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Fig. 1 Data set on the experimentally
established genetic interactions in
yeast. The graph shows causal rela-
tions among the 52 interregulatory
genes. To indicate downstream
causality (top arrow), genes lacking a
known regulator other than mutual
or self-regulation are listed in the left
column. The other genes are then
placed in the leftmost column so that
all of their regulators locate to their
left. Following the same rule, above
are shown the numbers of nonregula-
tory genes (names omitted) regulated
by genes from each column. From left
to right, downstream causation
emphasizes the consequences of
altering a gene’s activity for other
genes. From right to left, upstream
causation reveals the sources of a
gene’s perturbation. Bold type indi-
cates self-activation, bold italics indi-
cates self-inhibition and borders
indicate essential genes. Thick lines
represent activation, thin lines repre-
sent inhibition and the dashed gray
line represents dual regulation.
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Interpretation of high-throughput biological data requires a
knowledge of the design principles underlying the networks
that sustain cellular functions. Of particular importance is the
genetic network, a set of genes that interact through
directed transcriptional regulation. Genes that exert a regu-
latory role encode dedicated transcription factors (hereafter
referred to as regulating proteins) that can bind to specific
DNA control regions of regulated genes to activate or inhibit
their transcription. Regulated genes may themselves act in a
regulatory manner, in which case they participate in a causal
pathway. Looping pathways form feedback circuits. Because
a gene can have several connections, circuits and pathways
may crosslink and thus represent connected components. We
have created a graph of 909 genetically or biochemically
established interactions among 491 yeast genes. The number
of regulating proteins per regulated gene has a narrow distri-
bution with an exponential decay. The number of regulated
genes per regulating protein has a broader distribution with
a decay resembling a power law. Assuming in computer-
generated graphs that gene connections fulfill these distrib-
utions but are otherwise random, the local clustering of con-
nections and the number of short feedback circuits are
largely underestimated. This deviation from randomness
probably reflects functional constraints that include biosyn-
thetic cost, response delay and differentiative and homeosta-
tic regulation.

In integrating genome-wide data on transcript abundance1 into
a dynamic view of gene networks, recent studies have focused on
abstracting the principles that underlie the architecture and
causal interplay of these networks. At present, the yeast Saccha-
romyces cerevisiae is the most suitable eukaryotic organism for
achieving this goal, as much information about its transcrip-
tional regulations has been accumulated2,3. Of roughly 6,000
yeast genes, 124 have been shown through genetic and biochemi-
cal experiments to encode regulating proteins that can influence
the expression of specific genes2. These data were obtained from
a previous review2 and were validated and updated, until July
2001, by manual inspection of the websites of MIPS, SwissProt,
Yeast Protein Database, S. cerevisiae Promoter Database and the
Saccharomyces Genome Database (see Web Note A online). The
elements of the general transcription initiation machinery were
excluded from this study, although some have differential roles in
transcription of large subsets of genes3. Some of the 124 regula-
tory genes transcriptionally control a set of 367 non-regulatory
genes (Fig. 1) through 837 connections (see Web Table A online).
Of the 124 regulatory genes, 52 interact with themselves or with
other regulatory genes through 72 additional links (see Web
Table A online). A transcriptional regulatory network can thus
be represented as a graph where vertices are genes and directed
edges denote activating or repressing effects on transcription.
The graph of these 52 ’interregulatory’ genes comprises mainly
several small disconnected components (Fig. 1).
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Most networks fall into two major categories on the basis of
their connectivity distribution, pk, which represents the proba-
bility that a vertex in the network is connected to k other ver-
tices. One category of networks is characterized by a pk that
peaks at an average kmean and decays exponentially for large
k4,5. In these exponential networks, most vertices have approx-
imately the same number of links. By contrast, metabolic path-
ways6−8 belong to a category of nonhomogeneous networks,
where pk decays as a power law. As the connections are inher-
ently oriented in a transcriptional regulatory network, we sep-
arately analyzed the number of regulating proteins per
regulated gene (arriving connectivity) and the number of reg-
ulated genes per regulating protein (departing connectivity),
to determine whether they were best described by the expo-
nential or power-law models.

The arriving connectivity of the yeast network has an expo-
nential distribution, with 93% of the genes being regulated by
1−4 regulating proteins (Fig. 2a). The probability pk that a given
target gene is regulated by k regulating proteins decreases
roughly as Ce−βk (C is a constant), with β∼0.45 for both the total
set of regulated genes and its interregulatory subset. The avail-
able data for Escherichia coli9 are compatible with an exponen-
tial distribution of arriving connections, with β∼1.2; this higher
β coefficient means that fewer targets have many regulators.
This coefficient thus reflects the molecular limits on the number
of regulating proteins that can combinatorially exert an effect on
the target gene expression. Consequently, lower coefficients are
predicted for multicellular organisms with a more sophisticated
genetic regulatory machinery.

The departing connectivity of the yeast network does not
seem to be distributed according to an exponential law (Fig. 2b).
It fits better a power law, although there are insufficient data to
rule out other possibilities. The probability pk that a given regu-
lating protein regulates k target genes decreases as approxi-
mately Ck−γ, with γ∼1 for both the global set of 124 regulatory
proteins and its interregulatory subset. For E. coli as well, γ∼1
(our best fit computed from ref. 9; see also refs 8,10). Because
γ∼1, the number of departing connections (kpk∼kCk–1=C) is
distributed almost equally over k, unlike the connections pre-
sent in metabolic networks (γ∼1.5–3)6−8. Thus, bacterial and
fungal genetic networks are free of a characteristic scale with
respect to the distributions of both regulating proteins and
departing connections.

The differing distribution laws for arriving and departing con-
nectivities suggests that there is a correlation between them. A
joint distribution (Fig. 2c) shows that genes with few regulators
also tend to have few targets. Because there are many such genes,
inactivating a gene selected at random has a low probability of

altering the pathway structure of other genes. In contrast, inacti-
vating one of the few highly connected genes would greatly
decrease the communication between the remaining genes11 and
could be lethal. Of 124 regulatory genes, 10 are essential, includ-
ing 6 interregulatory genes that tend to be located upstream in
the causal graph (Fig. 1). Indeed, their overall influence (direct
and indirect targets) is twice as big on average as that of
nonessential genes.

To evaluate the generality of the predicted topology, two things
must be determined: (i) to what extent the present compilation
differs from a complete yeast data set and (ii) whether the
observed global topology is likely to hold true as more data accu-
mulate. On the basis of sequence homology, at most, 77 addi-
tional yeast genes encode putative regulating proteins (see Web
Note A online); however, recent work has investigated the
genome-wide locations of 12 DNA-binding proteins, using chro-
matin immunoprecipitation and microarrays12−15. Depending
on the laboratory, the number of targets thus obtained is on aver-
age 3.5-fold12,15 and 26-fold13,14 greater than the number found
here for the same regulators (see Web Table A online). Although
the exact number of targets depends on a somewhat arbitrary
threshold, it is already clear that this new method has the poten-
tial to reveal many unsuspected links12−15. It is therefore essential
to re-evaluate the topology of the yeast network once a sufficient
set of regulatory genes has been studied with this genome-wide
approach and universal threshold definitions. Moreover, theoret-
ical considerations, consistent with the comparison of a subset to
the whole set (Fig. 2a,b), suggest a way in which future data may
affect the described network structure. If departing connectivity
is free of a characteristic scale, future data should presumably not
alter the power-law parameters. If arriving connectivity is shaped
by the sophistication of the regulatory machinery, additional
data would probably increase C while maintaining β.
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Fig. 2 Connectivity of the yeast genetic network. a, Arriving connectivity dis-
tribution (semi-log plot). The number of regulating proteins per regulated
gene follows an exponential distribution (least-square method) both for all
402 regulated genes (367 nonregulatory and 35 interregulatory genes17
interregulatory genes are excluded because they lack a known regulator;
909 connections; open squares, full line; pk=157e–0.45k; R=0.99) and for the
subset of 35 interregulatory genes (72 connections; filled circles, broken line;
pk=15e–0.43k; R=0.94). b, Departing connectivity distribution (log/log plot).
The number of regulated genes per regulating protein better fits a power-
law distribution both for all 124 regulating proteins (909 connections; open
squares, full line; Pk=23k−0.87; R=0.95) and for its subset of 37 regulating pro-
teins that control regulatory genes (72 connections; filled circles, broken
line; Pk=19k−1.14; R=0.99). Opposite views (a versus b; exponential departing
and power-law arriving connectivities) would give lower correlation coeffi-
cients (R=0.88, 0.91, 0.83 and 0.98, respectively) and very different slopes for
global versus interregulatory genes. Null values were discarded. c, Joint dis-
tributions. The probability that a randomly chosen gene has in arriving and
out departing connections is distributed on this linear plot as a function of in
(regulating proteins) and out (regulated genes).
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To assess how accurately various models represent the biologi-
cal situation, the actual yeast genetic network (a) was compared
with directed random graphs modeled under three assumptions
(see Web Note B online and Fig. 2): the connectivity distribu-
tions conform with (b) the empirical data (c) the laws deduced in
Fig. 2 and (d) a Poisson law. A uniformly distributed connectivity
(d) favors the emergence of a connected component that com-
prises the majority of the genes (Table 1), which is not observed.
By contrast, both random graphs with constrained connectivity
distributions (b or c; Fig. 2) reasonably approximate the average
number of neighbors one or two steps away. At a more refined
grain, however, they are no longer acceptable approximations.
The local attribution of a few edges per vertex in a sparse graph is
an important parameter that affects the network dynamics. It
could be uniform, as in random graphs4, or highly clustered, as
in small worlds5; extreme local clustering would result in global
fragmentation, unlike small worlds, which still retain large con-
nected components. Global fragmentation is observed (Fig. 1),
beyond that expected from the empirical data or the deduced
laws (b or c; Table 1). A clustering coefficient has been proposed
to quantify the propensity of the links reaching an individual to
involve him or her in local social interactions within ‘cliques’5.
Because genetic networks are directed, we introduce the notion
of upstream or downstream ‘semi-cliquishness’ (see Web Note B
online). The corresponding semi-clustering coefficients are
approximately fivefold higher than those expected for the yeast
network in a constrained random graph (Table 1). Along the
same lines, the total number of observed feedback circuits is five-
fold higher than that predicted by (b) or (c), and 14-fold higher
for single-gene circuits (Table 1).

These circuits are crucial to the dynamics of the system. Positive
circuits comprise an even number of inhibitory interactions and
contribute to multistationarity, whereas negative circuits com-
prise an odd number of inhibitory interactions and contribute to
homeostasis16. In this view, higher organisms are expected to rely
more heavily than lower ones on positive circuits, particularly to
achieve cellular differentiation, with each cell type corresponding
to one of several stationary states. We observed five negative and
six positive circuits in 52 yeast interregulatory genes (Fig. 1). As
expected, this is in marked contrast to the genes of E. coli, where
45 circuits (39 negative, 3 positive, 3 dual) were observed for 55
interregulatory genes9. Yeast positive circuits control switching
processes, such as those leading to pseudohyphal growth
(YJL110C/YKR034W, controlled by YER040W)17, sporulation
(YJR094C)18 or multiple-drug resistance (YBL005W)19. Negative

circuits are constituted by (self-
) inhibitors that finely control
responses to the absence of glu-
cose (YGL035C)20, DNA dam-
age (YLR176C)21 or oxygen
(YPR065W)22.

As a whole, the yeast tran-
scriptional regulatory net-
work combines a small
maximal diameter, an elevated
local semi-clustering, a high
number of feedback circuits
and a global fragmentation.
This departure from a random
distribution must reflect func-
tional constraints. Indeed,
each small connected piece
implements a biological func-
tion, and the global fragmen-
tation may serve to limit

inter-functional crosstalk at the transcriptional level. The ele-
vated clustering and feedback content probably implement dif-
ferentiative and homeostatic requirements. Single-gene
feedback circuits are predominant (this study and ref. 9) and
may have been selected through evolution for several reasons: (i)
they decrease the biosynthetic cost (roughly proportional to the
amount of transcripts and proteins to be produced), (ii)
together with the small diameter, they reduce the response delay
(often a consequence of macromolecular synthesis) and (iii)
they stabilize the fluctuations of expression of the involved
genes23. Similar laws seem to govern the local and global net-
work topologies in eukaryotes and prokaryotes, notwithstand-
ing the circuit sign. When prior knowledge of the specific
transcriptional connections is limited, these laws may prove
general enough to facilitate the integration of transcriptomic
data into dynamic models of genetic networks.

Note: Supplementary information is available on the Nature
Genetics website.
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Table 1 • Structure of the yeast transcriptional regulatory network

Connectivity distributions

(a) Actual data (b) Empirical (c) Expo/Power (d) Poisson
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SCout
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FC1

g 10 0.7 0.6 2
FC∞

g 11 2.2 1.4 NAh

aPercentage of genes in the largest connected component (with at least one oriented path between any couple of ver-
tices). bAverage number of regulating proteins (regulated genes) one step away. cIdem two steps away. dIdem at all dis-
tances (average component size). eNumber of oriented triangular interactions. fSCin (SCout), upstream (downstream)
semi-clustering coefficient. gFC1 (FC∞), number of feedback circuits comprising one (any number of) gene. hNot directly
applicable, owing to the presence of a giant component in (d). The features of the actual genetic network (a) were com-
pared with those of a directed random graph with an equal number of vertices and edges (see Web Note B online). Con-
nectivity distributions were as empirically observed (b), or followed the exponential (power, respectively) law for
arriving (departing) regulations that had been determined from Fig. 2 (c), or followed a Poisson law (d).
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