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We use the first Betti number of a complex to analyze the morphological structure of granular samples in

mechanical equilibrium. We investigate two-dimensional granular packings after a tapping process by means of

both simulations and experiments. States with equal packing fraction obtained with different tapping intensities

are distinguished after the introduction of a filtration parameter which determines the particles (nodes in the

network) that are joined by an edge. This is accomplished by just using the position of the particles obtained

experimentally and no other information about the possible contacts, or magnitude of forces.

DOI: 10.1103/PhysRevE.89.052212 PACS number(s): 45.70.Cc, 64.60.aq

I. INTRODUCTION

Dense granular media can be considered as an archetypical

example of a complex system where even the simplest case of

a monodisperse disk packing can display nontrivial features,

like arching or jamming. In fact, the geometrical confinement

imposed by the boundaries to the granular sample implies

mechanical restrictions that must be equilibrated by the inter-

particle contact forces. It has not been until recently that the

structural complexity of this kind of system has been described

formally. For a review on this problem, see [1]. Edwards and

co-workers [2] proposed a statistical mechanical theory of

granular materials where energy and volume were replaced

by volume and compactivity respectively. Thus, systems with

the same density and number of particles, and reachable from

one another, would be equivalent. The application of this idea

to real situations evidenced that the approach was unable

to fully describe the states reached by a granular ensemble,

and a new variable, the angoricity, was introduced [3].

Both magnitudes are inherently related with the structural

complexity of the packing and both are, indeed, necessary to

describe unequivocally any granular solid [4]. Importantly, this

description seems to be strongly dependent on the tessellation

of the space which is implemented by the introduction of ele-

mentary volume elements. Those are necessary to construct the

partition function that defines the ensemble of volume states.

In consequence, it is important to introduce geometrical or

topological tools to describe the spatial arrangement of the el-

ements that determine the equilibrium state of a static granular

ensemble.

Under these circumstances, it seems natural and appealing

to consider a granular system as a graph where contacts

between particles are edges, and the corresponding particles

are nodes. Defining such a network can be useful since it

can be analyzed using the machinery of topology and modern

complex networks theory [5]. The contact network has been

used to study a large variety of global properties of disordered

media [6–8]. This approach can be also used to analyze the evo-

lution of granular media in dynamic situations [9–11]. In [12]

the topological properties of the network were related to the

*sardanza@unav.es
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process of strain localization, which leads to shear banding and

material failure. Related with failure is the process of buckling

of force chains studied in [13], where the importance of the

presence of loops of contacts in the network was revealed.

These loops were also proven to be crucial in the stability of

other granular systems [14,15]. A similar approach—where

the loops were called mesodomains—allowed us to analyze

the loop orientation within the sample and relate it to the stress

transmission [16,17].

Additionally to the contact network (the graph of all

contacts), the force network can be also analyzed with the same

methods. The normalized contact force f = F/〈F 〉 (where F

is the force present in a contact and 〈F 〉 is the sample average)

can be used to define as the edge any contact bearing a force

f larger than some threshold value f ∗ that can be tuned in the

range [0,fmax]. Thus, for f ∗ = 0 one recovers the contact

network, while for larger values one obtains progressively

diluted graphs. The analysis of the topology of the force

networks has been shown very fruitful [18,19] in a static

granular packing. The process of jamming in the light of the

topology of force networks was studied in [20,21]. Again,

the role of loops in the network was proven to be relevant

at the transition point, with third-order loops behaving as

an order parameter. Related to jamming is the question of

isostaticity, which was analyzed using the force network by

Walker et al. [22].

A promising perspective has been recently introduced

by Kondic and co-workers who analyzed the force network

using topological invariants. In [23] the zeroth Betti number

β0, which measures the number of connected components

(clusters), is used to study compressed granular samples. β0

is shown to be useful characterizing force networks obtained

with varying density, friction, and polydispersity of the grains.

The zeroth Betti number is also used in [24] to analyze the role

of interparticle friction in impact dynamics. Carlsson et al. [25]

used the zeroth and first Betti numbers to analyze a 2D system

with small number of particles. Interestingly, they showed that

critical points (where the topology can change) correspond to

configurations in mechanical equilibrium.

Considering all these works, it follows that studying

contact and force networks offers a fruitful pathway for the

understanding of static and dynamic properties of granular

media. It is not completely clear, however, if these tools provide

more (or better) information than other traditional tools used
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to explore the relation between geometry and topology [26].

This question was addressed in [27] where the topology of

2D granular samples in mechanical equilibrium, in the sense

of Edwards’ theory, was studied. It was already known [28]

that samples with the same density and number of particles

may not be in the same state of equilibrium since the average

force moment tensor can be different. In [27] it was shown

that the topology of the contact network (without information

on the forces) was enough to distinguish these mechanically

different states. Interestingly, traditional measurements based

on particles’ positions–like the pair correlation function, the

bond order parameter and the Voronoi tessellation—were

shown to be less sensitive to capture such differences among

different states with the same packing fraction. In the same

line is the recent work of Kramar et al. [29] who have

used persistent homology to study the evolution of the force

network in compressed granular materials. Their approach is

able to uncover the distinctive behavior displayed by different

systems and, moreover, it is shown to be richer in information

than the pair-correlation function, the bond orientational order

parameter, and the distribution function of the forces.

Most of the works mentioned here are theoretical or consist

of numerical simulations where one has all the information

necessary to construct the contact and force networks. In the

last years, there has been also an important experimental effort

aimed at identifying particle contacts (or forces) which are

then used to construct a network [30,31]. However, under

experimental conditions it is always difficult to establish with

certainty if there is contact between adjacent particles. It is

then desirable to devise a robust method to study the contact

network when contacts cannot be exactly determined. In the

present work we aim at precisely this goal using persistent

homology.

The system on which we implement persistent homology

is a granular bed subjected to tapping, which has the appeal

of being a proving ground for the statistical theory of granular

media in mechanical equilibrium. Thus, it has also been

widely studied experimentally [32–36] and by means of

simulations [28,37,38]. In [28,38] it was shown that the

packing fraction φ of the bed is not a monotonous function

of the tapping intensity Ŵ. This raises the question of whether

states with the same density are equivalent or not, in the

sense of the statistical mechanical theory. A negative answer

to this question was given in [38] analyzing the force moment

tensor of the system. As mentioned before, the same result

can be obtained using the contact network. In the present

work we experimentally show that even when contacts among

particles are not known, persistent homology allows us to

distinguish between states with the same density but in

different mechanical equilibrium.

II. EXPERIMENTS

A quasi-2D Plexiglass cell (width 28 mm, height 150 mm)

was used to study the dependence of the packing on the

intensity of shaking. The cell was filled with 600 alumina oxide

spheres of diameter d = 1.00 mm. The side wall separation

was 10% larger than the bead diameter in order to minimize

the particle-wall friction and prevent arching in the transversal

direction. The system was tapped with an electromagnetic

(a) (b)

FIG. 1. (Color online) Experimental pictures of two packings

obtained with (a) Ŵ = 3.5 and Ŵ = 14.9. In (a) a closeup of the

image is shown evidencing the light diffraction. The (green) disk

indicates the particle recognition as performed experimentally. In (b)

the region where the packing fraction is measured is displayed by a

(red) dashed line.

shaker that provides a sine shaped pulse with a frequency (ν)

and an amplitude (A). The frequency was kept constant at

(ν = 30 Hz) and the amplitude was systematically modified

in order to vary the tapping intensity Ŵ = A(2πν)2

g
. The latter

was measured with a piezoelectric accelerometer attached to

the base of the cell.

High-resolution digital images of the packings were taken

after each tap (Fig. 1). The packing fraction was calculated

by considering each grain as a disk of the corresponding

effective diameter [see the shadow particle in the inset of

Fig. 1(a)] and then calculating the percentage of the area

covered by the disks in the rectangular area displayed in

Fig. 1(b). Although the wall separation could induce an overlap

between some beds in the front view, a simple calculation

shows that its value represents only 0.6% of the particle

diameter. Nevertheless, as evidenced in the inset of Fig. 1(a),

the main source of error is the diffraction of light at the border

of particles that makes it difficult to determine the position

of the centers with subpixel resolution. We estimate that in

standard experimental conditions, the error in the calculation

of the particle center position is around 2% of the particle

diameter. In order to determine the average packing fraction

of a state, we average over the last 200 packings for each

tapping amplitude, after reaching the stationary state. This is

determined when its fluctuations—measured by its standard

deviation—are stationary. More details of this analysis can be

found in [38].

Using this procedure we obtain the curve of density versus

tapping intensity shown in Fig. 2. For low values of Ŵ the

bed remains very compact, in a quasicrystallized state. Note

that the asymptotic value of the mean packing fraction for

small Ŵ is larger than the theoretical limit 1
6
π

√
3 ≈ 0.907

due to the combined effects of the 3D bead superposition and

the errors in the particle’s position estimation. When Ŵ is

increased, the mean packing fraction decreases until it reaches

a minimum at a certain Ŵmin. After this value, the tendency is

reversed and the sample becomes compacted as Ŵ is increased.
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FIG. 2. Experimental results of the mean packing fraction φ of

the steady states as a function of the tap intensity Ŵ.

The nonmonotonicity of this curve implies that steady states

with the same packing fraction can be reached using very

different values of tapping intensity. These states of equal φ

have been demonstrated to display completely different stress

properties [38], being also distinguishable by measuring the

number of polygons of 3, 4, 5, 6 . . . sides, obtained from the

contact network [27]. This method, however, is dramatically

dependent on the exact determination of the particle-particle

contacts, which is in general impossible in any experimental

situation. In what follows, we show how persistent homology

is implemented to distinguish among states with the same

packing fraction using the experimental data and a filtration

parameter which is used to build a collection of granular

networks.

III. PERSISTENT HOMOLOGY

Persistent homology is a tool that provides topological

information of an object examined at different resolutions.

We will give an ad hoc description in the following paragraph

and recommend the interested reader the sources [39–41] for a

more detailed and broad description. Since our data are 2D we

will restrict all the relevant constructions to two dimensions.

Our data are the position of the centers of the particles, i.e., a

set of points in the plane. The natural way to build a contact net-

work is to consider the graph that has as vertices the mentioned

set of points, and add an edge between a pair of vertices pi ,

pj , if the Euclidian distance between them is less than or equal

to the diameter d of the particles d(pi,pj ) � d. However, this

construction will miss some existing contacts and add some

nonexisting ones due to experimental uncertainties. To deal

with this problem we construct a parametrized collection of

graphs where the vertices are the particle’s centers, and the

edges in each graph are added whenever the distance between

two vertices is smaller than a parameter δ � 0. In Fig. 3

we evidence that the network obtained using δ = d is quite

unrealistic due to the lack of precision in the determination of

the particles’ centers. As δ increases, more contacts appear

in the complex. Obviously, some of them are spurious as

FIG. 3. (Color online) Three examples of the Vietoris-Rips com-

plex (clique complex of the graph) obtained from the data given by

the centers of particles of a sample obtained with Ŵ = 11 which

has an associated value of packing fraction φ = 0.864. Each line

corresponds to a different value of the filtration parameter δ. Top:

δ = d the exact diameter of the particle. Center: δ = 1.01d . Bottom:

δ = 1.05d . A magnified region is shown evidencing the effect of

increasing the filtration parameter in the Vietoris-Rips complex: some

quadrilaterals in the δ = 1.01d picture are converted in triangles in

the δ = 1.05d picture. As explained in the text, the creation of a

triangle implies an augment of β1 in the graph, and (in most cases) a

decrease of β1 in the associated clique complex.

they are not real contacts, specially for the bottom picture

where δ = 1.05d. These three pictures evidence the difficulty

of properly defining a network of contacts from experimental

data.

Three particles that are in contact with each other form a

triangular structure which can be viewed as a “local perfect

packing.” In order to keep track of these, we build a second

structure associated with each one of the previously described

graphs. If three nodes (particles) have all pairwise connections,

i.e., edges between them form a triangle, we add a 2D cell

covering the triangle. We thus obtain a sort of “tesselation

with holes” (see Fig. 3), in which the “holes” are the polygons

formed by closed loops in the graph that are not triangles. This

structure is a 2D-simplicial complex that is usually called the

052212-3
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2D-clique complex of the graph, and also the 2D-Vietoris-Rips

complex of the dataset for the given filtration parameter.

Once we have a simplicial complex we can calculate

its Betti numbers which are non-negative integers, one for

each dimension. Since our complexes live in the Euclidean

plane, we are only interested in zero-dimensional and one-

dimensional Betti numbers. The zeroth Betti number (β0)

of a complex is the number of connected components, and

the first Betti number (β1) counts the number of 1D holes

(the network polygons) in our complex. We will calculate

the first Betti number (β1) of both the graph and the clique

complex. As mentioned above, β1 in the graph accounts for the

total number of 1D holes, i.e., the number of polygons given

by edges connecting data points in the graph. In the clique

complex, β1 provides the number of uncovered polygons,

i.e., polygons that are not triangles. Due to the presence of

gravity, we expect to have a single connected component

in most cases (β0 = 1), and thus we focus our study only

in β1. In this article, the homology calculations have been

performed with JAVAPLEX [42], developed by the group of

Applied and Computational Algebraic Topology of Stanford

University. These calculations were subsequently corroborated

using PERSEUS [43,44], developed by V. Nanda.

IV. TOPOLOGY UNCOVERED BY β1

The goal now is testing if the average first Betti number,

combined with the introduction of a filtration parameter,

can be used to unveil the characteristics of the different

packings. The effect of increasing the filtration parameter

above the diameter of the particles in the β1 of the graph is

that the development of new connections necessarily leads to

the apparition of polygons and hence, to the increase of β1.

In the clique complex, however, new connections may lead to

the creation of polygons, but also to the covering of a triangle

(and hence to a reduction of β1) as evidenced in Fig. 3. We

study filtration parameters in the range d � δ � 1.1d where d

denotes the diameter of the particles.

The evolution of β1 versus the tapping intensity is presented

in the left column of Fig. 4 for both, the graph (top)

and the clique (bottom). In both cases, the curves obtained

for δ = d display considerably lower values than the other

ones. This correlates with the pictures shown in Fig. 3 and

the unrealistic type of network obtained for this value of

the filtration parameter. Interestingly, apart from the quantita-

tive disparity, the curves obtained for δ = d display qualitative

differences from the ones using larger values of δ. For the case

of the graph, the values of β1 are rather homogeneous for

δ = d whereas a nonmonotonous behavior can be observed

for δ � 1.01d. This nonmonotonicity can be understood if

we consider the packing fraction dependence on Ŵ shown in

Fig. 2. Indeed, this behavior is in good agreement with the

results reported in [27] where the total number of polygons

(dominated by the number of triangles) was shown to change

with Ŵ in the same way that the packing fraction does. The

curves reported for β1 of the clique (where the triangles are

not considered) show that the packing structure is dominated

by the presence of triangular loops. First, the values of β1 of

the clique are (at least) half the ones obtained for the graph.

In addition, the presence of the maximum of β1 for the value

0.5
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0.86 0.88 0.90
φ

δ=1d  δ=1.01d  δ=1.02d  δ=1.04d  δ=1.12d  

FIG. 4. (Color online) Experimental results of the mean first

Betti number (β1) normalized by the number of particles for different

values of the filtration parameter δ as indicated in the legend. In the

left column, β1 is presented vs the tap intensity Ŵ. In the right column

β1 is presented vs the packing fraction of the sample φ. At the top,

results obtained from the graph and at the bottom, results obtained

from the clique. In all cases, the 95% confidence intervals for the

mean of the normalized Betti numbers are of the size of the data

points.

of Ŵ at which we obtain the smaller packing fraction indicates

that for these states the number of polygons with four or more

edges are maximized and the number of triangles is minimized.

On the contrary, as we increase or decrease Ŵ and the packing

fraction is increased, the number of triangles augments with

the consequent reduction of the number of polygons with four

or more edges.

All these results can be better understood if we plot β1

versus φ (right column of Fig. 4). The graph shows an increase

of β1 with φ independently on the value of δ confirming

the correlation of these two parameters. On the contrary,

the clique displays a decrease of β1 with φ, confirming

that the behavior observed in the graph is dominated by the

presence of triangular structures as explained above. Even

more interestingly, the β1 versus φ curves reveal that, for states
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FIG. 5. (Color online) Mean first Betti number vs δ for states

with the same average packing fraction (φ ≈ 0.864) obtained with

different tap intensities. As indicated in the legend, circles (triangles)

are used for the state reached with Ŵ = 11 (Ŵ = 18.8). At the top,

results obtained from the graph and at the bottom, results obtained

from the clique. The 95% confidence intervals for the mean of the

normalized Betti numbers are of the size of the data points.

with the same value of φ but obtained with different excitation

intensities, the β1 values are different. This is evidenced

by the presence of two branches in the plots. The branch

corresponding to high Ŵ displays higher β1 values for the graph

and lower β1 values for the clique. This suggests that, even if

two states share the same packing fraction, those obtained with

the higher excitations can be identified by the presence of a

larger number of triangular structures in the network.

In order to check this idea, in Fig. 5 we compare the

experimental values of β1 for two states with the same packing

fraction but obtained at different tap intensities, i.e., Ŵ = 11

and Ŵ = 18.8 for the left and right sides of Ŵmin. In the graph,

the β1 values obtained for the highest Ŵ are systematically

above those obtained for the lowest Ŵ. This trend is reversed

for the clique, where the β1 values obtained for the highest Ŵ

are systematically below those obtained for the lowest Ŵ. This

behavior is in perfect agreement with the fact that the number

of triangles developed in the network is more important for the

higher value of Ŵ.

Finally, let us stress that from the results shown in Figs. 4

and 5, it can be concluded that a good election of the filtration

parameter is crucial in order to differentiate among states with

the same packing fraction. Indeed, the network constructed

in the traditional way (considering as links those nodes at

a distance equal to or smaller than the particle diameter) is

shown to be the worst election to differentiate among states. On

the contrary, a filtration parameter of δ = 1.01d or δ = 1.02d

seems to be the most convenient for the experiments displayed

in this work. Noticeably, these values of the filtration parameter

are of the same order as the indetermination of the particle’s

positions explained above. In the next section we show that,

effectively, there is a relationship among these two magnitudes.

In a recent paper [45] a slightly larger number (8% of particle

diameter) has been found to be a good election for contact

threshold.

At this point, we have shown that the first Betti number of

the graph and the clique (the Vietoris-Rips complex) can be

satisfactorily used to classify granular packings. In the next

section we show that our conclusions are robust against the

inherent noise of experimental measurements. To this end, we

use numerical simulations and artificially introduce different

degrees of noise in the positions of the particles.

V. INFLUENCE OF PARTICLE’S POSITION

INDETERMINACIES

In order to validate our experimental results and check the

role that particle position indetermination has on the β1 values

obtained for different filtration parameters, we use data of

previous soft-particle molecular dynamics in two dimensions

obtained for a very similar geometry. The details of the

simulations can be found elsewhere [46] and are summarized

in the Appendix. Here we discuss the results.

The main source of errors in our experimental results comes

from the uncertainties in the determination of the particle

position; we simulate this process by adding controlled noise to

the numerical particles’ positions which can be obtained with

10−8d precision. Therefore, we created sets of noisy data with

a well defined protocol: defining as noise control parameter

the value of α in [0,0.1], we moved each center to a point

at a random distance sampled from a uniform distribution in

[0,α d] where d is the diameter of the particles, and a random

direction sampled from a uniform distribution in [0,2π ].

In Fig. 6 results of mean β1 (normalized by the number

of particles) are presented versus Ŵ for different values of the

filtration parameter δ (as indicated in the legend) and different

levels of noise (increasing from left to right panels). Looking

at the results of the graph obtained for δ = 1d without noise

(circles in the top left panel), we notice the same qualitative

behavior as the one observed in [27] for the total number of

polygons in the contact network. In the same panel, we observe

that increasing the value of δ leads to an augment of the values

of β1 (the number of polygons increases) preserving the shape

of the curves. Furthermore, when noise is added to the data,

the curves β1 versus Ŵ in the graph (top figures of Fig. 6)

show an important downward displacement of some of the

curves but the global trends are maintained. Adding 1% noise
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FIG. 6. (Color online) Simulation results of the mean first Betti

number (β1) normalized by the number of particles as a function of

the tap intensity (Ŵ) for different values of the filtration parameter δ

and different levels of noise in the data. At the top, results obtained

from the graph and at the bottom, results obtained from the clique.

The 95% confidence intervals for the mean of the normalized Betti

numbers are of the size of the data points.

strongly (slightly) affects δ = 1.00d (δ = 1.01d) curves and

has no apparent effect on curves obtained for higher values

of δ. Adding 3% noise strongly affects δ = 1.00d, δ = 1.01d,

and δ = 1.02d curves; adding 5% noise strongly affects curves

with δ < 1.05d, and weakly affects δ = 1.05d.

A rather different behavior is obtained when displaying the

values of β1 for the clique (bottom panels in Fig. 6). We will

start explaining the case without noise (bottom left panel).

Although the trend displayed for δ = 1d is similar to that

obtained in the graph, a small increase of δ leads to a change of

the curve trend: the minimum is transformed into a maximum.

Considering that the only difference between the graph and

the clique is that the latter does not account for triangles, the

comparison of the correspondent curves provides interesting

information. Focusing on the case of δ = 1.01d, the fact that

the β1 of the clique increases with Ŵ and then, after Ŵmin,

decreases again implies that the number of polygons—without

considering triangles—is maximum in Ŵmin. At this same

point, the total number of polygons (β1 of the graph) was

proven to be minimum. This reflects that, as in the experiments,

the increase in β1 of the graph obtained when we move apart

from Ŵmin is due to an augmentation in the number of triangles

and a reduction in the number of the other polygons. In the

curves obtained increasing δ above 1.01d (which leads to

increasing values of β1 in the graph) is observed a reduction

of β1 in the clique without alteration of the curve trend. This

evidences that most of the polygons that are built in the graph

when increasing δ are, indeed, triangles.

In the clique curves, the effect of adding noise is also

notably different from that observed in the graph. If the value

of δ is higher than the level of noise, the curves show a

maximum and the values of β1 are reduced as δ increases. On

the contrary, if δ is smaller than the noise level, the curves that

originally displayed a maximum invert their shape and show

a minimum—revealing a trend similar to the one observed for

the case without noise and δ = 1d. This effect can be explained

as follows. First, it should be recalled that for the case without

noise, increasing δ leads to the development of a maximum

in the clique curves as a consequence of the increase in the

number of triangles. Considering this, it seems reasonable that

adding a given amount of noise destroys some of the triangles

creating polygons of any kind. The only way to compensate the

addition of noise (and preserve the triangular structure in the

network) is applying a sufficiently high filtration parameter.

In Fig. 7 we represent β1 (for different values of noise

and filtration parameter) with respect to the packing fraction

φ. As in the experiments all the β1 curves present two well

defined branches; the shorter one is for high Ŵ and the longer

one is for low Ŵ. These branches are more or less separated

from each other depending on the values of noise and filtration

parameter. Focusing first on the results of the graph without

noise for δ = 1.00d, we observe that β1 increases with φ,

but this increment is more pronounced for the short branch

(higher values of Ŵ). Comparing these results with the analog

of the clique, where the two branches are indistinguishable, we

can conclude that the differences among the two branches are

predominantly caused by the development of triangles (which

are more abundant for high values of Ŵ). This result agrees with

the experimental outcomes shown above and the topological

analysis carried out in [27].

The effect of increasing δ in the graph obtained without

noise is just an augmentation of the values of β1 without

changing the shape of the curves. Nevertheless, an exceedingly

high filtration parameter like δ = 1.10d seems to provoke a

reduction in the separation between the two branches (down

triangles in the top left graph of Fig. 7). The introduction of

noise induces a decrease of the β1 values of the graphs that

mainly affects the curves obtained with a filtration parameter

smaller than the level of noise.

In the data obtained from the clique, the effect of adding

noise and changing the filtration parameter leads, in some

circumstances, to an inversion of the tendency of the curves.

Focusing first in the the case without noise, if δ > 1.00d,

β1 decreases with φ in contrast to the case of δ = 1.00d.

The origin of this change (which was already explained

when describing the results displayed in Fig. 6) is based

in the development of triangles for high values of φ. The

introduction of noise in the system leads to the transition from

ascendent to descendent curves appearing for larger values
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FIG. 7. (Color online) Simulation results of the mean first Betti

number (β1) normalized by the number of particles as a function of

the packing fraction (φ) for different values of the filtration parameter

δ and different levels of noise in the data. At the top, results obtained

from the graph and at the bottom, results obtained from the clique.

The 95% confidence intervals for the mean of the normalized Betti

numbers are of the size of the data points.

of δ. More interestingly, it seems that given a value of noise,

the differences among the two branches in the clique networks

are maximized for a filtration parameter higher than or similar

to the level of noise.

In order to check this idea, we compare the outcomes

of the β1 for two states that, being obtained with very

different tap intensities, display the same packing fraction

(φ ≈ 0.84). In the numerical simulations this occurs, for

example, for the states developed for Ŵ = 2.4 and Ŵ = 15.4

whose β1 values for different noise and filtration parameters

are presented in Fig. 8. Clearly, the results obtained for the

graph (top figures) reveal differences, the values of β1 being

systematically higher for the highest tapping intensity. The

differences become more or less important depending on

the noise and the filtration parameter. For the data without

additional noise, it seems that the outcomes of β1 are already

different for δ = 1d. The differences are magnified for larger

values of δ and seem to become smaller again for δ = 1.1d.

Similar trends are observed when noise is added in the

No noise 1% Noise 3% Noise 5% Noise 10% Noise

Graph

Clique

0.5

1.0

0.1

0.2

0.3

0.4

0.5

1 1.05 1 1.05 1 1.05 1 1.05 1 1.05
δ d

β
1

N

Γ = 2.4   Γ = 15.4

FIG. 8. (Color online) Comparison of the mean first Betti number

normalized by the number of particles for states with the same packing

fraction obtained with different tap intensities (Ŵ = 2.4 and Ŵ =
15.4). Results obtained from simulations are presented vs the value

of the filtration parameter for different levels of noise as indicated at

the top of each figure. At the top, results obtained from the graph and

at the bottom, results obtained from the clique. The 95% confidence

intervals for the mean of the normalized Betti numbers are of the size

of the data points.

data. For these cases, however, the differences for δ = 1d

become almost nonexistent. Indeed, as the levels of noise are

augmented, distinguishing among the states requires larger

values of δ.

The results of the clique (bottom of Fig. 8) reveal that,

opposite to the graph, the β1 values are systematically smaller

for the case of the highest tap intensity. Again, this reveals

that states with the same packing fraction develop more

triangles when obtained at high tap intensities. Concerning the

differences among the states when adding noise and changing

the filtration parameter, the conclusions attained from the

clique are similar to those already explained for the graph. In

summary, for low levels of noise, differences are maximized

for intermediate values of δ. As the noise is increased, the

values of δ from which differences appear also increase. The

curve trends (monotonously decreasing for the case without
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added noise, and displaying a maximum when some noise

is added) can be explained, again, as a consequence of the

development of triangles in the network.

VI. CONCLUSIONS

In this work, we have shown that the first Betti number of

both the graph and the clique (the Vietoris-Rips complex) can

be satisfactorily used to classify granular packings. Using a

filtration parameter that defines whether or not two particles

in the sample (nodes) are joined by a link, we are able

to differentiate among states that display the same packing

fraction but which are, indeed, different.

We have studied the β1 dependence on both Ŵ and φ

revealing the structural differences in particle arrangements

where the global packing fraction are essentially the same. In

general, increasing φ leads to an augment of the crystallization

evidenced by an augment of the β1 of the graph and a reduction

of β1 of the clique. The last is clearly due to the increasing

number of triangles in the structure obtained when φ is

augmented. In addition, we have found that the way in which

the packing morphology changes with the packing fraction

is not the same for high and low Ŵ. This is captured by the

β1 values for states with the same packing fraction which are,

indeed, different for high and low Ŵ. Stationary states achieved

using low values of Ŵ are characterized by a smaller β1 in the

graph and larger in the clique, when compared with states

with the same packing fraction but achieved using high values

of Ŵ. This implies that the number of triangular structures is

different among these two states: low values of Ŵ lead to a

smaller number of triangles than high values Ŵ. From this,

we can infer that crystallization (measured by the number of

triangular structures) is more important for high excitation

intensities. This higher degree of crystallization should be

compensated by the apparition of few big defects in order to

share the same packing fractions as stationary states obtained

for low excitation intensities.

The results reported in this work prove that an accurate

determination of the contacts among the particles is not

necessary to observe topological differences among states with

the same packing fraction, but obtained with different tapping

intensities. This result represents an important step forward

with respect to a previous one [27] where the topological tool

introduced to identify such differences is only available if

the contact network is well defined. Clearly, the topological

approach introduced in this work can be used to classify

experimental packing ensembles where the contact network

is not fully accessible due to the limited resolution of the

experimental techniques.
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APPENDIX: SIMULATIONS

We summarize the details of the simulations used in the

analysis of the influence of indeterminacy in the positions

of the particles. Further details can be found in [46]. We

simulate N = 512 monosized disks of diameter d, inside a

two-dimensional confining box of width 13.39d and infinitely

high lateral walls. Note that the width of the simulated cell is

roughly half of the cell’s width in the experiments described

in Sec. II. Hence, direct cuantitative comparison should not be

done. Numerically, we set the stiffness kn = 105(mg/d) and

damping parameter γn = 300(m
√

g/d) in the normal direction

of the contact. In the tangential direction, we set ks = 2
7
kn

for the stiffness and γs = 200(m
√

g/d) for the damping

parameter. The friction coefficient is fixed to μ = 0.5. We

used reduced units with the diameter d of the disks, the mass

m, and the acceleration of gravity g. The integration time step

is τ = 10−4
√

d/g.

The tapping is simulated by moving the confining box

in the vertical direction following a sine shaped trajectory

A sin(2πνt)[1 − �(2πνt − π )]. We fix the frequency at the

value ν = π/2(g/d)1/2 and control the tapping intensity Ŵ =
A(2πν)2/g through the amplitude A. Once a tap is applied

we decide that the system is in equilibrium implementing

a criterium based on the stability of the contacts [46]. At

this point, particle positions are recorded which will be

subsequently used to calculate both the packing fraction and

the network properties. Then, a new tap is applied. Following

this protocol we tap the bed 1000 times for each reported value

of the intensity. Averages are computed considering only the

last 500 taps of each run, where (in all the cases) the packing

fraction has already become stationary, i.e., it has a well defined

average. The dependence of packing fractions against tapping

amplitude is displayed in Fig. 9.

0.80

0.82

0.84

0.86

0.88

4 8 12 16
Γ

φ

FIG. 9. Mean packing fraction φ of the steady states as a function

of the tap intensity Ŵ obtained from numerical simulations.
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R. Soc. London, Ser. A 469, 2152 (2013).

[13] A. Tordesillas, D. M. Walker, and Q. Lin, Phys. Rev. E 81,

011302 (2010).

[14] A. G. Smart and J. M. Ottino, Phys. Rev. E 77, 041307 (2008).

[15] N. Rivier, J. Non-Cryst. Solids 352, 4505 (2006).

[16] N. S. Nguyen, H. Magoariec, B. Cambou, and A. Danescu, Int.

J. Solids Struct. 46, 3257 (2009).

[17] N. S. Nguyen and H. Magoariec, B. Cambou. Int. J. Numer.

Anal. Methods Geomech. 36, 1609 (2012).

[18] S. Ostojic, E. Somfai, and B. Nienhuis, Nature (London) 439,

828 (2006).
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