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Abstract

Insect gustatory receptors are predicted to have a seven-transmembrane structure and are distantly related to insect
olfactory receptors, which have an inverted topology compared with G-protein coupled receptors, including mammalian
olfactory receptors. In contrast, the topology of insect gustatory receptors remains unknown. Except for a few examples
from Drosophila, the specificity of individual insect gustatory receptors is also unknown. In this study, the total number of
identified gustatory receptors in Bombyx mori was expanded from 65 to 69. BmGr8, a silkmoth gustatory receptor from the
sugar receptor subfamily, was expressed in insect cells. Membrane topology studies on BmGr8 indicate that, like insect
olfactory receptors, it has an inverted topology relative to G protein-coupled receptors. An orphan GR from the bitter
receptor family, BmGr53, yielded similar results. We infer, from the finding that two distantly related BmGrs have an
intracellular N-terminus and an odd number of transmembrane spans, that this is likely to be a general topology for all
insect gustatory receptors. We also show that BmGr8 functions independently in Sf9 cells and responds in a concentration-
dependent manner to the polyalcohols myo-inositol and epi-inositol but not to a range of mono- and di-saccharides. BmGr8
is the first chemoreceptor shown to respond specifically to inositol, an important or essential nutrient for some Lepidoptera.
The selectivity of BmGr8 responses is consistent with the known responses of one of the gustatory receptor neurons in the
lateral styloconic sensilla of B. mori, which responds to myo-inositol and epi-inositol but not to allo-inositol.
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Introduction

Despite detailed morphological and physiological knowledge of

gustation in insects [1,2,3,4,5], this understanding does not extend

to the molecular level. The recent identification of gustatory

receptor (GRs) sequences from whole genome sequencing has

enabled investigations of molecular gustation in insects. Insect

GRs and olfactory receptors (ORs) were originally classified as a

large subfamily of G protein-coupled receptors [6,7,8,9]. Subse-

quent studies have shown that insect ORs have an inverted

transmembrane structure and can signal independently of

heterotrimeric G proteins in vitro [10,11,12,13,14], although

olfactory signal transduction has been shown also to involve

heterotrimeric G-proteins [15]. The transmembrane topology and

signalling mechanisms of insect GRs remain unknown although

there is evidence of both a G-protein independent pathway and a

G-protein dependent pathway [16,17,18,19].

Insect gustatory receptors have been classified into ‘‘sugar’’ and

‘‘bitter’’ clades based on their homologies with identified receptors

from Drosophila. DmGr5a was reported as a trehalose specific

receptor [20,21,22] and members of the DmGr64 cluster

(DmGr64a-f), which are orthologs of DmGr5a, have been reported

to be important in the detection of sucrose, maltose and glucose

[22,23]. DmGr64f is required for detection of a range of sugars and

it is thought to act as a co-receptor for other sugar receptors [24].

A number of Drosophila GRs have also been implicated in the

responses to caffeine and other bitter plant secondary metabolites

[25,26,27,28]. Based on homologies to these receptors, the

genome of Drosophila melanogaster [29] contains eight putative sugar

receptors. Against this background the first fully sequenced

lepidopteran genome of B. mori, encodes five putative sugar

receptors [30,31]. The Bombyx genome also contains a large

number of putative bitter receptors. Despite almost 60 putative

sugar GRs being identified from insects, ligands have only been

assigned to a few of the Drosophila sequences [32].

In this study, we identified the topological structure of two insect

GRs. Analysis of BmGr8 suggests that it has an uneven number of

transmembrane segments and that its N-terminus is intracellular

and its C-terminus is extracellular. We observed a similar topology

for the bitter receptor candidate, BmGr53, suggesting that insect

GRs have the same transmembrane topology as insect ORs. In

addition to the topological structure analysis we show the putative

sugar receptor, BmGr8, responds selectively to myo-inositol at

physiologically relevant concentrations.

Materials and Methods

Bioinformatics
New assemblies of the Bombyx mori genome sequence were

searched with known annotated silkworm GRs [31] and other

PLoS ONE | www.plosone.org 1 August 2011 | Volume 6 | Issue 8 | e24111



insect GRs as queries using TBLASTN [33]. The genomic scaffold

sequences containing candidate genes were predicted using

FGENESH+ (http://www.softberry.com/berry.phtml), BGF (http://

bgf.genomics.org.cn/) and SplicePredictor (http://deepc2.psi.iastate.

edu/cgi-bin/sp.cgi). Multiple transmembrane domains of receptors

were predicted by TMPred (http://www.ch.embnet.org/software/

TMPRED_form.html), TMHMM (http://www.cbs.dtu.dk/services/

TMHMM-2.0/) and HMMTOP (http://www.enzim.hu/hmmtop/

html/submit.html/) (Table S1).

Phylogenetic analysis was conducted with the 69 BmGrs and

putative gustatory receptors from Heliothis virescens [34], putative

sugar receptors from Drosophila melanogaster [29], Anopheles gambiae

[35], Apis mellifera [36], Aedes aegypti [37,38], Tribolium castaneum

[39,40], Nasonia vitripennis [41], Acyrthosiphon pisum [42] and Culex

quinquefasciatus [42,43]. Protein sequences of GRs were down-

loaded from NCBI. All sequences used for phylogenetic analysis

may also be downloaded from http://silkworm.swu.edu.cn/

silkdb/doc/download.html. Amino acid sequences were aligned

with Clustal X using default parameters (alignment of insect

sugar receptors is shown in Figure S1) and subjected to

phylogenetic analysis in order to demonstrate their evolutionary

relationships. With RAxML [44], the maximum likelihood (ML)

tree was constructed with Blosum62 implemented as the amino-

acid model. A rapid bootstrapping analysis was conducted using

1000 replicates, with other parameters set to their default

values. The Bayesian tree was generated with the software

MrBayes v.3.1.2 [45], in which the Blosum62 [46] model was

used. Two independent Markov Chain Monte Carlo (MCMC)

analyses of 10 million iterations were performed, each with 4

chains (three hot and one cold), sampling one tree per 1000

iterations with the burnin percentage as 0.25. Posterior

probabilities were used to estimate the reliability of the Bayesian

tree topology.

Insects and receptor gene cloning and sequencing
Bombyx mori larvae from the inbred domesticated Dazao strain

[47] were reared on mulberry leaves at 25uC by the Key

Sericultural Laboratory of the Agricultural Ministry, Southwest

University [47]. GRs were amplified from B. mori maxillary

galeal cDNA using gene specific primers. The 59–39 nucleotide

sequences of all primers used in this study are listed in Figure

S2. RNA was prepared using Trizol (Invitrogen, USA)

according to the protocol provided by the manufacturer and

was treated using Dnase I. First strand cDNA was synthesized

using MMLV Reverse Transcriptase following the recom-

mended protocols (Promega, USA). Remaining RNA was

subsequently digested using RNase H (MBI Fermentas).

Amplified genes were cloned into pGEM-T vector (Promega,

USA) and subcloned into PIB/V5-His vector (invitrogen, USA)

using Kpn I/Sac II. Plasmid DNAs were sequenced by

Micromon (Monash University).

To detect the expression of BmGr8 in Sf9 cells, and to assess the

topology of GRs, two copies of the MYC-epitope tag, comprising

the amino acids EQKLISEEDL, were incorporated in frame

either upstream or downstream of both BmGr8 and BmGr53.

Appropriate restriction sites (Sac II/Kpn I for BmGr8; Xba I/

BamH I for BmGr53) were introduced to allow cloning into the

PIB/V5-His vector (Figure S2).

Cell culture and transient transfection
Spodoptera frugiperda Sf9 cells (Invitrogen) were maintained as a

suspension culture in Sf-900 II medium (Invitrogen) according to

the manufacturer’s instructions. Cells were plated into 12-well

plates and left to settle for half an hour before being transiently

transfected with 500ng of plasmid construct and 3 mL of Escort IV

transfection reagent (Sigma, USA) in 100 mL of medium per well.

After incubation for 7 h, the cells were washed twice with fresh

medium and incubated in 1 mL of fresh medium until needed.

Drosophila Schneider S2 cells (Invitrogen, USA) were maintained

as a suspension culture in Drosophila Schneider’s medium

(Invitrogen, USA) supplemented with 10% fetal bovine serum

(Invitrogen, USA). Cells were subcultured onto poly-L-Lysine

coated coverslips in 6-well plates and transfected using Fugene HD

transfection reagent (Promega, USA) according to the product

manual. After transfection, the coverslips were washed and

incubated with 2 mL fresh medium at 28uC for 48 h before

detection of protein expression.

Calcium Imaging
Sf9 cells were transfected as described above. Calcium imaging

was modified from the method performed previously [13,48] to

avoid high levels of D-glucose in the assay buffer. The cells were

transfected with PIB/V5-His vector (control), BmGr8 or MYC/

BmGr8. After forty-eight hours post transfection, the medium

was removed and the cells were washed with assay buffer. Cells

were loaded with calcium indicator mix containing 2 mM Fluo4

(Invitrogen, USA), 1.5 mL Pluronic acid in 250 mL assay buffer

and incubated at 28uC for 20 minutes. Assay buffer was modified

from Hanks’ Balanced Salt Solution as 5 mM KCl, 130 mM

NaCl, 0.5 mM MgSO4, 2 mM CaCl2, 1 mM NaHCO3, 10 mM

D-glucose, 2 mM probenecid, 10 mM HEPES (pH 7.4) and

sterilized through a 0.22 mm filter. The cells were washed twice

with saline to remove excess dye and were covered with 400 mL

of fresh buffer. Each plate was incubated in the dark for a further

20 min prior to calcium imaging. The cells were tested with the

eleven tastants listed in the next sub section. Fluorescence

imaging was conducted on a Leica inverted microscope (Leica,

Germany) and a Leitz digital still camera. Images were recorded

every 10 s for 50 s following the addition of assay buffer

(negative control), the test ligand and ionomycin (to determine

maximal fluorescence). Fluorescence intensity was recorded for

identified cells in each image using the MetafluorH imaging

system. DF was calculated as the ratio of change in fluorescence

from basal levels (saline) upon the addition of ligand relative to

change in fluorescence from basal levels following the addition of

ionomycin. Cells responding to saline alone were omitted from

subsequent analysis as well as a small population of cells that

were hyper-responsive to test substances. The responses of cells

transfected by empty vector were subtracted from those

transfected by test vectors. All points on log concentration-

response curves are means of DF calculated using at least 30

cells. Data were analyzed and graphed with GraphPad Prism 5

using the two-tailed Student’s t-test for comparisons between two

groups. The data was arcsine transformed before the t-test was

applied.

List of tastants
The tastants tested were D-fructose, D-galactose, D-glucose,

sucrose, D-maltose, D-trehalose, myo-inositol, allo-inositol, scyllo-

inositol and methyl-a-D-glucopyranoside, which were all pur-

chased from Sigma-Aldrich. Epi-inositol was purchased from TCI

(Tokyo, Japan). The typical maximal and final concentrations of

tastants in each well are as follows: D-fructose (50 mM), D-

galactose (50 mM), D-glucose (50 mM), sucrose (50 mM), D-

maltose (50 mM), D-trehalose (50 mM), methyl-a-D-glucopyrano-

side (50 mM), myo-inositol (75 mM), allo-inositol (50 mM), scyllo-

inositol (50 mM) and epi-inositol (75 mM).

An Inositol Receptor in Silkworm
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Immunocytochemistry
Immunocytochemistry under permeabilised and non-permea-

bilised conditions was modified from Smart et al. (2008) [13]. All

steps were performed at 4̊ C unless otherwise stated. 48 h after

transfection, coverslips with S2 cells were transferred to a clean 6-

well plate and washed three times for 5 minutes each with 1x PBS

(pH 7.2). Cells were fixed in 2% formaldehyde solution in 1x PBS

for 15 minutes and rinsed in 50 mM NH4Cl in 1x PBS. The cells

were blocked in blocking buffer (1x PBS with 5% goat serum),

either with or without 0.1% (w/v) saponin permeabilisation, for

15 min. Cells were incubated in a 1:200 dilution of mouse anti-

myc antibody (R950-25, Invitrogen) in blocking buffer for 2 h,

washed with 1x PBS, incubated in 1:200 dilution of Alexa FluorH
488-tagged goat anti-mouse IgG (A-11001 Invitrogen) in blocking

buffer for 1 h, washed with PBS and incubated in 1x PBS

containing 2 mg/mL of the nuclear counterstain 4,6-diamidino-2-

phenylindole (DAPI), for 5 minutes. The cells were briefly rinsed

in 1x PBS before observing fluorescence using a Leica SP2

confocal laser scanning microscope (Leica, Germany).

b-galactosidase fusion expression for topology study
b-galactosidase fusion is often used to study the location and

topology of transmembrane proteins [10,49,50] as b-galactosidase

is only functional when expressed inside a cell. To generate the

constructs for expression of b-galactosidase fusions, LacZ was

amplified from the pSV-b-Galactosidase control vector (Invitro-

gen, USA) using a forward primer with a TrpS linker (Figure S2).

TrpS:LacZ was digested with Xho I and Sac II and directionally

cloned into the PIB/V5-His vector. Gene fragments of BmGr8

(AA1-28, AA1-62, AA1-75), BmGr53 (AA1-64, AA1-96), rhodopsin

Figure 1. Molecular phylogeny comparing silkworm gustatory receptors with putative sugar receptors from nine insect species. 69
gustatory receptors from B. mori (BmGrn) and putative sugar receptors from H. virescens (HvCrn), D. melanogaster (DmGrn), A. gambiae (AgGrn), A.
aegypti (AaGrn), C. quinquefasciatus (CpGrn), A. mellifera (AmGrn), N. vitripennis (NvGrn), T. castaneum (TcGrn) and A. pisum (ApGrn) were used to
construct the phylogenetic tree. Bootstrap support for B. mori sugar receptors and four novel bitter receptors are shown as the percentage of 1 000
replications, if they are above 50%, of optimization criteria of Bayesian posterior probabilities, maximum likelihood and maximum parsimony. GRs
from different insect orders are indicated by different colors. Stars indicate the novel four BmGrs. BmGr8 and BmGr53 are highlighted in red text.
Clades are background shaded as follows: Orange, sugar receptor clade; Green, bitter receptor clade; Pink, CO2 receptor clade; Blue, DmGr43a
homologues. See Materials and Methods for details of the phylogenetic analysis.
doi:10.1371/journal.pone.0024111.g001
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(RH1) (AA1-49, AA1-42) and corresponding controls with each

fragment fused to a downstream synthetic transmembrane domain

were synthesised by GenScript (USA). A construct containing the

coding sequence of LacZ, with the start codon deleted, was used as

a negative control for endogenous galactosidase activity. The gene

fragments were subcloned upstream of TrpS:LacZ in PIB/V5-His

using Kpn I/Xho I. The sequences of TrpS linker and synthetic

transmembrane domain were based on the pPD34.110 construct

[50]. Plasmid DNAs were transfected into S. frugiperda Sf9 cells

using Escort IV transfection reagent (Sigma, USA) and also into

Drosophila Schneider 2 (S2) cells (Invitrogen, USA) using Fugene

HD transfection reagent (Promega, USA). Before assessing b-

galactosidase activity, cells were rinsed in 1x PBS three times, fixed

in 2% formaldehyde/0.2% glutaraldehyde in 16PBS (pH 7.2) for

15 min, rinsed three times in 1 6 PBS and incubated for three

hours in X-gal staining solution at 37uC. Subsequently, X-gal

solution was removed, cells were rinsed in 1 6PBS and observed

with a light microscope. Cellc [51] and ImageJ (http://rsb.info.

nih.gov/ij/) were employed to estimate the number of stained cells

as a percentage of total cells. At least 2 000 cells were counted

from each picture.

Results

Phylogenetic analysis of B. mori gustatory receptors
In order to select the receptors to study we performed a

phylogenetic analysis of the B. mori GR family. By searching the

96 B. mori genome database [31], we identified four partial GR

genes in addition to the 65 previously reported from this species

[30,31], The four additional receptors are named BmGr66-69.

The sequences of all 69 BmGrs together with those of the putative

sugar receptors from nine other insect species can be found at the

silkworm database (http://silkworm.swu.edu.cn/silkdb.html).

Phylogenetic analysis of all 69 BmGrs and putative sugar

receptors from another nine insect species shows that Bombyx

GRs BmGr4 to BmGr8 belong to the sugar receptor subfamily

(Figure 1, Figure S1). The newly identified BmGrs are dispersed

over three lineages in the putative bitter receptor subfamily

(Figure 1), which in Bombyx has 59 BmGrs, an extraordinarily

large single lineage. The silkworm bitter receptor lineage appears

to have diverged and expanded later than the carbon dioxide

subfamily, BmGr1-BmGr3, and DmGr43a orthologs BmGr9,

BmGr10 and BmGr63. We selected BmGr8 as a representative

of the putative sugar receptors for topological investigation.

BmGr8 appears to represent a novel, phytophage-specific lineage

within the sugar receptor family. The most closely related GRs,

BmGr7 (partial GR, missing the N-terminus) and ApGr6 share

respectively 25% and 18% amino acid sequence identity with

BmGr8.

BmGr8 is an inositol receptor
In order to confirm that BmGr8 is a functional receptor we

expressed BmGr8 in Sf9 cells and used quantitative imaging of

calcium sensitive dye to characterize its ligand specificity. Three

monosaccharides: glucose, fructose and galactose, three disac-

charides: sucrose, maltose and trehalose, four inositol isomers

and methyl-a-D-glucopyranoside, all at 50 mM, were used to

characterize the ligand specificity of BmGr8. Of the eleven

compounds tested, only 50 mM myo-inositol (p = 0.003) generat-

ed a response that deviated significantly from the control

(Figure 2A, Table 1). A two-tailed Student’s t-test indicated that

the responses of BmGr8 to myo-inositol is higher than but not

significantly different from (p = 0.072) the epi-inositol response

and significantly higher than those of the other ten tastants

(p,0.01) (Table 1). The response to myo-inositol had a threshold

above 2 mM while the response to epi-inositol was only observed

at or above 50 mM (Figure 2B). A lower limit for myo-inositol in

fresh mulberry leaves of 1.6 mM was calculated from previous

studies [52,53]. The threshold of inositol responsiveness is

Figure 2. In vitro responsiveness of BmGr8 to sugars and other tastants. Sf9 cells were transfected with BmGr8 in the PIB/V5-His vector. Cells
were loaded with Fluo4 and the change in fluorescence (DF) was measured in response to tastants. DF was calculated as the ratio of change in
fluorescence upon the addition of ligand relative to change in fluorescence following the addition of ionomycin. (A) Responses of BmGr8 to eleven
tastants at 50 mM. The mean responses of cells transfected with empty expression vector are indicated by the grey bar and grey error bars, mean
responses of Gr8 transfected cells are indicated by the black bars and black error bars. (B) Log concentration-response curves for BmGr8 responses to
myo-inositol and epi-inositol. The average responses of cells transfected with empty expression vector have been subtracted. (C) Function of MYC-
epitope tagged receptor responses to 50 mM myo-inositol. Control = empty vector, Gr8 = BmGr8 transfected, MYC:Gr8 = transfected with BmGr8
N-terminally fused to two MYC-epitope copies, Gr8:MYC = transfected with BmGr8 C-terminally fused to two MYC-epitope copies. (D) MYC-epitope
tagging as for (C). Calcium imaging assay saline contains 170 mM D-glucose. See Table 2 for analysis of the statistical significance by two tailed
Student’s t test. Error bars in (A), (C) and (D) indicate the calculated error of the difference between means = SE (x

{

Gr8{x
{

control ), (B) indicate the
standard error of the mean. *** p# 0.001, **p,0.01, *p,0.05.
doi:10.1371/journal.pone.0024111.g002
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therefore very close to the levels known to occur naturally in the

silkworm’s host plant.

Topology of insect gustatory receptors
To investigate the membrane topology of lepidopteran and

insect GRs generally, we first applied the algorithms TMPred,

TMHMM and HMMTOP for predicting transmembrane do-

mains (TMDs) to the known Bombyx mori GR sequences. For

individual sequences, there was limited consensus among algo-

rithms on the number and positions of TMDs. However, the most

frequent prediction by each of the algorithms, across all GRs, is

seven TMDs with an intracellular N-terminus (Figure 3, Table

S1). For BmGr8, all three algorithms predicted an extracellular N-

terminus, consistent with the typical topology of a GPCR, and up

to nine TMDs with a consensus set of six, albeit with the first

predicted TMD not well supported statistically. In order that our

results have general validity for GR topology we selected a second

gustatory receptor, BmGr53, encoded by only one exon in the

genome [30], from the putative bitter receptor subfamily (Figure 1).

BmGr53 was predicted by all three algorithms to have an

intracellular N-terminus and seven TMDs (Table S1, Figure 5B).

Prior to performing immunocytochemical topological studies, we

expressed MYC-tagged BmGr8 in Sf9 cells in order to determine

whether this modified GR retained functionality. Using the same

Figure 3. Summary histogram of the topological analysis of
BmGrs. Transmembrane domain prediction of BmGrs using three
algorithms, TMPred, HMMTOP and TMHMM. Histogram shows the
number of genes predicted to have 3 to 9 transmembrane domains by
each of the programs. Numbers in the graph show the percentage of
predicted seven transmembrane proteins, which are predicted to have
an intracellular N-terminus.
doi:10.1371/journal.pone.0024111.g003

Table 2. Evaluation of the response differences between
BmGr8 VS MYC tagged BmGr8 responding to 25 mM myo-
inositol in low glucose (10 mM) assay saline, (A) and (B) and
high glucose (170 mM) assay saline (C) and (D), using arcsine
transformation and two-tailed Student’s t-test.

BmGr8 MYC:Gr8 Gr8:MYC

In modified HBSS

(A) VS internal control

t 3.87 2.29 0.05

df 152 102 91

p ,0.001 0.024 0.961

(B) VS BmGr8

t 0.80 3.51

df 140 129

p 0.423 ,0.001

In 170 mM glucose assay saline

(C) VS internal control

t 2.63 2.54 1.86

df 74 69 59

p 0.010 0.013 0.068

(D) VS BmGr8

t 0.17 0.23

df 91 81

p 0.865 0.815

(A) and (C) Statistical significance of the differences between the responses
against control. (B) and (D) Statistical significance of the differences between
the responses of native BmGr8 and others.
doi:10.1371/journal.pone.0024111.t002

Table 1. Statistical significance of differences in responses of BmGr8 to myo-inositol and each of ten other tastants at 50 mM
using arcsine transformation and two-tailed Student’s t-test.

A
myo-
inositol

epi-
inositol

allo-
inositol

syllo-
inositol fructose glucose galactose trehalose maltose sucrose

methyl-a-D-
glucopyranoside

VS internal control

t 3.06 0.45 0.30 0.09 0.52 0.01 0.12 0.17 0.30 0.15 0.17

df 62 54 77 68 76 69 84 65 61 74 56

p 0.003 0.768 0.766 0.925 0.607 0.989 0.903 0.866 0.768 0.877 0.864

B

VS myo-inositol

t 1.83 3.00 2.03 3.61 3.06 2.77 2.96 3.14 4.16 3.52

df 66 78 72 90 67 70 63 78 104 71

p 0.072 0.003 0.046 ,0.001 0.003 0.007 0.004 0.002 ,0.001 ,0.001

(A) Statistical significance of the differences between each response and internal control (Sf9 cells transfected with empty expression vector). (B) Statistical significances
of the difference between the response to myo-inositol and each of the other tastants.
doi:10.1371/journal.pone.0024111.t001
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calcium-sensitive dye based protocol as previously, we found that

cells transfected with native BmGr8 and N-terminally MYC-tagged

BmGr8 (MYC:Gr8) showed statistically significant responses when

compared to empty vector controls to 25 mM myo-inositol (Table 2

and Figure 2C). There was no statistically significant difference in

responses between C-terminally tagged (Gr8:MYC) and the negative

control. In experiments where the assay saline buffer contained

170 mM D-glucose, as previously used in other studies [13,48],

Gr8:MYC results were inconclusive as they showed a borderline but

non-significant difference from the negative control and also a non

significant difference from the Gr8 responses to 50 mM inositol

(Figure 2D, Table 2), suggesting the C-terminally tagged receptor is

not completely inactive. However we cannot rule out the possibility

that the C-term MYC tag renders the protein non functional due to

the incorrect insertion of the receptor into the membrane. Similar

experiments were not performed with Gr53 because the appropriate

ligand(s) is not known for this GR.

For topological studies, we expressed N- and C-terminally

MYC-tagged fusions with BmGr8 and corresponding tagged

fusions with BmGr53 in S2 cells since the strong auto-

fluorescence observed in Sf9 cells [13] tends to confound

immunocytochemical experiments. Untagged receptors were

used as a control (Figure 4). Strong green immunofluorescence

was visualized from permeabilized cells when transfected with

either MYC:Gr8 or Gr8:MYC (Figure 4B). Similarly, strong green

immunofluorescence was observed with permeabilised S2 cells

expressing either MYC:Gr53 or Gr53:MYC (Figure 4C). In

contrast, when cells were not permeabilised, fluorescence was

only seen in cells transfected with C terminally tagged GRs,

Gr8:MYC or Gr53:MYC, and not from the N-terminally tagged

constructs (Figure 4B and 4C), indicating that the N-termini of

both proteins are located intracellularly and the C-termini of both

proteins are extracellular.

Given the novelty of the finding that the N-termini of BmGrs

is intracellular, we used a b-galactosidase fusion technique [10]

to confirm this result and to determine the authenticity of the

putative transmembrane domains experimentally (Figure 5).

We cloned a series of fragments of both receptors which were

then fused at their 39 ends, through a sequence encoding a 26

amino-acid linker to the LacZ gene, whose gene product b-

galactosidase is only functional when expressed intracellularly

[49,50]. In addition, fusions were prepared that included a

synthetic transmembrane domain. All constructs were trans-

fected into Sf9 (lepidopteran) and S2 (dipteran) cells, which

were stained for b-galactosidase activity. The percentage of

cells expressing active b-galactosidase was scored relative to

positive and negative controls derived from fusions with the N-

terminus of Drosophila rhodopsin RH1, a typical GPCR with a

well-known topology (Figure 5A). In Sf9 cells, b-galactosidase

was scored as active if more than 8% of the cells stained blue, as

this was the lowest percentage observed for the positive control

RH1 constructs (Table 3). In the case of BmGr53 (Figure 5B),

the results observed were consistent with its having an

intracellular N-terminus and confirmed the consensus first

predicted TMD. An additional set of constructs was required

for BmGr8 because of the ambiguity over which is the first

TMD. The results (Figure 5C) were clearly consistent with

BmGr8 also having its N-terminus in the cytoplasm. In this

case, authenticity of the putative first predicted TMD was not

supported by the results whereas the putative second TMD was

shown to be the actual first TMD. Essentially identical results

were observed in Drosophila S2 cells (Table 3) although the

efficiency of expression was reduced with the lowest percentage

of blue cells observed for a positive control being 4.7%. These

results confirm the immunocytochemical results (Figure 4)

indicating that both BmGr8 and BmGr53 have intracellular N-

Figure 4. Immunochemical demonstration that the N-termini of BmGr8 and BmGr53 are cytoplasmic and the C-termini are
extracellular. BmGr8 was expressed in native form or fused with two MYC-epitopes at its N or C-termini. Cells were processed with mouse anti-MYC
and Alexa-labelled anti-mouse antibodies to reveal the accessibility of the MYC antigen under permeabilised or unpermeabilised conditions. (A)
Schematic of expression constructs for untagged GRs (controls), N-terminally MYC-tagged GRs (MYC:Grs) and C-terminally MYC-tagged GRs
(Grs:MYC). (B) (C) Immunostaining of BmGr8 and BmGr53 in S2 cells under permeabilized and unpermeabilized conditions. Green indicates MYC-
directed Alexa immunofluorescence. Blue indicates DAPI nuclear counter stain. Scale Bar = 5 mm.
doi:10.1371/journal.pone.0024111.g004
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termini. Taken with the observation, based on our immuno-

cytochemical experiments, that both GRs have an odd number

of TMDs the results of the lac-Z fusions are consistent with

both BmGr53 and BmGr8 having seven transmembrane

domains, although they do not constitute unequivocal proof

of this prediction.

Figure 5. Use of b-galactosidase fusions to distinguish among possible GR topologies. Sequences encoding a series of N-terminal
fragments of Rhodopsin RH1, BmGr53 and BmGr8 were fused at their 39 ends through a linker to the gene encoding b-galactosidase and
expressed in Sf9 cells. Cells were fixed and the percentage of cells staining for b-galactosidase activity was scored, percentages 6 standard
deviation are indicated below construct numbers and in Table 3. In each case, selection of the N-terminal fragments used was based on
known or putative locations of transmembrane domains (TMDs). (A) The topology of RH1 is well-established and correctly predicted by all
three prediction algorithms, TMPred, TMHMM and HMMTOP (only TMHMM prediction is shown). RH1 was therefore used as a control. In this
case, . 8% of cells transfected with fusions containing the N-terminus, N-terminus with a synthetic TMD, N-terminus with 1st predicted TMD
or the N-terminus with 1st predicted TMD and an artificial TMD stained with X-gal. 5.1% of cells that were transfected with a fusion
containing the N-terminus, the 1st predicted TMD and a synthetic TMD, which was taken as the threshold for inactive b-galactosidase. (B) The
same procedure was used for BmGr53. Two possible results are shown, the expected staining pattern if N-terminal topology is the same as
RH1, and the other where the topology is inverted. The latter staining pattern (outlined in green) was observed experimentally. (C) As for B,
but with BmGr8. In this case, there is ambiguity over whether the first (TM1A) or second (TM1B) predicted TMD is the correct one. Therefore
an additional set of constructs was made to cover both possibilities. Four possible experimental results are shown, encompassing expected
staining patterns with intracellular or extracellular N-termini and the two possible first TMDs. Experimental results (outlined in green)
conformed to a model with intracellular N-terminus and second predicted TMD which is the same pattern as for BmGr53. Purple rectangle,
synthetic transmembrane domain; hollow blue ellipse, inactive b-galactosidase; solid blue ellipse, active b-galactosidase; N, N-terminus; red
rectangle, the predicted first transmembrane domain with good support (i.e. TM1B for BmGr8); light green rectangle, the predicted first
transmembrane (TM1A) of BmGr8 with poorer support. Cut off for scoring positive b-galactosidase was $8%, i.e. the lowest percentage
observed for the positive control in A. The experiment was repeated in S2 cells with essentially identical results. Numbers identify the
constructs for which quantitative data for both Sf9 and S2 cells are shown in Table 3.
doi:10.1371/journal.pone.0024111.g005
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Discussion

Insect chemoreceptors were initially identified by their predicted

structural similarity to the seven transmembrane chemosensory

GPCRs of vertebrates [54,55]. Mammalian olfactory receptors have

a typical GPCR topology with an extracellular N-terminus and

intracellular C-terminus [56,57,58,59,60,61,62]. More recent

computational analysis predicted that the membrane topology of

insect odorant receptors is different from that of members of the

GPCR superfamily [39] and they have been shown to have an

inverted topology, relative to GPCRs, with their N-termini

intracellular [10,11,13,63]. Insect ORs are thought to function as

odour-gated ion channels [12,14] although there is likely to be a

modulatory role for G-proteins and second messengers downstream

of the ORs [64,65]. Here we have shown that two lepidopteran

GRs, BmGr8 and BmGr53, share the same inverted topology as

insect ORs, indicating that insect GRs are not classical GPCRs and

may function in a similar way to insect ORs. G-proteins have been

shown to play a role in the perception of some sweet tastants [16]

and for CO2 reception in Drosophila [19], however they were not

absolutely required for electrophysiological and behavioral respons-

es. These observations together with the topological data from this

study support the hypothesis that the dual activation model [65]

proposed for insect ORs may also extend to the GR family.

This study is also the first report linking specific ligands to

gustatory receptor function in a member of the Lepidoptera or

indeed in any non-dipteran insect. We demonstrate that the

gustatory receptor, BmGr8, responds to myo-inositol and, to a

lesser extent, epi-inositol in vitro. Direct quantitative comparison of

the magnitude of the response in this system with olfactory

receptors is confounded by the variable level of expression of each

receptor and wide variation in efficacies of different receptor-

ligand pairs. However the DF we measured for BmGR8 is within

the range previously reported for ORs (0.1–0.4) [13,48].

Interestingly, these responses only required the expression of

BmGr8. Drosophila sugar receptors, such as Gr5a, are thought to act

as multimers in vivo as they require the broadly expressed Gr64f co-

receptor for proper detection of sugars [23]. Nevertheless,

expression of only Gr5a in cultured S2 cells was sufficient to

mediate responses to trehalose [20], suggesting either that

homomeric receptors retain function or that these insect cell lines

express an endogenous co-receptor, as seen with the olfactory co-

receptor, Orco (recently renamed from DmOr83b) [66], which is

expressed endogenously in Sf9 cells [13]. B. mori do not have an

orthologue of the Drosophila Gr64f co-receptor, however we cannot

rule out that a different co-receptor is expressed in Sf9 cells, or that

other receptors which may be co-expressed in vivo could alter the

specificity of BmGr8.

BmGr8 is predicted to fall within the sugar-responsive clade of

GRs but it did not respond to a number of conventional

reducing sugars. Inositol (cyclohexane-1,2,3,4,5,6-hexol) is some-

what similar to sugar alcohols but generates little or no sweetness

perception in humans. Myo-inositol is found ubiquitously in

plants [67] and plays an important role in animal metabolism,

including as a precursor for synthesis of inositol lipids and thence

the second messenger inositol triphosphate [68,69,70,71,72,73].

Myo-inositol cannot be synthesized by all insects and is an

essential nutrient in some lepidopteran species, including B. mori

[3,74,75]. Myo-inositol has long been known to stimulate

different aspects of feeding in Lepidoptera such as prolonged

feeding in B.mori larvae [76,77,78,79], initiation of feeding in

Manduca sexta [3,80,81] and induction of the proboscis extension

reflex in Helicoverpa armigera [82]. In B. mori, one neuron in the

lateral styloconic sensillum of the maxillary galea responds to

myo-inositol and epi-inositol whereas another neuron in the same

sensillum responds to allo-inositol [72]. In our study, which may

not accurately reflect in vivo sensitivity, BmGr8 responded to over

2 mM myo-inositol and 50 mM epi-inositol. These indicate

BmGr8 would be a candidate to be one of the receptors

expressed in the lateral styloconic sensilla. The orthologs,

BmGr7 and ApGr6, in the same lineage would be obvious

candidates as inositol receptors, possibly in the case of BmGr7

for other isomers of inositol.
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