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Abstract— We describe TopoLayout, a feature-based,

multi-level algorithm that draws undirected graphs based

on the topological features they contain. Topological fea-

tures are detected recursively inside the graph, and their

subgraphs are collapsed into single nodes, forming a graph

hierarchy. Each feature is drawn with an algorithm tuned

for its topology. As would be expected from a feature-based

approach, the runtime and visual quality of TopoLayout

depends on the number and types of topological features

present in the graph. We show experimental results com-

paring speed and visual quality for TopoLayout against

four other multi-level algorithms on a variety of datasets

with a range of connectivities and sizes. TopoLayout

frequently improves the results in terms of speed and visual

quality on these datasets.

Index Terms— Information Visualization, Graphs and

Networks, Graph Visualization

I. INTRODUCTION

Recently, multi-level approaches for graph drawing

have been studied to overcome the size and visual qual-

ity limitations of previous work. Multi-level algorithms

typically construct a graph hierarchy with the original

graph at the leaf level and coarser approximations at

higher levels. Current multi-level approaches typically

only exploit local connectivity in the graph and treat

all nodes and edges similarly. The resulting drawings

are uniform, but low-level structure within the high-level

structure of the graph is difficult to see.

We introduce a feature-based approach to multi-level

graph drawing. In this approach, features of interest are

recursively detected in the graph and replaced with meta-

nodes at a coarser level. Appropriate drawing algorithms

for each feature are selected based on the type of fea-

ture detected. Our approach to feature-based, multi-level

graph drawing recursively detects topological features

such as trees, connected components, and biconnected

components, which have been well studied in the litera-

ture. We also detect highly connected clusters: features

of interest in power law or small world graphs. To show
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that we can expand our system beyond strict topological

features, we detect when the high-dimensional embedder

(HDE) [22] algorithm is a suitable choice for layout.

HDE is an efficient algorithm for drawing a specific

subset of general graphs, many of which are grids.

The primary contribution of this work is TopoLay-

out, the first feature-based, multi-level algorithm. Unlike

previous multi-level algorithms, the graph hierarchy is

drawn bottom-up, taking the space required to draw

the features into account at higher levels of the graph

hierarchy. Thus, all of our layout algorithms should be

area-aware; that is, take varying node size into account.

TopoLayout also introduces passes to eliminate all node-

node overlaps and to reduce the number of node-edge

and edge-edge crossings.

The performance of TopoLayout is compared to ex-

isting multi-level algorithms. Although TopoLayout does

have its limitations, the approach is often faster and

better able to illustrate low-level structure in the context

of high-level graph structure.

II. PREVIOUS AND RELATED WORK

Given a general, undirected graph G consisting of

N nodes and E edges, we concern ourselves with the

problem of drawing G in two dimensions. Nodes are

assigned two dimensional coordinates, and if two nodes

share an edge it is drawn between them as a straight line.

The problem of drawing general, undirected graphs

has been well studied. Before the late 1990s, the methods

were primarily focused on force-directed approaches [7],

[10]–[12], [20]. These methods perform well for many

types of graphs, but do not scale to graphs of thou-

sands of nodes. To overcome this limitation, multi-level

approaches and approaches which rely more heavily

on user interaction have been proposed. In addition, a

few previous approaches do exploit topology. We also

describe the HDE approach, so that our HDE detector

can be understood.

In addition to the work presented here, we have also

described some preliminary work on TopoLayout in a

poster [2].
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A. Multi-Level Graph Drawing Algorithms

Multi-level methods for graph drawing have been stud-

ied to improve algorithm run time with drawings of equal

or increased visual quality. The spirit of these multi-level

approaches is to recursively apply a coarsening operator

to divide a very large input graph into a hierarchy of

coarser ones. These techniques exploit the property that

coarser graphs in the hierarchy are representative of the

detailed ones, but can be more quickly laid out. Also,

such decompositions help avoid local minima, allowing

the algorithms to scale to larger datasets, improving both

the running time and the visual quality of the final layout.

In Walshaw [30], an estimate of a solution of the maxi-

mal matching problem is used as a coarsening operator to

construct the hierarchy. The maximal matching problem

is to select the largest possible set of edges in the graph

such that no two edges are incident to the same node.

Harel and Koren [19] recursively apply an approx-

imate solution to the k-centres problem, using graph

theoretic distance as the ideal distance between two

nodes. The k-centres problem groups a set of points into

k clusters where the distance between any pair of points

in the cluster is minimized.

The GRIP algorithm [13] coarsens by applying a

filtration to the node set of the input graph. The filtration

operator recursively constructs a maximal subset at each

level i such that the graph theoretic distance between any

two nodes of the subset is at least 2i−1−1.

The ACE algorithm [21] solves for the eigenvectors of

the Laplacian matrix to determine a suitable projection

of the graph into two, three, or any dimension less than

or equal to the number of eigenvectors of the matrix. The

eigenvectors are computed by constructing a hierarchy of

coarse matrices and computing the eigenvectors of the

coarsest matrix. The solution is recursively used as an

estimate for the eigenvectors one level down until the

eigenvectors of the original matrix have been computed.

The Fast Multipole Multilevel Method, or FM3, algo-

rithm [16] is the first multi-level algorithm for general

graphs with a provable worst case asymptotic runtime of

O(N logN +E). In this approach, the graph is partitioned

into subgraphs called solar systems. These solar systems

are contracted down to single nodes and the process is

repeated to create a hierarchy. The authors show that a

fixed fraction of nodes and edges are present in each

solar system, proving the hierarchy is balanced. Using

this fact, they are able to prove that the final graph

layout can be obtained in O(N logN +E) time. A subse-

quent evaluation of FM3 convincingly demonstrates that

FM3 yields higher visual quality results than previous

work [17].

All the multi-level algorithms described above use

heuristics to construct their graph hierarchies which do

not exploit low-level and high-level features in the data.

The principal advantage of a feature-based approach,

such as TopoLayout, over existing multi-level algorithms

is the visualization of low-level features embedded in the

high-level graph structure. In this case, our features are

primarily topological features.

B. Interactive Exploration of Graph Hierarchies

A few papers have focused on the interactive ex-

ploration of graph hierarchies. These results could be

applied to the hierarchies produced by multi-level al-

gorithms. In most of these techniques, a precomputed

layout of the graph is recursively coarsened into graph

hierarchy using some graph theoretic distance informa-

tion. Interesting views of the graph hierarchy can be

displayed using a fisheye metaphor. The user specifies

a focus region that is shown at its maximum level of

detail. Coarser levels of the hierarchy are displayed at

increasing distances from the focus region, providing

context.

The topological fisheye views of Gansner et al. [14]

constructs the hierarchies based on Delaunay triangula-

tions and relative neighborhood graphs. The compound

fisheye views of Abello et al. [1] constructs hierarchies

based on a binary space partition of the layout or areas

of relatively high connectivity detected using Markov

clustering. The work of van Ham and van Wijk [29]

provides a similar technique for visualizing small world

graphs by merging clusters pairwise based on geometric

distance between the clusters. A force-directed layout

algorithm that reflects the underlying clusters in the

graph is used as an initial step.

These techniques provide insight into the multi-level

structure of graphs. However, in TopoLayout, we are

primarily concerned with displaying as much multi-level

structure as possible in the static layout without resorting

to interaction.

C. Topological Features in Graph Drawing

Graph topology has been exploited previously in graph

drawing, but never in a multi-level context. Two previous

algorithms search for topology in the graph at a single

level, both employing different algorithms depending on

the topology detected.

Niggemann and Stein [25] describe a multi-level

algorithm based on the recursive application of Λ-

maximization clustering. For each recursively clustered

subgraph, the algorithm constructs a feature vector

containing statistics about the subgraph, including the
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number of connected components, biconnected compo-

nents, and Λ-clusters found. An optimal layout for a

feature vector is found through regression learning on

a large database of graphs. Each graph in the database

is drawn with several layout algorithms and evaluated

using a quality metric, then the best drawing is selected.

Although the work produces some visually convincing

results, the largest graph drawn was a thousand nodes.

No explicit performance numbers were given, but the

time required for precomputation is a major limitation.

Six and Tollis [27] decompose the graph into bi-

connected graphs and draw the tree of biconnected

components using a radial tree layout algorithm which is

area-aware. The individual biconnected components are

drawn using a circular layout. However, the only topo-

logical feature type detected is biconnected components,

whereas TopoLayout handles many types.

D. High-Dimensional Embedder (HDE)

In addition to strict topological features, TopoLayout

detects when the High-Dimensional Embedder, or HDE,

algorithm [22] of Harel and Koren is an appropriate

choice. HDE is related to a rich family of mathematical

approaches which have been explored as solutions to

problems ranging from flattening curved surfaces [26]

to texture mapping in computer graphics [31]. These

algorithms select a subset of d points called pivots

and compute the pairwise geodesic or graph theoretic

distance between the pivots and all other points on the

surface. Each pivot corresponds to a dimension, and

the graph theoretic distance between the pivots and all

other points defines a position for each point in a d-

dimensional space. The point set is centred, and principal

component analysis (PCA) or multi-dimensional scaling

(MDS) maps the d-dimensional embedding down to two

or three dimensions.

In HDE, the first pivot of the graph is selected

randomly. The graph theoretic distance between the first

pivot and all other nodes in the graph is computed using

a breadth-first search for unweighted graphs or Dijkstra’s

algorithm for weighted graphs. For the remaining d−1

pivots, the node with furthest graph theoretic distance

from the pivot is selected in order to maximize vari-

ance on each axis. The layout of the graph in the d-

dimensional space is encoded in a n by d matrix (Harel

and Koren used d = 50). PCA maps the drawing into

two dimensions by computing the eigenvectors of the

matrix and selecting the two of largest eigenvalue. These

principal components correspond to the directions of

maximal variance in the high-dimensional space. The

eigenvectors are mapped to the x and y positions of

Fig. 1. TopoLayout algorithm phases.

the nodes to produce the final layout. HDE thus has

a running time of O(d(N logN + E)) or O(d(N + E))
depending on whether breadth-first search or Dijkstra’s

algorithm is used.

III. ALGORITHM

The TopoLayout framework consists of four main

phases as shown in Figure 1. The decomposition phase

is the same as the coarsening operator of multi-level

techniques. It recursively creates our feature hierarchy

and identifies the feature type of each subgraph. The

feature layout phase draws each subgraph in the graph

hierarchy using an appropriate algorithm for the feature

type. The crossing reduction phase reduces, but does

not completely eliminate, the number of node-edge and

edge-edge crossings in the subgraph by rotating nodes

in each subgraph. Finally, the overlap elimination phase

ensures that no two nodes overlap in the final drawing.

Many of the algorithms used in these phases are

directly drawn from previous work, some are slight

modifications of previous work, and some are novel algo-

rithms of our own. In the decomposition phase, we have

not found previous work describing our tree detection

algorithm. In the feature layout phase, we provide a

weighting scheme for HDE [22] and slightly modify

GEM [11] so that they are area-aware. The crossing

reduction phase is new to multi-level algorithms and is

a novel algorithm of our own. The overlap elimination

phase is new to multi-level algorithms, but is a direct

application of previous work. All other algorithms are

straightforward applications of the literature.

A. Decomposition

The decomposition phase consists of a series of topo-

logical feature detection algorithms, which are applied to

the input graph. Upon detection of a topological feature,

the feature is collapsed into a single node. The process is

applied recursively to the graph, constructing our feature

hierarchy.

In this section, we first define some terms which will

be used to describe our decomposition phase. Then,

we describe the general decomposition phase algorithm.

Finally, we describe the individual topological feature

detection algorithms which are applied to the input

graph.
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Fig. 3. Decomposition phase for TopoLayout. Detection algorithms in boxes coloured by feature type as in Figure 2. If a clause on a

horizontal is true, we transition along the arrow. Otherwise, we follow the vertical arrow to save some subgraphs and recursively decompose

others. Bold arrows indicate the recursive cases.

Fig. 2. Feature hierarchy after decomposition, with topology

encoded by colour. Top: Layout annotated with bounding boxes to

show hierarchy structure: meta-nodes encompass the subgraphs of

their children. Bottom: Diagram of feature hierarchy, with levels

enumerated and nodes labeled by feature type.

1) Definitions: The decomposition phase recursively

constructs the feature hierarchy. An example feature

hierarchy is shown in Figure 2. The levels of this

hierarchy are defined with containment relationships: a

node at level i is a parent of all the nodes in the feature

it contains at level i+1.

We call the nodes of the input graph leaves as they

terminate all paths in the feature hierarchy. Note that the

computed hierarchy is rarely balanced and leaves can

occur at any level. A meta-node is a node that contains

either leaves of the hierarchy, or other meta-nodes. It

represents a topological feature in TopoLayout. During

the construction of a meta-node n, for the set of edges

adjacent to one node inside of n and one node outside

of n, we create a meta-edge between n and the node

outside of n. A meta-edge contains a list of pointers to

the edges in the input graph which they represent. We

construct this list as the algorithm creates each meta-

node. In Figure 2, meta-nodes are the rectangles in the

diagram. The nodes are coloured by topology type. This

same colour encoding is used for all drawings produced

by TopoLayout for the remainder of this paper.

A connected component is a subgraph where there

exists a path between any pair of nodes in the sub-

graph. They are coloured blue. Trees are subgraphs

without cycles and are coloured red. A biconnected

component is a subgraph where the removal of any

node or edge within the subgraph does not disconnect

it into two or more connected components. Nodes and

edges separating biconnected components are coloured

tan. A complete graph has all possible edges present,

so each node is connected to all others. Nodes and

edges of complete graphs are coloured cyan. A cluster

is a subgraph formed by some clustering algorithm. In

our implementation, we use the strength metric [4] for

clustering. Edges separating clusters are coloured grey.

We then determine if HDE is a suitable algorithm to lay

out the subgraph. If it is, it is coloured purple. Finally, if

the decomposition phase cannot identify the topology of

the subgraph, it is labeled unknown and coloured green.

2) Decomposition Algorithm: Figure 3 describes the

decomposition algorithm in detail with the boxes of the

diagram coloured using the scheme described above.

The first step of the decomposition phase replaces each

connected component with a meta-node. The decompo-

sition operator is recursively applied to each connected

component detected. Connected component decomposi-

tion is never executed again, as subsequent detection

algorithms do not disconnect the graph.

Next, we segment out the trees present in each con-

nected component. Each tree is saved as a subgraph

and replaced by a single meta-node. The graph with all

trees removed and replaced by meta-nodes is passed to

biconnected component detection.

If more than one biconnected component is detected,

the decomposition phase is recursively applied to each of

them. The tree with all biconnected components removed



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 5

and replaced by meta-nodes is saved as a subgraph. This

subgraph must be a tree as explained in Section III-

B.1. If only one biconnected component is present, it

is passed to HDE detection.

If a layout of the subgraph with HDE has the proper-

ties we describe in Section III-A.8, it is saved and area-

aware HDE is used for the subgraph in the final layout.

If the layout does not have these properties, the graph is

passed to complete detection.

If a graph is complete, its subgraph is saved. Other-

wise, the graph is passed to cluster detection.

If more than one cluster is found by the clustering

algorithm, the decomposition operator is recursively ap-

plied to every cluster, and also to the graph which results

from replacing each cluster with a meta-node. If there is

only one cluster, the subgraph is labeled unknown.

If the unknown subgraph has any collapsed features

resulting from this pass of the decomposition operator,

the decomposition operator is recursively applied to the

subgraph. Otherwise, the unknown subgraph is saved and

the decomposition phase terminates.

We experimented with several orderings of the de-

composition algorithms. Our rationale for applying the

detection algorithms in the order presented is as follows.

Connected components of the graph should be detected

first, since if there are multiple components, we can

lay them out independently. Trees need to be detected

before biconnected components because the removal of

any edge or node from a tree would disconnect the tree

into two components. Before we further decompose the

graph using strength clustering, we check to see if HDE

is an appropriate algorithm for layout. Finally, cluster

detection provides a reasonable partition of the graph

into highly connected subgraphs when more meaningful

topological features cannot be found.

3) Connected Components: We detect connected

components using a series of depth-first searches to

compute spanning trees for each component. We refer

the reader to Baase and Van Gelder [5] for details of

this standard algorithm which runs in O(N +E) time.

4) Trees: We detect trees by finding the first cycle

in the graph and selecting a node n on that cycle. If a

cycle is not found, the entire graph is a tree. Otherwise,

starting at n, we perform a depth-first search. When we

visit a node of degree one, we remove it and continue

the depth-first search. The algorithm removes all nodes

of degree one it encounters until there are no more, or

when a maximal tree is detected. The time required for

tree detection is therefore O(N +E) time.

5) Biconnected Components: A good description of

a standard biconnected component detection algorithm

is also given by Baase and Van Gelder [5]. Biconnected

components are detected in the graph by performing a

depth-first search. Edges that point back to higher levels

of the depth-first search are called back edges. When

a subtree s of the depth-first search tree has no back

edges to any ancestor of s, it is a separate biconnected

component. The algorithm takes O(N +E) time.

6) Complete Graphs: We detect complete graphs by

taking the ratio of the number of edges in the graph to the

number of possible edges given the number of nodes. We

could easily detect near-complete graphs by considering

a threshold below 100%. An interesting area for future

work would be to determine an appropriate value that

has a sound theoretical justification, rather than being

determined empirically. If the number of nodes and edges

is known, the ratio is computed in O(1) time.

7) Clusters: We compute clusters using the strength

metric [4]. The strength metric partitions the graph into

subgraphs by the number of 3- and 4-cycles shared by

the nodes of the subgraph. For each edge connecting

nodes u and v, we partition nodes adjacent to u and v

into three sets: M(u), those adjacent to u; M(v), those

adjacent to v; and W (u,v), those adjacent to both u and v.

The total number of 3-cycles is the number of elements

in W (u,v). We determine the number of 4-cycles by

checking for the existence of an edge between elements

in any pair of these three sets or two elements in W (u,v).
These edges can be computed in O(r) time where r is

the maximum degree of a node in the graph. We can

thus detect clusters in O(rE) time. For near-complete

graphs, the performance of the algorithm would degrade

to O(N3), but typically, the nodes of the graph are of

bounded degree and there are few high degree nodes.

Thus, in practice, the algorithm can be run on large

graphs.

8) HDE Detection: To determine if HDE is a suit-

able layout algorithm for the subgraph, we analyze the

eigenvalues produced by an HDE layout of the graph.

In PCA, the amount of variance in the data captured by

an eigenvector is its eigenvalue [23]. We first determine

if there is enough variance in the data, or if its largest

eigenvalue is above a minimum threshold value. In our

system, a value of 100 was determined empirically. This

minimum variance is required as some projections place

the majority of their nodes on top of each other. Next, we

compare the percentage of variance accounted for by the

top two eigenvectors. This percentage is computed and

compared to the sum of all eigenvalues. In good two

dimensional layouts, the percentage of variance of the

largest two eigenvalues is nearly the same. If the variance

is not symmetric along these two directions, we only use

HDE in the case when the top three eigenvalues hold all

of the variance, no eigenvalue holds too much of the
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variance, and variance in the third dimension is small.

Threshold values of 60% and 15% respectively were

determined empirically. Since the edges of the graph are

unweighted, our HDE detector uses a breadth-first search

and runs in O(d(N +E)) time.

B. Layout

During the layout phase of level i of a hierarchy, the

features at level i+1 contained by all the meta-nodes at

level i must be laid out first to determine the screen-space

bounds of the meta-node. The required screen space of

the leaves at level i is already known; that is, the original

size of the node. The layout stage, shown in Algorithm

1, draws the topological feature at level i using an

appropriate layout algorithm, rotates meta-nodes of the

hierarchy to reduce crossings, and eliminates all node-

node overlaps in the subgraph.

The initial layout of the features in the graph depends

on the detected feature type. We employ four types

of layout algorithms: tree, circular, HDE, and force-

directed. We also describe passes to reduce the number

of node-edge and edge-edge crossings and to eliminate

all node-node overlaps.

Algorithm 1 Pseudocode for the feature layout phase.

layout (subgraph s)

for all meta-nodes c ∈ s do

c.size ←boundingBox (layout (c.subgraph));

layOutFeature (s);

reduceCrossings (s);

eliminateOverlaps (s);

1) Area-Aware Tree Layout: These algorithms are

used for tree and biconnected component feature types.

Clearly, tree layout algorithms are appropriate for trees,

but the reason to use them to draw biconnected compo-

nents is less obvious.

For a set of biconnected components residing at level i

with their collapsed subgraphs at level i+1, the topology

of the subgraph at level i is a tree; if it were not, there

would be a cycle at level i and all subgraphs on that cycle

would be merged into a single biconnected component

at level i+1.

If the removal of an edge created two biconnected

components, the edge appears as an edge in the tree at

level i. If the removal of a node created two biconnected

components, we use one of the methods suggested by

Six and Tollis [27] and place the node between the

two components. If an internal node of the tree is a

meta-node, its children are sorted radially around the

internal node based on the positions of the nodes at

lower levels in the hierarchy that connect the children

to the meta-node. TopoLayout can use any tree layout

algorithm that is area-aware for drawing. We use the

bubble tree algorithm [15] for trees of low depth and

high branching factor and an area-aware version of the

Walker algorithm [6] for all other trees. The bubble tree

algorithm requires O(N logN) time while the version of

the Walker algorithm runs in O(N) time.

2) Area-Aware Circular Layout: These algorithms

highlight complete graphs by simply placing the nodes of

the graph around a circle. Although circular layouts yield

low visual quality drawings for general graphs because

they have many crossings, they are a good choice for

complete graphs because they provide visual pop-out for

cliques. The algorithm runs in O(N) time.

3) Area-Aware HDE: This algorithm is used to lay

out subgraphs found by our HDE detector. Area-aware

HDE is the standard HDE approach [22] with weighted

edges. The weight of each edge is the maximum radius

of the adjacent nodes, with a minimum weight of one.

Since the graph edges are weighted, area-aware HDE

uses Dijkstra’s algorithm and runs in O(d(N logN +E))
time.

4) Area-Aware GEM: This default algorithm is used

for all other cases. It is similar to the algorithms devel-

oped by Harel and Koren [18] who adapted Fruchterman-

Reingold [12], Kamada-Kawai [20], and combinations of

these algorithms. Area-aware GEM is a modified version

of the GEM algorithm [11] where nodes are considered

charges and the edges are considered springs. The system

is placed in an initial configuration and is released until it

reaches an equilibrium. Oscillations and rotations about

equally optimal positions are dampened.

The forces for area-aware GEM can be defined for a

pair of nodes ni and n j. Let ri and r j be the radii of

the bounding circles of these nodes respectively. Let pi

and p j be their positions, and let l be some ideal spring

length for the distance between the boundaries of the

two nodes. The GEM forces that a node n j exerts on a

node ni are:

frepulsive(ni,n j) =
l + ⌈ri + rj⌉

‖pi− p j‖2
(pi− p j) (1)

fattractive(ni,n j) =
‖pi− p j‖

2

l + ⌈ri + rj⌉
(p j− pi) (2)

The bold terms in (1) and (2) are the terms we added

to make GEM area-aware. The ceiling of the sum of the

radii is taken so that the forces are still computed purely

with integer arithmetic. Oscillation and rotation control

in the algorithm is the same. The algorithm stops after

the nodes in the graph do not move much in the plane
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Fig. 4. Reducing crossings with torque. (a) Computing the torsional

force τ on c exerted by the edge (no,nc). (b) Applying τ results to

rotate c. Dashed nodes and edges are meta-nodes and meta-edges.

Solid nodes are leaves in the hierarchy. The square box is the centre

of node c.

or N iterations have been completed. Thus, in the worst

case, the complexity of the algorithm remains O(N3).

5) Crossing Reduction: We introduce a heuristic to

rotate meta-nodes in our hierarchy, reducing crossings of

edges in the original graph connecting nodes in different

subgraphs as shown in Figure 4. The heuristic does

not guarantee an elimination of node-edge or edge-edge

crossings, but it reduces their number in most cases

and also shortens edge length between subgraphs. Our

approach is similar to that of Symeonidis and Tollis [28]

who provide a solution to this problem by minimizing

what they call inter-group crossings. In their approach,

an energy function is minimized to apply a good rotation

to their circular drawings to reduce the number of cross-

ings. This approach is analogous to Kamada-Kawai [20]

in graph layout. In contrast, our approach is similar to

GEM [11] and includes oscillation control.

Let o and c be meta-nodes in a subgraph at level i

of our graph hierarchy. Let no and nc be leaves in our

graph hierarchy. We use the positions of no and nc in the

coordinate frame in the subgraph at level i to compute

the torque τ . The nodes of no and nc are not necessarily

at level i+1 and can be nested in several levels of meta-

nodes, each with their own relative coordinate frames.

For the moment, we assume the location of the nodes no

and nc is known in the coordinate frame of the subgraph

at level i and show later how these positions can be

computed efficiently.

The torque computed is physically inspired, but is

not physically realistic. Let the force vector ~f be a unit

force along the edge (no,nc). Let ~r be the radius vector

from the centre of node c to the node nc. The function

sg(~x) returns the sign of the normal perpendicular to the

embedding plane. The torque exerted by (no,nc) on c is

given by Equation (3).

τ =
π

2
sg(~r× ~f )(~r · ~f ) (3)

Analogous to that of force-directed graph drawing

techniques, our solution to the problem is incremental.

The average value of τ is computed for all edges in

the list of edges contained in the meta-edge (o,c). The

process is repeated, computing an average τ for each

meta-node in the subgraph containing o and c, using their

incident meta-edges. Once the average τ is computed

for all meta-nodes in the subgraph, it is applied to the

cumulative rotation of each meta-node.

Meta-nodes can oscillate around equally good orienta-

tions. Our approach to dampening oscillations is similar

to that of GEM [11]. We store the torque for each meta-

node applied during the previous iteration and compare it

with the torque computed during the current iteration. If

the signs of the torque in the two iterations are opposite,

we are oscillating around an optimal orientation, and a

damping factor is applied. Currently, this factor is the

fraction of completed iterations to the Ni iterations which

will be executed, where Ni is the number of meta-nodes

in the subgraph at level i.

Computing the positions of the no and nc nodes in the

coordinate frame of the subgraph at level i is relatively

straightforward if every node in the graph hierarchy has

a pointer to the meta-node which contains it. This in-

formation can be saved in the decomposition phase with

no asymptotic runtime penalty when we construct meta-

nodes. Each meta-edge has a list of edges it represents,

so each no and nc involved in a torque computation can

be determined in constant time. We traverse the hierarchy

up to the subgraph at level i composing translations and

rotations to determine the positions of no and nc in the

subgraph at level i. If no or nc is at a depth of i+L, this

traversal takes O(L) time. Since each edge is involved

in at most one torque computation and Ni iterations of

torque are executed, the overall asymptotic complexity

of the crossing reduction phase is O(LNiE).

6) Overlap Elimination: In TopoLayout, although the

area-aware tree and circular layout algorithms guarantee

no node-node overlaps, neither area-aware GEM nor

area-aware HDE does. To ensure that pairs of nodes do

not overlap in our final layout, we perform a pass to

eliminate these overlaps.

We experimented with several algorithms to reduce

or eliminate node overlaps in the drawing. In all cases,

we tried overlap reduction two ways: separately for each

subgraph of the hierarchy, or a single pass on the entire

final drawing after TopoLayout had executed all other

phases. We found that the former approach was best,
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because a single pass on the final drawing causes overlap

between topological features.

First, we tested the naive approach of considering

every pair of nodes to determine the set of overlaps.

If two nodes overlapped, they were shrunk down in

size until no overlap was present. Although this O(N2)
method was slow, it does guarantee a drawing free

of node-node overlaps and produced drawings of high

visual quality for many types of graphs.

We also implemented the Cluster Buster algorithm of

Lyons et al. [24], which computes the Voronoi diagram

of the node set and iteratively pulls the nodes towards

the centroid of each Voronoi cell. For a constant number

of iterations, the algorithm runs in O(N logN) time.

Unfortunately, this method does not guarantee no node

overlaps in the final drawing, and the results were usually

of low visual quality.

We obtained the best results from implementing the

fast node overlap removal algorithm without Lagrange

multipliers [8], which is discussed in detail in Dwyer et

al’s technical report [9]. In this work, two separate passes

along the x-axis and the y-axis eliminate all node over-

laps in the graph. The algorithm constructs a weighted,

directed constraint graph along each dimension and uses

quadratic programming to minimize node displacement.

Assuming that each node in the graph overlaps with a

constant number of nodes, the algorithm is O(N logN).
This method guarantees no overlaps in the final drawing

and was applied to every subgraph of the hierarchy to

produce the results in Section V.

The overlap elimination phase is always executed

on graphs drawn with HDE and area-aware GEM,

since these algorithms do not guarantee the absence of

overlaps. As the fast overlap removal algorithm only

considers axis aligned nodes, the axis aligned bounding

box of the rotated meta-node is computed.

IV. ALGORITHM COMPLEXITY

The worst-case complexity of our algorithm is O(N3)
if no topological features are found and area-aware GEM

is used. However, the algorithm in practice runs faster

in most cases.

Figure 5 shows the time complexity of the algorithms

we use in TopoLayout. We report the number of op-

erations performed on each subgraph of the hierarchy:

Ni is the number of nodes in a subgraph, and Ei is the

number of edges in a subgraph at level i. The maximum

degree of a node in the subgraph at level i is ri. The

value of d is the dimensionality of the high-dimensional

space of the HDE algorithm, which is fifty. The value

of L is the number of levels we must traverse up the

Algorithm Complexity

Detection

Tree O(Ni +Ei)
Biconnected Component O(Ni +Ei)
Connected Component O(Ni +Ei)
HDE O(d(Ni +Ei))
Complete O(1)
Cluster O(riEi)

Initial Layout

Bubble Tree O(Ni logNi)
Walker Tree O(Ni)
Area-Aware Circular O(Ni)
Area-Aware GEM O(N3

i )
Area-Aware HDE O(d(Ni logNi +Ei))

Refinement

Crossing Reduction O(LNiE)
Overlap Elimination O(Ni logNi)

Fig. 5. Time complexity of TopoLayout framework components, for

each hierarchical level.

hierarchy to compute the level i positions of no and nc

when computing torques.

V. EMPIRICAL EVALUATION

We implemented the TopoLayout framework on top of

the Tulip [3] graph visualization system and have tested

it against other multi-level algorithms on datasets with a

range of connectivities and sizes. All benchmarks were

run on a 3.0GHz Pentium IV with 3.0GB of memory

running SuSE Linux with a 2.6.5-7.151 kernel.

Four multi-level algorithms were tested against Topo-

Layout. The code for GRIP∗, ACE†, and HDE‡ was

available online and was incorporated into the Tulip

framework. Stefan Hachul kindly supplied the FM3 code,

which was also incorporated into Tulip for testing. Harel

and Koren’s multi-level approach [19] was not tested.

The source code for this implementation was unavail-

able. As our observed running times and visual quality

results were very similar to those in Hachul and Jünger’s

empirical study [17], one can refer to their results for a

comparison.

We allowed TopoLayout to colour topological features

in the graph, using the scheme defined in Section III-A.1.

Since the other graph drawing algorithms do not detect

topological features automatically, the comparison is fair

and demonstrates another advantage of our approach.

Our experiment was divided into two phases. Synthetic

Data primarily consisted of benchmark datasets taken

∗www.cs.arizona.edu/˜kobourov/GRIP
†research.att.com/˜yehuda/programs/ace.zip
‡research.att.com/˜yehuda/programs/embedder.zip
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from the graph drawing literature. These preliminary

tests provided a baseline for the comparison of multi-

level algorithms. Real World Data mostly consisted of

datasets deemed real world in previous empirical eval-

uations. We added two additional datasets which came

from real world data sources.

A. Synthetic Data

All but one of the synthetic graphs we study came

from the Hachul and Jünger empirical evaluation [17]

of multi-level algorithms. Crack is a standard graph

drawing dataset part of the Walshaw Graph Partition

Archive§. It was categorized as a real world graph in

their study. The 6-ary, Snowflake, Spider, and

Flower datasets are each of the medium sized chal-

lenging artificial graphs of their study. The 6-ary tree

dataset is simply a 6-ary tree of depth five. Snowflake

is a tree of very high variance in degree. Spider has

a subset of nodes S which consists of 25% of the nodes

in the graph. The elements of S are each connected to

twelve unique members of S. The remaining nodes are

rooted at a single node along eight paths of equal length.

Flower has a relatively high edge density. It consists of

joining six circular chains of the graph K30, a complete

graph of thirty nodes, at a single instance of K30. The last

graph we test, bi walsh, did not appear in the study.

It is thirteen datasets from the Walshaw Graph Partition

Archive connected by twelve single edges into one

component. The purpose of this dataset is to demonstrate

that our HDE detection algorithm works well and that

other multi-level algorithms, including HDE and ACE,

have difficulty drawing this dataset. The results of this

part of the empirical evaluation are shown in Figure 6.

B. Real World Data

In addition to synthetic data, we use data that was

considered real world in other empirical evaluations. The

first three datasets are challenging real world graphs

in Hachul and Jünger’s empirical evaluation [17]. The

ug 380 and dg 1087 graphs are from the AT&T Graph

Library¶. The Add32 dataset is from the Walshaw Graph

Partition Archive. The graph is representative of the

underlying hardware structure of a thirty-two bit adder.

In addition to these datasets, we added two more. UBC

is the hyperlink structure of the department of computer

science at the University of British Columbia’s web site

acquired using a depth-first search cut off at about 40,000

nodes. IMDB 1999 is a subset of the Internet Movie

§staffweb.cms.gre.ac.uk/˜c.walshaw/partition
¶www.graphdrawing.org

Database‖. It shows all actors in movies and television

shows released in 1999 who are three or fewer hops from

Jake Gyllenhaal in the movie October Sky. We select this

actor because he has a relatively low branching factor

in that year. The results of this part of the empirical

evaluation are shown in Figure 7.

VI. DISCUSSION

Since most of the data for these tests came from the

Hachul and Jünger empirical evaluation [17], we are

able to compare the results of this evaluation with their

findings. For the most part, we have reproduced their

results. For some of the images produced by GRIP in

the study of Hachul and Jünger, it seems that a three

dimensional layout had been selected. In this empirical

evaluation we use only two-dimensional layouts. We will

highlight where this makes a major difference between

the results of the two studies when we discuss the

drawings of each of the datasets.

In general, three of the drawing algorithms performed

well on all of the datasets: GRIP, FM3, and TopoLayout.

The ACE and HDE algorithms did not perform well on

any of the datasets in this evaluation with the exception

of Crack. ACE and HDE appear to only work well on

graphs which are mesh-like in structure. As a result of

this finding, we focus our attention on GRIP, FM3, and

TopoLayout for the remainder of this discussion and will

only show the results for these three algorithms on the

real world data.

A. Synthetic Data

In summary, TopoLayout was consistently faster than

FM3 on this data and had similar running times to that

of GRIP. The only two exceptions are Spider graphs

and Flower graphs where TopoLayout was on the order

of a couple of minutes while FM3 and GRIP were on

the order of seconds. This time delay was due to GEM

and the cluster detection algorithm, the slowest parts of

TopoLayout. TopoLayout produced drawings of equal or

improved visual quality on all datasets in these tests.

1) Crack: All three algorithms produced drawings

of similar visual quality for this mesh dataset. This result

differs from the Hachul and Jünger empirical evaluation

in that GRIP does not have any folds in the layout.

2) 6-ary: On this 6-ary tree of depth five, Topo-

Layout produced the drawing which clarified the most

high-level and low-level structure, followed by FM3, and

GRIP. In the TopoLayout drawing, we can see both high-

level and low-level structure in the tree as the tree is

‖www.imdb.com
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ACE HDE GRIP FM3 TopoLayout

Crack
N=10,240

E=30,380

0.35 0.14 2.43 21.99 3.35

6-ary
N=9,331

E=9,330

0.72 0.08 1.02 17.09 0.97

Snowflake

N=9,701
E=9,700

(T) 0.09 2.16 17.46 1.02

Spider
N=10,000

E=20,000

8.2 0.10 2.96 16.41 403.88

Flower
N=9,030

E=131,241

0.15 0.15 4.40 11.37 70.00

bi walsh
N=77,251

E=183,945

46.83 0.79 (E) 134.28 25.73

Fig. 6. Layouts of several datasets using ACE, HDE, GRIP, FM3, and TopoLayout for the synthetic data described in Section V-A. For

all rows, blank squares indicate no drawing produced. Dataset name, number of nodes, and number of edges appear in the top left hand

corner of the leftmost column. Times in seconds, or reasons for no drawing, appear in the upper right corner of each entry. (T) indicates

no drawing produced after a timeout of four hours of program execution. (E) indicates no drawing produced due to an execution-time error.

Insets show roughly the same set of nodes.

detected and drawn using bubble tree. For FM3, the

high-level structure of the tree is apparent, but the low-

level structure is obscured by many node-node overlaps

and edge crossings. With GRIP, part of the high-level
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GRIP FM3 TopoLayout
ug 380

N=1,104

E=3,231

0.22 2.12 10.23

dg 1087

N=7,602

E=7,601

3.29 17.48 0.78

Add32
N=4,960

E=9,462

0.91 11.99 14.02

UBC

N=40,011
E=191,659

(E) 84.56 220.79

IMDB 1999
N=1,181

E=31,527

0.78 2.64 75.62

Fig. 7. Layouts of several datasets using GRIP, FM3, and TopoLayout for the real world data described in Section V-B. For all rows,

blank squares indicate no drawing produced. Dataset name, number of nodes, and number of edges appear in the top left hand corner of

the leftmost column. Times in seconds, or reasons for no drawing, appear in the upper right corner of each entry. (E) indicates no drawing

produced due to an execution-time error. Insets show roughly the same set of nodes.

structure is obscured because a few of the main branches

of the tree overlap. Low-level structure is not apparent

due to many node-node overlaps.
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3) Snowflake: The Snowflake graph is a tree. It

has a high-level deep tree structure with a low level

core of many single nodes connected to the tree root.

TopoLayout detects this tree and uses bubble tree to

draw it without node-node or node-edge overlaps. It

also shows the core with a clearly visible fan-out of

the single nodes connected to the root on the lower left

of the drawing. FM3 was also able to draw the high-

level structure and low-level structure in the tree to some

degree. However, it is very difficult to understand how

the single nodes clumped around the root are connected

and it is very hard to see this feature at a high level. GRIP

was able to draw only part of the high-level structure and

part of the low-level structure around the root of the tree.

There are many overlaps, making the drawing difficult

to understand.

4) Spider: All three algorithms drew this dataset

with a similar level of visual quality. The high-level

structures of the well-connected head and the eight

long paths or legs are visible in all three drawings. In

TopoLayout, at a high level, it is hard to see the legs

as they have been detected as two deep trees. The low-

level structures in this graph are drawn with a similar

level of visual quality. The drawing produced by GRIP of

this dataset differs from the Hachul and Jünger empirical

evaluation in that the legs do not cross.

5) Flower: TopoLayout and FM3 are able to draw

most of the high-level and low-level structures in this

dataset while GRIP is only able to draw parts of both.

TopoLayout draws each of the K30 cliques with circular

layout, for a visual indication that the graphs are com-

plete. Using HDE, TopoLayout draws each of the six

symmetric loops. The K30 at the centre of the drawing,

when removed, separates the graph into six connected

components. Thus, the highest level structure is a set

of six biconnected components drawn with the bubble

tree drawing algorithm. This dataset gives promise for

a feature-based approach, where several different algo-

rithms can be integrated smoothly into one drawing. FM3

does well on the high-level structure of Flower, but

two of the loops cross. In terms of low-level structure,

it is difficult to tell if the K30 subgraphs are actually

complete as there are many node overlaps in the drawing.

GRIP is unable to draw five of the loops of the high-

level structure. As with the FM3 drawing, it is also very

difficult to tell if the K30 subgraphs are complete.

6) bi walsh: TopoLayout and FM3 draw the high-

level biconnected structure of this dataset well. TopoLay-

out detects the high-level biconnected structure present

in this graph and draws it using bubble tree. It uses HDE

to draw each of the thirteen mesh-like datasets present in

the graph. FM3 is able to draw the high-level biconnected

structure well. However, it is difficult to see the mesh-

like graphs in each of the individual components. GRIP

was unable to produce a drawing for this dataset due to

an internal error.

B. Real World Data

On the real world datasets, the TopoLayout running

times were usually of a similar order of magnitude

as FM3. The only exception was IMDB 1999 where

TopoLayout took just over a minute and FM3 took two

seconds. GRIP was faster than all algorithms, but it fre-

quently yielded results of lower visual quality. Overall,

TopoLayout either improved or had similar visual quality

results on all of the graphs in the evaluation.

1) ug 380: This dataset contains a single node of

very high degree with some interesting topological struc-

ture at some graph theoretic distance from this central

node. The high-level structure could be improved in all

three drawings. However, TopoLayout is able to provide

an interesting insight into the high-level structure of this

dataset at the central core. It is able to segment out

the high degree node at the centre of the drawing and

suggests that the topology of the central core is actually

two components rather than one. TopoLayout is also able

to draw some of the low-level structure present in the

dataset. The FM3 drawing is unable to segment out the

core into these two components. It is very difficult to

determine which node is the high degree node in the

drawing. The topology of the core is unclear as the

majority of the nodes and edges are placed at the centre

of the drawing. It is also very hard to make out the low-

level structure which exists in the graph, but the drawing

is more uniform and compact. The drawing produced by

GRIP is of similar visual quality to that of FM3.

2) dg 1087: This dataset is topologically a tree with

a very high degree node at the root. TopoLayout detects

this tree and draws it with bubble tree, producing a

drawing free of node-edge and node-node overlaps. It

is very difficult to tell in the FM3 drawing if this graph

is indeed a tree. Many of the nodes are clumped into the

central area of the drawing and it is difficult to see how

they interconnect. Thus, the high-level structure of the

tree is drawn well whereas the algorithm has difficulty

clarifying the low-level structure in the dataset. FM3

does, however, have the advantage of a more compact

drawing. GRIP is able to draw some of the high-level

structure, but much of it is hidden by many overlaps. It

is very hard to see the low-level structure of this dataset

using GRIP.

3) Add32: In this TopoLayout drawing we see

promise in our feature-based approach on real world
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data. The high-level biconnected structure of the adder is

clearly visible in tan and is drawn with bubble tree. The

low-level structure of the adder is integrated smoothly

into the drawing using tree drawing and force-directed

algorithms locally. Thus, we are able to see most of the

low-level structure and high-level structure in the dataset.

The FM3 drawing does reveal some of the high-level

structure in the dataset, but some of it is obscured by

edge and node occlusion. It is quite difficult to see low-

level structure in the dataset. With the GRIP drawing,

some of the high-level tree structure is visible, but it is

less apparent.

4) UBC: TopoLayout is able to draw the high-level

tree structure of this dataset. This tree structure is

expected as the dataset was acquired using breadth-

first search. In addition to the high-level structure, the

algorithm is able to visualize some of the low-level

structure in the more strongly connected left part of the

drawing. FM3 is also able to draw the high-level tree

structure in the dataset, but it has difficulty drawing the

low-level structure present in the upper left corner. GRIP

was unable to produce a drawing of this dataset due to

an internal error.

5) IMDB 1999: This IMDB subset is a very hard

dataset to draw because of its high connectivity. All

three algorithms have difficulty in revealing the high-

level structure in the dataset. TopoLayout is able to

reveal some of the high-level structure, but much of it is

obscured by large swathes of edges. It is, however, able

to segment out and draw the complete cliques of actors

in this dataset. These cliques correspond to movies: any

actor in a movie acts with all other actors in that movie.

The strength metric was able to clearly segment these

movies out and TopoLayout was able to draw them with

circular layout. In the FM3 and GRIP drawings of this

dataset, it is hard to see either the high-level or low-level

structure in the drawing as many of the nodes and edges

are placed in the same area.

VII. FUTURE WORK

One obvious way to improve our results is to have

faster detection and drawing algorithms which produce

results of higher or equal visual quality. Figure 5 shows

that strength decomposition is the slowest detection

algorithm and GEM is the slowest drawing algorithm.

These complexity results are reflected in the running

times of TopoLayout on Spider and Flower in Sec-

tion V-A. To improve Spider, we would implement an

area-aware version of the FM3 algorithm. The adaption

of Fruchterman and Reingold used by the algorithm

should be straightforward, but making the multi-level

solar system hierarchy area-aware would be non-trivial.

To improve Flower, we could use faster clustering

algorithms or improve the running time of the strength

metric. Considering these two algorithms execute when

no features are found, we should also investigate new

types of features that can be found in graphs.

We will continue to improve upon our detection al-

gorithm for HDE components and possibly introduce a

detection algorithm for ACE. Our HDE detector is very

good at finding mesh-like graphs with a two dimensional

structure, but not ones with a three dimensional structure

or a small number of nodes. We note that TopoLayout

does not perform well on three of the challenging

real world datasets in the Hachul and Jünger empiri-

cal evaluation [17]: bcsstk33, bcsstk31 con, and

bcsstk32. The structure of these datasets is very mesh-

like and either ACE or HDE seems to perform well on

at least two them. Thus, discovering more efficient and

accurate ACE and HDE detectors would be beneficial.

It would also be fruitful to adapt one of the recent

approaches to interactive exploration [1], [14], [29] to

work with the TopoLayout framework. We believe that

this work would help clarify the multi-level structure of

feature based hierarchies, especially when the amount of

edge occlusion is high.

VIII. CONCLUSION

We have presented TopoLayout, a multi-level algo-

rithm for drawing large graphs. The approach of Topo-

Layout is feature-based. It detects topological features in

the graph and can determine when the HDE algorithm

is an appropriate algorithm for layout. The experimen-

tal results comparing TopoLayout to four other multi-

level approaches show that a feature-based approach has

promise in drawing low-level and high-level structure in

large graphs.
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