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Quantized electric quadrupole insulators have been recently proposed as unprecedented quantum states of

matter in two spatial dimensions. Gapped otherwise, they may feature zero-dimensional topological corner

midgap states protected by the bulk spectral gap, reflection symmetries, and a spectral symmetry. We develop

and measure a topolectrical circuit design for such corner modes which manifest themselves as topological

boundary resonances in the corner impedance profile of the circuit. While the quantized bulk quadrupole mo-

ment of the electronic crystal does not have a direct analogue in the classical topolectrical circuit framework,

the corner modes inherit the identical form from the quantum case and, due to the accessibility and tunability of

electrical circuits, lend themselves to a detailed study of their reflection symmetry-protected character. Our work

therefore establishes an instance where topolectrical circuitry is employed to bridge the gap between quantum

theoretical modeling and the experimental realization of topological band structures.

Introduction — The Berry phase provides a powerful lan-

guage to describe the topological character of band structures

and single-particle systems1,2. Manifestly, it allows to treat

fermionic and bosonic quantum systems on the same footing.

Furthermore, the Berry phase concept is not tied to Hilbert

space, but applies to the connectivity of any given coordinate

space, and as such accounts for classical degrees of freedom

as well3. It is thus intuitive that, with the discovery of various

topological quantum states of matter such as quantum Hall4

and quantum spin Hall effect5, classical systems with simi-

lar phenomenology could also be identified. This was initi-

ated in the context of photonics6, and subsequently transferred

to other fields such as mechanics7, acoustics8, and electron-

ics9. Even though spectra and eigenstates of the single parti-

cle problem, including edge modes, might look similar or even

identical, it is the fundamental degrees of freedom which pose

the central distinction between quantum systems and their de-

signed classical analogues. First, quantization phenomena de-

riving from topological invariants usually necessitate the non-

commutativity of phase space and as such are often reserved

to quantum systems. Second, internal symmetries pivotal to

the protection of a topological phase might not carry over to

classical systems as the degrees of freedom are changed. For

instance, this applies to time-reversal symmetry T as the pro-

tecting symmetry of the quantum spin Hall effect, where the

half integer spin of electrons implies Kramer’s degeneracy due

to T 2 = −1 in the quantum case, while it does not in the clas-

sical case T 2 = 1. Whereas the classical counterpropagat-

ing edge modes might still be detectable, there is no particu-

lar topological protection left, rendering the classical system

much more vulnerable to perturbations9,10.

From this perspective, at least two directions appear as

most promising to develop classical topological band struc-

ture models that are universally stable beyond fine-tuning.

The first is the realization of classical analogues to topolog-

ical semimetals11–16, where the extensive edge mode degen-

eracy suggests unambiguous persistent spectral edge features

also in the presence of small perturbations. The second is

to focus on topologically insulating quantum electronic states

where either no protecting symmetries are needed such as for

the quantum Hall effect6, or where the protecting symmetries

obey the same algebraic relations in the classical and quantum

mechanical case.

Electric quadrupole insulators17 fall in the latter category.

While the quantum case is most suitably constructed from the

viewpoint of quantized multipole moments of an electronic

crystal, the complementary protecting symmetry perspective

is most intuitive for the classical system design. The sym-

metry group that protects the quantization of the quadrupole

moment includes two non-commuting reflection symmetries

Mx and My as well as a C4 rotation symmetry. In partic-

ular, they obey M2
x,y = 1, and as such directly carry over

to the classical degrees of freedom. In analogy to the rela-

tion between the quantization of bulk dipole moment (which

is quantized to half-integer values by inversion symmetry) and

the appearance of protected end states in the topological Su-

Schrieffer-Heeger model, an additional spectral symmetry, the

chiral symmetry, is needed to pin the topological boundary

modes in the middle of the bulk energy gap. All these sym-

metries are realized in the microscopic model given in Ref. 17.

Hence, the only task is to implement the hopping model given

by a four site unit cell and real, but sign-changing hybridiza-

tion elements. Due to recent progress in implementing waveg-

uide elements that invert the sign of hybridization18, the com-

plexity of this model could recently be captured by a photonic

cavity lattice structure19. We turn to topolectrical circuits to

realize the quadrupole insulators in a classical environment.

Linear circuit theory and topology — We consider non-

dissipative linear electric circuits, i.e., circuits made of ca-

pacitors and inductors. Labeling the nodes of a circuit by

a = 1, 2, · · · , the response of the circuit at frequency ω is

given by Kirchhoff’s law

Ia(ω) =
∑

b=1,2,···

Jab(ω)Vb(ω) (1)

that relates the voltages Va to the currents Ia via the grounded
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FIG. 1. Electrical circuit exhibiting a topological corner state with nodes of the circuit indicated by black dots. a) Unit cell of the circuit.

Blue and black circuit elements correspond to weak and strong bonds in a tight-binding or mechanical analogue of the circuit. Red circuit

elements connect to the ground. All capacitor-inductor pairs have the same resonance frequency ω0 = 1/
√
L1C1 = 1/

√
L2C2 = 1/

√

Lg

1
Cg

1
.

b) Layout of the full circuit which has been realized experimentally. The corners (i) and (iii) are invariant under the mirror symmetry that

leaves the dashed green line invariant. They are compatible with the bulk unit cell choices (I) and (II), respectively, which correspond to an

interchange of strong and weak bonds. As a consequence we expect a topological bound state at corner (i) but not at corner (iii). c) Unit cell

of the experimentally realized circuit.

circuit Laplacian

Jab(ω) = iω Cab −
i

ω
Wab. (2)

Here, the off-diagonal components of the matrix C contain

the capacity Cab between nodes a 6= b, while its diagonal

component is given by the total node capacitance

Caa = −Ca0 −
∑

b=1,2,···

Cab (3)

including the capacitance Ca0 between node a and the ground.

Similarly, the off-diagonal components of the matrix W con-

tain the inverse inductivity Wab = L−1
ab between nodes a 6= b,

while its diagonal components are given by the total node in-

ductivity

Waa = −L−1
a0 −

∑

b=1,2,···

L−1
ab (4)

including the inductivity La0 between node a and the ground.

At fixed frequency ω, Jab(ω) determines the linear re-

sponse of the circuit in that the impedance Zab between two

nodes a and b is given by

Zab(ω) = Gaa(ω) +Gbb(ω)−Gab(ω)−Gba(ω), (5)

where G(ω) = J−1(ω) is the circuit Green’s function. The

impedance is thus dominated by the smallest eigenvalues

jn(ω) of J(ω) at this given frequency, provided that the sites

a and b are in the support of the corresponding eigenfunctions.

In turn, frequencies ω for which an exact zero eigenvalue

jn(ω) = 0 exists correspond to eigenmodes of the circuit.

They are determined by the equations of motion satisfied by

the electric potential φa(t) at node a

∑

b=1,2,···

Cab
d2

dt2
φb(t) +

∑

b=1,2,···

Wabφb(t) = 0. (6)

The spectrum ω2 of eigenmodes of the circuit is thus given by

the spectrum of the dynamical matrix

D = C−1/2WC−1/2, (7)

with matrix multiplication implied.

We now explain why topological properties can be defined

for the matrices J(ω) and D that describe the physics of the

circuit. In order to define topological properties of a physi-

cal system, the notions of locality and adiabaticity (enabled

by spectral gaps) are of central importance. Locality naturally

arises when we consider circuits in which the nodes a are ar-

ranged in a (in the case at hand two-dimensional) lattice. This
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also allows to define spatial symmetry transformations. Adia-

baticity in turn follows from the spectral continuity of J(ω) as

a function of ω, that is, if a specific frequency ω0 lies in a gap

in the spectrum of D, the spectrum of J(ω0) also has a gap

around zero eigenvalues. Furthermore, a spectrally isolated

eigenvalue (which may be a topological bound state) of D at

frequency ω0 is in correspondence with a spectrally isolated

zero mode of J(ω0).
Due to these relations between J(ω) and D, protected

boundary modes of a circuit can arise from the topological

properties of either matrix. In this work, we choose to build a

two-dimensional circuit for which the topology of J(ω0) at a

specific frequency ω0 protects corner modes. The topological

protection of spectrally isolated zero modes always requires a

spectral (chiral or particle-hole) symmetry that relates eigen-

values of equal magnitude and opposite sign. Spectrally and

locally isolated eigenstates of this symmetry, if present, are

protected in that they are pinned to the eigenvalue zero. As an

eigenstate of J(ω), such a state naturally dominates the linear

repose of the circuit.

Circuit with corner states —To realize a quadrupole in-

sulator with topologically protected corner states, the system

should have two anticommuting mirror symmetries, as well as

a Ĉ4 rotation symmetry in the bulk. The fundamental mirror

symmetries in classical systems commute. To build a classi-

cal analogue of a electric quadrupole insulator, we thus devise

a circuit that has an emergent pair of anticommuting mirror

symmetries M̂x and M̂y for modes near a specific frequency

ω0. This means that J(ω0) commutes exactly with M̂x and

M̂y and the eigenspaces of D are approximately invariant un-

der M̂x and M̂y for frequencies near ω0.

We first discuss the bulk properties of a periodically re-

peating circuit unit cell, depicted in Fig. 1, before consider-

ing boundary modes. The circuit unit cell contains four sites

denoted by pairs (i, j) ∈ {(0, 0), (0, 1), (1, 0), (1, 1)}. We

use two pairs of capacitors and inductors (C1,L1) and (C2,L2)

which have the same resonance frequency ω0 = 1/
√
L1C1 =

1/
√
L2C2 to couple these sites. The latter equality is au-

tomatically satisfied if we set C2 = λC1, L2 = L1/λ
for some real positive parameter λ. Sites 1 and 4 are con-

nected to the ground via an LC circuit with Cg
1 = 2C1 and

Lg
1 = L1/2 such that it has the same resonance frequency ω0.

Sites 2 and 3 are connected to the ground via an inductivity

Lg
2 = L1/[2(1 + λ)]. In this setup, the circuit is parametrized

by the parameters ω0 and λ.

We now describe the circuit with periodic boundary con-

ditions in momentum space. The Fourier components of the

matrix Jλ(ω), denoted by J̃λ(ω,k), are 4 × 4 matrices that

satisfy

MxJ̃λ(ω0, kx, ky)M
−1
x = J̃λ(ω0,−kx, ky),

MyJ̃λ(ω0, kx, ky)M
−1
y = J̃λ(ω0, kx,−ky),

C4J̃λ(ω0, kx, ky)C
−1
4 = J̃λ(ω0, ky,−kx),

(8)

where Mx = σ1τ3, My = σ1τ1, and 2C4 = (σ1 + iσ2)τ0 +
(σ1 − iσ2)(iτ2) are the representations of the symmetries sat-

isfying MxMy = −MyMx and C4MxC
−1
4 = My . Here, σµ

and τµ, µ = 0, 1, 2, 3 are the 2 × 2 identity matrix and the

three Pauli matrices acting on the i and j sublattice index, re-

spectively. Note that the circuit is then also invariant under

the combined symmetries M̂xȳ = C4Mx and M̂xy = C4My

that map (x, y) → (−y,−x) and (x, y) → (y, x), respec-

tively. In addition, J̃λ(ω0,k) has a chiral symmetry C = σ3τ0,

which by CJ̃λ(ω0,k)C−1 = −J̃λ(ω0,k) implies a spectral

symmetry. Up to an overall factor of i, the circuit Laplacian

J̃λ(ω0,k) takes exactly the same form as the Bloch Hamilto-

nian matrix of the quadrupole insulator introduced in Ref. 17

(see Methods section). For λ 6= 1 the spectrum of J̃(ω0,k) is

gapped, and the gapless point λ = 1 corresponds to a topolog-

ical phase transition between a quadrupole circuit for λ > 1
and a trivial circuit for λ < 1.

We now turn to a circuit with open boundary conditions to

realize topologically protected corner modes. In general, two

criteria must be met to realize a topological bulk-boundary

correspondence. First, the symmetries which protect the topo-

logical character may not be broken by the boundary. Second,

the system termination must be compatible with the choice

of bulk unit cell for which a topological invariant has been

defined, i.e., the boundary should not cut through unit cells.

We demonstrate all of these properties on a single circuit by

choosing different boundary terminations as follows.

In order for the open system to obey the chiral symmetry C,

the diagonal elements of J(ω) need to vanish at ω0. This holds

for all bulk sites by the construction of the model. Imposing

this symmetry also for edge and corner sites in an open ge-

ometry fixes the circuit elements (capacitor and or inductor)

that connect each site to the ground. (See the supplemental

material for the specific grounding that was used for the open

circuit.)

With this condition imposed on the boundary sites, we ter-

minate the upper left edge of the circuit in a way compatible

with the choice of bulk unit cell denoted as (I) in Fig. 1 c). The

lower left circuit termination is chosen to be compatible with

the unit cell denoted as (II) in Fig. 1 c). This edge termination

preserves the mirror symmetry M̂xȳ = C4Mx and breaks all

other spatial symmetries mentioned above. Topological cor-

ner modes could thus potentially be protected at the upper left

and the lower right corner, which are invariant under M̂xȳ , but

not at the other two corners. However, the bulk circuit Lapla-

cians which correspond to the two choices of unit cell (I) and

(II) satisfy J̃
(II)
λ (ω0,k) = λJ̃

(I)
1/λ(ω0,k) for an appropriate la-

beling of unit cell sites. Recalling that the topological phase

transition occurs at λ = 1, this implies that when J̃ (I)(ω0,k)

is in a topological phase, J̃ (II)(ω0,k) is trivial and vice versa.

As a result, our choice of boundary termination renders one

corner topological (the upper left one for λ > 1) and the op-

posite corner trivial.

We thus expect that for λ > 1 and at eigenfrequency ω0 the

circuit depicted in Fig. 1 c) supports a localized topological

corner state at the upper left corner, and none at the lower right

corner. We further note that the corner mode should be an

exact eigenstate of the M̂xȳ symmetry. We will now present

impedance measurements that support this expectation.

Experimental results — For the experimental realization
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FIG. 2. Comparison of experimental and theoretical results for the circuit spectrum and corner mode. (a) Theoretical spectrum of the circuit

Laplacian J(ω) as a function of the driving frequency. All frequency scales are normalized to the resonance frequency ω0. An isolated mode

crossing the gap, which corresponds to a zero energy eigenvalue of J(ω) at ω = ω0 is clearly visible. It corresponds to the topological corner

mode. The calculation includes a random disorder of 1% for all capacitors and 2% for all inductors. (b) Theoretical weight distribution of the

eigenstate of J(ω0) that corresponds to the corner mode, where only the circuit nodes near the corner are shown. (c) Comparison between the

experimental corner mode impedance at ω = ω0, measured between nearest neighbor nodes along the horizontal and vertical edges, and along

the diagonal, and the theoretically computed weight of the corner mode eigenstate. Both decay with the decay constant λ = 3.3 set by the

ratio of alternating capacitors/inductors. (d) Frequency scan (normalized with respect to ω0) of the impedance between two nearest-neighbor

sites at the corner, at the edge, and in the bulk. Both the experimental and theoretical curves show the corner state resonance isolated in the

gap of bulk and edge states.

of topological corner modes a circuit board with 4.5 × 4.5
unit cells was designed. The line spacing on the board was

chosen large enough such that spurious inductive coupling be-

tween the circuit elements was below our measurement reso-

lution. All impedance measurements were performed with a

HP 4194A Impedance/Gain-Phase Analyzer in a full differen-

tial configuration. In order to achieve a clearly resolvable cor-

ner state resonance on the superimposed resistive background

of the bulk states (i. e., the combined impedance contribution

of our RLC circuit), which is of the order of a few hundreds

of milli-ohm, the values of the circuit elements where chosen

for the resonance frequency to be in the MHz-range. The ratio

λ between the capacitors/inductors was set to 3.3.

Figure 2 compares the experimental data with the theoreti-

cal predictions, finding excellent agreement between the two.

It demonstrates the existence of a spectrally and spatially lo-

calized topological corner state. In Fig. 2 a) the frequency-

dependent spectrum of the circuit Laplacian shows the iso-

lated corner mode and illustrates the connection between a

(bulk and edge) spectral gap of J(ω) at fixed frequency ω and

a gap in the spectrum of the dynamical matrix D, which corre-

sponds to a range of frequencies without zero modes of J(ω).
In Fig. 2 b) and c) the corner mode at ω = ω0 is mapped

out with single-site resolution. The exponential decay of the

measured impedance is in excellent correspondence with the

theoretical expectation. The experimental demonstration that

the corner mode is indeed a spectrally isolated is contained in

Fig. 2 d).

Physical interpretation of corner modes — Along the x
and y directions, the circuit corresponds to a collection of

connected pairs of linear circuits with alternating capacitors

and inductors, respectively. With the appropriate boundary

conditions discussed previously, electric charge on the capac-

itors forms “dimerized”, isolated oscillators as described in

Ref. 16 and 20. Note that the capacitances alternate between

C1 and C2 with C1 < C2. Therefore, by virtue of being an

eigenmode of the circuit Laplacian in terms of potential and

current profile where every second node exhibits no current

and accordingly no potential difference16, a fixed amount of

charge Q between each pair of capacitors give rise to a po-

tential difference V1 > V2, since Q = V1C1 = V2C2. With

appropriate boundary conditions, we can thus infer the exis-
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tence of a boundary mode of anti-phase currents that is de-

caying exponentially by a factor of 1/λ = C1/C2 per unit

cell. This boundary mode is equivalent to an edge state in the

one-dimensional Su-Schrieffer-Heeger (SSH) model.

A novel feature of our measured corner mode is that this

mode is not the result of edge polarization, i.e., even though

the Laplacian eigenstate form of the corner mode suggest a

similar in x and y direction, it cannot be arrived at by com-

bining SSH models along the different edges. This hints at

topological quadrupole polarization in the given circuit, as op-

posed to dipole polarization in the SSH case. It is instructive

to decompose the given circuit in terms of pairs of vertical and

horizontal SSH-type circuit chains, where we see both SSH

chains built by capacitors as well as their dual form built by in-

ductors in each unit cell string along the x or y axis. The alter-

nating L-type and C-type SSH chains within the unit cell then

are arranged such that their edge charge polarizations cancel.

To see this concretely, we turn to frequency space, where a

voltage difference equals Q/C across a capacitor C, but takes

the form LQ̈ → −ω2LQ across an inductor L. By identifying

1/C ≡ −ω2L, we notice that the L-type dual chain amounts

to effectively ”negative” capacitances. For ω → ω0 this then

gives the same absolute but sign-reversed capacitance, and the

dipolar SSH-type polarization cancels out in each unit cell.

Discussion — A fundamental difference between classical

topological systems (e.g., of mechanical degrees of freedom,

electrical circuits, photonic metamaterials) and topological in-

sulators made of fermions is that the topology is manifested

in the excitations of classical systems, but not directly by their

bulk properties as in fermionic systems (see the Methods sec-

tion for a more detailed discussion.) For example, a fermionic

electric quadrupole insulator has a quantized bulk quadrupole

moment that is an – in principle measurable – characteristic of

its (zero temperature) ground state. (A more canonical exam-

ple is the bulk Hall conductivity of an integer quantum Hall

effect.) To measure the analogous observable in the bulk of

a classical system will require the excitation of all its eigen-

states below the bulk gap.

In contrast, topological boundary modes are in principle as

accessible for measurements in classical as in fermionic quan-

tum systems, since they correspond to spectrally isolated ex-

citations. For this reason, we have focused on the boundary

characteristics of the topological circuit in this work.
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METHODS AND APPENDICES

A. Impedance response and circuit Green’s function

The signature of a nontrivial topological phase often lies in

its response to an external perturbation. In electronic topo-

logical systems for instance, a nontrivial Chern number cor-

responds to a nonvanishing quantized Hall response, as epit-

omized by the Kubo formula. In circuits, however, the Kubo

formula does not apply as there is no quantum excitation from

a Fermi sea. Below, we shall derive the appropriate analog

of the Kubo formula for circuits, which shall characterize the

so-called topolectrical response.

Define Va and Ia to be the voltage and external input current

on node a of a circuit. By Kirchhoff’s law,

İa = CabV̈b + σabV̇b +WabVb (9)

where Cab, σab and Wab are the Laplacian matrices of ca-

pacitances, conductances and inverse inductances, and the

summation over repeated indices is implied. For a mode

V (t) ∼ V (0)eiωt at frequency ω, Eq. (9) takes the form

Ia =

(

iωCab + σab −
i

ω
Wab

)

Vb = Jab(ω)Vb (10)

where Jab(ω) is the (grounded) circuit Laplacian.

The most natural measurement on a circuit is the impedance

response Zab(ω), which is the ratio of the voltage between two

nodes a and b due to a current Ij = I0(δj,a − δj,b) that en-

ters through a and exits at b. Mathematically, Zab(ω) simply

involves the inversion of Eq. (10):

Zab(ω) =
Va − Vb

I0

=
∑

i

Gai(ω)Ii −Gbi(ω)Ii
I0

= Gaa(ω) +Gbb(ω)−Gab(ω)−Gba(ω)

=
∑

n

|φn(a)− φn(b)|2
jn(ω)

(11)

where Jab(ω) =
∑

n jn(ω)|φn(a)〉〈φn(b)| is the expansion

of the Laplacian into its eigenmodes (the ω dependence of

the eigenmodes is left implicit), with the Green’s function

Gab(ω) =
∑

n
1

jn(ω) |φn(a)〉〈φn(b)| being its inverse. When

the circuit is ungrounded, an overall shift of the potential can-

not be felt, and the corresponding zero eigenspace should be

excluded in the definition of the Green’s function.

Equation (11) describes the impedance between any two

nodes purely in terms of the eigenmodes and eigenvalues of

the Laplacian. Most notably, it suggests that circuit reso-

nances (divergences of the impedance) occur whenever there

are nontrivial zero eigenvalues jn. In a realistic circuit with

unavoidable disorder, the strength of such resonances depend

on the density of such zero eigenmodes, as well as whether

there is any mechanism that pins them to zero.

A quintessential example of a strong protected resonance is

a topolectrical resonance, which occurs due to topologically
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protected zero modes of the circuit Laplacian. Due to the lo-

calization of these modes at the boundary, such resonances

can be easily identified through extremely large resonances at

the boundary but not the interior of the circuit lattice. In this

paper, the corner modes are such an example.

The circuit Laplacian in momentum space J̃λ(ω0,k) is

given by

J̃λ(ω0,k) = i

√

c

l

[

(1 + λ cos kx)σ1τ0

+ (1 + λ cos ky)σ2τ2

− λ sin kx σ2τ3

+ λ sin ky σ2τ1
]

,

(12)

which has, up to an overall factor of i, the same form as the

model for an electric quadrupole insulator defined in Ref. 17.

B. Mapping to an effective Dirac problem and boundary

modes

In the main text, we showed that the admittance matrix

J(ω0) possesses the required symmetries to define the topo-

logical characteristics of a quadrupole insulator. In this sec-

tion we demonstrate that in the corresponding dynamical ma-

trix D, the same symmetry properties are emergent for fre-

quencies near ω0, but globally realized. We derive the effec-

tive Dirac form of the matrix D and explicitly show that it

implies the existence of corner modes.

We denote by C̃(kx, ky) and W̃ (kx, ky) the Fourier com-

ponents of the matrices C and W defined in the main

text for a circuit with periodic boundary conditions. To

show that M̂x and M̂y defined in Eq. (8) are emer-

gent symmetries of the dynamical matrix D̃(kx, ky) =

C̃−1/2(kx, ky)W̃ (kx, ky)C̃
−1/2(kx, ky) we note that the

spectrum of D̃(kx, ky) is gapless for λ = 1 with a linear

band touching point near (kx, ky) = (π, π), but is gapped for

λ 6= 1. This motivates to expand D̃(kx, ky) to linear order in

(1−λ) and the deviations (px, py) of k from = (π, π). The re-

sulting effective dynamical matrix D(px, py) takes Dirac form

D(px, py) =ω2
0σ0τ0 +

ω2
0

4
(pxσ2τ3 − pyσ2τ1)

+
ω2
0

4
(1− λ)(σ1τ0 + σ2τ2),

(13)

where the term proportional to (1 − λ) is a mass term. The

spectrum of D(px, py) is symmetric about ω2
0 . This is a result

of the chiral symmetry C = σ3τ0 which anticommutes with

D(px, py). If this symmetry is not broken by a boundary in

the range of frequencies near ω0, topological boundary modes

will be pinned to the frequency ω0.

We are searching for an explicit analytical solution to the lo-

calized corner state within the respective Dirac equation. For

simplicity, we set ω0 = 2 and remove the overall energy shift

ω2
0 from the Dirac operator. Further we substitute (1−λ)σ1τ0

by ∆sin φσ1τ0 and (1− λ)σ2τ2 by ∆cos φσ2τ2 so that the

operator reads

D = pxσ2τ3 − pyσ2τ1 +∆(sin φσ1τ0 + cos φσ2τ2),
(14)

where φ = π/4 and φ = −3π/4 holds inside and outside of

the material, respectively. We now equip φ with a position

dependence to model a corner. The bulk symmetries M̂x, M̂y

and Ĉ4 are all broken locally by the corner. The only sym-

metry that leaves the corner invariant is the diagonal mirror

symmetry M̂xȳ = C4Mx that sends (x, y) → (y, x) and is

represented by

Mxȳ =
1

2
(σ0 + σ3)τ3 +

1

2
(σ0 − σ3)τ1. (15)

Also, the system respects chiral symmetry for any choice of

φ. We now endow φ with a spatial dependence and note that

Mxȳ symmetry is preserved if

φ(x, y) = −φ(y, x) + π/2 mod 2π. (16)

If we parametrize x = rcosϕ, y = rsinϕ, the condition

translates into one on the ϕ dependence of φ. Specifically

φ(ϕ) = −φ(−ϕ+ π/2) + π/2 mod 2π. (17)

The choice φ1(ϕ) = ϕ is consistent with this symmetry, and

so is

φ2(ϕ) = arctan
(ϕ

λ

)

+ arctan

(

ϕ− π/2

λ

)

+
π

4
. (18)

In the limit λ → 0, φ2(ϕ) realizes a corner with the non-

trivial part of the system located in the upper right quad-

rant. For φ1(ϕ), in contrast, the operator (14) is equivalent

to the Hamiltonian that describes a vortex in an s-wave su-

perconducting surface state of a three-dimensional topologi-

cal insulator21,22. The latter supports a spectrally isolated zero

energy mode localized at the origin. It is protected to lie at

zero energy by the chiral symmetry. We can now choose any

interpolation between φ1(ϕ) and φ2(ϕ) to connect these two

situations: since chiral symmetry cannot be broken by the in-

terpolation, the zero mode has to remain also in the system

with a corner.

C. Topological index: Mirror-graded winding number

Here we define the bulk topological invariant for a topolog-

ical quadrupole insulator as a mirror-symmetry graded wind-

ing number. This index is valid if the model has diagonal

mirror symmetry (e.g., Mxȳ) and chiral symmetry C. The lat-

ter is in any case required to pin topological corner modes to

eigenvalue zero. Our topological invariant is complementary

to the characterization of multipole insulators in terms of Wil-

son loops that was given in Ref. 17.

Consider a k-dependent matrix (being for example a

Bloch Hamiltonian, or an admittance matrix) R(k) that
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FIG. 3. Two dependencies of the operator D from Eq. (14) on the

angular variable ϕ that mimic a superconducting vortex (blue) and

the corner of an electric quadrupole insulator (red). The existence of

a zero mode in the former implies the existence of a corner mode in

the latter.

both obeys C, i.e., CR(k)C−1 = −R(k), and Mxȳ , i.e,

MxȳR(kx, ky)M
−1
xȳ = −R(ky, kx) and let [C,Mxȳ] = 0.

The occupied bands of R(k, k) can then be divided in a sub-

space with mirror eigenvalues ±1 (or ±i for spinful mirror

symmetry). Using this grading, we can bring R(k, k) to the

form

R(k, k) =









0 q+(k) 0 0
q+(k)

† 0 0 0
0 0 0 q−(k)
0 0 q−(k)

† 0









, (19)

where the first half acts on the +1 mirror subspace, while the

second half acts on the −1 mirror subspace. For R(k, k) to

be gapped, all eigenvalues of q±(k) need to be nonzero. We

can thus define a ‘spectrally flattened’ pair of unitary matrices

q̃±(k) which share the eigenstates and phase of the eigenval-

ues with q±(k), but have eigenvalues of absolute value 1. We

can now define the winding numbers

ν± :=
i

2π

∫ 2π

0

dk tr q̃†±(k)∂k q̃±(k), (20)

which are quantized to be integers. For a system with van-

ishing dipole moment, the net winding number ν+ + ν− must

vanish in any direction of momentum space. Hence, for the

systems of interest to us ν+ = −ν−, and we can use

ν :=
ν+ − ν−

2
∈ Z (21)

as a topological invariant. The number of topological corner

modes is equal to the parity of ν.

We now demonstrate this topological invariant for the ad-

mittance matrix realized in our electrical circuit. Up to pref-

actors, the matrix takes the form

R(k) = (1 + λ cos kx)σ1τ0

+ (1 + λ cos ky)σ2τ2

− λ sin kx σ2τ0

+ λ sin ky σ2τ1,

(22)

and C = σ3τ0, while Mxȳ = 1
2 (σ0 + σ3)τ3 +

1
2 (σ0 − σ3)τ1.

The mirror-eigenvalue graded off-diagonal components of

R(k, k) are scalars in this case and can be computed as

q±(k) =
√
2
(

1 + λe∓ik
)

. (23)

Clearly, for λ > 1, they have winding number ν± = ±1 and

thus ν = +1, corresponding to the topologically nontrivial

phase with corner modes. In contrast, for λ < 1 we find ν± =
0 and thus ν = 0, corresponding to the topologically trivial

phase.

D. Experimental circuit implementation

The circuit board was fit with ceramic chip capacitors

[WCAP-CSGP Ceramic Capacitors 0805 (Würth Elektronik)]

with 1 nF and 3.3 nF capacity, respectively, and SMD power

inductors with low serial resistance RDC [WE-LHMI SMD

Power Inductor (Würth Elektronik)] with 3.3 µH (RDC <
76 mΩ) and 1µH (RDC < 27 mΩ) inductivity. All compo-

nents were pre-characterized with the HP 4194A to obtain tol-

erances of below 2% of the nominal component values. The

HP 4194A was also used to measure differential impedance

spectra between the nodes. Therefore a differential four ter-

minal measurement between the trivial node in the lower right

corner and the nodes of interest in the upper left (i. e., the topo-

logical corner) was performed. The analyzer’s compensation

algorithm was used to cancel out the impedance contribution

caused by the measurement feed lines.

E. Dipole and quadrupole polarization

In this subsection, we present how the dipole and

quadrupole topological polarization can be expressed in terms

of Bloch eigenfunctions and the Berry connection.

1. Dipole polarization, Wannier functions and projected density

operator

In the continuum, the dipole polarization pi =
∫

xiρ(x)dx
gives us the expectation value of the center of mass with re-

spect to a density operator ρ. On a two-dimensional lattice, its

definition should be modified in two ways. Firstly, ρ should

be replaced by the band projector P =
∑

n,k |un
k
〉〈un

k
|, where

|un
k
〉 = un

k
|k〉 is the nth occupied Bloch eigenstate with

quasimomentum k = (kx, ky). Secondly23, x should be re-

placed by the periodic position operator X̂ = e2πix̂/Lx =
∑

x e
2πix/Lx |x〉〈x|, where |x〉 denotes a state at site x, and

Lx is the total number of sites. We can thus rewrite the polar-

ization operator as

ρ̃ = PX̂P

= PeiQx̂P, (24)

which may also be interpreted as the projected density oper-

ator at momentum Q = 2π
Lx

. When P trivially projects onto
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all bands, ρ̃ = X̂ simply gives the periodic position. When

P is nontrivial, the eigenvalues and eigenvectors of ρ̃ respec-

tively give the polarization spectrum and Wannier functions.

It is well-known that the polarization spectral flow tells us the

net number of edge modes leaving the band(s). Note that these

edge modes exist even in classical lattice systems, where band

projectors cannot be physically realized as filled Fermi seas.

Since the density operator satisfies

eiQx̂ =
∑

k

|k+Qêx〉 〈k|, (25)

the projected density operator takes the form

ρ̃ =
∑

n,m,k

|un
k+Qêx〉〈u

n
k+Qêx |u

m
k
〉〈um

k
|

≈
∑

n,m,k

[eiQAx(k)]nm|un
k+Qêx〉〈u

m
k
|, (26)

with equality in the Lx → ∞ limit. In this limit, the ma-

trix Unm(k) = 〈un
k+Qêx

|um
k
〉 is unitary and tends towards

[eiQAx(k)]nm, where Ax(k) = −i〈un
k
|∂kx

um
k
〉 is the non-

abelian Berry connection. In this form, it is easy to guess

the form of eigenvectors |W s
ky
〉 of ρ̃, which are also known as

the Wannier functions. Note that kx does no longer enter as an

index, since ρ̃ is not diagonal in it. As ρ̃ implements both the

momentum translation k → k+Qêx and the internal rotation

Unm(k), an eigenvector must contain compensatory factors

such that it transforms covariantly under simultaneous transla-

tion and rotation. For this, it should be proportional to the Wil-

son line Φ(kx, ky) = U(0, ky)...U(kx−Qêx, ky)U(kx, ky) =

Pei
∫

kx
0

Ax(px,ky)dpx , where P is the path ordering operator, as

well as a power of e−ikx :

|W s(ky)〉 =
∑

kx

e−ikxθs(ky)/(2π)Φ(kx, ky)|W s
0 (ky)〉

=
∑

m,n,kx

e−ikxθs(ky)/(2π)[Φ(kx, ky)]mn (27)

×|um
k
〉〈un

k
|W s

0 (ky)〉.

Since the righthand side of Eq. (28) should be invariant un-

der kx → kx + 2π, it follows that eiθs(ky) and |W 0
s (ky)〉 are

respectively the eigenvalues and eigenvectors of the Wilson

loop operator

Φ(2π, ky) = Pei
∮

2π

0
Ax(px,ky)dpx . (28)

Through direct substitution of Eq. (28) into Eq. (26) it may

then be verified that the eigenvalues of |W s(ky)〉 are given by

eiθ(ky)/Lx .

To summarize, the Wilson loop operator Φ(2π, ky) is

closely related to the projected density operator ρ̃, which is

also diagonal in ky . Their eigenvalues are given by eiθ(ky)

and eiθ(ky)/Lx respectively. Given an eigenvector |W s
0 (ky)〉

of Φ(2π, ky), one can construct the eigenvector |W s(ky)〉 of

ρ̃ via Eq. (28). However, to do so, knowledge of the Wil-

son line Φ(kx, ky) at all kx is required. In this sense, the

physical polarization eigenvectors (Wannier functions) carry

“more” information than what is obtainable from the Wilson

loop alone.

2. Nested Wilson loop and quadrupolar polarization

If the Wannier polarization (ρ̃) spectrum is gapped, one can

perform a nested Wilson loop computation to reveal a possible

quadrupole moment.

In general, the total polarization is given by −i logTrΦ,

where Φ is the Wilson loop operator. In the nested Wilson

loop computed over the eigenstates |W s(ky)〉 of ρ̃, the gapped

cases allow for evaluation of the polarization of one sector at

a time, where the total polarization simplifies to

ps = − 1

(2π)2
Tr

∫

BZ

As
y(k)d

2
k

= i
1

(2π)2
Tr

∫

BZ

〈W s(ky)|∂ky
W s(ky)〉d2k, (29)

where As
y(k) is the Berry connection of |W s(ky)〉. To express

ps explicitly in terms of the Berry connections Ax, Ay of the

original Bloch eigenstates |um
k
〉, one notes that if |W s(ky)〉 =

∑

m Mms
k

|um
k
〉,

ps = − 1

(2π)2
Tr

∫

BZ

[(MM†)Ay − iM†∂ky
M ]d2k

=
i

(2π)2

∫

BZ

[

∑

mm′

(Mm′s
k

)∗〈um′

k
|∂ky

um
k
〉Mms

k
+
∑

m

(Mm′s
k

)∗∂ky
Mms

k

]

d2k (30)

where, from Eq. 28,

Mms
k

=
∑

kx

e−ikxθs(ky)/(2π)〈um
k
|Φ(kx, ky)|W s

0 (ky)〉 (31)

with Φ(kx, ky) = Pei
∫

kx
0

Ax(px,ky)dpx , and eiθs(ky),

|W s
0 (ky)〉 being the sth eigenvalue and eigenvector of

Φ(2π, ky).

3. Multipolar polarizations in a classical environment

It is instructive to understand how bulk topological po-

larization is indirectly but faithfully manifested in classical

systems. We first connect topological boundary modes with

band projectors by observing that they, by virtue of resid-

ing within the bulk gap, are necessarily properties of pro-
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jectors that demarcate a set of negative eigenvalue bands of

the impedance operator Ĵ from its complement. Indeed, the

electric polarization in x direction of a crystal is given by the

spectral flow of the eigenspectrum of the density operator24,25

ρ̃ = P̂ ei2πx̂/Lx P̂ , with P̂ the projector onto the filled sub-

space of bulk bands. To identify this spectral flow with physi-

cal quantities, we consider the adiabatic deformation

ei2πx̂/Lx → R̂ (32)

where R̂ is the projector onto a real-space region R. Under

this deformation to the operator P̂ R̂P̂ , the initially equally

spaced polarization bands adiabatically accumulate near 1 and

0, the eigenvalues of R̂, with the exception of those that tra-

verse this interval due to nontrivial spectral flow.

The next observation is that since P̂ and R̂ are projec-

tors, P̂ R̂P̂ and R̂P̂ R̂ have identical nontrivial eigenvalues

and eigenmodes25. Now, R̂P̂ R̂ is the band projector P̂ pro-

jected onto region R (i. e., with open boundary conditions). A

further adiabatic interpolation

R̂P̂ R̂ → R̂ĴR̂ (33)

completes the deformation to the Laplacian with open bound-

ary conditions R̂ĴR̂. Importantly, midgap states in the polar-

ization spectrum are adiabatically mapped to midgap states in

the Laplacian spectrum. Since midgap states exist within a

bulk gap they must necessarily be boundary states.

Via this deformation, we can re-interpret real-space polar-

ization as polarization in “admittance-space”, i.e. along the

axis where eigevalues of the Laplacian J reside. Hence, to

summarize, the “dipole moment” for dipole polarization is

classically manifested as the existence of midgap states that,

by definition, are necessarily “polarized” at the boundary.

This holds analogously for quadrupole moments as detailed

in Sec. E 2.
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