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Topological acoustics is an emerging field that lies at the intersection of condensed matter physics,
mechanical structural design and acoustics engineering. It explores the design and construction of
novel artificial structures, such as acoustic metamaterials and phononic crystals, to manipulate
sound waves robustly, taking advantage of topological protection. Early work on topological acous-
tics was limited to duplicating topological phases that have been understood in condensed matter
systems, but recent advances have shifted the paradigm to exploring novel topological concepts that
are difficult to realize in other physical systems, such as various topological semimetal phases, and
topological phases associated with Floquet engineering, fragile topology, non-Hermiticity and syn-
thetic dimensions. These developments demonstrate the unique advantages of topological acoustic
systems and their role in developing topological physics. In this Review, we survey the fundamental
mechanisms, basic designs and practical realizations of topological phases in acoustic systems, and
provide an overview of future directions and potential applications.

Sound and vibrations are ubiquitous. However, it is
still challenging to fully control them. A recent exam-
ple is the 2011 Fukushima disaster, in which the seis-
mic waves did not initially damage the highest-grade
anti-seismic buildings, but destroyed the external power
supply to the nuclear plant, triggering a series of reac-
tions and eventually leading to the disaster [1]. Another
example is the low-frequency noise pollution that is a
worldwide issue [2], because it can easily penetrate into
most buildings. At the same time, the use of acoustic
waves has become more and more important in modern
technologies. For example, acoustic waves are used in
biomedical microfluidic devices as a “tweezer” to trap
and manipulate particles and cells [3]. Moreover, acous-
tic waves can serve as information carriers that bridge
the gap between electronics and photonics [4]; the fre-
quencies of on-chip acoustic waves are close to those of
central processing units and wireless communication sys-
tems, while their wavelengths are comparable to those
of light. More recent studies have also demonstrated an
acoustic approach to the manipulation of quantum in-
formation, for example, by coupling acoustic modes to
a superconducting qubit [5]. The ability to manipulate
acoustic waves in a controlled way with great robustness
is hence strongly desirable.

Robust properties, such as immunity to scattering
caused by disorder or defects, can be found in phases of
topological quantum materials (the representative topo-
logical phases are illustrated in Figs. 1a-h) [6–8]. Typ-
ical examples are topological insulators (TIs), including
materials hosting the quantum Hall (QH) effect, which
are insulating in the bulk, but conduct electricity at

their boundaries owing to the existence of topological
boundary states that are robust against backscattering
[6, 7]. Since 2015, the discovery of topological semimet-
als has extended topological phases to gapless systems
[8]. TIs and topological semimetals represent a revolution
brought by the introduction of the concept of topology
into condensed matter physics.

A similar revolution can be envisioned in acoustics.
In the past three decades, artificially structured materi-
als have been engineered to control acoustic waves with
tremendous developments in science and technology [9].
The concept of an acoustic or phononic bandgap was pro-
posed in the 1990s [10, 11], laying the foundation for the
field of phononic crystals for acoustic waves, similar to
photonic crystals for light. Since early this century, deep
subwavelength building blocks, or “meta-atoms”, have
been engineered and incorporated in phononic crystals,
giving rise to exciting discoveries, including negative re-
fraction and invisibility cloaking for acoustic waves [12].
Although there is still some debate in terminology, state-
of-the-art artificially engineered acoustic structures are
widely referred to as acoustic metamaterials and consti-
tute a broad and independent field. Despite these re-
markable developments, the concept of topology has been
introduced for acoustics and acoustic metamaterials only
a few years ago.

This does not mean it is too late for topological acous-
tics to catch up with the frontiers of topological physics.
On the contrary, we have witnessed the extremely rapid
growth of this field (Fig. 1l). In the early years, topolog-
ical acoustics borrowed ideas already understood in con-
densed matter systems [13, 14]. This rapid growth has
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quickly caught up the pace of condensed matter develop-
ments, thanks to the relative ease of engineering scatter-
ers and coupling in acoustic metamaterials. Nowadays,
topological acoustics has become a field that realizes new
topological phases beyond those that can be obtained in
real materials, and offers novel ways to control the prop-
agation of sound.

In this Review, we provide an overview of the devel-
opments in topological acoustics. We focus on acoustic
waves in fluids, including air, where most studies have
been performed. Elastic waves are covered in other re-
cent reviews [13, 15]. The first and second sections review
the acoustic analogues of the QH topological phase and
time-reversal (T )-invariant topological insulating phases,
including the quantum spin Hall (QSH) phase and val-
ley Hall phases (Figs. 1a-d). The third section surveys
acoustic realizations of topological phases with quan-
tized dipole and multipole moments, which are closely
related to the recently discovered higher-order TIs (HO-
TIs; Figs. 1e-g). The fourth section introduces work on
acoustic topological semimetals (Fig. 1h). In the fifth
section, we highlight several emerging topological phases
with novel degrees of freedom such as Floquet-type time
modulation, fragile bands, non-Hermiticity and synthetic
dimensions (Figs. 1i-k). Finally, we present an outlook
on possible future directions for the field.

Effective magnetic fields and acoustic
quantum Hall insulators

The QH effect was the first phenomenon observed to
manifest nontrivial band topology. It was first discov-
ered in a 2D electron gas under a strong out-of-plane
magnetic field, in which the Hall conductance takes in-
teger values in units of e2/h [16]. This phenomenon was
soon explained by David Thouless and co-workers, who
revealed that the quantized Hall conductance is related
to a topological invariant, later called the Chern number,
associated with the bulk bands [17]. The Chern number
is defined through the integration of the Berry curvature
in the Brillouin zone (BZ) as

Cn =
1

2π

∫
BZ

Ωn(k)d2k, (1)

where

Ωn(k) = i(〈∂kxun(k)|∂kyun(k)〉 − 〈∂kyun(k)|∂kxun(k)〉)
(2)

is the nonvanishing component of the Berry curvature,
with |un(k)〉 the periodic part of the Bloch wavefunc-
tion of the nth band. The Chern number is necessarily
integer-valued, counting the net number of chiral edge
modes that enter and leave a given band. The chiral
edge modes, which are responsible for the quantized Hall
conductance, propagate along the edges unidirectionally,
and are robust against gap-preserving disorder and de-
fects (Fig. 1a).

To realize a QH phase, it is necessary to break T sym-
metry. This is achievable in electronic systems by ap-
plying a magnetic field. In acoustic systems, one has to
engineer an effective magnetic field instead. In fact, early
studies showed that analogous magnetic effects can take
place in acoustic systems with moving media (Box 1)
[21, 22]. In 2015, several proposals for realizing acoustic
QH insulators were put forward [23–25]. The basic idea
was to arrange circulating flows into periodic settings,
forming a T -broken acoustic lattice. For example, a tri-
angular lattice consisting of rotating rods was designed
as shown in Fig. 2a. The blue regions are filled with
fluids that perform a circulatory motion due to the rods’
rotation. The remaining area is filled with a stationary
fluid (such as air). The circulating flows induce a nontriv-
ial bandgap transversed by chiral edge modes (Figs. 2b
and 2c). These chiral edges modes, as expected, travel
unidirectionally along the lattice edges and are robust
against disorder and defects (Fig. 2d).

To gain more insights into why QH insulators can be
realized in such a lattice, let us consider the following
master equation for sound with negligible viscosity and
heat flow [26]:

1

ρ
∇ · ρ∇φ− (∂t + v · ∇)

1

c2
(∂t + v · ∇)φ = 0. (3)

Here, ρ is the fluid density, c is the sound speed, and v
is the fluid velocity. By looking for time-harmonic solu-
tions with angular frequency w and letting Ψ =

√
ρφ, the

master equation can be written in a compact way as [23]

[(∇− iAeff) + V ]Ψ = 0, (4)

where Aeff = −ωv/c2 is the effective vector potential in-
duced by a nonzero v. Thus, the circulating flows induce
an effective magnetic field for sound waves. For the lat-
tice given in Fig. 2a, both positive and negative effective
magnetic fluxes are induced, leading to zero net magnetic
flux within one unit cell [23], similar to anomalous QH
insulators [27].

Acoustic QH phases can also be implemented in other
lattice geometries with flows, such as honeycomb [24, 25]
and square lattices [28]. Moreover, it is possible to con-
struct an acoustic QH phase in active-liquid metamate-
rials, where the flow can be generated by self-propelled
particles without using external drives [29]. QH physics
can also be studied in lattices with synthetic dimensions,
as discussed later. On the experimental side, realizing
an acoustic QH insulator is quite challenging owing to
undesired effects such as non-synchronous rotation and
flow instabilities. To overcome these issues, an acoustic
ring resonator lattice was designed with optimized struc-
tural parameters and a high-order mode with high quality
factor, which largely reduces the required airflow speed
[30]. Based on this design (Fig. 2e), acoustic chiral edge
modes were successfully observed [30].
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Box 1 | Analogous magnetic effects for sound

Sound waves are intrinsically inert to magnetic fields. However, one can still construct effective magnetic fields
for sound and realize analogous magnetic effects in acoustic systems [18]. As a first example, we discuss the
realization of the Aharonov-Bohm (AB) effect [19] in acoustics. The AB effect occurs when electrons travel
outside an infinitely long solenoid carrying a current (panel a). Although the magnetic field is entirely confined
inside the solenoid, the nonzero vector potential outside modifies the phase of the electrons’ wavefunctions and
leads to interference phenomena. This effect can be observed in water waves, as was demonstrated by Michael
Berry and co-workers [20]. In their experiment, an irrotational vortex (panel b) played the role of the solenoid
and the velocity field, which is curl-free, served as an effective vector potential. In such a setting, a wavefront
dislocation is clearly observed when the surface water wave passes through the vortex from left to right (panel
c). Following this idea, an analog of the AB effect in acoustics was demonstrated by constructing a vorticity
filament and letting an acoustic plane wave pass through it [21]. Wavefront dislocation was observed after the
wave passed through the vorticity filament.

The second example is an acoustic analog of the Zeeman effect in a ring cavity with circulating airflow [22].
When there is no airflow, the cavity supports two degenerate counterpropagating modes. When an airflow
is applied, the two counterpropagating modes effectively circulate with different velocities and have different
eigenfrequencies. Thus, airflow lifts the degeneracy of the two counterpropagating modes, in analog to the
energy splitting of electronic orbitals induced by a magnetic field in the Zeeman effect.

Panel c adapted from [20] (Berry et al.).

Finally, it is worth mentioning that in T -invariant
acoustic systems, although the genuine QH phase cannot
exist, one can still construct so-called pseudo magnetic
fields and realize some analogous QH effects via proper
structural engineering [31, 32]. This approach is in the
same spirit as strain engineering in graphene [33], where
mechanical deformations couple to Dirac cones as gauge
fields and lead to the formation of pseudo Landau lev-
els connected by in-gap edge states (note that these edge
states are not unidirectional). Furthermore, such pseudo
magnetic fields can also be induced in acoustic Weyl crys-
tals, leading to chiral pseudo Landau levels [34] (as dis-
cussed in the section on acoustic topological semimetals).

Pseudospins and T -preserved topological
phases in acoustics

In acoustic QH insulators, fluid flow is usually re-
quired to break T symmetry, which makes experimental
realizations challenging. In this section, we discuss ap-
proaches to realize T -invariant acoustic topological insu-
lating phases, or the so-called acoustic QSH and acoustic
valley Hall insulators, by exploiting spin and valley de-
grees of freedom.

Acoustic analogues of quantum spin Hall insula-
tors

The QSH insulator [35–37], which can be regarded as
a system simultaneously supporting two time-reversed
copies of the QH insulator, hosts so-called helical edge
states. The term “helical” refers to the fact that oppo-
site spins counterpropagate along the edge [38], in con-
trast to chiral edge states that propagate unidirectionally
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(Figs. 1a, b). In a QSH insulator, the Chern number for
each spin is nonzero, despite the vanishing total Chern
number (Cup = −Cdown 6= 0). Unlike the QH phase,
a QSH insulator does not break T symmetry but is in-
stead protected by T symmetry. This is because T sym-
metry for an electron satisfies T 2 = −1, which enables
Kramers doublets, where opposite spins are degenerate
at T -invariant momenta. It is thus possible to achieve
gapless edge states robust against T -preserving pertur-
bations. However, for sound, which carries intrinsic spin-
0, T symmetry satisfies T 2 = 1. Such a fundamental
difference poses a challenge to the implementation of an
acoustic analogue.

A common strategy to overcome this issue is to mod-
ify T into UT (U is an operator usually generated from
a lattice symmetry), such that (UT )2 = −1. Subse-
quently, fermion-like pseudospins and the corresponding
Kramers-like degeneracy can be constructed. One way
to do so is based on tuning the accidental double Dirac
cone in graphene-like lattices (Fig. 2f) [39, 40]. By tun-
ing the structural parameters, a band inversion associ-
ated with a topological phase transition can occur at the
Γ point, as illustrated in Fig. 2g. At the interface be-
tween a topological acoustic crystal and a trivial one, one
pair of gapless modes emerge (Fig. 2h). These inter-
face modes are indeed counterpropagating helical modes
(Fig. 2i) [39]. A similar approach to achieving an acous-
tic QSH insulator is via a BZ folding mechanism [41–44].
The starting point is an acoustic crystal featuring a pair
of Dirac points at the K and K′ corners. By properly
choosing a supercell, the Dirac points are folded to the
Γ point. Then a topological phase transition takes place
via shrinking or expanding the supercell. In these sys-
tems, pseudospins are formed by hybridization of the or-
bital modes (note the pseudospins are only well-defined
around the Γ point), and the condition (UT )2 = −1 can
be fulfilled by using a U generated from the C6 symmetry
[45]. However, at the interface, the protective symmetry
can be slightly broken, resulting in a tiny gap in the edge
dispersion (not visible in Fig. 2h).

Acoustic QSH insulators can also be implemented us-
ing other pseudospin degrees of freedom. For example,
a double-layer acoustic crystal was realized with a layer
pseudospin degree of freedom, where the interlayer cou-
pling is analogous to the spin-orbit coupling [46]. Re-
markably, this design shows gapless helical edge modes at
the external boundaries rather than at the domain walls
or interfaces as in the previous models [39–44]. As the
bandgap of an acoustic QSH insulator is usually narrow,
a recent work adopted topology optimization to maxi-
mize the bandgap width [47]. A reconfigurable acous-
tic QSH insulator was also experimentally demonstrated
[48]. Furthermore, the QSH phase can be extended to 3D
systems[49]. Recently, an acoustic analog of a 3D QSH
insulator with gapless surface Dirac cones was realized
[50].

Acoustic valley Hall insulators

Initially inspired by advances in 2D materials research
[51], the valley degree of freedom has been introduced
to acoustics [52, 53]. A valley is a local extremum
in the band structure, which is generally located at
high-symmetry momenta. Acoustic valley Hall insula-
tors are usually obtained by gapping out Dirac points
through the breaking of inversion (P) or mirror sym-
metry. Around the valleys, so-called valley-contrasting
physics can occurr, that is, opposite orbital magnetic mo-
ment and Berry curvatures can be realized at different
valleys [54]. This leads to various valley-dependent phe-
nomena; in particular, angular-momentum-carrying val-
ley pseudospins and valley kink states are widely studied
in acoustics.

A typical acoustic valley Hall insulator is shown in
Fig. 2j, and features triangular scatterers placed in a
triangular lattice with a background of air. When the
orientation angle θ of scatterers is 0◦, the acoustic crys-
tal has mirror symmetry, and a pair of Dirac points ap-
pear at the BZ corners (K and K′ points). Slightly al-
tering θ breaks mirror symmetry, lowering the symmetry
from C3v to C3 at the K and K′ points and lifting the
degeneracy of the Dirac points [52, 53, 55]. The Bloch
modes at the K and K′ valleys exhibit vortices with either
left-handed circular polarization or right-handed circular
polarization [52] (Fig. 2k). These valley vortex states of-
fer controlled propagation of bulk modes, such as valley-
chirality locked beam splitting [52, 56]. Furthermore, at
a domain wall, also called a kink, between two acous-
tic valley Hall lattices with opposite θ, so-called valley
kink states emerge, with propagation directions locked
to the valley degree of freedom (Fig. 2l). These kink
states are characterized by a half-integer topological in-
variant called the valley Chern number, which is the in-
tegration of Berry curvature around one valley. It was
experimentally demonstrated that the kink states can
pass through 120◦ sharp corners with negligible scatter-
ing (Fig. 2m). In addition, studies have also demon-
strated the robustness of valley kink states against other
types of path bends [53, 57, 58] and certain types of dis-
order [59]. These properties can be used to devise devices
like robust acoustic delay lines [60]. Another interesting
property of the valley kink states is that at zigzag termi-
nations, the valley kink states can outcouple to the sur-
rounding background with 100% efficiency [61–63], which
is useful for designing directional acoustic antennas [64].

Valley Hall phases can be further enriched in multi-
layer structures. Researchers have found that a bilayer
acoustic valley Hall insulator can exhibit layer-mixed and
layer-polarized valley kink states [65, 66]. By adding a
finite-width acoustic crystal featuring Dirac points be-
tween two topologically distinct acoustic valley Hall in-
sulators, a topological valley-locked large-area waveguide
was demonstrated [67]. Such a waveguide can be used for
robust high-energy-capacity transport and valley-locked
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converging of sound. Moreover, by introducing on-site
gain and loss to an acoustic valley Hall insulator, the
valley vortex states and kink states can be selectively
attenuated or amplified [68].

Acoustic topological phases with quan-
tized dipole and multipole moments

In the previous two sections, we have discussed the
QH, QSH and valley Hall phases in acoustics. These
topological phases are characterized by the Chern num-
ber and its derivatives, like the spin and valley Chern
numbers, which are integrations of the Berry curvature.
In this section, we turn our focus to another large class
of topological phases that are characterized by a quan-
tized dipole moment, that is, the integration of the Berry
connection, and by its generalizations, such as quantized
quadrupole and octupole moments.

1D acoustic topological phases

In this subsection, we briefly discuss 1D acoustic topo-
logical phases [13]. Acoustic topological phases in 1D
are characterized by quantized bulk dipole polarization.
In the modern theory of polarization [77, 78], the bulk
dipole moment is formulated through the Berry phase
[79] as

P =
1

2π

∫ k+2π

k

Tr[Ak]dk, (5)

where [Ak]mn = i〈umk |∂k|unk 〉 is the Berry connection.

Here, |um/nk 〉 is the periodic part of the Bloch wavefunc-
tion and m and n label the occupied bands (or equiva-
lently, bands below the bandgap of interest). The dipole
moment corresponds to the Wannier center (WC) and
in general can take any value within one unit cell. Im-
portantly, the dipole moment can be quantized by sym-
metries such as mirror and chiral symmetries, making it
eligible as a topological invariant. Note that the dipole
moment by definition is a gauge-variant quantity that
depends on the choice of a unit cell. Nevertheless, the
WC positions are unambiguous. When a 1D system has
a nontrivial dipole moment, there are fractional charges
at boundaries. The quantized dipole moment, as well
as the fractional boundary charge, cannot be removed
by perturbations that preserve both the protective sym-
metry and the bandgap. In realistic acoustic systems,
although there is no actual polarization, because there
are no charged particles like electrons, the above picture
still applies. The dipole polarization can be understood
as the WC, and the fractional boundary charge can be
interpreted as a “fractional boundary anomaly” [80].

The first demonstration of a 1D acoustic topological
phase utilized an inversion-symmetric lattice (Fig. 3a)
[81]. In this setup, two lattices with distinct dipole mo-
ment (or equivalently, Zak phase [82]) are adjacent, and

Box 2 | Acoustic implementation of tight-
binding lattices

In acoustic systems, many topological lattice
models can be implemented in a straightforward
manner. The building blocks for implement-
ing tight-binding lattices in acoustics are acous-
tic cavities and tubes, playing the roles of atoms
and hoppings, respectively (panel a). The cavi-
ties support different resonance modes at differ-
ent frequencies. Without the tubes, the system
is described by a diagonal matrix H0 whose ele-
ments are the eigenfrequencies. When the tubes
are introduced, the lattice is described by the
matrix H0 + H1, where H1 accounts for the ef-
fects introduced by the tubes [69]. These are
couplings between the modes of interest, cou-
plings between the modes of interest and other
modes (this indicates H1 is in general not block-
diagonal), and on-site frequencies shifts of the res-
onance modes (this indicates H1 may contain di-
agonal elements). The latter two effects are unde-
sired, and can be made very weak by using weak
couplings and choosing a resonance mode that is
well-separated from other modes.

Many degrees of freedom can be tuned in such
coupled acoustic resonator lattices. For example,
the on-site frequency (f0) can be controlled by
tuning the geometry of the cavity, and the cou-
pling strength (γ1,2) and sign can be controlled by
the size and location of the tubes (panel b) [70–
72]. It is also possible to realize non-Hermitian
terms such as on-site gain and loss or nonrecipro-
cal hoppings by introducing extra absorbing ma-
terials or active components [73–76].

generate an interfacial topological state. A 1D acous-
tic topological system can also be straightforwardly con-
structed by implementing certain tight-binding models
using coupled acoustic resonators (Box 2) [83–85], such
as the Su-Schrieffer-Heeger (SSH) model [86]. These 1D
acoustic topological systems provide platforms that give
direct access to bulk quantities such as the Zak phase
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[81]. The topological boundary modes can be used to
construct topological Fano resonances [87] and achieve
robust analog signal processing [88].

Acoustic higher-order topological insulating
phases

HOTIs are recently discovered topological materi-
als that host topological modes at corners or hinges
(Figs. 1e-g) [89]. Acoustic systems have served as im-
portant and versatile experimental platforms for demon-
strating the physics of HOTIs. In particular, various
types of HOTIs with corner modes have been realized
in acoustics [70–72, 90–105].

HOTIs with corner modes can be regarded, in gen-
eral, as generalizations of 1D quantized dipole moments
to higher dimensions. There are two types of such gen-
eralizations: first, the generalization of the quantized
dipole moment in 1D systems to higher-dimensional sys-
tems [106–109], and second, the generalization of quan-
tized dipole moments to quantized multipole moments
[110, 111]. In both cases, the band topology is captured
by Berry-phase-type invariants, unlike in 2D QH and
QSH TIs, whose topology is determined by the windings
of the Berry phase. Such a difference reveals a funda-
mentally new notion of topology in HOTIs: the nontriv-
ial topology is defined through the obstruction to moving
the WC to the atomic site in the unit cell instead of the
obstruction to finding a set of symmetric Wannier func-
tions for the filled bands [112].

The first generalization is straightforward: the dipole
moment in 2D and 3D is a vector that consists of
the dipole polarization along each direction (P =
(Px, Py, Pz)). Similar to 1D cases, the dipole moment
in 2D and 3D can be quantized by symmetries and thus
can give rise to fractional charges at corners. Because
the value of P gives the position of the WC, HOTIs with
quantized dipole moment are also called Wannier-type
HOTIs [107]. A typical example of a Wannier-type HOTI
is the kagome lattice with dimerized couplings [106],
which was experimentally implemented in acoustics with
coupled-resonator lattices [90, 91] (Fig. 3b). Designs be-
yond tight-binding models have also been demonstrated
[92]. In 3D, Wannier-type HOTIs have been implemented
in a few acoustic systems, including the acoustic diamond
lattice [93], the acoustic pyrochlore lattice (Fig. 3c) [96]
and an SSH-inspired acoustic cubic lattice [94].

The second generalization leads to another type of
HOTIs, namely multipole TIs. Multipole TIs have van-
ishing dipole moment but quantized multipole (such as
quadrupole and octupole) moments, whose theoretical
characterization involves novel techniques such as nested
Wilson loops [110, 111] or many-body multipole oper-
ators [113, 114]. A pioneering work by Benalcazar,
Bernevig and Hughes (BBH) first proposed a 2D lattice
model for a quantized quadrupole TI and a 3D lattice
model for a quantized octupole TI [110]. These mod-

els require negative couplings that are hard to realize in
real materials but are feasible in acoustics. So far, both
2D and 3D BBH models have been successfully imple-
mented in acoustics [70–72] (Fig. 3d left and Fig. 3e).
These realizations utilize coupled acoustic cavities that
host dipolar resonances and construct negative couplings
by engineering the coupling channels (Box 2). In acous-
tics, it is also possible to go beyond BBH models and
realize multipole TIs without negative couplings. This
was demonstrated by designing a non-symmorphic acous-
tic crystal (Fig. 3d, right) that realizes a quadrupole TI
protected by two noncommutative glide symmetries [97].
Furthermore, a 4D hexadecapolar TI was also experi-
mentally studied in a 1D acoustic system via dimensional
reduction [115].

It is worthwhile to point out that, although most stud-
ies have focused on corner modes, the decisive feature
of higher-order band topology is the fractional corner
charge. A recent study has shown that fractional corner
charge can indeed be detected through accurate measure-
ment of the local density of states in an electromagnetic
system [80]. It is still an open question whether similar
measurements can be performed in acoustics. Apart from
corner modes, 1D hinge modes have also been realized in
3D acoustic HOTIs [50, 116, 117].

Acoustic topological semimetals

The topological properties of topological semimetals in
condensed matter systems [8, 118] are defined by band
degeneracies where two or more bands intersect with each
other in momentum space. Topological semimetals have
also found their analogues in acoustics, which we refer to
as acoustic topological semimetals.

Acoustic Weyl crystals

Acoustic Weyl crystals [83, 119–124] host so-called
Weyl points, where two bands linearly intersect in 3D
momentum space (Fig. 1h), similar to Weyl semimetals
in electronic materials. Weyl points are drains or sources
of Berry flux and carry topological charges defined by
Chern numbers. Excitations near the Weyl points are
described by the Weyl Hamiltonian H(k) = k ·σ, with σ
the Pauli matrices. Because all three Pauli matrices are
involved, Weyl points are very robust and can only be
annihilated in pairs with opposite charges. Besides, ac-
cording to the Nielsen-Ninomiya theorem [125], the sum
of topological charges of Weyl points in a crystal must be
zero. An intriguing property of Weyl semimetals is that
the isofrequency contours of surface states are open arcs,
known as Fermi arcs [126]. These Fermi arcs connect
the projections of two oppositely charged Weyl points
(Fig. 4a).

As the Berry curvature in momentum space is zero ev-
erywhere for a system with both P and T symmetries
[127], to achieve Weyl points in acoustics, either P or T
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should be broken. Because breaking T is very challeng-
ing in acoustics, all acoustic Weyl crystals realized so far
have broken P and preserved T . Fig. 4b shows the unit
cell design of an acoustic Weyl crystal. For fixed kz, the
system can be viewed as the well-known Haldane lattice
[27], with nonzero effective gauge flux generated by the
chiral interlayer couplings [119]. Acoustic Weyl crystals
are usually fabricated with the aid of 3D printing tech-
nology (Fig. 4c). Using direct acoustic measurements,
the bulk dispersions of the Weyl points, as well as the
acoustic Fermi arcs, can be observed [120] (Fig. 4d).

Unlike condensed matter designs that must consider
limitations of realistic materials such as their stability,
acoustic systems can be built up almost at will. Besides,
the probing frequency in acoustic systems is almost arbi-
trary, with no restriction as in condensed matter systems
where probing must be near the Fermi level. Therefore,
acoustic systems enable the observation of exotic phe-
nomena previously inaccessible or extremely challenging
in condensed matter systems. One example is the topo-
logical negative refraction of the Fermi arc surface states.
By judiciously engineering the Fermi arcs on two adja-
cent surfaces, Fermi-arc surface states can be made to
refract from one surface to the other without reflection,
due to the non-closed nature of Fermi arcs (Fig. 4e)[128].
This is in sharp contrast to the conventional refraction:
in the topological negative refraction, the incident and
refracted beams are at the opposite sides of the normal
and reflection is absent, whereas in nontopological nor-
mal refraction the two beams are on the same side of the
normal, and reflection is usually unavoidable.

By designing an inhomogeneous acoustic Weyl crys-
tal with the Weyl point positions continuously moving in
one specific direction in 3D momentum space, a pseudo
axial field can be created in acoustics, leading to the ob-
servation of chiral Landau levels [34] (Fig. 4f). Higher-
order acoustic Weyl crystals exhibiting both Fermi arc
states on 2D surfaces and hinge arc states at 1D hinges
(Fig. 4g) were also experimentally realized [129, 130].
Weyl points in these higher-order acoustic Weyl crystals
can be viewed as transition points between Chern insu-
lators and HOTIs parameterized by kz.

Acoustic topological semimetals beyond conven-
tional Weyl phases

As it turns out, there are various topological band de-
generacies beyond the conventional Weyl point, which
can be classified by the order of dispersion, the number
of degenerate bands, and the dimensionality of the de-
generacy (Fig. 1h).

The 3D Dirac point is a four-fold linear point degener-
acy, which can be viewed as an overlap of two Weyl points
with opposite topological charges and can be described
by an effective Hamiltonian H(k) = [k · σ, 0; 0,−k · σ]
[131–134]. Therefore, the 3D Dirac point carries a Z2

topological charge. There are basically two categories of

3D Dirac points, one relying on band inversion [133] and
the other stabilized by crystalline symmetries [131, 132].
A special case of the latter was experimentally observed
in acoustic crystals with space groups No. 206 and 230,
which exhibit gapless quad-helicoid surface states stabi-
lized by nonsymmorphic and T symmetries [131, 132]
(Fig. 5a). Note that though the surface states of the
Dirac points have topological origin, they are not topo-
logically protected in general and can be gapped by hy-
bridizing two surface states with opposite pseudospins
[135]. Furthermore, hinge states induced by higher-order
band topology was recently discovered in acoustic Dirac
crystals [136, 137].

The charge-2 Dirac point is also a four-fold linear point
degeneracy, which, however, is a direct sum of two iden-
tical Weyl points and is described by the effective Hamil-
tonian H(k) = [k · σ, 0; 0,k · σ] [138]. It thus carries
topological charge 2 and has double Fermi arcs (Fig. 5b).

The band degeneracy can also be three-fold, exempli-
fied by the spin-1 Weyl point [138], which has two linearly
dispersive bands and a flat band, labelled with Chern
number ±2 and 0, respectively. Unlike the spin-1/2 Weyl
and Dirac quasiparticles, the excitations near the spin-1
Weyl point behave like spin-1 particles. The correspond-
ing Hamiltonian is H(k) = k·L, with L the spin-1 matrix
representations [138]. Both the spin-1 Weyl point and
the charge-2 Dirac point can be found in a chiral acous-
tic crystal without inversion or mirror symmetry (more
specifically, an acoustic crystal with space group No. 198)
and are stabilized by rotational, screw and T symmetries.
Owing to the topological charge 2, the projected spin-1
Weyl point emanates two Fermi arcs (Fig. 5b), which
connect the projection of the spin-1 Weyl point at the
BZ centre and the charge-2 Dirac point at the BZ corner,
forming a noncontractible loop that winds around the
surface BZ torus [138]. These topological surface states
exhibit topological negative refraction over all surfaces
of the sample. Note that a spin-1 Weyl point is not nec-
essarily paired with a charge-2 Dirac point. It can also
be paired with another spin-1 Weyl point with opposite
topological charge [139].

Topological degeneracies can also have quadratic or
higher-order dispersions [140]. One example is the
quadratic Weyl point, which usually has quadratic dis-
persion in two directions and linear dispersion in the third
one. The quadratic Weyl point at T -invariant momen-
tum was experimentally realized in a chiral acoustic crys-
tal with space group No. 181 and is enforced by the screw
rotational and T symmetries [141]. Such a point degen-
eracy carries topological charge 2 and exhibits two Fermi
arcs [141] (Fig. 5c).

The band degeneracies can also form 1D nodal lines
[142–145]. These nodal lines have various forms, such as
chains, links, knots and rings. Besides, the nodal lines
carry nontrivial Berry phase π, the same as 2D Dirac
points. Acoustic nodal rings can be pinned at certain
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planes in 3D momentum space [142] (Fig. 5d) and ex-
hibit topological flat drumhead states on the surfaces.
Acoustic nodal lines winding around the BZ and the cor-
responding waterslide surface states that connect nodal
lines with opposite chirality were also realized [144]. Two
intersecting nodal rings can form a nodal chain; interest-
ingly, the Berry phase around the intersection point is
zero. Nodal chains protected by nonsymmorphic and T
symmetries were recently realized [146]. Nodal rings may
also carry chiral topological charges in an acoustic crystal
with broken inversion symmetry [145].

Finally, the dimensionality of the band degeneracies
can even be 2D. A 2D nodal surface stabilized by non-
symmorphic lattice symmetry and T symmetry was re-
alized by two groups independently [147, 148]. Inter-
estingly, due to the broken inversion symmetry of the
underlying acoustic crystal, the nodal surface carries a
chiral charge +2. The nodal surface thus emanates two
Fermi arcs connecting to two charge-1 Weyl points [147]
(Fig. 5e).

Emerging topological phases in acoustics

In this section, we review several emerging directions
in topological acoustics, including Floquet, fragile and
non-Hermitian topological phases, as well as topological
phases with synthetic dimensions.

Floquet topology

Apart from static systems, nontrivial band topology
can also be found in systems with periodic modulation,
also known as Floquet systems [149]. A Floquet system
is described by a time-dependent Hamiltonian Ĥ(t) =
Ĥ(T+t), with T the driving period (Fig. 1i). The evolu-
tion of the system over a period is determined by the one-

period evolution operator Û(T ) = T̂ exp[−i
∫ t0+T

t0
Ĥ(t)dt]

with T̂ the time-ordering operator. The band structure,
also known as the Floquet spectrum, can be obtained
from Û(T )ψ(t0) = e−iεTψ(t0), where the quasi-energy ε
is an angular variable with period 2π/T .

There are basically three approaches to realize Floquet
acoustic TIs. The first is to apply temporal modula-
tion to an acoustic crystal [150, 151]. A time-dependent
acoustic crystal with a hexagonal lattice of trimers was
theoretically proposed [150]. Each trimer consists of
three coupled acoustic cavities, which possess acoustic
capacitances that are periodically modulated in time in
a rotating fashion (Fig. 6a). By doing so, the Floquet
band structure opens topological bandgaps with nonzero
Chern numbers, due to the broken T symmetry. This
acoustic Floquet Chern insulator, similar to the Chern in-
sulators in static systems, exhibits robust unidirectional
edge states that can bypass defects, sharp corners and
other types of disorder, and can be used for broadband
acoustic diodes and topologically protected leaky anten-
nas [150].

The second approach is to map the periodically driven
lattice to a scattering network, where a unitary scat-
tering matrix plays the role of the Floquet evolution
operator [152–154]. As an external drive is not re-
quired, this mapping greatly facilitates experiments. In
acoustics, this idea can be realized using 2D coupled
metamaterial ring lattices [155–157], where the clock-
wise/anticlockwise circulating mode in each ring can be
viewed as pseudospin-up/pseudospin-down. By properly
tuning the coupling strength between neighbouring rings,
robust pseudospin-dependent topological edge states can
be obtained (Fig. 6b). Such an acoustic lattice is also a
realization of the so-called anomalous Floquet TI, whose
topolgical edge states are even more robust than their
counterparts in Chern insulators [158], despite the van-
ishing Chern numbers in the bulk bands [159].

The third approach is to use a spatial dimension as an
effective time dimension [160–162]. With this approach,
the dynamics of a d-dimensional Floquet system can be
studied in a (d + 1)-dimensional static system, provided
there is negligible backscattering along the effective time
axis. Based on this scheme, a 3D structure with cou-
plings periodically modulated in the z direction was ex-
perimentally demonstrated, showing broadband and low-
loss effective chiral edge modes [161]. A 2D acoustic Flo-
quet HOTI [162] was also demonstrated following a simi-
lar strategy; its Floquet corner states have time-periodic
evolution with a period longer than the underlying drive.
This higher-order topological phase is anomalous in the
sense that both dipole and quadrupole moments are van-
ishing.

Fragile topology

Fragile topology is a recently developed concept that
describes a special type of topological matter [163]. Un-
like trivial bands, fragile topological bands do not admit a
symmetric Wannier representation (one cannot adiabati-
cally deform the system to a trivial atomic insulator while
preserving the symmetries without closing the bandgap).
However, fragile topological bands are also not like con-
ventional stable topological bands in the sense that the
obstruction to the atomic limit can be removed by adding
fully trivial bands. Thus, the boundary modes in a fragile
TI are removable by symmetry-preserving perturbations.

It is important to point out that fragile topology is
commonly present in realistic systems. For example,
fragile topology exists in twisted bilayer graphene that
hosts superconducting states at the “magic angle” [164].
In classical systems, including acoustics, many classical
analogues of the QSH insulators, which have been found
to support robust boundary propagation in experiments,
were also proven to possess fragile topology [165–167].
However, the lack of nontrivial boundary modes poses
challenges to the identification of fragile TIs in exper-
iments. Recently, it was proposed that fragile topol-
ogy can be characterized by spectral flow under twisted
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boundary conditions, which is almost impossible in real
materials, but feasible in acoustic systems. The proposed
spectral flow was observed in an acoustic crystal through
density of states measurements (Fig. 6c) [167]. This ex-
periment shows that acoustic crystals are suitable plat-
forms to study the exotic physics of fragile topology.

Non-Hermitian band topology

A non-Hermitian system is described by a non-
Hermitian Hamiltonian satisfying Ĥ 6= Ĥ†, with † rep-
resenting the Hermitian conjugate. Due to the lack of
Hermiticity, the eigenvalues of a non-Hermitian system
are generally complex, and the corresponding eigenvec-
tors are not guaranteed to be orthogonal. In recent
years, people have found that non-Hermiticity has a pro-
found influence on band topology. Here we discuss stud-
ies on acoustic non-Hermitian topological systems; for a
more comprehensive overview on non-Hermitian topolog-
ical physics, we refer readers to Refs. [168, 169].

The sources of non-Hermiticity in an acoustic non-
Hermitian system are schematically illustrated in Fig. 1j.
Losses are ubiquitous in acoustics, and gain and asym-
metric couplings can be engineered artificially. In gen-
eral, studies on acoustic non-Hermitian topology can be
divided into two classes.

The first class includes studies in which non-
Hermiticity is introduced into originally topological sys-
tems [68, 170–173]. In particular, a 1D acoustic crystal
was realized with topological edge states characterized by
a nonzero Chern number defined in a 2D synthetic space
(synthetic dimensions are discussed in more detail in the
next sub-section). Interestingly, when a judicious amount
of loss is introduced, topological edge states and an ex-
ceptional point can simultaneously exist, leading to un-
conventional transport phenomena [170]. Besides, people
have also studied the effects of gain and loss on acous-
tic valley Hall insulators and HOTIs, where interesting
effects such as selective amplification and attenuation of
topological boundary modes were found [68, 171–173].

The second class of studies focuses on non-Hermiticity-
induced nontrivial topologies, which include the so-
called line-gap topology and point-gap topology [74–
76, 174, 175]. A line (or point) gap refers to a line (or
point) in the complex frequency plane that does not inter-
sect with any bands [176]. Nontrivial line-gapped phases
are usually characterized by topological invariants de-
fined by wavefunctions under a biorthogonal basis [177].
In acoustics, nontrivial line gaps can be induced by losses
[74, 75, 175]. For example, by deliberately adding an on-
site imaginary potential to an acoustic crystal that is
gapless, a HOTI with corner states can be obtained [75]
(Fig. 6d) [75]. In this case, the on-site losses function
like coupling dimerizations.

Point gaps are associated with novel topological phases
that do not have Hermitian counterparts. A nontrivial
point gap is characterized by a nonzero winding number,

which is defined through complex frequency dispersions
rather than wavefunctions [178]. In a finite lattice, such
nontrivial point-gap topology manifests as the so-called
non-Hermitian skin effect, a phenomenon in which an
extensive number of states are localized at the system’s
boundaries [179]. The skin modes lead to the break-
down of the Bloch theorem and thus the failure of bulk-
boundary correspondence for line-gap topologies that are
based on topological invariants computed from Bloch
wavefunctions. This problem can be fixed by novel tech-
niques like the generalized BZ method [179]. In acoustics,
a straightforward way to realize a nontrivial point gap is
to use asymmetric coupling, which can be engineered by
introducing losses into the couplers [174] or using direc-
tional amplifiers [76] (Fig. 6e, left). The skin modes can
be directly visualized by mapping the field pattern under
a point-source excitation (Fig. 6e, right).

Another direction under active exploration in acous-
tics is the topology associated with exceptional degen-
eracies (where both eigenvalues and eigenvectors coa-
lesce), such as the discriminant number associated with
the eigenvalues and quantized Berry phase accumulated
by eigenvectors after encircling the exceptional degenera-
cies [73, 180, 181].

Topology with synthetic dimensions

Another emerging direction is topology with synthetic
dimensions, in which some non-spatial degrees of freedom
are reinterpreted as additional dimensions, giving access
to topological physics in dimensions higher than those of
the original system (Fig. 1k). In acoustics, structural
parameters are usually used to construct synthetic di-
mensions. Interested readers may refer to Ref. [182] for
other methods for realizing synthetic dimensions.

Acoustic Weyl physics has been studied in 1D and 2D
systems with the help of synthetic dimensions [183–185].
In particular, a 1D layered acoustic crystal was used to re-
alize Weyl points in a 3D space synthesized by a momen-
tum dimension and two structural parameters associated
with the layers’ thickness (Fig. 6f) [183]. In this system,
the Nielsen-Ninomiya theorem can be bypassed due to
the lack of periodicity in the parameter dimensions. A
Z2 acoustic Weyl semimetal that supports acoustic pseu-
dospins with Kramers degeneracy has also been realized
in a 1D system with two extra synthetic dimensions [184].

QH physics has also been studied in 1D acoustic sys-
tems with extra synthetic dimensions [186–190]. These
1D systems, also called 1D topological pumps, carry a
structural modulation term (pumping or phason param-
eter) that serves as a synthetic momentum. In the 2D
synthetic space built from one physical momentum and
one pumping parameter, nonzero Chern numbers can be
defined. Due to the simplicity of 1D structures and tun-
ability of system parameters, various QH physics, includ-
ing the spectrum under different parameters and dynamic
properties, can be easily accessed in these 1D acoustic
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systems [186–190]. Furthermore, one can extend the 1D
topological pumps to 2D and study the physics of the
4D QH effect [191–193]. In a 2D topological pump, there
are two pumping parameters that modulate the 2D sys-
tem along the x and y directions, respectively (Fig. 6g,
left). These two pumping parameters, together with the
two physical momenta, form a 4D space where a second
Chern number can be defined. When considering a fi-
nite sample, acoustic measurements can easily access the
boundary modes induced by the nontrivial topology of
the bands in the 4D synthetic space (Fig. 6g, right).

Outlook
In just half a decade, the field of topological acous-

tics has seen tremendous developments. This is partly
because early developments largely overlapped with ad-
vances in topological quantum materials (Fig. 1l). We
envision that this trend will hold for the next few years,
but soon we will need a new roadmap to solve challenges
specific to topological acoustics.

We have to keep in mind that the major motivation
for introducing the concept of topology into acoustics is
to acquire robust control of sound. The immediate chal-
lenge is to understand how to construct various topo-
logical phases in acoustics. That is the reason the field
of topological acoustics started with emulating electronic
topological phases, and now has become an exciting play-
ground for studying various novel topological phases with
acoustic waves. In the following, we discuss several op-
portunities in the field.

First of all, the emerging directions discussed in this
Review, namely, Floquet, fragile, non-Hermitian and
synthetic-space topologies, will continue to develop in
the next few years. Especially, non-Hermitian topology
can produce many unprecedented phenomena in acous-
tics [76, 174] and may lead to useful devices such as non-
Hermitian topoloigcal whispering-gallery cavities [173].

One other interesting direction is the exploration of
the interplay between topological lattice defects in real
space [194, 195] and band topology in reciprocal space.
Historically, the concept of topology was first introduced
to describe defects, not band topology [194, 195], and the
topology for defects and that for bands naturally co-exist
in a crystal and shall interact with each other. This has
been a topic since the early years of TIs [196, 197], but is
rarely studied experimentally due to the lack of suitable
platforms. In acoustic structures that can be freely de-
signed and accurately fabricated, topological lattice de-
fects can be easily engineered, and thus the associated
physics becomes accessible in the laboratory [198–201].

Another possible direction is nonlinear topological
acoustics. Whereas nonlinear phenomena in topologi-
cal photonics have been studied for a few years [202],
in acoustics so far there are only few studies based on
spring-mass models [203–207]. In fact, acoustic waves are
intrinsically nonlinear [208]. For example, shock waves,

like sonic booms, are nonlinear. Ultrasonic wave propa-
gation for medical use commonly displays nonlinear be-
haviours. Acoustic levitation is a nonlinear phenomenon
as well. Therefore, nonlinear phenomena in topologi-
cal acoustics should be accessible and fruitful. It might
be possible to observe nonlinearity-induced topological
phase transitions and topological solitons, similar to the
ones found in photonic systems [209–211].

In terms of the connection to fundamental theories in
condensed matter physics, a possible direction is to study
topological phases under projective symmetries. Most
existing topological phases are characterized by either
internal or spatial symmetries [212], while the effect of a
gauge symmetry is less explored. Recently, it has been
shown that projectively represented lattice symmetries
under a gauge field can lead to novel topological phe-
nomena [213–215]. Acoustic systems, in which different
gauge configurations can be realized with proper negative
couplings [216, 217], offer an experimental avenue to ex-
plore projectively enriched topological physics. When it
comes to acoustic topological semimetals, many types of
band degeneracies remain unexplored, including higher-
order Weyl and Dirac points, high-fold nodal points and
different types of nodal lines. Moreover, acoustic sys-
tems are practical platforms to engineer gauge fields for
band degeneracies from structural tuning. So far, how-
ever, artificial gauge fields have only been constructed
for Dirac points in 2D [32] and Weyl points in 3D [34].
Beyond acoustic topological semimetals, artificial gauge
fields themselves are powerful tools to manipulate clas-
sical waves, even when the underlying effective magnetic
field is zero. Studies of spatially uniform artificial gauge
fields have already revealed some novel wave phenom-
ena such as gauge-field-induced negative refraction and
waveguiding [218]. Another potential direction is non-
Abelian band topology in acoustic crystals, which may of-
fer insights to new topological physics in multi-band sys-
tems [219, 220]. As the disorder in acoustic systems can
be precisely engineered, it would also be interesting to in-
vestigate the interplay between disorder and topology in
acoustics, which could enable counterintuitive disorder-
induced topological Anderson insulators [221].

A lot of efforts need to be devoted to pushing topo-
logical acoustics into real-world applications. We now
know how to construct topological phases for sound, but
there are still challenges for practical applications. First
of all, most studies in topological acoustics are limited to
airborne sound, whereas elastic waves [13, 15], which con-
tain both transverse and longitudianl modes, are much
less studied. How to integrate the transverse and longi-
tudinal modes is still an open question, especially in 3D
geometries. Secondly, most studies have been performed
in audible frequency ranges with long wavelengths. It is
still unclear how to push the working frequency into the
ultrasound and even hypersound ranges. These are the
frequency ranges of relevance to medicine and modern
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industry.
The good news is that any improvement brought by the

robustness of topological acoustic waves will fit into the
broad frequency spectrum of acoustics, which has plenty
of potential applications. In future acoustic applications,
topological corner, edge or surface states could be used to
realize devices robust against defects and disorder, such
as acoustic lasers, absorbers, waveguides, multiplexers,
filters, resonators, sensors and antennas. Topological
acoustic states could also significantly impact acoustic
information technologies, in which they will lay the foun-
dations for robust information transfer, encoding and
decoding, processing and storage. Applying topological
acoustics to surface acoustic waves may inspire the next
generation of surface acoustic wave technologies, which
could process radio-frequency signals in portable devices
such as mobile phones. Finally, as topology is a funda-
mental degree of freedom in acoustics, it has the potential
to reshape all acoustic-wave-based technologies, such as
underwater communications, ultrasound imaging, noise
control and many others.
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A. Alù, C. Daraio, A. N. Norris, G. Huang, and M. R.
Haberman, Nonreciprocity in acoustic and elastic ma-
terials, Nat. Rev. Mater. 5, 667 (2020).

[19] Y. Aharonov and D. Bohm, Significance of electromag-
netic potentials in the quantum theory, Phys. Rev. 115,
485 (1959).

[20] M. Berry, R. Chambers, M. Large, C. Upstill, and
J. Walmsley, Wavefront dislocations in the Aharonov-
Bohm effect and its water wave analogue, Eur. J. Phys.
1, 154 (1980).

[21] P. Roux, J. de Rosny, M. Tanter, and M. Fink, The
Aharonov-Bohm effect revisited by an acoustic time-
reversal mirror, Phys. Rev. Lett. 79, 3170 (1997).

[22] R. Fleury, D. L. Sounas, C. F. Sieck, M. R. Haberman,
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FIG. 1. | Summary of different types of topological phases. a | Schematic of a quantum Hall insulator. Chiral edge modes
propagate unidirectionally in a finite sample. C denotes the Chern number. b | Schematic of a quantum spin Hall insulator,
where spin-up (red) and spin-down (blue) states propagate in opposite directions along the edges. C+ and C− denote the Chern
numbers for spin-up and spin-down states, respectively. c | Schematic of a valley Hall insulator. Valley kink states (red and
blue) locked to the K and K′ valleys, respectively, emerge at the interface between two domains with opposite valley-Chern
numbers (denoted by CK and CK′). d | Schematic of a 3D topological insulator with spin-polarized topological surface states.
e | Schematic of a 2D second-order topological insulator. Topological corner modes (red) emerge at corners. f | Schematic
of 3D second-order topological insulators. Left: chiral hinge modes propagate along edges. Right : spin-up and spin-down
states propagate in opposite directions along edges. g | Schematic of a 3D third-order topological insulator. Topological corner
modes (red) emerge at corners. h | Plots of various band degeneracies, including a Weyl point, a Dirac point, a three-fold
Weyl point, a quadratic Weyl point, a nodal line and a nodal surface. i | Schematic of a Floquet (periodically driven) system,
whose Hamiltonian H varies periodically (illustrated by different shapes) with time. j | Schematic of a non-Hermitian system
of two coupled resonators. The non-Hermiticity originates from gain (red), loss (blue), or asymmetric coupling. k | Schematic
of a system with synthetic dimensions. A real 3D system (left) can be generalized to a synthetic (3 + n)D system (right) by
adding several system parameters (denoted by ξ1, · · · , ξn) as synthetic dimensions. l | Timeline of experimental realization
of various topological phases in electronic and acoustic systems. The corresponding references are as follows. Electronic
systems: quantum Hall insulator [16], quantum spin Hall insulator [222], 3D topological insulator [223], 3D Dirac semimetal
[224], valley Hall insulator [225], Weyl semimetal [226, 227], nodal line semimetal [228], 3D second-order topological insulator
[229], 2D second-order topological insulator [230], spin-1 Weyl point [231–233] and nodal surface [234]. Acoustic systems: 1D
topological phase [81], quantum spin Hall insulator [39], Floquet topological insulator [155], valley Hall insulator [53], Weyl
crystal [120, 121], 1D non-Hermitian topological pump [170], quantum Hall insulator [30], 2D second-order topological insulator
[90–92], 3D third-order topological insulator [93, 94, 96], spin-1 Weyl point [138], nodal line [142, 144], nodal surface [147, 148],
3D topological insulator and 3D second-order topological insulator [50], Dirac crystal [131, 132], quadratic Weyl point [141], 2D
topological pump [191–193], 4D fourth-order topological insulator [115], non-Hermitian higher-order topological insulator [75],
non-Hermitian skin effect [76, 174], Floquet higher-order topological insulator [162] and non-Abelian semimetal [219]. DOFs:
degrees of freedom
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FIG. 2. | Acoustic analogues of 2D topological insulating phases. a | Schematic of an acoustic QH insulator lattice.
The white regions are rotating rigid solids, and the dark blue regions are filled with fluids that circulate as indicated by the
red arrows. The rest of the lattice is air. b | Frequency splitting at the Dirac point (a two-fold linear degenerary) as the flow
velocity increases from zero. c | Edge dispersion. The chiral edge state is denoted by the red line. d | Simulated sound field
distributions of the chiral edge state in a lattice with a cavity defect (top) and in a lattice with a path bend (bottom). e |
Sample realizing an acoustic QH insulator. f | Schematic of an acoustic quantum spin Hall (QSH) insulator that consists of
an array of rigid rods (white) in air (light blue) in a honeycomb lattice. p and d denote the lattice constant and rod diameter,
respectively. g | Topological phase transition. In the plot, the blue and yellow regions represent topologically nontrivial and
trivial phases, respectively. The green and red lines are the dipole and quadrupole modes, respectively. The topological phase
transition happens at d/p = 0.4536. The insets at the top show the dipole and quadrupole modes at the centre of the Brillouin
zone (BZ). h | Edge dispersion. Red and blue dotted lines indicate the pseudospin-up and pseudospin-down topological edge
states. i | An acoustic QSH insulator (left) and the simulated field distribution (right) when sound is launched from the top
left port. The sound wave cannot come out from the lower right port due to pseudospin conservation. j | Schematic of an
acoustic valley Hall (VH) insulator consisting of an array of rigid triangular scatterers (white) in air (light blue) in a triangular
lattice. θ denotes the orientation angle of the scatterers. k | Topological phase transition. The blue and orange regions are
topologically distinct. The green and red lines represent left-handed and right-handed circular polarization modes, respectively.
The insets at the top show left-handed (LCP) and right-handed circular polarization (RCP) modes at the BZ corners. l | Edge
dispersion. The red and blue dotted lines indicate the kink states locked at the K and K′ valleys, respectively. m | An acoustic
VH insulator (left) and the simulated field distribution when sound is launched from the left port. The arrows show the sound
propagation direction. Panel e adapted with permission from Ref. [30] (Ding et al.). Panel d adapted with permission from
Ref. [23] (Yang et al.). Panel i adapted with permission from Ref. [39] (He et al.). Panel m adapted with permission from
Ref. [53] (Lu et al.).
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FIG. 3. | Acoustic topological phases with quantized dipole and multipole moments. a | A 1D acoustic structure
consisting of a nontrivial lattice, S1, and a trivial lattice, S2 (top), and simulated field pattern of the topological mode localized
at the interface between the two lattices (bottom). The color represents acoustic pressure. b | A kagome lattice sample (left),
and the measured local density of states at 4203 Hz, which exhibits localization at the three corners (right). c | A pyrochlore
lattice sample (left), and the measured acoustic field distribution at corner modes’ frequency (right). The star denotes the
source which excites one of the corner modes. d | Unit cell of an acoustic quadrupole topological insulator based on coupled
acoustic resonators (left). Red and blue indicate channels that enable positive and negative couplings, respectively. A 2D
nonsymmophic sonic crystal that realizes a quadrupole topological insulator (right). The inset shows the unit cell. e | An
acoustic octupole topological insulator. Panel a adapted with permission from Ref. [81] (Xiao et al.). Panel b adapted with
permission from Ref. [90] (Xue et al.). Panel c adapted with permission from Ref. [96] (Weiner et al.). Panel d left adapted
with permission from Ref. [72] (Qi et al.), panel d right from Ref. [97] (Zhang et al.). Panel e adapted with permission from
Refs. [71] (Xue et al.).
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FIG. 4. | Acoustic Weyl crystals. a | Fermi arcs from acoustic Weyl points. The surface projections of two oppositely
charged Weyl points are connected via non-closed Fermi arcs. b | Unit cell of an acoustic Weyl crystal. c | Picture (left) and
unit cell (right) of a 3D-printed acoustic Weyl crystal. d | Measured acoustic Fermi arcs on the front surface. The solid and
dashed lines show simulated Fermi arcs on the front and back surfaces. The red and blue dots denote the projections of Weyl
points with opposite charges. e | Topological negative refraction. By judiciously engineering the Fermi arcs on two adjacent
surfaces, topological negative refraction without reflection can be obtained. The left and right regions represent the measured
field distributions at the yz and xz planes, respectively. The star denotes the position of the source. The arrows indicate the
propagation direction of the surface acoustic wave. The inset shows the Fermi arcs on two surfaces, where the letters ‘O’and
‘O′’ stand for the origin of momentum space, and the arrows represent the direction of group velocity. f | Measured chiral
Landau levels in an inhomogeneous acoustic Weyl crystal. g | Simulated acoustic field distribution when a source is placed at
the hinge of a higher-order acoustic Weyl crystal (right). Measured hinge state field distributions for various kz, with the red
and blue dots the projections of Weyl points with opposite charges (right). Panel b adapted with permission from Ref. [119]
(Xiao et al.). Panels c and d adapted with permission from Ref. [120] (Li et al.). Panel e adapted with permission from
Ref. [128] (He et al.). Panel f adapted with permission from Ref. [34] (Peri et al.). Panel g left adapted with permission from
Refs. [129] (Luo et al.), right from Refs. [130] (Wei et al.).

.
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FIG. 5. | Acoustic topological semimetals beyond conventional Weyl phases. a | 3D Dirac points with quad-helicoid
surface states. The green dot represents the projection of the 3D Dirac points. b | Spin-1 Weyl point and charge-2 Dirac
point with double helicoid Fermi-arc surface states. The green and red dots represent the projection of the spin-1 Weyl and
the charge-2 Dirac points, respectively. c | Quadratic Weyl point with double Fermi arcs. The red lines are the numerically
calculated Fermi arcs. The arrows represent the direction of the group velocity. The blue and red dots indicate the charge-1 and
quadratic Weyl points, respectively. d | Topological nodal ring. The red curves represent the nodal ring pinned at the kz = 0
plane. e | Topologically charged nodal surfaces with double Fermi arcs. The Fermi arcs connect the charge-2 nodal surfaces
to two charge-1 Weyl points. The green lines represent the projection of the nodal surface. The fifth row in each panel shows
the dispersion obtained from Fourier transform of measured acoustic field. The third row in panel a adapted with permission
from Ref. [131] (Cheng et al.). The fifth row in panel a adapted with permission from Ref. [132] (Cai et al.). The third and
fifth rows in panel b adapted with permission from Ref. [138] (Yang et al.). The third and fifth rows in panel c adapted with
permission from Ref. [141] (He et al). The third and fifth rows in panel d adapted with permission from Ref. [142] (Deng et
al.). The third row in panel e adapted with permission from Ref. [148] (Xiao et al.). The fifth row in panel e adapted with
permission from Ref. [147] (Yang et al.).
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FIG. 6. | Novel acoustic topological phases. a | Acoustic Floquet topological insulator (TI). Each unit cell consists of two
trimers made of three coupled acoustic cavities each. The acoustic capacitance (C) of each cavity is periodically modulated in a
rotating fashion, as detailed by the equation for the capacitance of each cavity. Here δC and ωm are the modulation amplitude
and frequency, respectively. b | Acoustic anomalous Floquet TI consisting of judiciously designed coupled ring resonators that
support pseudospin-polarized topological edge states. c | A fragile acoustic TI sample with a twisted boundary condition (left).
Here two lattices are connected by a thin channel (the purple area). By inserting obstructions of different sizes along the yellow
dashed line, different multiplication factor of the hoppings in the purple area can be implemented. The insets show the details
of the bulk lattice (bottom) and the boundary area (top). Measured local density of states at sample symmetry center for
different values of hopping multiplication factor (right), which reveals the spectral flow under the twisted boundary condition.
d | A non-Hermiticity-induced higher-order acoustic TI (left). Some acoustic cavities are filled with black absorbing material
to enhance losses. The intensity profiles measured across the sample are shown in the graph on the right. e | Acoustic crystal
with non-Hermitian topology (left). The acoustic amplifier connecting two adjacent cavities provides asymmetric coupling.
Measured field intensities (right). All modes are localized at the left boundary. The arrow denotes the position of the source. f
| Schematic of a multi-layer structure, where t1–t4 denote the layers’ thickness (left). Dispersion for this structure in a synthetic
space (right). Blue and pink bands correspond to bulk and surface states, respectively. The black dot denotes the Weyl point.
The parameters ξ and ζ, serving as synthetic dimensions, are defined as ξ = (t1 − t3)/(t1 + t3) and ζ = (t2 − t4)/(t2 + t4).
g | Schematic of a 2D lattice with modulations along the x and y directions (left). The on-site frequencies are modulated
according to the formulas given in the plot, with λx,y the modulation amplitude, bx,y the modulation frequency, and m and
n the site indices along the x and y directions. The phase parameters φx and φy are two synthetic dimensions. Plot of the
calculated eigenfrequencies of the system with finite sizes in the x and y directions against the pumping parameter φx (right).
CG denotes the second Chern number for each gap, which induces gapless boundary modes. Panel a adapted with permission
from Ref. [150] (Fleury et al.). Panel b adapted with permission from Ref. [155] (Peng et al.). Panel c adapted with permission
from Ref. [167] (Peri et al.). Panel d adapted with permission from Ref. [75] (Gao et al.). Panel e adapted with permission
from Ref. [76] (Zhang et al.). Panel f adapted with permission from Ref. [183] (Fan et al.). Panel g adapted with permission
from Ref. [191] (Chen et al.).
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