoph- 
ila topo II in complementation experiments was also found 
to show similar distribution (data not shown). 

We have previously shown that a mAb MPM-2, which 
recognizes a class of mitosis-specific phosphoproteins 
(Davis et al., 1983), stains both a "condensation core" of mi- 
totic chromosome-like structures assembled around naked 
DNA and a central axis of mitotic chromosomes isolated 
from CHO cells (Hirano and Mitchison, 1991). The strong 
correlation between the assembly of this substructure and the 
condensed state of the chromosomes suggested that the 
MPM-2 antigens may play an essential role in mitotic chro- 
mosome assembly and condensation. Consistent with the 
previous observation, we found that MPM-2 antigens are 
concentrated on axial region of mitotic chromosomes assem- 
bled from sperm chromatin in vitro (Fig. 5 d). The staining 
pattern was clearly different from the distribution of topo II 
(Fig. 5 b). 

Topo H Activity Is Not Required for Structural 
Maintenance of Mitotic Chromosomes 

We next asked if topo I! is involved in the structural main- 
tenance of mitotic chromosomes assembled in this system. 
It has been proposed that topo II plays a "loop-fastener" role 
in the organization of the chromatin loop domains (Gasser 

Figure 6. Topo II activity is not required for structural maintenance 
of mitotic chromosomes. Several treatments were performed before 
(a, c, and e) or after (b, d, and f )  chromosome assembly. (a, c, 
and e); sperm chromatin was incubated with mitotic extracts con- 
taining control rabbit IgG (10 #g/nil; a), anti-topo II IgG (10/~g/ml; 
c), and VM-26 (10 ~,M; e). After a 2-h incubation, chromosomes 
were fixed and stained with Hoechst 33258. We obtained similar 
results when the extracts were pretreated 30 rain before the addition 
of sperm chromatin. (b, d, and f) ;  mitotic chromosomes were as- 
sembled by incubating sperm chromatin with an untreated mitotic 
extract for 2 h. The reaction mixture was divided into three ali- 
quots, and control rabbit IgG (10 ~g/ml; b), anti-topo II IgG (10 
t~g/ml; d), and VM-26 (50 #M; f )  were added. After another l-h 
incubation, chromosomes were fixed and stained as above. Bar, 
10 ~m. 

and Laemmli, 1987; Adachi et al., 1991). If topo II activity 
is continuously required to organize the chromatin loops, the 
loss of topo II activity may induce global effects on the mor- 
phology of mitotic chromosomes. To test this possibility, we 
added afffinity-purified anti-topo H IgG into reaction mix- 
tures. A concentration of affinity-purified anti-topo H IgG 
(10/zg/ml) efficiently blocked chromosome assembly and 
condensation when added before assembly (Fig. 6 c). How- 
ever, once condensation was completed, the same concentra- 
tion of the antibody did not induce any detectable changes 
on the morphology of condensed chromosomes (Fig. 6 d). 
To rule out a possibility that the antibody may not be accessi- 
ble to all topo II molecules associated with chromosomes, 
a topo II inhibitor was also tested. The addition of a topo II 
inhibitor VM-26 has similar effects to those observed by the 
addition of anti-topo II IgG: as low as 10/zM of VM-26 is 
sufficient to block local condensation that follows chromatin 
swelling (Fig. 6 e), whereas even high concentration of the 
same drug (50-100 #M) induced no remarkable changes on 
the structure of precondensed chromosomes (Fig. 6 f ) .  
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Figure 7. Topo 1I is dissociated from mitotic chromosomes under 
mild conditions. (A) Salt extraction. Mitotic chromosomes were as- 
sembled from sperm chromatin in vitro, and then mixed with an 
equal vol of EB containing increasing concentrations of NaC1. The 
extra concentrations of NaCI were 0 mM (a-d), 50 mM (e-h) and 
100 mM (i-l). After incubation at 23"C for 10 rain, chromosomes 
were fixed and stained with Hoochst 33258 (a, c, e, g, i, and k), 
affinity-purified anti-topo II (b,f, and j) and MPM-2 (d, h, and l). 
Bar, 10/~m. (B) Dextran sulfate extraction. Mitotic chromosomes 
were assembled from sperm chromatin in vitro, and then dextran 
sulfate was added to a final concentration of 100 tzg/ml. Chromo- 
somes were fixed and stained with Hoechst 33258 (a and c), affinity- 
purified anti-topo 11 (b), and MPM-2 (d). Bar, 10 #m. 

These results suggest that continuous catalytic activity of 
topo 11 may not be required for the structural maintenance 
of mitotic chromosomes once their condensation is com- 
pleted. 

Topo I I  Is Dissociated from Mitotic Chromosomes 

under  Mild Conditions 

To test further a possible scaffolding role of topo 1I, we next 
attempted to extract mitotic chromosomes assembled in our 
system. Conventional procedures for scaffold preparation in- 
volve a number of experimental steps including chromosome 

isolation from drug-arrested mitotic cells, scaffold stabiliza- 
tion, and historic extraction. Any of these steps could poten- 
tially induce nonphysiological effects on the chromosome 
morphology. In contrast, in our in vitro assembly system, it 
is possible to manipulate chromosomes directly in the as- 
sembly mixtures without any isolation or stabilization steps. 

Surprisingly, we found that topo II can be extracted from 
mitotic chromosomes under mild conditions where the mor- 
phology of the chromosomes is well preserved. Mitotic 
chromosomes were assembled in EB (80 mM B-glycerophos- 
phate, pH 7.3, 15 mM MgC12, 20 mM EGTA and 1 mM 
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DTT with protease inhibitors) under the standard assembly 
condition and then mixed with the same buffer containing in- 
creasing concentrations of NaC1. When extra concentration 
of NaC1 in an assembly mixture was raised to 50 mM, the 
rod-shaped chromosomes expanded slightly as judged by 
Hoechst staining (Fig. 7 A, e and g). At 100 mM, the chro- 
matin expanded further to form a small halo around a central 
axis of each chromosome (Fig. 7 A, i and k). These structural 
changes were highly uniform and reproducible. Under these 
relatively mild conditions, tope II molecules were dissoci- 
ated from the mitotic chromosomes. By immunofluores- 
cence, topo II staining was greatly reduced at 50 mM NaCI 
and residual, faint signal was observed restricted on a central 
axis of the expanded chromosomes (Fig. 7 A, f ) .  No detect- 
able signal was observed at 100 mM NaCl, indicating that 
topo II was completely extracted at this salt concentration 
(Fig. 7 A, j ) .  In contrast to tope II, MPM-2 antigens were 
relatively resistant to the same treatments. Fluorescent in- 
tensity on the axis was slightly reduced but the discrete stain- 
ing pattern did not change (Fig. 7 A, h and l). Interestingly, 
we noted that MPM-2 also stained tips at both ends of chro- 
mosomes and a patch located on the central axis in the 
expanded chromosomes. Presumably these correspond to 
telomeres and the kinetochores, respectively. While these 
structures are present in unextracted chromosomes, they 
were clearly visualized on chromosomes extracted at extra 
50 mM NaC1 due to a slight reduction of total staining inten- 
sity on the central axis (Fig. 7 A, h). 

A different extraction procedure also efficiently extracted 
topo II molecules from mitotic chromosomes assembled in 
vitro. Dextran sulfate, a negatively charged polymer, has 
been used to extract chromosomal proteins by competition 
with DNA in a low ionic strength condition (Lewis and Laem- 
mli, 1982). When dextran sulfate was added at a final con- 
centration of 100 ~g/ml into an assembly mixture after con- 
densation was completed, the length of the chromosomes 
increased substantially (at least twofold) and the chromatin 
swelled to form a large halo around a central axis. Under 
these conditions the chromosomes tended to aggregate, but 
individual chromosomes were clearly visualized (Fig. 7 B, 
a and c). When these structures were stained with anti-tope 
II, no immunofluorescent signal was detected (Fig. 7 B, b). 
In contrast, MPM-2 strongly stained the axis but not the halo 
(Fig. 7 B, d). 

Immunoblot analysis confirmed that topo II polypeptides 
were dissociated from mitotic chromosomes under these ex- 
traction conditions. Control and extracted chromosomes 
were partially purified by centrifugation, and the amounts of 
topo II coprecipitated with chromosomes were analyzed by 
immunoblotting (Fig. 8). Consistent with immunofluores- 
cent data, no detectable level of topo II (<29~ of the unex- 
tracted control) was found in the pellet when treated with ex- 
tra 0.1 M NaC1 or 100 /~g/ml dextran sulfate, although 
chromosomal DNA was quantitatively recovered under 
these conditions (data not shown). 

Since chromosome organization and axial structures are 
maintained after topo II extraction, we conclude that topo 
II does not play a scaffolding role in the structural main- 
tenance of mitotic chromosomes assembled in this system. 

Changes of Topo H Distribution under 
Artifactual Conditions 

Although topo II molecules were completely extracted from 

Figure 8. Immunoblot analysis of topo II extraction. Sperm chro- 
matin was incubated with mitotic extracts in the standard condition 
(lanes 3-10) for 2 h. As negative controls, no mitotic extract (lane 
1) or no sperm chromatin (lane 2) was added. Assembled chromo- 
somes were treated with NaCI (lanes 3-7) or dextran sulfate (lanes 
8-10) at final concentrations as indicated and then partially purified 
by centrifugation. Topo II molecules coprecipitated with the chro- 
mosomes were analyzed by immunoblotting. A dilution series of 
the untreated chromosome sample (equivalent to lane 3) was loaded 
in the same gel as standards (standard; lanes 11-16). 

mitotic chromosomes with extra 0.1 M NaCI (Fig. 7 A, j), 
there was a tendency that, in a milder condition, residual 
topo II was found on the chromosomal axis (Fig. 7 A, f ) .  
This observation suggested that topo II may have higher 
affinity for the axial region of chromatin compared with pe- 
ripheral region. To test this possibility, we screened several 
conditions that might affect the distribution of topo II in mi- 
totic chromosomes (Table I). 

When EtBr (ethidium bromide) was added at a final con- 
centration of 50 #g/ml, the rod-shaped chromosomes ex- 
panded slightly (Fig. 9 c) and topo II was found concentrated 
on an axial region (Fig. 9 d). At higher concentration of EtBr 
(100 ~g/mi), the central axis was surrounded by a large halo 
of chromatin (Fig. 9 e). In these chromosomes, total fluores- 
cent signal with anti-topo II was greatly reduced and the re- 

sidual topo II was restricted to the axis (Fig. 9 f ) .  Since it 
is known that EtBr intercalates into DNA and unwinds 
double-stranded DNA, this result suggests that changes of 
DNA topology may induce a gross rearrangement of topo II 
distribution in mitotic chromosomes. 

Copper ion is known to specifically stabilize the scaffold 
structure of isolated chromosomes (Lewis and Laemmli, 
1982). We found that addition of CuSO4 at a final concen- 
tration of 0.5 mM induced a slight expansion of rod-shaped 
chromosomes (Fig. 9 g). In these expanded chromosomes, 
tope II was not uniformly distributed but was found concen- 
trated on an axial region (Fig. 9 h). The effect was Cu e+ 
specific: any divalent cation other than Cu e+ we have tested 
did not induce either the expansion of chromosomes or the 
change of topo II distribution (Table I). We attempted chro- 
mosome extraction with extra 0.1 M NaCI after these 
pretreatments, but failed to find a condition that causes tight 
association of tope II with the chromosomes (Table I). 

Discussion 

Mitotic Chromosome Assembly from 
Sperm Chromatin In Vitro 

Upon fertilization, in vivo, sperm chromatin is induced to 
form the male pronucleus, and then is converted into mitotic 
chromosomes after the fusion with the female nucleus. 
Therefore, the "mitotic" pathway in which sperm chromatin 
is directly induced to produce condensed chromosomes is 
less physiological than the "interphase-to-mitodC pathway in 
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Table 1. Effects of Various Treatments on Chromosome Morphology and Topo II Localization 

No extraction 

Pretreatments Chromosome morphology Topo II staining 

0.1 M NaCl extraction 

Chromosome morphology Topo II staining 

No treatment Rod + + Halo - 
50 #g/ml EtBr Expanded + + (axis) Large halo - 
I00/zg/ml EtBr Halo + (axis) Large halo + (axis) 
0.5 mM CuSO4 Expanded + + (axis) Large halo - 
0.5 mM MgSO4 Rod + + Halo - 
0.5 mM ZnSO4 Rod + + Halo - 
0.5 mM MnSO4 Rod + + Halo - 
0.5 mM CoC12 Rod + + Halo - 
0.5 mM CaC12 Rod + + Halo - 
0.5 mM CuSO4 (37~ Expanded + + (axis) Large halo + (axis) 
0.5 mM CaC12 (37~ Rod + + Halo - 
37~ Rod + + Halo - 
20 mM EDTA Rod + Halo + (axis) 

Mitotic chromosomes were assembled from sperm chromatin in the standard condition at 23~ for 2 h. Pretreatments were performed at 23 or 370C for 10 min. 
The reaction mixtures were divided into two aliquots and then mixed with an equal vol of EB (no extraction) or EB containing 0.2 M NaCI (0. I M NaCl extraction). 
After incubation at 230C for 10 min, chromosome morphology and topo II localization was examined by immunofluorescence. The intensity of topo II staining 
was based on the examination by eye and is not quantitative. Chromosomes were uniformly stained with anti-topo II unless otherwise indicated. 

Figure 9. Artifactual changes of topo II distribution in mitotic chro- 
mosomes. Mitotic chromosomes were assembled from sperm chro- 
matin in vitro in the standard condition and then EtBr (a and b, 0 
/zg/ml; c and d, 50/zg/ml; e and f, 100/xg/ml) or CuSO4 (g and 
h, 0.5 mM) was added. After 10 min incubation, chromosomes 
were fixed and stained with Hoechst 33258 (a, c, e, and g) and 
afffinity-purified anti-topo II IgG (b, d, f, and h). Bar, l0/zm. 

which mitotic chromosomes are produced from interphase 

nuclei containing replicated DNA. However, even the for- 

mer pathway examined in this study produces mitotic chro- 

mosomes with a good morphology and a final condensation 

state similar to that observed in vivo. Thus results obtained 

with this assay for studying the mechanism of chromosome 

condensation are relevant to the physiological mechanism. 

We have investigated in detail the structural rearrangements 

of  sperm chromatin observed in mitotic extracts and charac- 

terized the four intermediate stages as follows: (a) swelling 

of  highly compact sperm chromatin; (b) local condensation; 

(c) formation of  entangled thin fibers; and (d) resolution of  

highly condensed chromosomes. The thin chromatin fibers 

observed in stage c have a diameter of ~0.2-0 .4  #m, pre- 

sumably corresponding to prophase chromosomes. The final 

condensed products observed in stage d with a diameter of  

~0 .8 /~m may represent fully condensed metaphase chro- 

matids. Our impression from fluorescence morphology is 

that the last step of condensation appears to involve coiling 

of  the thin fibers (Fig. 1, d and e). However, more extensive 

morphological studies will be needed to clarify the structural 
details of the condensation processes in this system, 

Role of  Topo H in Mitotic Chromosome Assembly and 
Organization In Vitro 

It is well known that sperm chromatin mostly consists of 

sperm-specific chromatin proteins that are replaced by em- 

bryonic ones upon fertilization (reviewed by Poccia, 1989). 

It is therefore possible to investigate specific function of non- 

sperm chromatin components recruited from extracts under 

a physiological condition in our system. Since we have found 

that Xenopus sperm chromatin lacks detectable amounts of 

both isotypes of endogenous topo II (o~ and fl), the u type 

present in the extracts is the only source of  topo II molecules 

to be considered for mitotic chromosome assembly and con- 

densation in vitro. Our depletion and complementation ex- 

periments have clearly demonstrated that topo II (t~) is re- 

quired for chromosome assembly and condensation that 

follows swelling of  sperm chromatin. This is in good agree- 

ment with Adachi et al. (1991), who used chicken erythro- 

cyte nuclei as a substrate with a low level of  endogenous topo 
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II in a similar condensation assay. There is, however, one 
significant difference. Adachi et al. (1991) observed that in 
topo II-depleted extracts erythrocyte nuclei are converted 
into partially resolved, uncondensed chromatids called 
"precondensation chromosomes" (pcXs), whereas we ob- 
served no indication of resolution in the swollen sperm chro- 
matin in the absence of topo II. At the moment we do not 
know if the discrepancy is due to either the different conden- 
sation mechanisms or the different protein composition in 
the nuclei used for these two studies. 

It was not clear if topo II has a structural role in the main- 
tenance of mitotic chromosomes from previous studies in 
vitro (Newport and Spann, 1987; Wood and Earnshaw, 
1990; Adachi et al., 1991). Adachi et al. (1991) argued in fa- 
vor of structural involvement of topo II based on their dosage 
experiment: a certain dose of topo II in an extract induced 
partial but not complete condensation even after longer incu- 
bation, leading to the suggestion that the reaction is not ex- 
clusively catalytic. Since we have found that topo II is indeed 
associated with mitotic chromosomes assembled in vitro, 
one would expect our condensation system to reflect a struc- 
tural requirement for topo II function. In principle, two types 
of structural requirement could be considered. Topo II may 
be required as part of an axial, scaffold structure, or alterna- 
tively it could play a more diffuse structural role in chromo- 
some condensation. We presented two lines of evidence to 
suggest that topo II does not play a scaffolding role in mi- 
totic chromosome organization in our system. First, once 
condensation is completed, inhibition of topo II activity has 
little effect on the morphology of condensed chromosomes. 
Second and more convincing evidence is that topo II mole- 
cules can be dissociated from mitotic chromosomes under 
mild conditions where the shape of chromosomes is well 
preserved and the condensation state is little altered, particu- 
larly along the length of the chromosomes. We obtained 
identical results using two different extraction procedures, 
either by increasing ionic strength or by adding a polyanion 
to assembly mixtures. All detectable topo II molecules were 
extracted in both conditions, whereas other chromosomal 
antigens recognized with a mAb MPM-2 remained as- 
sociated with a central axis of chromosomes. Although we 
cannot rule out the possibility that topo II also has a low level 
of MPM-2 epitope, the differential extraction pattern sug- 
gests that the predominant chromosomal MPM-2 antigens 
are distinct from topo II. 

Since one could argue that our analyses may not be sensi- 
tive enough to detect small, but significant amounts of topo 
lI remaining in the extracted chromosomes, it is important 
to estimate the stoichiometry of topo II in mitotic chromo- 
somes. Based ontheDNA concentration of sperm chromatin 
added into extracts and the amount of topo II coprecipitated 
with condensed chromosomes (as judged by quantitative im- 
munoblotting), we estimate that topo II/DNA ratio is 5-10 
kb per topo II dimer in the unextracted chromosomes. When 
extracted with extra 0.1 M NaC1, the amount of residual topo 
II was <2% of the unextracted control, thus giving a ratio 
of not less than 250-500 kb per topo II dimer. This value 
is far beyond the topo II level in isolated chromosomes (•50 
kb per topo 1I dimer; Gasser et al., 1986). 

Thus our data argue that while a chromosome scaffold may 
exist, topo II is not required for its structural maintenance 
in this system at least once condensation is completed. How- 

ever, we cannot rule out the possibility that topo II acts as 
a "loop fastener" in early stages of chromosome assembly. 
Our data do not address whether topo II plays a more diffuse 
structural role in maintaining condensation. When topo II 
was extracted, slight swelling always occurred, but we can- 
not tell whether this was due to extraction of topo II or some 
other chromosomal proteins. 

Factors Affecting Topo H Localization in Mitotic 
Chromosomes Assembled In Vitro 

Our immunofluorescence data showed uniform distribution 
of topo II on condensed chromosomes, but in particular ex- 
traction conditions residual topo II was found concentrated 
on a central axis (e.g., Figs. 7 A, f and 9 f ) .  Topo II may 
in fact have high affinity for the axial region of chromatin 
compared with peripheral regions. EtBr treatments of con- 
densed chromosomes suggested that changes of DNA topol- 
ogy potentially induce partial release or redistribution of 
topo II. A recent finding that topo II has high affinity for su- 
percoiled DNA by preferentially interacting with DNA cross- 
overs (Zechiedrich and Osheroff, 1990) may account for 
our observation. Since torsional stress of DNA introduced 
by intercalation of EtBr is removed by topo I present in the 
assembly mixtures, topologically relaxed chromatin loops 
become expanded and thus lose their affinity for topo II. In 
contrast, the axial chromatin may be relatively resistant to 
the treatment and maintains a high density of DNA cross- 
overs that provide high affinity binding sites for topo II. An- 
other factor that potentially affects topo II localization is 
copper ion, which has been used for the stabilization of the 
chromosome scaffold structure (Lewis and Laemmli, 1982). 
When mitotic chromosomes are incubated with 0.5 mM 
CuSO,, topo II was found concentrated on an axial region 
although the mechanism of this effect is not clear. We also 
found that several pretreatments of chromosomes affect the 
efficiency of topo II extraction with extra 0.1 M NaCI (Table 
I), but even in these conditions the level of residual topo II 
was <5 % of an unextracted control as judged by quantitative 
immunoblotting. It should be emphasized that all these treat- 
ments affecting the behavior of topo II, when applied before 
assembly, prevent chromosome condensation in our system 
(data not shown), and thus seem to be nonphysiological. 

In Vivo Chromosomes vs In Vitro Chromosomes 

Previous morphological and biochemical analyses of mitotic 
chromosomes isolated from somatic tissue culture cells sug- 
gested that topo II is an integral scaffold component required 
for the maintenance of mitotic chromosome structure (Earn- 
shaw et al., 1985; Gasser et al., 1986). Inconsistent with this 
notion, our results obtained from an in vitro assembly sys- 
tem have shown that topo II does not play a scaffolding role 
at least once condensation is completed. While it is not easy 
to reconcile the discrepancy of these studies at present, it 
will be important to clarify the potential differences between 
the two systems and to evaluate their characteristics care- 
fully. One important question is the extent to which chromo- 
some assembly achieved in Xenopus egg extracts strictly 
mimics that observed in somatic cells. It has been suggested 
that some chromosomal events in the early embryonic cell 
cycle may be significantly different from those in the somatic 
one. These include mechanisms of nucleosome assembly 
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and sequence requirements for initiation of DNA replication 

(reviewed by Laskey and Leno, 1990). Extensive morpho- 
logical and biochemical analyses will be required to answer 

this question and our results will be most relevant to em- 
bryonic chromosome structures. Despite this potential prob- 
lem, dissection of mitotic chromosomes assembled in vitro 
has a major advantage over the previous studies using chro- 

mosomes isolated from somatic cells. As demonstrated in 
this paper, we can manipulate "native" chromosomes in their 
assembly condition without any isolation and stabilization 
steps. In principle, any procedures for chromosome isolation 
may result in structural changes. Even colcemid treatment of 
mitotic cells can cause morphological changes of chromo- 

somes (reviewed by Rieder and Palazzo, 1992) and a 
relocalization of some chromosomal antigens (Earnshaw and 
Cooke, 1991; Compton et al., 1991; 1992). It should be 
noted that in previous studies topo II was localized on a cen- 
tral axis only when mitotic chromosomes were experimen- 
tally swollen or expanded (Earnshaw and Heck, 1985; Gas- 

ser et al., 1986). These studies, although they paid careful 
attention to maintaining a native state of chromosomes, 
should be re-evaluated because our data implies that even 
mild treatments potentially induce partial release or relocali- 
zation of topo II molecules in mitotic chromosomes. 

In conclusion, our in vitro system provides a complemen- 

tary approach to the conventional studies dissecting mitotic 
chromosomes isolated from somatic cells. Comparative 
evaluation of the results obtained from the two systems will 
contribute to our comprehensive understanding of mitotic 
chromosome structure and organization. 
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