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Abstract

Many cancer type-specific anticancer agents have been developed and significant advances have 
been made toward precision medicine in cancer treatment. However, traditional or non-specific 
anticancer drugs are still important for the treatment of many cancer patients whose cancers either 
do not respond to or have developed resistance to cancer-specific anticancer agents. DNA 
topoisomerases, especially type IIA topoisomerases, are proven therapeutic targets of anticancer 
and antibacterial drugs. Clinically successful topoisomerase-targeting anticancer drugs act through 
topoisomerase poisoning, which leads to replication fork arrest and double-strand break formation. 
Unfortunately, this unique mode of action is associated with the development of secondary cancers 
and cardiotoxicity. Structures of topoisomerase-drug-DNA ternary complexes have revealed the 
exact binding sites and mechanisms of topoisomerase poisons. Recent advances in the field have 
suggested a possibility of designing isoform-specific human topoisomerase II poisons, which may 
be developed as safer anticancer drugs. It may also be possible to design catalytic inhibitors of 
topoisomerases by targeting a certain inactive conformations of these enzymes. Furthermore, 
identification of various new bacterial topoisomerase inhibitors and regulatory proteins may 
inspire the discovery of novel human topoisomerase inhibitors. Thus, topoisomerases remain as 
important therapeutic targets of anticancer agents.

1. Introduction

DNA topoisomerases are responsible for DNA unlinking and these ubiquitous enzymes play 
critical roles in many biological processes involving DNA [1–7]. There are two types of 
DNA topoisomerases, type I and type II. Type I topoisomerases break one DNA strand of 
duplex DNA to allow either the passage of the other DNA strand through the break or the 
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rotation of downstream DNA duplex about the break, and then reseal the broken strand. As a 
result, they alter the linking number in steps of one [1–7]. There are three subtypes of type I 
topoisomerases: type IA, type IB, and type IC. Type IA topoisomerases require a nick or a 
single-stranded region to bind to DNA [8,9]. They cleave one strand of duplex DNA, 
covalently attach the active-site tyrosine to a 5′-phosphoryl group, and utilize the ‘strand 
passage’ mechanism to alter DNA topology [10,11]. In contrast, types IB and IC 
topoisomerases cleave one strand of duplex DNA, covalently attach its active-site tyrosine to 
a 3′-phosphoryl group, and utilize the ‘swivel’ mechanism to relax DNA supercoils [12]. 
Bacterial topoisomerase I (Top 1) and topoisomerase III (Top 3) are type IA topoisomerases. 
Eukaryotic Top 1 belongs to the type IB subtype, and topoisomerase V found in the archaeal 
genus Methanopyrus is, thus far, the only member of the type IC subtype [13]. It is 
noteworthy that type IB topoisomerases are found in some bacteria [14]. Type II 
topoisomerases alter the linking number in steps of two by breaking both DNA strands of 
duplex DNA [referred to as the ‘Gate (G)-segment’], passing another duplex DNA [referred 
to as the ‘Transfer (T)-segment’] through the break or the ‘DNA gate’, and then resealing the 
broken DNA strands [15–18]. Type II topoisomerases go through a series of large 
conformational changes when catalyzing the reaction by the ‘strand passage’ mechanism. 
When type II topoisomerases cleave two DNA strands, they form phosphotyrosyl bonds 
between the two active-site tyrosines and a pair of 5′-phosphates to ensure the integrity of 
DNA can be restored. There are two subtypes of type II topoisomerases, type IIA and type 
IIB. Topoisomerase VI belongs to the type IIB subtype [19], while all other type II 
topoisomerases belong to the type IIA subtype. Each subtype of topoisomerase is 
structurally and functionally conserved and forms a protein family [1–7].

Upon its discovery [20], DNA gyrase was identified as the cellular target of the coumarin 
and the quinolone antibacterial drugs [21–23]. Since then, DNA topoisomerases, especially 
type IIA topoisomerases, are recognized as therapeutic targets of many anticancer and 
antibacterial drugs [6, 24–31]. Several antibacterial agents, including fluoroquinolones, 
target the bacterial type IIA topoisomerases, DNA gyrase and topoisomerase IV (Top 4). 
Both human Top 1 (hTop 1) and the two isoforms of human topoisomerase II (hTop 2) are 
the cellular targets of clinically important anticancer drugs. A large number of small 
molecules have been identified as inhibitors of hTop 1 or hTop 2. Many of them have been 
tested in clinical trials, but only a few have enjoyed clinical success. Manipulation of 
enzyme activities to achieve therapeutic effects has been accomplished by the following 
mechanisms: (1) suppressing enzyme activity by catalytic inhibitors; (2) activating enzyme 
activity toward the bona fide or a surrogate substrate; (3) turning the enzyme into a 
poisonous agent that is toxic to cells. Interestingly, many clinically successful inhibitors of 
hTop 1 and hTop 2, as well as bacterial type IIA topoisomerase inhibitors, utilize mechanism 
3, which is often referred to as ‘topoisomerase poisoning’ [6, 24–31]. These topoisomerase 
poisons convert a topoisomerase into a cellular poison by trapping a covalent topoisomerase-
DNA catalytic intermediate as a topoisomerase-drug-DNA ternary complex. Topoisomerase 
poisoning is often caused by the inhibition of the religation reaction [32], which is also 
supported by the structural studies of topoisomerase-drug-DNA ternary complexes [33,34]. 
However, some topoisomerase poisons, including spontaneous DNA damage and 
fluoroquinolones, have reported to stimulate the strand breakage reaction [35–38]. Thus, 
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mechanism 2 appears to be used by some topoisomerase inhibitors to poison their target. 
Ternary complex formation triggers cytotoxic events, which include the inhibition of DNA 
replication, the generation of double-strand breaks (DSBs), and subsequent cell death [6, 
24–31]. The catalytic inhibitors of either hTop 1 or hTop 2 that utilize mechanism 1 have not 
seen much success in clinical applications. One possible explanation is that elevated levels 
of topoisomerases in cancer cells would reduce the efficacy of catalytic inhibitors. In 
contrast, elevated levels of topoisomerases would increase the potency of topoisomerase 
poisons [39]. We recently discovered novel quinolones that inhibit both hTop 1 and hTop 2 
without poisoning them [40]. These compounds exhibited promising in vitro and in vivo 
anticancer activities. Thus, catalytic inhibitors that are capable of inhibiting multiple human 
topoisomerases may be developed as potent anticancer drugs [27,30]. The development of 
enzyme activity modulators can benefit from a detailed understanding of the catalytic 
mechanisms of the target enzymes. For topoisomerases, structural biology has proven 
particularly helpful in elucidating not only the enzymes’ catalytic mechanisms [1,3,6,41], 
but also validating the actions of clinically important drugs that specifically target these 
essential enzymes [33,34,42–44].

New bacterial topoisomerase inhibitors (NBTIs) [45,46], as well as toxins and regulatory 
proteins that target DNA gyrase [26], are also described in this review because their novel 
binding sites and modes of action to modulate the activities of bacterial type IIA 
topoisomerases may inspire the discovery of new anticancer drugs that act on hTop 2. In 
addition to the α and β form of hTop 2 (hTop 2α and hTop 2β), type IIA topoisomerases, 
and two type IB topoisomerases found in the nucleus (hTop 1) and mitochondria (mTop 1), 
human cells also have two isoforms of Top 3 (hTop 3α and hTop 3β), type IA 
topoisomerases [1–7]. However, no inhibitor of human Top 3 has been reported. Thus, we 
excluded type IA topoisomerases from this review. Our review focuses on recent structural 
studies of topoisomerase-drug-DNA ternary complexes that have advanced our 
understanding of the molecular basis of topoisomerase poisoning. Thus, we would like to 
refer readers to other outstanding reviews on topoisomerases [such as 1–7,41] and 
topoisomerase inhibitors [such as 24–30,44,45] for comprehensive overviews of the many 
essential studies that have broadened our understanding of the cellular functions and 
catalytic mechanisms of topoisomerases, as well as topoisomerase-targeting anticancer drugs 
in discovery and development stages. We apologize to the many colleagues whose work is 
only briefly discussed or excluded due to space limitations.

2. Cellular functions of topoisomerases

(1) Type IB topoisomerases

The swivel function of eukaryotic Top 1 is essential for removing DNA superhelical tension 
that arises during both DNA replication and transcription [47–52]. Interestingly, Top 1, but 
not its catalytic activity, is required for activation of transcription [49,50,53]; however, the 
topoisomerase activity of Top 2β is required for transcription [54,55]. In human cells, 
activities of hTop 1 and RNA polymerase II are coupled [56]. Studies on the effect of 
camptothecin, a Top 1 poison, have demonstrated that efficient expression of long genes 
requires both Top 1 and Top 2β [57–59].
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mTop I is the only topoisomerase exclusively targeted to mitochondria [60]. However, a long 
Top 3α isoform produced by an alternative, upstream translation initiation site [61], as well 
as Top 2α and Top 2β, have also been found in mitochondria [62,63]. mTop 1 plays critical 
roles in transcription and DNA replication of circular mitochondrial DNA [64,65]. Although 
cells manage to survive in the absence of mTop 1, loss of mTop 1 severely affects 
mitochondrial integrity and energy metabolism, [66,67]; however, the presence of Top 3α in 
mitochondria likely contributes to this survival [61,63,68].

(2) Type IIA topoisomerases

DNA gyrase is the only topoisomerase that is capable of introducing negative supercoils [1–
7], while Top 4 is primarily responsible for decatenating daughter chromosomes [69–71]. 
Bacterial chromosome is kept at a certain negative superhelicity by the balance between the 
relaxation activity of Top 1 and the supercoiling activity of DNA gyrase [72]. Lower 
eukaryotes have one type IIA topoisomerase, Top 2, whose structure (note that Top 4 and 
Top 2 differ in their C-terminal domains) and function are similar to that of Top 4 [1–7, 41]. 
One distinct difference between bacterial and eukaryotic type IIA topoisomerases is that 
bacterial enzymes are A2B2 heterotetramers, whereas eukaryotic enzymes are homodimers. 
Bacterial type IIA topoisomerases have been shown to maintain activity when the two 
subunits are fused into a single peptide [73,74]. Thus, a heterotetrameric type II 
topoisomerase can be converted into a homodimeric type II topoisomerase by gene fusion.

Unlike lower eukaryotes, mammals have two isoforms of Top 2, Top 2α and Top 2β [75,76]. 
These isoforms share roughly 70% amino acid sequence similarity and exhibit similar 
catalytic activities, but they have distinct cellular functions [1–7]. Top 2α is required for 
DNA replication and chromosome segregation [77–80], and its expression is significantly 
elevated in proliferating and cancer cells [81–84]. Thus, hTop 2α serves as a biomarker for 
some cancers. In contrast, Top 2β plays critical roles in transcription in normal mitotic and 
postmitotic cells, as well as in cancer cells [54,55,81]. In addition, it is also required for 
development and the survival of some neural cells [85–87].

3. Structural studies of topoisomerases

(1) Type IB topoisomerases

Compared to relaxed DNA that is in the lowest energy conformation, both positively and 
negatively supercoiled DNA molecules are in higher energy states due to the existence of 
torsional strains in these structures. In a simple three-step process that does not require 
additional input of energy, type IB topoisomerases effectively harvest the free energy stored 
as DNA supercoils to return these energetically strained DNA molecules to their relaxed 
forms [1–3,6]. This relaxation reaction starts with the catalytic tyrosine-mediated 
nucleophilic attack on a scissile phosphodiester bond in a DNA duplex, which results in the 
formation of a transient single-strand break composed of a 3′-linked phosphotyrosyl bond 
and freed 5′-OH [88–94]. The tension resulting from DNA supercoiling can be dissipated 
via rotation of the DNA molecule about the break (Fig. 1). Finally, the cleaved 
phosphodiester bond is resealed and the catalytic tyrosine is regenerated, resetting the 
enzyme for the next relaxation event.
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Structural analyses of hTop 1 in covalent and noncovalent complexes with DNA suggested 
that the postulated DNA rotation during the catalytic cycle is likely achieved via a 
“controlled rotation mechanism” [89,95,96]. Briefly, the catalytic core of type IB 
topoisomerases is composed of a Cap domain and a catalytic (CAT) domain, which was first 
observed in tyrosine recombinases [88,97], and these two domains clamp around the DNA 
duplex upstream to the cleavage site. The DNA upstream of the single-strand break is tightly 
bound through several protein–DNA interactions between the core of Top 1 and DNA, 
primarily to the phosphate backbone of the DNA, and is thus unable to rotate. In contrast, 
the DNA downstream of the break is only loosely held by the nose cone of the Cap domain 
and linker regions of CAT domain. Conceivably, this weak protein-DNA interface can be 
easily ruptured by the stored superhelical tension, and the downstream DNA can then rotate 
about the cleavage site by one or more turns until all torsional strains are released or the 
break is resealed. Given the limited number of DNA-interacting residues, it appears to be 
difficult for the enzyme to capture the downstream DNA in the presence of high superhelical 
tension. Nevertheless, this interface may be re-established at lower superhelical density, 
which halts the rotating DNA and places the 5′-OH in a favorable position for engaging in 
the religation reaction [90,98,99]. The rotation and orientation of downstream DNA is 
‘controlled’ by the enzyme, as opposed to random rotation, which would complicate the 
religation reaction [89].

Types IA, IB, and IIA topoisomerases have distinct requirements of Mg2+ for their catalytic 
activities [100–104]. Structural analysis of the enzyme-DNA covalent complex revealed why 
type IB topoisomerases do not require a divalent cation for their activity [88]. The 
transesterification reaction catalyzed by topoisomerases is known to proceed through a high-
energy bipyramidal transition state in which two oxyanions are attached to the pentavalent 
phosphorus. Unlike types IA and IIA topoisomerases, which utilize Mg2+ as an essential 
cofactor for electrostatic stabilization of the transition state [100–102], type IB 
topoisomerases and members of the tyrosine recombinase family employ positively charged 
Arg and Lys residues for this purpose [88,97,105].

(2) Type IIA topoisomerases

Even before the first crystallographic visualization of type IIA topoisomerases was available 
[18,106,107], a series of elegant biochemical studies had established that type II 
topoisomerases change the linking number of DNA through a ‘two-gate’ mechanism [108–
112]. According to this mechanism (Fig. 2) [1–6,41], the catalytic cycle of type IIA 
topoisomerases starts from the binding of the G-segment DNA to the enzyme, a process 
corresponding to the assembly of the so-called ‘DNA gate’ [44,113]. The formation of such 
a topoisomerase-DNA binary complex allows both strands of the G-segment to be cleaved 
via Mg2+-dependent transesterification reactions occurring between the catalytic tyrosine 
residues and the DNA backbone’s phosphodiester bonds [113–115], which introduces a 
reversible DSB into the G-segment. When a DSB is formed, the DNA backbones are 
unlocked and the two halves of the G-segment can move apart from each other. This 
potentiates the DNA gate to enter an open state in which the gap between cleaved DNA ends 
is spacious enough for the T-segment to be passed through. The incoming T-segment 
approaches the DNA gate by going through the entry gate located on one end of a type IIA 
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topoisomerase (the N-terminal end of eukaryotic Top 2) and moving along the DNA-
conducting path that is used by the G-segment to reach its binding surface. After passing 
through the DNA gate, the T-segment is directed toward, and eventually released from, the 
exit gate at the other end of the topoisomerase (the C-terminal end for eukaryotic Top 2) [1–
6,41]. This unidirectional DNA transport mode is referred to as being ‘two-gated’ because 
the entry and exit of T-segment is mediated via two distinct protein gates of type IIA 
topoisomerases.

A more detailed depiction of the catalytic mechanisms of type IIA topoisomerases would 
require the following aspects to be addressed in structural terms: (1) the enzyme’s overall 
architecture and spatial domain organization; (2) the assembly of a protein-linked DNA gate; 
(3) strand breakage of the bound G-segment to unlock the DNA backbones; (4) capture of 
the T-segment; (5) conformational changes associated with the DNA gate; (6) release of the 
T-segment and resealing of the cleaved G-segment; and (7) resetting the enzyme 
conformation for the next catalytic cycle. Thanks to a large number of crystal structures 
obtained for various fragments of type IIA topoisomerases and two catalytically competent 
type IIA topoisomerases, which represent structural snapshots of different regions of type 
IIA topoisomerases at distinct stages of the catalytic cycle, we have obtained valuable 
insights into each of these steps [1,3,6,41].

All type IIA topoisomerases exhibit a two-fold symmetric architecture with the constituting 
domains appearing in pairs [1,3,6,41]. The entry gate is formed by two GHKL ATPase 
domains [116], which are known to dimerize upon ATP-binding, but dissociate in the 
nucleotide-free state [106,108,117,118]. With gate closure and opening being controlled by 
ATP, the gate appears to act as a nucleotide-operated protein clamp suitable for T-segment 
capture. Structural analyses revealed that each nucleotide binding pocket is formed by 
elements from both ATPase domains; ATP would thus promote dimerization by ‘gluing’ the 
two domains together [106,108,117,118]. Although each type IIA topoisomerase possesses 
two structurally equivalent ATP binding sites, it has been shown that one ATP is sufficient to 
lock the entry gate in the closed state [119–123]. This finding suggests that, once closed, the 
entry gate would not re-open until the end of the catalytic cycle when both bound ATP 
molecules are hydrolyzed (Fig. 2).

The DNA gate is compositely formed by a type IIA topoisomerase and G-segment DNA. 
The protein part of the DNA gate is composed of two copies of each of the following 
domains: the topoisomerase-primase (Toprim) domain, winged-helix domain (WHD), and a 
so-called ‘tower’ domain [124]. The Toprim domain adopts a Rossmann-like fold and 
contains a Mg2+-coordinating DXD motif that is essential for the transesterification reaction 
[125]. The WHD domain is central to type II topoisomerase functions by harboring a helix-
turn-helix DNA-binding motif and the catalytic tyrosine residue [18,126]. The tower domain 
provides additional DNA-binding residues and is an integral part of the DNA gate [124,127]. 
Crystal structures of the DNA gate in its closed state revealed that all these domains 
contribute to the formation of a G-segment binding groove, with the WHD domains at the 
bottom and the Toprim and tower domains lining the sides [44,122–124,127–129]. The 
bound G-segment is primarily anchored by interacting with the helix-turn-helix motifs of the 
WHD domains and is bent into a U-shape by a pair of conserved isoleucine residues that 
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intercalate into DNA at sites 12 base pairs apart [126]. Basic residues from the tower 
domains interact with the DNA backbone, presumably to stabilize the bent conformation of 
the G-segment. The DNA duplex enclosed within the two intercalating residues is distorted 
toward the A-form, which likely places the scissile phosphodiester bonds, the active site 
tyrosine residues, and the catalytic Mg2+ ions at an optimal orientation for engaging in the 
transesterification reactions [44,123,124,129]. A structural feature unique to the DNA gate is 
that, to perform strand breakage and religation reactions, the catalytic tyrosine of one 
subunit must team up with the Mg2+ presented by the Toprim domain of the opposing 
subunit [44,123,124,127–129]. Therefore, closure of the DNA gate is a prerequisite for the 
phosphotyrosyl bond to be reactive, and the decoupling between these two catalytic modules 
would protect the covalent tether from being attacked by nucleophiles present in the vicinity.

The exit gate corresponds to the C-terminal dimerization interface that is usually observed in 
the closed state [33,42–44,113,123,128,129]. It is expected that the opening of exit gate 
would be a transient event during the catalytic cycle and the conformational equilibrium 
associated with the gate should be biased toward the closed form, because premature gate 
opening would significantly alter the overall architecture of a type IIA topoisomerase and 
may prevent the cleaved G-segment from being religated. Nevertheless, opening of the exit 
gate has been visualized by crystallography in the absence of a T-segment [34,124,127].

The structures of a fully active type IIA topoisomerase showed that the DNA gate is 
sandwiched between the entry and exit gates, an arrangement that agrees fully with the 
proposed two-gate mechanism [113,129]. In addition, a cavity is observed on each side of 
the DNA gate, suggesting that the T-segment may be temporarily held within the enzyme 
during its transportation. These structures also revealed that the DNA gate is connected to 
the entry and exit gates via the transducer domains and coiled-coil regions, respectively 
[113,129]. These bridging elements are thought to mediate allosteric communications 
between the gates. For example, the conformational changes induced by ATP hydrolysis 
may alter the structure of a DNA gate via the rearrangement of the transducer domain. Also 
it has been shown that conformations of the DNA and exit gate may be coupled by adjusting 
the kink of the coiled-coil region. However, more conformational states of type IIA 
topoisomerases, such as the opening of DNA gate, would be required to understand how the 
opening and closing of these gates are coordinated.

4. Mechanisms of type IB topoisomerase poisoning

hTop 1 is the cellular target of the quinoline alkaloid camptothecin and its clinically active 
derivatives, topotecan and irinotecan (Fig. 1) [130–133]. Similar to Top 2 poisons, these 
drugs trap the Top 1-DNA covalent complex and convert the enzyme into a cytotoxic 
covalently-linked protein adduct on DNA [6,28,30], which causes the inhibition of DNA 
replication and the generation of a DSB [134,135]. Crystal structures of the camptothecin 
and topotecan-bound enzyme-DNA covalent complexes revealed the intercalation of a drug 
molecule between the cleaved DNA ends [136,137]. Specifically, the A~D rings of the 
pentacyclic drug stack against base pairs flanking the strand breakage site, and the quinoline 
nitrogen of B-ring and polar/charged groups of E-ring form hydrogen bonds or salt bridges 
with nearby amino acid residues. It has been demonstrated that the E-ring exists in 
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equilibrium between lactone (closed-ring) and carboxylate (open-ring) forms under 
physiological condition [138]. Given that E-ring is not involved in base-stacking 
interactions, and that both forms can be modeled equally well into the electron density of 
topotecan to provide favorable protein-drug interactions, it appears that opening and closure 
of the E-ring does not alter the drug’s efficacy [139,140]. The strand breakage site-specific 
drug binding physically blocks the religation reaction [136,137]. The Top 1-catalyzed 
relaxation reaction is also impaired [141] because the stacking interactions between the 
bound drug and 5′-base pair about the scissile phosphate would increase the threshold 
energy for the downstream DNA to rotate.

The anticancer agents indolocarbazoles and indenoisoquinolines also act as hTop 1 poisons 
[142–147]. Structural analysis showed that the planar polycyclic cores of these compounds 
intercalate at the strand breakage site, resembling the binding mode of camptothecin [148]. 
The branching moieties, on the other hand, form distinctive and chemotype-specific protein-
drug interactions. Collectively, the observed changes in protein structure and drug-
interacting amino acid residues in response to different drugs revealed the landscape and 
flexibility of the drug-binding pockets. This information should facilitate the development of 
new type IB topoisomerase poisons. Interestingly, no catalytic inhibitor of type IB 
topoisomerases has been reported thus far. The structure of hTop 1 in complex with a DNA 
duplex containing an 8-oxoG lesion suggests the enzyme may adopt an inactive 
conformation in which the catalytic tyrosine bends away from the active site [149]. Any 
compounds that bind and stabilize this conformational state of hTop 1 may act as effective 
catalytic inhibitors. However, the clinical relevance of developing such Top 1 inhibitors has 
remained to be elucidated.

5. hTop 1-targetting anticancer drugs

Camptothecin (Fig. 3) is a plant alkaloid that poisons hTop 1 [130–133]. Clinical 
development of camptothecin was discontinued because of its intolerable adverse effects and 
low therapeutic index [150–152]. However, derivatives of camptothecin, topotecan and 
irinotecan (Fig. 3), are currently used in the clinic [153–155]. Unfortunately, their clinical 
use is limited due to their dose-limiting toxicity, especially neutropenia, myelosuppression, 
and diarrhea [156–161], as well as chemical instability due to the rapid opening of the E-
ring [162–164]. mTop 1 is inhibited by camptothecins [60] and mTop 1 can be targeted by 
topotecan, but not by camptothecin, in vivo [165,166]. It is not clear, however, if the effect 
of camptothecins on mTop 1 contribute to the anticancer activities of these drugs.

(1) Camptothecins

a. Topotecan—Topotecan (Hycamtin) (Fig. 3) is a semi-synthetic water-soluble 
derivative of camptothecin [167]. It was the first hTop 1 inhibitor approved for oral 
administration [168,169]. It is often used to treat ovarian and small cell lung cancer [153–
155,169].

b. Irinotecan—Irinotecan (CPT-11, Campostar) (Fig. 3) is another water-soluble 
derivative of camptothecin [170,171]. It is a prodrug and is converted to a biologically active 
metabolite, ethyl-10-hydroxy-camptothecin (SN-38), by a carboxylesterase [172,173]. 
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Irinotecan, together with fluorouracil, is often used for the treatment of advanced colorectal 
cancer [153–155,174].

(2) Non-camptothecins

Camptothecins are the only hTop1 inhibitors approved for clinical use. Despite their 
effectiveness, these drugs have limitations due to their instability and severe side effects, as 
well as drug resistance caused by P-glycoprotein [175,176]. To overcome these limitations, 
non-camptothecin hTop 1 inhibitors have been developed and investigated [177–180]. 
Among them, indolocarbazoles (NB-506) [142–144], indenoisoquinolines [145–147], and 
dibenzonaphthyridinones (ARC-111) [181–183] are under clinical development.

a. Indolocarbazoles—Indolocarbozoles are synthetic analogs of antibiotics isolated 
from several actinomycetes [184]. NB-506 is a DNA intercaltor that can poison hTop 1 
[142,143]. NB-506 and camptothecins share the binding site on hTop 1 but hTop 1 is not the 
only target of NB-506 [185]. Edotecarin (J-107088) is a derivative of NB-506 that does not 
intercalate into DNA [144]. Similar to NB-506, it poisons hTop 1 but its effect on an 
unidentified target(s) also contributes to its promising anticancer activity [144].

b. Indenoisoquinolines—Indenoisoquinolines are synthetic non-camptothecin analogs 
that poison hTop 1. Since the first indenoisoquinline, NSC 314622, was reported in 1978, 
many derivatives have been synthesized and tested for anticancer activity [186]. A Phase 1 
clinical study of indotecan (LMP400) and indimitecan (LMP776) in adults with relapsed 
solid tumors and lymphomas was recently completed although study results have not been 
published [187].

c. Dibenzonaphthyridinones—ARC-111 was selected among 
dibenzonaphthyridinones for preclinical studies of its anticancer activity [181–183]. More 
recently, Genz-644282 has been the subject of both preclinical and clinical studies 
[188,189].

6. Mechanisms of type IIA topoisomerase poisoning and inhibition

The ability of type IIA topoisomerases to adopt a spectrum of conformational states is 
consistent with the notion that these enzymes must undergo extensive structural 
rearrangement during the course of strand passage (Fig. 2). In theory, modulating the activity 
of topoisomerases can be achieved by trapping them in any of these conformational states. 
However, two modes of action are utilized most successfully by type IIA topoisomerase 
inhibitors: (1) trapping of a cleavage complex by topoisomerase poisons or toxins and (2) 
inhibition of ATPase activity that leads to the blockage of enzyme turnover. Structural 
analyses of type IIA enzymes bound to topoisomerase poisons, toxins, or catalytic inhibitors 
have revealed their mechanisms of action. The mechanisms utilized by bacterial type IIA 
topoisomerase inhibitors may provide useful insights to the development of novel anticancer 
agents that target hTop 2.
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(1) Type IIA topoisomerase poisons

Several type IIA topoisomerase poisons are used successfully in the clinic as anticancer and 
antibacterial drugs (Fig. 3) [6, 24–31]. These drugs stabilize cleavage complexes that contain 
a DSB. Structural analysis of the catalytic core (the 55-kDa DNA breakage-reunion domain 
of the ParC subunit plus the 30-kDa Toprim domain of the ParE subunit) of Streptococcus 
pneumoniae Top 4 complexed with DNA and fluoroquinolones (including moxifloxacin, 
clinafloxacin, and levofloxacin) provided the first visualization of drug-stabilized type IIA 
topoisomerase cleavage complexes [33]. These structures, although determined at sub-
optimal resolution (~4 Å), revealed that two fluoroquinolone molecules intercalated four-
base pairs apart at the sites of strand breakage and are stacked against the flanking +1/+4 
and −1/+5 base pairs [33]. The intercalated fluoroquinolone molecules physically prevent 
the 3′-OH from approaching the enzyme-linked 5′-phosphate and block religation of the 
broken DNA strands, which effectively trap cleavage complexes that contain a DSB. Thus, 
the strand breakage site-specific drug insertion provides a basis for topoisomerase poisoning 
by quinolones. In addition, the quinolone-stabilized cleavage complex is in a closed 
conformational state where the two halves of the cleaved DNA strands are tethered by base 
paring formed between the two cohesive ends [33]. Transition of a cleavage complex from a 
closed conformational state to an open conformational state is expected to be suppressed by 
the bound drug molecules; opening of the DNA-gate would disrupt the stacking between 
quinolone molecules and DNA bases, and expose the aromatic quinolone core to solvent. 
The interactions formed between amino acid residues and fluoroquinolone molecules in 
ternary complexes are not defined clearly because of the limited resolution. Nevertheless, the 
general vicinity of the quinolone-binding pocket matches with the quinolone resistance-
determining region [190,191].

Although this initial set of structures of the quinolone-stabilized cleavage complex were 
determined at lower resolution [33], the key structural observations described above, 
including the intercalation of drug molecules at strand breakage sites and the cleavage 
complex being observed in the closed conformation, agree with subsequent high resolution 
structures [34,44,191–195]. A clearer picture of the exact mechanism of quinolone-
topoisomerase interaction came from the higher resolution structures of the Acinetobacter 
baumannii Top 4 cleavage complexes stabilized by levofloxacin and moxifloxacin [34]. 
Importantly, the A. baumannii Top 4 structure revealed the chelation of a Mg2+ molecule by 
the C-3, C-4 diketo moiety of moxifloxacin (Fig. 3), an observation consistent with the 
involvement of Mg2+ in quinolone function [196,197]. Moreover, two conserved amino acid 
residues, Ser-84 and Glu88, located on helix α4 of the WHD domain form hydrogen bonds 
with the Mg2+-coordinating water molecules. This Mg2+-water bridge between the C-3, C-4 
diketo moiety of floroquinolones and the conserved serine and glutamate/aspartate residues 
in the WHD domain of the GyrA/ParC subunit appears to be the only direct interaction 
between a fluoroquinolone and a topoisomerase [34,193]. Two conserved amino acid 
residues that correspond to Ser-83 and Asp-87 of E. coli GyrA are hot spots for quinolone-
resistant mutations [26,198]. Thus, the presence of the Mg2+-water bridge also provides the 
molecular basis for the quinolone resistance conferred by amino acid substitutions at these 
location [29,34].
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The crystal structures of drug-stabilized cleavage complexes of hTop 2α and hTop 2β 
showed that the Top 2-targeting anticancer drugs and the antibacterial quinolones most likely 
act in a similar manner [42,43]. The tetracyclic aglycone core of etoposide (Fig. 3), the 
tricyclic dihydroxy-anthraquinone moiety of mitoxantrone (Fig. 3), and the tricyclic acridine 
moiety of m-AMSA (Fig. 3) were observed to intercalate between the base pairs that flank 
the strand breakage sites, which prevents the religation of cleaved DNA strands. The 
interactions formed between the topoisomerase and each drug may explain the drug’s 
specificity toward Top 2-mediated DNA breaks. Notably, a loop region and several residues 
involved in drug-binding were found to display extraordinary conformational flexibility, 
which reveals why the cleavage complexes formed with either hTop 2α or hTop 2β can be 
targeted by drugs with structurally distinct protein-interacting moieties (namely, the E-ring 
and glycosidic group of etoposide, the hydroxylalkylamino arms of mitoxantrone, and the 
methanesulfon-m-anisidide group of m-AMSA). The majority of the drug-interacting 
residues are conserved between hTop 2α and hTop 2β, consistent with the finding that both 
isoforms are the cellular targets of these drugs [24,25,27,28,30]. It is worth noting that the 
co-crystallization approach had been applied successfully to the structural analyses of 
etoposide- and mitoxantrone-bound cleavage complexes of hTop 2α [199], thus the obtained 
crystal structures of m-AMSA- and mitoxantrone-bound cleavage complexes of hTop 2β are 
expected to be functionally relevant. In contrast, the crystal structure of doxorubicin-bound 
cleavage complex was only determined using a post-crystallization drug-replacement 
procedure, and therefore the functional significance of this structure has remained to be 
elucidated [43].

To develop antibacterial drugs, it is preferable that one compound can target both DNA 
gyrase and Top 4. Dual targeting of DNA gyrase and Top 4 may increase the potency and 
reduce the appearance of drug resistance [200,201]. However, the accumulation of hTop 2β-
induced DNA breaks are associated with deleterious chromosome translocation and 
rearrangement events, resulting in frequent occurrence of therapy-related leukemia 
[202,203]. Therefore, it would be clinically desirable to have an anticancer drug that 
preferentially targets hTop 2α. Structural studies revealed the presence of an hTop 2α-
specific methionine residue that may be exploitable for this purpose [124,199]. Given the 
reactivity of methionine toward platinum(II) and the recent finding that the formation of a 
single coordination bond between methionine and platinum(II) can irreversibly trap the 
cleavage complexes formed by hTop 2α and 2β [199], the development of isoform-selective 
drug may be achieved by targeting this hTop 2α-specific methionine.

(2) NBTIs and allosteric modulators

In addition to type IIA topoisomerase poisons described in the previous section, new classes 
of small molecules with potent antibacterial activities have been identified as NBTIs in 
recent years [191,204–206]. GlaxoSmithKline has also reported a series of cyclohexyl-
amides, amino-piperidines, and tricyclic compounds as NBTIs [206–210]. Among them, 
Gepotidacin (originally GSK2140944 [211,212]), an analog of GSK299423 (Fig. 3), and 
AZD0914 [213–215], an analog of quinoline pyrimidine trione-1 (QPT-1), are in clinical 
trials.
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Structures of GSK299423- and QPT-1-stabilized DNA gyrase cleavage complexes have been 
reported [191,192]. Two QPT-1 molecules bind to the same sites in the cleaved DNA as 
moxifloxacin in a ternary complex although the interaction of QPT-1 with DNA gyrase is 
completely different from that of moxifloxacin with DNA gyrase. As described in the 
previous section, fluoroquinolones interact with the conserved amino acid residues in the 
WHD domain of the GyrA/ParC subunit. In contrast, QPT-1 interacts with the conserved 
amino acid residues in the Toprim domain of the GyrB/ParE subunit [192], which may 
explain the activity of QPT-1 against fluoroquinolone-resistant strains of bacteria [216].

The GSK299423-stabilized, DNA gyrase cleavage complex has revealed a novel binding site 
utilized by this class of NBTI [191]. GSK299423 inserts its planar quinolone-carbonitrile 
moiety between the central (+2/+3 and +3/+2) base pairs enclosed by the strand breakage 
sites and the oxathiolo-pyridine group into a hydrophobic pocket formed by surrounding 
amino acid residues. It induces the formation of ternary complexes containing a single-
strand DNA break, not a DSB [191]. Notably, this NBTI binding site falls on the dyad axis 
of the enzyme, suggesting that one type IIA topoisomerase-DNA complex can accommodate 
just one drug molecule (Fig. 4), in contrast to the binding of two drug molecules per 
cleavage complex for fluoroquinolones and QPT-1, as well as etoposide [192]. Upon the 
binding of an NBTI, the two cohesive DNA ends can no longer slide against one another. 
Thus, a single molecule can effectively lock the enzyme-DNA complex in its closed 
conformation [191]. As was the case with topoisomerase-fluoroquinolone-DNA ternary 
complexes [217], topoisomerase-NBTI-DNA ternary complexes could arrest replication fork 
progression in vitro [31].

A more recent work by GlaxoSmithKline has led to the discovery of thiophene antibacterials 
(Fig. 3) that are capable of inhibiting DNA gyrase via stabilization of the cleavage complex 
[218]. Co-crystallization of these novel inhibitors with DNA gyrase and DNA has revealed 
that this new class of compounds binds to a previously unrecognized pocket formed between 
the Toprim and WHD domains, away from the bound G-segment DNA which harbors the 
bindings sites of other Top 2 poisons described above. A major incentive for developing new 
compounds against bacterial type IIA topoisomerases is to overcome the growing resistance 
to quinolone antibacterial agents. In this regard, the development of NBTIs, including 
thiophene antibacterials, whose binding pockets are distinct and non-overlapping with the 
quinolones [218], may provide a new approach to conquering quinolone resistance and also 
inspire the discovery of novel hTop 2 poisons. Interestingly, the thiophene compound-bound 
structures of DNA gyrase-DNA complex were obtained in the presence of GSK945237 (Fig. 
3), indicating that these two distinct classes of NBTIs target the same conformational state 
of the enzyme-DNA complex and may act synergistically [218].

(3) Toxins and regulatory proteins

The catalytic activities of type IIA topoisomerases are modulated through their interactions 
with various proteins. Several toxins and regulatory proteins that target DNA gyrase have 
been identified and characterized in bacteria [26,219,220]. An effective approach for 
blocking type IIA topoisomerase function is to prevent type IIA topoisomerases from 
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binding to the G-segment DNA. Two types of proteins have been identified that act in this 
manner.

The pentapeptide repeat protein family has over 500 members [219,221]. Although the 
majority of them are found in bacteria, they are also found in Arabidopsis, zebrafish, mouse, 
and humans. MfpA and Qnr adopt a quadrilateral β-helix fold, with overall dimensions and 
distribution of negatively charged groups on their protein surface markedly resembling 
features of B-form DNA [222–225]. Biochemical and structural studies suggest that these 
DNA-mimicking proteins may interact with the primary DNA-binding groove of DNA 
gyrase (and perhaps Top 4), thereby blocking the binding of the G-segment (Fig. 4). Since 
the antibacterial activity of fluoroquinolones relies on the formation of gyrase-
fluoroquinolone-DNA ternary complexes, the expression of either MfpA or Qnr antagonizes 
the actions of fluoroquinolones and, thus, may contributes to antibiotic resistance [220]. 
Despite the supposedly tight association between MfpA/Qnr and gyrase (Kd in the low μM 
to nM range), no structures of MfpA/Qnr-gyrase complexes are available. Therefore, it 
remains unclear how the binding specificity is defined to ensure the assembly of these 
inhibitory complexes in vivo, especially given the high local concentration of DNA and the 
presence of other DNA-mimicking proteins in cells. Identification of MfpB, a GTPase that 
modulates MfpA action and quinolone resistance [226], indicates that additional factors may 
regulate pentapeptide repeat protein function.

The chromosome-encoded and zinc-finger containing protein YacG is another bacterial type 
IIA topoisomerase regulator that inhibits DNA gyrase by interfering with the binding of the 
G-segment [227,228]. Rather than mimicking B-DNA and competing with the G-segment 
for the primary DNA binding groove of gyrase, a crystal structure of the YacG-DNA gyrase 
complex revealed that the zinc-finger of YacG interacts with the Toprim domain (Fig. 4) and 
protrudes into the G-segment-binding groove, thus occluding the binding of the G-segment 
[228]. Moreover, the C-terminal tail of YacG fits into a hydrophobic pocket on the surface of 
GyrB that is also targeted by the oxathiolo-pyridine group of NBTIs [191], which further 
stabilizes the inhibitory complex.

Simocyclinones, such as simocyclinone D8, are antibiotics that contain an aminocoumarin 
moiety [229,230]. The aminocoumarin antibiotics are known to be ATPase inhibitors of type 
IIA topoisomerases [26,27]. Although simocyclinone D8 can bind to the GyrB subunit of 
gyrase [231], it binds primarily to the GyrA subunit of gyrase (Fig. 4) [232–234]. As a 
result, this small molecule is capable of inhibiting the supercoiling activity of gyrase by 
preventing gyrase from binding to DNA, rather than by inhibiting the ATPase activity of 
gyrase [232]. Simocyclinone D8 also exhibits modest activities against Top 4 and hTop 2 
[235–237].

Blocking the transportation of the T-segment by the F plasmid-encoded protein CcdB 
represents another mechanism of gyrase inhibition [238,239]. Structural studies indicated 
that CcdB binds to the large cavity enclosed by the two GyrA subunits by interacting with 
cavity-facing residues from the C-gate region of gyrase (Fig. 4) [240]. Since this cavity 
serves as a temporary storage for the T-segment DNA before its exit through the C-gate, the 
presence of CcdB would render gyrase inactive. Structural modeling further suggested that 
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CcdB cannot be accommodated in the cavity if the cleavage complex adopts the closed 
conformation, a state essential for resealing the cleaved DNA [240]. Hence, CcdB-binding 
would promote the formation of a DSB [241].

(4) ATPase inhibitors

The transfer of the T-segment by a type II topoisomerase is driven by the conformational 
rearrangement of the GHKL ATPase domain in response to ATP binding and hydrolysis 
[121–123,127,128]. Therefore, inactivation of a type II topoisomerase can be achieved by 
restricting the nucleotide-dependent structural changes or inhibiting ATPase activity. Small 
molecules useful for both purposes have been identified [242,243]. The bisdioxopiperazines, 
such as ICRF-187 (dexrazoxane) (Fig. 3), inhibit eukaryotic Top 2 by arresting the two 
ATPase domains in the ATP-bound, dimerized form, effectively locking the entry gate in its 
closed state (Fig. 4) [244–247]. Since neither the G- nor T-segment is able to go through the 
entry gate in the presence of ICRF-187, this compound not only renders Top 2 inactive but 
also compromises the action of Top 2 poisons by suppressing the production of 
topoisomerase-induced DNA breaks [248]. Given that ICRF-187 on its own does not exhibit 
appreciable affinity toward the ATPase domain, it appears that the ATP-induced closure of 
the entry gate is required prior to the binding of ICRF-187. Indeed, structural analysis 
performed on the ATPase domain of yeast Top 2 revealed that a single ICRF-187 bound at 
the dimer interface without overlapping the ATP binding pockets [116]. Importantly, a 
glutamine residue that interacts with the γ-phosphate of ATP, and has been implicated in 
ATP hydrolysis, also forms hydrogen bonds with ICRF-187. This observation suggests that 
ICRF-187 may restrict the movement of residues involved in ATP hydrolysis and explains 
the compound’s ability to inhibit ATPase activity. Interestingly, while the closed entry gate is 
structurally two-fold symmetric, ICRF-187 (Fig. 3) is an asymmetric molecule with only 
one methyl group present in the 2-carbon linker that connects the two piperazinedione 
moieties [242,243]. As a result, only one of the methyl group interacting surfaces in the 
binding pocket is exploited. In contrast, ICRF-193, the most potent bisdioxopiperazine, 
contains two methyl groups and, thus, binds tighter to eukaryotic Top 2s [249].

Unlike bisdioxopiperazine compounds that act as uncompetitive inhibitors, the 
aminocoumarin antibiotic novobiocin (Fig. 3) is a competitive inhibitor of the ATPase 
activity of bacterial type IIA topoisomerases [250,251]. Structural studies established that 
the sugar and coumarin moieties of novobiocin compete with ATP for the nucleoside 
binding site [252–254]. However, rather than occupying the triphosphate binding site, the 
benzoyl moiety of novobiocin extends toward the opposite direction without contacting the 
neighboring subunit and, thus, would not induce closure of the entry gate like ATP does 
[252,255]. It appears that eukaryotic type IIA topoisomerases are not targeted by novobiocin 
due to divergent evolution of drug-binding residues. It has been shown that the efficacy of 
novobiocin can be significantly reduced by the occurrence of a single amino acid 
substitution in the drug-binding pocket [256,257]. Unexpectedly, anticancer activity of 
novobiocin has been reported, likely achieved via targeting Hsp90 [258–261]. Since Hsp90 
also harbors a GHKL ATPase domain, whose structure is very similar to that of GyrB 
[106,262], this finding suggests that novobiocin may have a broader target specificity than 
previously realized.
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7. hTop 2-targetting anticancer drugs

As listed below, hTop 2 poisons are successful anticancer drugs used in the treatments of 
various cancers. However, two serious side effects, therapy-related cancer [203,263–266] 
and cardiotoxicity [267–270], associated with these drugs limit their use. Etoposide (Fig. 3) 
and other hTop 2 poisons cause the development of secondary malignancies, especially 
therapy-related acute myeloid leukemia (t-AML) [271,272] and therapy-related acute 
promyelocytic leukemia (t-APL) [273–276]. t-AML is caused by hTop 2-mediated, and 
more specifically hTop 2β-mediated [201], DSBs and chromosome rearrangements in the 
mixed lineage leukemia (MLL) gene [277–281], and t-APL is caused by the translocation 
between the promyelocytic leukemia (PML) gene and the retinoic receptor α gene [273–
275].

Doxorubicin (Fig. 3) is a potent anticancer drug that can be used to treat many cancers. 
However, its full potential has not been realized due to the cardiotoxicity associated with its 
use [267–270]. The primary mechanism of doxorubicin-associated cardiotoxicity appears to 
be oxidative stress, due to increased levels of reactive oxygen species (ROS) and lipid 
peroxidation [282–285]. The main pathway for ROS formation by anthracyclines is the 
formation of semiquinone radicals resulting in redox cycling [283,285]. Another source of 
ROS generated by anthracyclines results from formation of doxorubicin-iron complexes that 
catalyze the Fenton reaction [286–288]. Cardiomyocytes are particularly sensitive to 
oxidative stress. hTop 2β is the only topoisomerase expressed in myocytes [289,290] and its 
poisoning by doxorubicin, in addition to increased ROS, may contribute to the cardiotoxicity 
of doxorubicin [291,292]. Further studies are required to determine the exact mechanism(s) 
of the cardiotoxicity of doxorubicin but the current strategy to prevent cardiotoxicity is to 
limit the cumulative dose of doxorubicin.

In addition to these side effects, P-glycoprotein (multidrug resistance protein 1) confers 
resistance to epipodophyllotoxins and anthracyclines [293,294]. Despite the clinical issues 
described above, hTop 2 poisons are among the most widely prescribed anticancer drugs. 
Some Top 2 poisons currently used in the clinic are described below.

(1) hTop 2 poisons

a. Epipodophyllotoxins – Etoposide and Teniposide—Podophyllotoxin was 
originally isolated from the podophyllum plants, American Podophyllum peltatum and 
Podophyllum emodi [295]. Easily accessible podophyllotoxin is used in the synthesis of 
etoposide (Etopophos, VePesid, VP-16) and teniposide (Vumon, VM-26) [296]. Etoposide 
(Fig. 3) is widely used in the treatments of solid tumors, such as testicular cancer and small 
cell lung cancer [297]. It is also used to treat lymphomas and nonlymphocytic leukemia. To 
improve its water solubility, a prodrug etoposide phosphate (Etophos) was developed for 
intravenous use [298,299]. Teniposide is an analog of etoposide and is approved for the 
treatment of acute lymphoblastic leukemia (ALL) in children [300]. It is also used to treat 
other cancers, including Hodgkin’s lymphoma and some brain cancers. Teniposide is less 
water soluble and has higher plasma protein binding than etoposide [301,302].
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b. Anthracyclines – Doxorubicin, Daunorubicin, and Epirubicin—Doxorubicin 
(Adriamycin, Doxil) (Fig. 3) is an anthracycline antibiotic originally isolated from 
Streptomyces peucetius [303,304]. It is used to treat a wide variety of cancers, including 
ALL, acute myeloblastic leukemia (AML), breast carcinoma, ovarian carcinoma, Kaposi’s 
sarcoma, Wilms’ tumor, thyroid carcinoma, gastric carcinoma, and Hodgkin’s disease 
[305,306]. Doxil is a form of doxorubicin contained inside a liposome (liposomal 
doxorubicin) for a slow release to treat AIDS-related Kaposi’s sarcoma, multiple myeloma, 
and ovarian cancer [306–311]. Doxorubicin is one of the most potent anticancer drugs but its 
use is limited by the cumulative dose-dependent cardiotoxicity [267–270].

Daunorubicin (Cerubidine, DaunoXome) (Fig. 3) has similar therapeutic effects to 
doxorubicin [312,313]. It is used to treat ALL, AML, chronic myelogenous leukemia 
(CML), and Kaposi’s sarcoma [314–317]. DaunoXome is liposomal daunorubicin that is 
used for the treatment of AIDS-related Kaposi’s sarcoma [315,318].

Epirubicin (Ellence) is an active isomer of doxorubicin [319]. Although epirubicin has 
similar therapeutic effect to doxorubicin, epirubicin is preferred over doxorubicin in certain 
chemotherapy regimens because it has fewer side effects [320,321]. Epirubicin is eliminated 
faster and has reduced toxicity compared to doxorubicin. The spatial orientation of the 
hydroxyl group at the 4’ carbon of the sugar moiety differs in doxorubicin and epirubicin. 
Epirubicin’s 4’ hydroxyl is in an equatorial position allowing for rapid conjugation of 
epirubicin with glucuronic acid, which could account for its faster elimination and lower 
toxicity [322,323]. Liposomal epirubicin has shown to be an effective agent to treat brain 
glioma [324,325].

Anthracyclines act as Top 2 poisons. In addition, they can intercalate into DNA [326] and 
may influence the functions of various proteins besides hTop 2 [327–329]. As previously 
described, anthracyclines also generate ROS [283,285–288].

c. Mitoxantrone—Mitoxantrone (Novantrone) is a synthetic anthracenedione (Fig. 3) 
developed as an alternative to anthracyclines to reduce cardiotoxicity while retaining 
antineoplastic activity [330,331]. It is used for the treatment of multiple sclerosis and AML 
[332–334]. While mitoxantrone has higher tolerability than the anthracyclines, 
cardiomyopathy is still a concern in long-term treatment [331,335,336].

(2) hTop 2 catalytic inhibitor

a. Dexrazoxane—Dexrazoxane (Zinecard, Cardioxane, ICRF-187) is a 
bisdioxopiperazine (Fig. 3) and is a derivative of ethylenediaminetetraacetic acid [242]. 
Dexrazoxane is the only drug approved to treat cardiotoxicity caused by anthracyclines 
[337–339]. Its cardioprotective mechanism is attributed to the chelation of iron by 
dexrazoxane, thus decreasing the production of ROS during anthracycline treatment 
[340,341]. Dexrazoxane is orally active as a prodrug that is hydrolyzed, by sequential ring 
openings, into the active metabolite ADR-925 [340,342,343]. Recent studies have indicated 
that dexrazoxane’s cardioprotective effect may be associated with catalytic inhibition of 
hTop 2 [290,344].
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8. Prospective

Both hTop 1 and hTop 2s are targets of current anticancer drugs. New inhibitors of these 
enzymes are also in the pipeline. Thus, topoisomerases continue to be important therapeutic 
targets of anticancer drugs.

Clinically used Top 2-targetting drugs act on both hTop 2α and hTop 2β. The expression of 
hTop 2α is often elevated in cancer cells and the anticancer activity of these drugs is mainly 
mediated by the poisoning of hTop 2α. Furthermore, a significant number of studies suggest 
that both the development of therapy-related leukemia and cardiotoxicity are caused by the 
poisoning of hTop 2β. Thus, it seems reasonable to develop hTop 2α-specific poisons as 
anticancer drugs to prevent the therapy-related leukemia and cardiotoxicity. The 
development of either isoform-specific hTop 2 poisons or potent hTop 2 catalytic inhibitors 
may provide safer therapeutic options for cancer patients.

In contrast to topoisomerase poisons, topoisomerase catalytic inhibitors have not been 
successfully used in clinic. Despite the lack of structural similarities between hTop 1, a type 
IB topoisomerase, and hTop 2s, type IIA topoisomerases, some small molecules, including 
our novel quinolones, have been shown to act as dual catalytic inhibitors of hTop 1 and hTop 
2s. Thus, catalytic inhibitors of multiple topoisomerases may become successful anticancer 
drugs.

Human cells also contain two type IA topoisomerases, hTop 3α and hTop 3β. Although 
some small molecules that inhibit bacterial type IA topoisomerases have been identified only 
in recent years, hTop 3 inhibitors may be discovered and developed as new anticancer drugs 
in the future.
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NBTI new bacterial topoisomerase inhibitor

PML promyelocytic leukemia

QPT-1 quinoline pyrimidine trione-1

ROS reactive oxygen species

Top 1 topoisomerase I

Top 3 topoisomerase III

Top 4 topoisomerase IV

t-AML therapy-related acute myeloid leukemia

t-APL therapy-related acute promyelocytic leukemia

T Transfer
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Figure 1. Relaxation reaction catalyzed by hTop 1 and the effect of camptothecin class of 
anticancer agents.
Type IB topoisomerases cleave one strand of supercoiled DNA via the formation of a 
protein-linked phosphotyrosyl bond between the catalytic tyrosine (purple sticks) and the 3′-
phosphate group. While the DNA duplex upstream of the break (red) is bound tightly by 
hTop 1, very few interactions are present between the downstream DNA duplex (blue) and 
the enzyme, which allows both positive and negative superhelical tension in DNA to be 
released by the rotation of downstream DNA duplex about the break. The insertion of 
camptothecin class of anticancer agents (green ellipsoid) stabilizes the hTop 1-mediated 
DNA strand break and inhibits the enzyme’s relaxation activity. The cartoon representation 
of hTop 1 (PDBid: 1RRJ [137]) was generated using PyMol (http://pymol.org).
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Figure 2. Catalytic cycle and inhibitors of type IIA topoisomerases.
The catalytic cycle of type IIA topoisomerases starts from the entry of G-segment DNA 
(blue) through an opened N-gate. Binding of two ATP molecules induces closure of the N-
gate to facilitate the capture of T-segment DNA (green). The Cleavage of the G-segment 
followed by pulling the broken DNA ends apart creates a path that allows the T-segment to 
go through. This duplex passage event is likely driven by the hydrolysis of one ATP and a 
clockwise rotation of the N-gate, which not only pushes the T-segment through the DNA-
gate but also causes the upper cavity enclosed by the N-gate to collapse to prevent the T-
segment from moving backward. The religation of the cleaved G-segment is expected to 
shrink the bottom cavity and thus induces opening of the C-terminal exit gate and the release 
of the T-segment. The second ATP hydrolysis event then takes place to reset the enzyme for 
next catalytic cycle. The turnover of type IIA topoisomerases may be blocked by arresting 
the enzyme at different intermediate states upon the binding of small molecule inhibitors or 
regulatory proteins. The ATPase, transducer, Toprim, and the remaining C-terminal fragment 
(from WHD to C-gate) are in yellow, orange, red, and cyan, respectively. The domains of the 
second protomer are colored grey and light blue. The design of this figure was inspired by 
Larsen et al. [345].
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Figure 3. Structures of topoisomerase inhibitors.
A. Type IIA topoisomerase (Top 2) poisons. B. Type IIA topoisomerase (Top 2) catalytic 
inhibitors. C. Type IB topoisomerase (Top 1) poisons.
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Figure 4. Targeting sites and binding modes of selected type IIA topoisomerase inhibitors and 
regulatory proteins.
Functional modulation of type IIA topoisomerases can be achieved by the binding of small 
molecules and regulatory proteins to various sites in the enzyme. The crystal structures of 
type IIA topoisomerases in complexes with small molecules {ICRF-187 (PDBid: 1QZR 
[117]), novobiocin (PDBid: 4URO [346]), GSK299423 (PDBid: 2XCS [191]), etoposide 
(PDBid: 3QX3 [42]), simocyclinone D8 (PDBid: 2Y3P [233])} and regulatory proteins 
{YacG (PDBid: 4TMA [228]), CcdB toxin (PDBid: 1X75 [240])} were generated using 
PyMol (http://pymol.org). The structural model of MfpA-bound GyrA was constructed by 
manual docking of the MfpA (PDBid: 2BM4 [222]) to the N-terminal fragment of GyrA 
(PDBid: 1AB4 [107]) followed by stereochemical idealization.
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