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Abstract

Background: Community detection algorithms are fundamental tools to uncover important features in networks.

There are several studies focused on social networks but only a few deal with biological networks. Directly or

indirectly, most of the methods maximize modularity, a measure of the density of links within communities as

compared to links between communities.

Results: Here we analyze six different community detection algorithms, namely, Combo, Conclude, Fast Greedy,

Leading Eigen, Louvain and Spinglass, on two important biological networks to find their communities and

evaluate the results in terms of topological and functional features through Kyoto Encyclopedia of Genes and

Genomes pathway and Gene Ontology term enrichment analysis. At a high level, the main assessment criteria are 1)

appropriate community size (neither too small nor too large), 2) representation within the community of only one or

two broad biological functions, 3) most genes from the network belonging to a pathway should also belong to only

one or two communities, and 4) performance speed. The first network in this study is a network of Protein-Protein

Interactions (PPI) in Saccharomyces cerevisiae (Yeast) with 6532 nodes and 229,696 edges and the second is a network

of PPI in Homo sapiens (Human) with 20,644 nodes and 241,008 edges. All six methods perform well, i.e., find

reasonably sized and biologically interpretable communities, for the Yeast PPI network but the Conclude method does

not find reasonably sized communities for the Human PPI network. Louvain method maximizes modularity by using an

agglomerative approach, and is the fastest method for community detection. For the Yeast PPI network, the results of

Spinglass method are most similar to the results of Louvain method with regard to the size of communities and core

pathways they identify, whereas for the Human PPI network, Combo and Spinglass methods yield the most similar

results, with Louvain being the next closest.

Conclusions: For Yeast and Human PPI networks, Louvain method is likely the best method to find communities in

terms of detecting known core pathways in a reasonable time.
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Background

The use of networks to study complex interacting sys-

tems has been applied to many domains during the last

two decades, including sociology, physics, computer

science and biology. An important task in the analysis of

networks lies in the identification of communities or

modules whose membership share one or more com-

mon features of the system. The problem that commu-

nity detection attempts to solve is the identification of

groups of nodes with more and/or better interactions

amongst its members than between its members and

the remainder of the network [1, 2]. For example, in

social networks, a community may correspond to

groups of friends who attend the same school or live in

the same neighborhood; while in a biological network,

communities may represent functional modules of

interacting proteins.
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Edges in a biological network may represent various

types of direct interactions and indirect effects. Examples

of direct interactions include protein-protein interactions

as part of signaling pathways or as part of protein com-

plexes and substrate-enzyme interactions. Indirect effects

may include transport processes and regulatory effects,

which, in most cases, can be substituted with a subnet-

work of several direct interactions when modeled at a

finer granularity. Examples of the latter are cholesterol

and ion transport across the plasma membrane and

protein-DNA interactions in gene-regulatory networks.

Thus, in the context of a cell or tissue, subnetworks or

communities may correspond to various cellular pro-

cesses, pathways and functions, in which its components

(nodes) exhibit a higher-degree of interaction as compared

to those from outside the pathway.

Majority of the methods for community detection in

networks are based on maximization of modularity.

While the modularity metric Q, of a network, is de-

fined in the Methods section, intuitively, given a net-

work, if it can be partitioned in such a way that only a

few connections exist between the nodes of different

partitions and most connections are among the nodes

within the partitions, then the modularity will be high.

It is interesting to note that the modularity of a sparse

network of fully connected subnetworks is higher than

that of a fully connected network, which is zero. Any

partition of a fully connected network results in Q < 0.

Brandes et al. have carried out extensive theoretical

analysis of properties of modularity and complexity of

its maximization [3].

One of the most important objectives of any large-

scale omics study is to identify mechanisms for spe-

cific functions and phenotypes in a chosen context.

Biological networks derived from genome-scale ex-

perimental data and/or legacy knowledge are generally

large and complex with thousands of nodes and many

thousands of connections. Associating meaningful bio-

logical functions and interpretations to such networks

is impossible. However, these large networks can be

broken down into smaller (sub) networks (also called

as modules or communities) which are more amenable to

biological interpretation. Such communities are ex-

pected to represent one or a few biological functions

and they may facilitate discovery of mechanisms re-

lating the causes or perturbations to the observed

phenotypes. Thus, community detection can provide

valuable biological insights.

Several methods have been developed to find com-

munities in networks using tools and techniques from

different disciplines such as applied mathematics or

statistical physics [4]. All these methods try to identify

meaningful communities, while keeping the compu-

tational complexity of the underlying algorithm low [5].

Although these methods have proven to be successful in

some cases, there is no guarantee that the resulting

communities provide the best functional description of

the system. Hence, selecting a suitable method to detect

communities in a network is challenging. While there

have been some studies comparing different methods

for community detection [5], their focus has been on

Lancichinetti, Fortunato, Radicchi (LFR) benchmark

networks (artificial networks that have heterogeneity in

the distributions of degree of nodes and the size of com-

munities) [6]; comparisons with respect to biological

networks are lacking.

Classical community detection algorithms initially

divide networks into communities according to some

network features such as edge betweenness. One of the

most popular and prominent algorithms that uses edge

betweenness is the Girvan-Newman algorithm [1, 7]. In

this method edges are progressively removed from the

original network till the modularity reaches its max-

imum value, making it an optimization problem. The

connected nodes of the remaining network are the

communities. The Girvan-Newman algorithm has been

successfully applied to a variety of networks, including

networks of email messages. However, its compu-

tational complexity, O(m2n) for a network with n nodes

and m edges, practically restricts its use to networks of at

most a few thousand nodes. There are other optimization-

based algorithms with different objective functions that

provide different approaches to solve the community

detection problem. For example, Leading Eigen [8]

algorithm also tries to maximize modularity but the

modularity is expressed in the form of the eigenvalues

and eigenvectors of a matrix called the modularity

matrix. Spinglass method minimizes the Hamiltonian of

the network [9].

Since the early 2000s, several methods have been

developed that divide networks into communities based

on the modularity [10–15]. The modularity criterion was

revisited in 2005 when Duch and Arenas proposed a

divisive algorithm [16] that optimizes the modularity using

a heuristic search based on the Extremal Optimization

(EO) algorithm proposed by Boettcher and Percus

[17, 18]. Pizzuti has suggested an algorithm named

GA-net that uses a special assessment function described

as the community score in addition to the modularity

function [19]. There are also other approaches to the com-

munity detection problem in which the use of multiple

objectives (or assessment criteria) is preferred over the use

of a single objective for complex networks. Since the

objectives are usually directly related to the network prop-

erties, one advantage of using multi-objective optimization

is that it balances among the multiple (important) proper-

ties of the network. The benefits of using multi-objective

approach have been explained by Shi et al. [20].
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In this manuscript, we briefly review eight algorithms

for finding communities in biological networks such as

Protein-Protein Interaction (PPI) networks (discussed in

the Methods section). In such networks, each node re-

presents a protein (or gene) and each edge represents an

interaction between two proteins. In particular, we will

apply six algorithms to the Yeast PPI network with 6532

nodes and 229,696 edges and the Human PPI network

with 20,644 nodes and 241,008 edges. Using several

topological metrics, we assess which methods provide

similar (or dissimilar) results. We evaluate the biological

interpretation of the communities identified and com-

pare the results in terms of their functional features. At

a high level, the main criteria for assessment of the

methods are 1) appropriate community size (neither too

small nor too large), 2) representation within the com-

munity of only one or two broad biological functions, 3)

most genes from the network belonging to a pathway

should also belong to only one or two communities, and 4)

performance speed.

This paper is organized as follows: in the next section

we will present the results of applying six methods on

the Yeast and Human PPI networks and compare the

communities based on their topological and functional

features. In the last part of this section, we will describe

an orthology analysis between the communities de-

tected for the Yeast PPI network and the communities

detected for the Human PPI network. In the following

section, we will present discussion on the results pro-

viding insights into the algorithmic similarities and ro-

bustness of some of the methods. In the section after

that, we will provide the conclusion of our paper. In

the Methods section, we will describe eight different

methods for finding communities in networks. We will

also introduce three metrics to compare the communi-

ties identified by the algorithms.

Results

Six community detection methods, namely, Combo,

Conclude, Fast Greedy, Leading Eigen, Louvain and

Spinglass, have been applied to the Yeast PPI network

with 6532 nodes and 229,696 edges and the Human

PPI network with 20,644 nodes and 241,008 edges. A

detailed description of the methods is included in the

Methods section. We used the BioGRID database [21, 22]

for the PPI networks for Yeast and Human. Since our

focus in this paper is on undirected and unweighted

networks, we removed repeated edges and self-loops

from our data set.

In the first part of this section, we will present the re-

sults for the Yeast PPI network. In the second part, the

results for the Human PPI network will be presented. In

the third part, an orthology comparison will be provided

between the Yeast and Human PPI networks.

Yeast PPI network

Among the methods tested to find communities of the

Yeast PPI network, Combo, Conclude, Fast Greedy,

Leading Eigen, Louvain and Spinglass give good parti-

tioning results, i.e., the size of communities detected are

not too small or too large compared to the size of the

original network. Since the Yeast PPI network has 6532

nodes, Girvan-Newman algorithm is not an appropriate

method to detect communities. It takes 44 min (on a PC

with 4 GB RAM with 4 2.4 GHz processors) for Rattus

PPI network which has 3379 nodes and 4580 edges. Its

computational complexity is proportional to m2n (where

n is the number of nodes and m is the number of edges),

so, it will take ~ 148 days to find communities in the

Yeast PPI network (using the computational resource

mentioned above). Infomap, is also not a good method

based on the size of communities it detects; the largest

community has 6195 nodes and the smallest one has just

2 nodes. Since very small communities (e.g., those with

less than 100 nodes) are not expected to yield significant

biological insights, we will not consider them in our

analysis. We note that there may be some exceptions.

In the next subsection, first we will compare the

methods from a topological perspective of the commu-

nities identified. Then we will provide a functional com-

parison. To begin with, the results for all these methods

are described in Table 1 in terms of the size of the

communities detected for the Yeast PPI network.

Comparison based on topological features of

communities

The following table (Table 1) represents the results for

applying six methods on the Yeast PPI network.

Using three different metrics, namely, Rand Index (RI),

Adjusted Rand Index (ARI), and Normalized Mutual In-

formation (NMI) (described in the Methods section), we

are able to compare different pair of methods. Table 2

represents the results of comparing six methods

(Combo, Conclude, Fast Greedy, Leading Eigen, Louvain

and Spinglass) with respect to three topological metrics

(RI, ARI and NMI).

Based on the results of Table 2, Louvain and Spin-

glass are most similar to each other amongst all pairs

of comparisons. To maintain consistency in finding

dissimilar methods, we selected a method which is

dissimilar to Louvain, e.g., Conclude or Leading Eigen.

Since Conclude finds 66 communities with sizes

(number of nodes) ranging from 3 to 788, we compare

Louvain with Leading Eigen here. We present the

results from comparing Louvain and Conclude in the

Additional file 1.

Table 3 provides Jaccard index (as a percentage)

between communities identified by Louvain and Spinglass.

We used Intersect function in R to find common genes
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between two communities and then divided the number

of common genes by the total number of unique genes

between the two communities (union function in R) to get

the Jaccard index. Table 4 uses the same approach to find

Jaccard index for communities detected by dissimilar

methods, in particular, Louvain and Leading Eigen.

The rest of Jaccard index matrices amongst all pairs

of communities for all methods can be found in the

Additional file 1: Table S1.

Comparison based on biological/functional features of

communities

As described in the previous subsection, Louvain and

Spinglass are most similar to each other and Louvain

Table 1 Number of nodes and edges for communities detected using different methods for the Yeast PPI network (6532 nodes and

229,696 edges). The number in parenthesis after the name of each method represents the number of communities detected by that

method. For example, Combo finds 8 communities. Modularity scores are also provided for different methods. For each method, we

only consider the communities with 100 or more nodes and list up to 10 communities

Combo (8) Q = 0.2654 # of nodes 2231 1514 1337 1284

# of edges 25,137 23,690 38,523 30,585

Conclude (66) Q = 0.2468 # of nodes 788 744 602 468 423 359 288 271 252 199

# of edges 14,585 10,506 3272 988 5826 4123 1404 3486 940 1703

F. Greedy (10) Q = 0.2112 # of nodes 2608 2410 1466

# of edges 61,665 72,998 7180

L. Eigen (4) Q = 0.1686 # of nodes 2661 1910 984 977

# of edges 75,812 28,664 7373 7203

Louvain (9) Q = 0.2643 # of nodes 1538 1472 1190 1151 993 131

# of edges 16,015 23,394 13,247 31,202 22,553 676

Spinglass (9) Q = 0.2681 # of nodes 1607 1473 1194 1148 1076

# of edges 16,616 23,876 12,282 32,641 23,854

Table 2 Comparison of different methods with respect to three topological metrics, namely, Rand Index (RI), Adjusted Rand Index

(ARI) and Normalized Mutual Information (NMI) for the Yeast PPI network. When a method is compared with itself, RI, ARI and NMI

are 1 (diagonal elements). Larger (smaller) the value of RI, ARI and NMI, the more (less) similar are the two methods being

compared. For example, Louvain and Spinglass are most similar to each other

Combo Conclude F. Greedy L. Eigen Louvain Spinglass

RI Combo 1 0.7608 0.7157 0.6788 0.8319 0.8409

ARI Combo 1 0.1466 0.3125 0.1942 0.5163 0.5479

NMI Combo 1 0.2905 0.4024 0.2447 0.5413 0.5723

RI Conclude 1 0.6815 0.7061 0.8083 0.8012

ARI Conclude 1 0.0818 0.0825 0.1659 0.1637

NMI Conclude 1 0.1956 0.1472 0.3016 0.2924

RI F. Greedy 1 0.6334 0.7098 0.7129

ARI F. Greedy 1 0.146 0.2629 0.2764

NMI F. Greedy 1 0.1918 0.3545 0.3652

RI L. Eigen 1 0.6952 0.6936

ARI L. Eigen 1 0.188 0.1914

NMI L. Eigen 1 0.2231 0.2285

RI Louvain 1 0.9021

ARI Louvain 1 0.6922

NMI Louvain 1 0.6644

RI Spinglass 1

ARI Spinglass 1

NMI Spinglass 1
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and Leading Eigen are most dissimilar. In order to know

which communities of similar and dissimilar methods

have to be compared to each other, we analyzed Tables 3

and 4 (Jaccard index) for all pairs of communities

between similar and dissimilar methods. After selecting

pairs of communities with highest value of Jaccard index

for each column, we used Database for Annotation,

Visualization and Integrated Discovery (DAVID) version

6.8 [23, 24] to perform Kyoto Encyclopedia of Genes

and Genomes (KEGG) [25] pathway and Gene Ontology

(GO) term (GOTERM_BP_3) enrichment analysis for

each community. In the following Tables (Table 5

through Table 7), we have considered pathways with

more than 10 genes and with p-values less than or equal

to 0.01. The number in parenthesis (e.g., after L1 or S1)

is the number of genes that DAVID could annotate for

that specific community for the Yeast PPI network. For

example, the first community of Louvain (L1) has 1538

genes (Table 1) and of those, DAVID is able to annotate

1481 genes. In Tables 5, 6, 7, the first column lists the

broad category of pathways (M: Metabolism, CP: Cellu-

lar Processes, GIP: Genetic Information Processing, HD:

Human Diseases, and OS: Organismal Systems). The

second column lists the different pathways enriched.

Columns 3 and 7 (Count) represent number of genes

enriched in the pathways, columns 4 and 8 (p-value)

represent p-values for those pathways in the communi-

ties compared, and columns 5 and 9 (FE) represent Fold

Enrichment for the pathways. FE is defined as (s/b)/(k/

N) where b is the total number of genes in a chosen

pathway; s, the number of genes from the community in

this pathway; N, the total number of genes for the spe-

cies; and k, the number of genes in the community; all

the four numbers are based on intersection/overlap with

the respective DAVID database (e.g., KEGG). Essentially,

FE represents the relative increase or decrease of the

fraction of genes from the set of interest belonging to a

pathway as compared to the genes from a background

set (generally covering the whole-genome) belonging to

the same pathway. The values in columns 5 and 9 are

shaded light to dark with increasing FE. Column 6 (com-

mon) is the number of genes common to both commu-

nities for the different pathways.

Comparing similar methods

As the first column of Table 3 shows, the first community

of Louvain (L1) and the first community of Spinglass (S1)

have the maximum overlap and the results of comparing

KEGG pathway enrichment analysis between L1 and S1

are presented in Table 5. Additional file 1: Table S2 shows

the results of comparing GO term enrichment analysis

between these two communities. L2 and S2 are 71% simi-

lar to each other based on Table 3 and they are compared

in Table 6 for KEGG pathway enrichment analysis and in

Additional file 1: Table S3 for GO term enrichment

analysis. The rest of the comparison Tables (KEGG

pathway enrichments analysis for L3 vs. S3, L4 vs. S4, and

L5 vs. S5) are in the Additional file 1: Tables S4-S6. Since

DAVID did not find any pathways for small communities,

such as L6 which has 131 nodes, those communities are

not considered in the comparison Tables.

Based on Table 3, L1 and S1 are 76% similar to each

other in terms of Jaccard index. In Table 5, KEGG path-

way enrichment results of these two communities reveal

that majority of these genes are related to various meta-

bolic pathways such as carbohydrate metabolism, energy

metabolism, amino acid metabolism and metabolism of

cofactors and vitamins. The top four pathways represent

broad metabolism pathways. There are 13 pathways ca-

tegorized as amino acid metabolism such as cysteine and

methionine metabolism, or glycine, serine and threonine

metabolism. Among pathways that are categorized as

energy metabolism, oxidative phosphorylation is the one

with the lowest p-value.

Table 3 Jaccard index (as a percentage) between the

communities identified by two similar methods, namely,

Louvain and Spinglass, for the Yeast PPI network. L1 to L5 refer

to the communities detected by Louvain method and sorted by

their size. Similarly, S1 to S5 refer to the communities detected

by Spinglass method. The numbers in parenthesis represent the

number of genes in each community. Community pairs with

maximum overlap (e.g., L1 vs. S1) are indicated in bold text

Table 4 Jaccard index (as a percentage) between the

communities identified by two dissimilar methods, namely,

Louvain and Leading Eigen for the Yeast PPI network. (L1 to L5:

communities detected by Louvain; LE1 to LE4: communities

detected by Leading Eigen). The numbers in parenthesis

represent the number of genes in each community. Community

pairs with maximum overlap (e.g., L1 vs. LE4) are indicated in

bold text
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In terms of enzyme commission annotation, there are

1738 enzyme-coding genes in the entire network. L1 and

S1 have 571 and 605 enzyme-coding genes, respectively.

Of these, 529 enzyme-coding genes are common be-

tween the two communities, which shows a significant

overlap. There are a few enzyme-coding genes which are

present in L1 but not in S1 such as aminoacyl-tRNA

hydrolase (PTH1) or glutamate 5-kinase (PRO1). Simi-

larly, for genes that are present in S1 but not in L1, sul-

furic ester hydrolase (BDS1) is an example. Since both

Table 5 A Comparison of KEGG pathway enrichment results between the first community of Louvain (L1) with 1538 genes and the

first community of Spinglass (S1) with 1607 genes for the Yeast PPI network. The numbers inside parenthesis after L1 and S1

represent the number of genes that DAVID could annotate, which is generally less than the number of genes in those communities.

The first column lists the broad category of pathways (M: Metabolism, CP: Cellular Processes). Many pathways enriched in L1 and S1

have good overlap (a large number of genes are common). FE: Fold Enrichment. False Discovery Rate (FDR) values for all pathways

and both communities are approximately 1.10E+3 times p-value (the factor 1.10E+3 is related to the size of the community)
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Louvain and Spinglass find 9 non-overlapping communi-

ties, all enzyme-coding genes are part of one of the

communities.

Table 6 shows KEGG pathway enrichment results for

the communities L2 and S2. All pathways are related to

genetic information processing with approximately simi-

lar genes enriched in the two methods. The first pathway

with the lowest p-value is ribosome which is a complex

molecule made of ribosomal RNA molecules and pro-

teins. There are 151 genes enriched in L2 and 141 genes

enriched in S2 for this pathway. Of these, 139 genes are

common (a 92% overlap). Similar trend is observed for

other pathways as well, e.g., there is a 95% overlap

between L2 and S2 for Spliceosome and 95% overlap for

RNA transport.

The GO term enrichment results shown in Additional

file 1: Tables S2 and S3 also verify the similarity between

L1 and S1, and L2 and S2, respectively. Counting all

genes for all pathways in Additional file 1: Table S2 yields

1062 unique genes for L1 and 1103 unique genes for S1

and of these, 957 genes are common between the two

communities, which is an 87% overlap. This similarity value

is 84% between L2 and S2 (Additional file 1: Table S3).

Additional file 1: Table S4 provides a comparison

between the communities L3 and S3. The pathways

enriched can be classified into four different groups

(metabolic processes, environmental information pro-

cessing, cellular processes and human diseases) as op-

posed to just one or two. Still, the overlap between L3

and S3 communities for each of the pathways is more

than 80%.

L4 and S4 are 81% similar to each other based on

Table 3 and the results of their comparison are shown in

Additional file 1: Table S5. Most pathways for these two

communities are related to genetic information processing

category. There are two pathways related to cellular pro-

cesses and two pathways related to metabolic processes.

Based on KEGG pathway enrichment results, there is a

good overlap between genes enriched in different path-

ways for these two communities. For example, 71 genes of

L4 are enriched in cell cycle pathway and 77 genes of S4

are also enriched in this pathway. Among genes enriched

in cell cycle pathway, 70 genes are common between L4

and S4, giving a 91% overlap.

Additional file 1: Table S6 compares L5 and S5. Based

on Table 3, they are 86% similar to each other. KEGG

pathway enrichment results of these two communities

show that most pathways are related to metabolic pro-

cesses and there are also other pathways related to

other categories such as endocytosis, which is in the

cellular processes category. The results of KEGG path-

way also verify the similarity of Table 3. As seen from the

enriched pathways, almost all of them have the same

genes enriched in both communities. For example, there

are 29 genes for L5 enriched in N-Glycan biosynthesis

and the same genes are found in S5 in the same pathway.

Comparing dissimilar methods

In this subsection we will compare the methods that

are most dissimilar to each other, namely Louvain and

Leading Eigen. As Table 4 shows, the first community

of Louvain has the maximum overlap with the fourth

community of Leading Eigen (LE4). The results of this

comparison based on KEGG and GO term enrichment

analysis are shown in Tables 7 and Additional file 1:

Table S7, respectively. The rest of the comparisons can

be found in the Additional file 1: Table S8 for L2 vs.

LE1, Additional file 1: Table S9 for L4 vs. LE2 and

Additional file 1: Table S10 for L5 vs. LE3).

Table 6 A comparison of KEGG pathway enrichment results between the second community of Louvain (L2) with 1472 genes and

the second community of Spinglass (S2) with 1473 genes for the Yeast PPI network. The numbers inside parenthesis after L2 and S2

represent the number of genes that DAVID could annotate, which is generally less than the number of genes in those communities.

The first column lists the broad category of pathways (GIP: Genetic Information Processing). Many pathways enriched in L2 and S2

have good overlap (a large number of genes are common). FE: Fold Enrichment. False Discovery Rate (FDR) values for all pathways

and both communities are approximately 1.05E+3 times p-value
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Table 7 A comparison of KEGG pathway enrichment results between the first community of Louvain with 1538 genes and the

fourth community of Leading Eigen (LE4) with 977 genes for the Yeast PPI network. The numbers inside parenthesis after L1 and

LE4 represent the number of genes that DAVID could annotate, which is generally less than the number of genes in those

communities. The first column lists the broad category of pathways (M: Metabolism, and CP: Cellular Processes), FE: Fold Enrichment,

False Discovery Rate (FDR) values for all pathways and both communities are approximately 1.10E+3 times p-value
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The first pathway of Table 7 with the lowest p-value is

metabolic pathways with 346 genes enriched in L1 and

253 genes enriched in LE4. Of these genes, 224 genes

are common between the two communities which is a

65% overlap. In contrast, the first pathway of Table 5

shows that 337 genes are common between L1 and S1,

which is a 94% overlap. There are some pathways in

Table 7 that are blank for LE4 such as biosynthesis of

amino acids. For these pathways, although there are

some genes enriched in L1, there are no genes enriched

in LE4 or if there are any, the p-value for the pathway is

higher than the defined cut-off of 0.01. Counting all

genes for all pathways yields 406 unique genes for L1

and 273 unique genes for LE4 and of these, 239 genes

are common between the two communities which is a

59% overlap. Based on GO term enrichment analysis

shown in Additional file 1: Table S7, there are 474 genes

common between L1 and LE4 out of 1062 unique genes

for L1 and 662 unique genes for LE4, which is a 45%

overlap. These relatively low best-overlaps also confirm

that these two methods are dissimilar to each other.

Based on Table 2, Louvain and Conclude methods are

also dissimilar to each other. We compared the commu-

nities obtained from these two methods. As Additional

file 1: Table S1 shows, the first community of Louvain

(L1) has the maximum overlap with the third commu-

nity of Conclude (CL3). The results of this comparison

based on KEGG pathway enrichment analysis are shown

in Additional file 1: Table S11. The metabolic pathways

is the most enriched pathway with 346 genes enriched in

L1, 230 genes enriched in CL3, and 173 genes common

between the two communities, which is a 50% overlap.

Counting all unique genes for all pathways yields 406

genes for L1 and 241 genes for CL3 and of these, 181

genes are common between the two communities

(which is a 45% overlap). This similarity value is close to

what we calculated for Louvain vs. Leading Eigen, using

KEGG pathway and GO term enrichment analysis

(Table 7 and Additional file 1: Table S7). The rest of the

comparisons can be found in Additional file 1: Table S12

for L2 vs. CL2, Additional file 1: Table S13 for L4 vs.

CL1, and Additional file 1: Table S14 for L5 vs. CL5.

Overall, dissimilarity at the topological level translates

into dissimilarity at the functional level as well.

Human PPI network

Six methods, namely, Combo, Conclude, Fast Greedy,

Leading Eigen, Louvain, and Spinglass, have been ap-

plied to the Human PPI network with 20,644 nodes and

241,008 edges. Although all of them were able to find

communities, we will not consider the results of Con-

clude because it finds 495 communities, many of which

are very small communities with less than 50 nodes.

For Combo and Spinglass, since they use a random

number generator in the procedure of finding commu-

nities, we ran them 10 times with 10 different seeds be-

tween 0 and 10,000 and used the results from the run

with the largest modularity. Modularity scores and the

number of communities detected in each run for

Combo and Spinglass are summarized in Table 8 and

Table 9, respectively.

After finding modularity scores and communities

for 10 runs, we selected communities corresponding

to the largest modularity score which is 0.3735 for

Combo (11 communities) and 0.3729 (21 communi-

ties) for Spinglass.

The results of comparing all methods excluding Con-

clude are presented in Table 10.

From Table 10, we can see that Louvain and Spinglass

are more similar to each other as compared to all other

pairs of methods except Combo and Spinglass. Hence,

we will compare Combo and Spinglass as well here.

Since they are more similar to each other than Louvain

and Spinglass, they will be compared first. The first

community of Combo (C1) and the first community of

Spinglass (S1) have been compared to each other using

KEGG pathway enrichment analysis and the results for

top 10 pathways are presented in Table 11. Table 12 pre-

sents the results of comparing top 10 pathways for the

first community of Louvain (L1) and the first community

of Spinglass (S1). Organization of these two tables is the

same as that for Tables 5, 6 and 7 in the previous sub-

section. The complete versions of Tables 11 and 12 are

in the Additional file 1: Tables S15 and S16, respectively.

The results of comparing all pathways for the communi-

ties C1 and S1 and L1 and S1 (with p-values less than

0.01) are illustrated in Fig. 1 and Fig. 2, respectively. The

pie charts in Figs. 1 and 2 show the broad functional cat-

egories. Essentially, pathways belonging to a broad cat-

egory are selected and the genes of these pathways

combined together and the number of unique genes is

expressed as a percentage of total unique genes in all

pathways with p-values less than 0.01. As an example,

there are three different pathways belong to cellular pro-

cesses in C1: lysosome, peroxisome and phagosome.

There are 61 genes enriched in lysosome, 46 genes

enriched in peroxisome and 63 genes enriched in

Table 8 Modularity scores and number of communities

detected by Combo for the Human PPI network. Each run uses

a random seed between 0 and 10,000 in the procedure for

finding communities

Modularity 0.3735 0.3734 0.3734 0.3729 0.3723

# of communities detected 11 13 11 15 11

Modularity 0.3723 0.3718 0.3715 0.3711 0.3704

# of communities detected 13 12 10 12 13

Rahiminejad et al. BMC Bioinformatics          (2019) 20:212 Page 9 of 25



phagosome. Together, they have 159 unique genes,

which is about 14% of the total unique genes for all path-

ways with p-value less than 0.01. We performed these cal-

culations for all six broad categories of pathways for two

community-pairs of Additional file 1: Tables S15 and S16

and the corresponding results are shown in Figs. 1 and 2,

respectively.

As seen in Table 11 (C1 vs. S1), there is a good overlap

between enriched genes in C1 and S1 communities for

different pathways. The first pathway is oxidative phos-

phorylation with the lowest p-value. This pathway has

102 genes enriched in C1 and 99 genes enriched in S1.

Of these genes, there are 98 genes common between the

two communities which is a 96% overlap. Counting all

genes for all pathways yields 778 unique genes for C1

and 756 unique genes for S1. Of these genes, there are

696 genes common between the two communities which

is an 89% overlap. The results of GO term enrichment

analysis between these two communities are presented

in Additional file 1: Table S17, where a similarity of 91%

is observed.

As seen in Fig. 1, communities C1 and S1 represent

six different broad categories of functions and they are

similar to each other in terms of the percentage of

enriched genes in each category.

Next, we will compare Louvain and Spinglass. The

results of comparing the top 10 pathways for L1 and S1

are summarized in Table 12 (Additional file 1: Table S16

for the full list). Figure 2 shows the broad functional

categories for comparing all pathways with p-values less

than 0.01 for L1 and S1. Comparison of Figs. 1 and 2

reveals that L1 and S1 are less similar as compared to

C1 and S1. However, it is appropriate to say that Combo,

Louvain and Spinglass broadly yield similar and reason-

ably sized communities.

Orthology comparison of communities from Yeast and

Human PPI networks using Louvain method

In this sub-section, we will compare communities de-

tected by Louvain for the Yeast PPI network and com-

munities detected by the same method for the Human

PPI network. Louvain could find 9 communities with

sizes ranging from 4 to 1538 for the Yeast PPI network

(named SC1 for the biggest and SC9 for the smallest

community) and 14 communities with sizes ranging

from 3 to 3585 for the Human PPI network. Using

biomaRt package of R [26], we were able to find ortholo-

gous genes between Yeast and Human. Since the sizes of

communities (the number of genes in the community)

detected for the Human PPI network are larger than the

size of communities detected for the Yeast PPI network,

we found orthologous genes of the communities de-

tected for the Human PPI network in Yeast (denoted HS

➔ SC) and then used DAVID to perform KEGG pathway

enrichment for those genes. KEGG pathway enrichment

results for the HS ➔ SC genes were compared to that

for the communities of the Yeast PPI network. Table 13

shows the Jaccard index (as a percentage) between dif-

ferent pairs of communities and guided us on which

community pairs should be compared with each other.

For example, SC2 should be compared with HS3 ➔ SC.

The results of comparing SC2 and HS3 ➔ SC are pre-

sented in Table 14. Tables for other comparisons of this

sub-section are in the supplementary section (SC4 vs.

HS1 ➔ SC in Additional file 1: Table S18 and SC5 vs.

HS2 ➔ SC in Additional file 1: Table S19).

As seen in Table 14, the most enriched pathway is the

ribosome pathway with 151 genes enriched in SC2 and

Table 9 Modularity scores and number of communities

detected by Spinglass for the Human PPI network. Each run

uses a random seed between 0 and 10,000 in the procedure for

finding communities

Modularity 0.3729 0.3727 0.3725 0.3725 0.3724

# of communities detected 21 22 22 24 21

Modularity 0.3721 0.3716 0.3716 0.3711 0.3688

# of communities detected 22 23 21 23 23

Table 10 Comparison of different methods with respect to

three topological metrics, namely, RI, ARI and NMI for the

Human PPI network (20,644 nodes and 241,008 edges). When a

method is compared with itself, RI, ARI and NMI are 1 (diagonal

elements). Larger (smaller) the value of RI, ARI and NMI, the

more (less) similar are the two methods being compared. For

example, Combo and Spinglass are most similar to each other,

Louvain being the next most similar to them. Overall, Combo,

Louvain and Spinglass provide similar results

Combo F. Greedy L. Eigen Louvain Spinglass

RI Combo 1 0.7314 0.3606 0.8805 0.8948

ARI Combo 1 0.1806 0.0315 0.416 0.4998

NMI Combo 1 0.3025 0.0936 0.4601 0.5551

RI F. Greedy 1 0.444 0.7243 0.7258

ARI F. Greedy 1 0.0624 0.1609 0.1739

NMI F. Greedy 1 0.0787 0.2682 0.3063

RI L. Eigen 1 0.3531 0.3649

ARI L. Eigen 1 0.0191 0.0326

NMI L. Eigen 1 0.0711 0.0951

RI Louvain 1 0.8832

ARI Louvain 1 0.4479

NMI Louvain 1 0.4679

RI Spinglass 1

ARI Spinglass 1

NMI Spinglass 1
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112 genes enriched in HS3 ➔ SC. Of these, 104 genes are

common between the two communities, which is a 69%

overlap. Counting all genes for all pathways yields 380

unique genes for SC2 and 233 unique genes for HS3 ➔

SC. Of these genes, there are 218 genes common between

the two communities, which is a 57% overlap. Although

this similarity level is not impressive by itself, we did not

expect much overlap between the two communities since

Table 13 represents only a 21% similarity between them.

Discussion
As mentioned in the Results section, Louvain and Spin-
glass are most similar to each other for the Yeast PPI
network (Table 2). Louvain tries to maximize the modu-
larity (Q) whereas Spinglass tries to minimize the Hamil-
tonian (H). However, it has been shown that there is a

relation between Q and H as Q ¼ −
H
2M

(Eq. 16 in the

Methods section). Thus, minimizing H is equivalent to
maximizing Q. Still, since they use different algorithms

Table 11 Top 10 pathways for a comparison of KEGG pathway enrichment results between C1 with 3252 genes and S1 with 3206

genes for the Human PPI network (20,644 nodes and 241,008 edges). The numbers inside parenthesis after C1 and S1 represent the

number of genes that DAVID could annotate, which is generally less than the number of genes in those communities. The first

column lists the broad category of pathways (M: Metabolism, HD: Human Diseases, CP: Cellular Processes, and GIP: Genetic

Information Processing), FE: Fold Enrichment

Table 12 Top 10 pathways for a comparison of KEGG pathway enrichment results between L1 with 3585 genes and S1 with 3206

genes for the Human PPI network. The numbers inside parenthesis after L1 and S1 represent the number of genes that DAVID could

annotate, which is generally less than the number of genes in those communities. The first column lists the broad category of

pathways (M: Metabolism, HD: Human Diseases, GIP: Genetic Information Processing, and CP: Cellular Processes), FE: Fold Enrichment
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to optimize their objective functions, the results are not

exactly the same. Combo also tries to maximize modu-

larity but in a different way than that in Louvain, thus

resulting in slightly different communities as compared

to those obtained by the Louvain method.

Table 2 suggests us that Louvain and Spinglass are

most similar to each other while Louvain and Leading

Eigen are most dissimilar for the Yeast PPI network.

Fig. 3 illustrates the differences (as a percentage, i.e.,

100*(#genes different between L1 and S1 (or L1 and

LE4))/(max(L1,S1,LE4)) for each pathway) between the

number of genes enriched in different pathways (with

more than 10 genes and p-values less than 0.01) for L1 and

S1 (black columns), and for L1 and LE4 (grey columns). As

seen in Fig. 3, there is more difference between the number

of genes enriched in L1 and LE4 compared to the differ-

ence between L1 and S1. This also verifies our results of

topological comparison between L1 and S1, and L1 and

LE4 (see also Table 2).

KEGG pathway enrichment results for communities

detected for the Yeast PPI network show that almost

all pathways of each community belong to one broad

function. For example, the first community of Louvain

mostly includes pathways related to metabolic pro-

cesses, the second community consists of pathways

related to genetic information processing. On the other

hand, the functions/pathways represented by communities

detected for the Human PPI network are somewhat mixed

and include several broad biological functions. Vis-a-vis

the functional similarity of the methods, for the Human

Fig. 1 Pie charts for KEGG pathway enrichment results of C1 with 3252 genes and S1 with 3206 genes for the Human PPI network. Left chart

shows the results for C1 and right chart shows the results for S1

Fig. 2 Pie charts for KEGG pathway enrichment results of L1 with 3585 genes and S1 with 3206 genes for the Human PPI network. Left chart

shows the results for L1 and right chart shows the results for S1
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PPI network, Combo and Spinglass are similar, e.g., Fig. 1

shows that in the first community of Combo (C1), 15% of

the genes belong to pathways related to human diseases

and the first community of Spinglass (S1) also has 15% of

the genes related to the same broad category.

In order to confirm that the size of communities

detected by different methods are reliable, we found

sub-communities of the communities detected by

Combo, Louvain and Spinglass for the Yeast PPI net-

work and analyzed the results to see if detected sub-

communities of one community include pathways re-

lated to different biological functions or to the same

one as the main community. As an example, most

pathways of L1 belong to metabolic processes and the

pathways for its sub-communities also belong to meta-

bolic processes. Due to the result of this comparison

and other comparisons for all communities and sub-

communities detected by Combo, Louvain and Spinglass,

we can conclude that the size of communities detected

are reliable.

We were also curious to know if all genes enriched in

each pathway belong to one community or to different

communities. To find this, we compared genes enriched

in different pathways for all communities detected by

Combo, Louvain and Spinglass for the Yeast PPI net-

work. The results of this comparison are shown in

Tables 15, 16 and 17. The first column lists the broad

category of pathways (M: Metabolism, and GIP: Gen-

etic Information Processing). The second column lists

the different pathways enriched, columns 3 through 7

represent number of enriched genes for each commu-

nity, column 8 is the summation of all enriched genes

and the last column specifies total number of genes

in each pathway in DAVID KEGG database. Some

numbers in these tables are colored in grey, meaning

their p-values are larger than the cut-off of 0.01. As

seen in these tables, most enriched genes in each

pathway belong to one community and the corre-

sponding pathway is also significantly enriched. There

are only a few exceptions such as metabolic pathways

(which has a total of 685 genes and they are mainly

distributed into two communities while still maintaining

p-value less than 0.01 for the pathway (Tables 15-17, for

the Yeast PPI network)), biosynthesis of amino acids

(Table 16) and ribosome (Table 15). For the other

pathways, most of the enriched genes belong to one

Table 13 Jaccard index (as a percentage) between the communities detected by Louvain for the Yeast PPI network and

orthologous genes of the communities detected by the same method for the Human PPI network in Yeast. Community pairs with

maximum overlap of more than 10% (e.g., SC2 vs. HS3 ➔ SC) are indicated in bold text

Table 14 A comparison of KEGG pathway enrichment results between the second community detected by Louvain for the Yeast

PPI network (SC2) and HS3 ➔ SC (orthologous genes of the third community of the Human PPI network in Yeast). The first column

lists the broad category of pathways (GIP: Genetic Information Processing), FE: Fold Enrichment
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Fig. 3 Comparing number of genes enriched in different pathways for the first community detected by Louvain (L1), the first community

detected by Spinglass (S1) and the fourth community detected by Leading Eigen (LE4) for the Yeast PPI network

Table 15 Number of genes enriched in each pathway for different communities detected by Combo for the Yeast PPI network. The

first column lists the broad category of pathways (M: Metabolism, and GIP: Genetic Information Processing). Column 2 lists the

different pathways enriched. Columns 3 through 7 represent number of enriched genes for different communities. Column 8 lists

the total of all enriched genes of all communities together and the last column represents the maximum number of genes in that

pathway. For example, in DAVID database, “metabolic pathways” contains 685 genes and of these, 384 were found in C1 and 140

were found in C4
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community and if another community has some enriched

genes, the p-value is greater than the cutoff of 0.01

(colored grey).

We note that the analysis provided above does not

fully address the issue of selecting the best method. It

is likely to be subjective and network specific. Hence,

we recommend applying a few different methods,

such as Louvain (from the group of similar methods)

and one or two other (dissimilar) methods, and com-

pare and interpret the results to obtain a consensus

best method.

Robustness of communities obtained by the Louvain

method

We also analyzed the robustness of communities ob-

tained by Louvain method for small perturbations in the

network. Essentially, the network is randomly perturbed

by deleting some nodes (and edges involving them) and

the communities are identified. This is carried out 100

times to assess the robustness of the communities. First,

the communities of the original Yeast PPI network are

identified using Louvain method. Then, the following

steps are repeated 100 times:

Table 16 Number of genes enriched in each pathway for different communities detected by Louvain for the Yeast PPI network.

This table is arranged similar to Table 15

Table 17 Number of genes enriched in each pathway for different communities detected by Spinglass for the Yeast PPI network.

This table is arranged similar to Table 15

Rahiminejad et al. BMC Bioinformatics          (2019) 20:212 Page 15 of 25



1. Remove 1% of nodes randomly (e.g., 65 nodes out

of 6532 nodes for the Yeast PPI network).

2. Find the communities of the new network using

Louvain method.

3. From the communities of the original network,

delete the random nodes of step 1.

4. Calculate the Jaccard index matrix between the

communities obtained in steps 2 and 3. We

considered all communities with more than 100

nodes.

5. Compute the maximum value for each column of

the Jaccard index matrix.

6. Compute the average of the resulting row-vector.

After performing the above steps 100 times, we have

the vector of average of column-wise-maximum (avg-

max) of Jaccard index values. Then, we generate scatter

plots of avg-max. The scatter plots of avg-max for the

Yeast and the Human PPI networks are shown in Fig. 4

(left panel: Yeast, right panel: Human).

The mean and standard deviation of the avg-max

vector are 72.21 and 9.02%, respectively for the Yeast

PPI network, whereas, for the Human PPI network, they

are 60.11 and 7.14%, respectively. These relatively large

numbers for the mean suggest that the communities

identified by Louvain method are robust to small pertur-

bations. We repeated the process for Leading Eigen. The

mean and standard deviation of the avg-max vector for

the Yeast network is 53.4 and 5.63%, respectively. Thus,

Louvain is a better method, at least for the Yeast PPI

network; for the Human PPI network, Leading Eigen

finds only two or three very large communities, making

avg-max artificially high (98%).

Generality of the overall results

The PPI networks that we used in our analysis were

from BioGRID and included both physical and genetic

interactions (combined network). Hence, we have also

applied the various approaches for finding communities

to a Yeast PPI network comprising of only physical inter-

actions, which has 6298 nodes and 83,788 edges, to find

out if our broad conclusions based on the combined net-

work are still valid for the physical interaction-only net-

work. Additional file 1: Table S20 shows the modularity

scores and the number of communities detected by dif-

ferent methods for the physical interaction-only net-

work. While Q is smaller for the combined network as

compared to that for the physical interaction-only net-

work for all methods, their relative trend for the differ-

ent methods remain almost the same. Interestingly, the

Q values for Louvain, Combo and Spinglass are similar

and among the largest. Thus, these three methods are

one of the best methods in terms of Q value as well.

We have compared the various methods using three

topological metrics (namely Rand Index, Adjusted Rand

Index, and Normalized Mutual Information) with re-

spect to the physical interaction-only network. The

results for these comparisons are given in Additional file

1: Table S21. Based on results of Additional file 1: Table

S21, Combo, Louvain and Spinglass are similar to each

other in terms of the topological metrics. We also com-

pared the KEGG pathway enrichment results for the first

5 communities of Louvain and Spinglass. To find which

communities from Louvain and Spinglass methods are

similar, we generated the Jaccard index matrix for com-

munities with more than 100 nodes for both methods

(Additional file 1: Table S22). After selecting pairs of

Fig. 4 Scatter plots of avg-max (average of column-wise-maximum of Jaccard index matrix) values vs. run number. The left panel (a) shows the

results for the Yeast PPI network and the right panel (b) shows the results for the Human PPI network
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communities with highest value of Jaccard index for

each column, we used DAVID version 6.8, to perform

KEGG pathway enrichment analysis. The results of those

comparisons are presented in Additional file 1: Tables

S23-S25 for the L1 vs. S1, L2 vs. S2 and L3 vs. S4 com-

parisons, respectively. These tables are arranged similar

to Additional file 1: Table S4.

Two main results from Additional file 1: Tables S23-S25

are: 1) good functional similarity between the commu-

nities from Louvain and Spinglass methods (e.g., an

overlap of 73.06% between L1 and S1, 79.41% between

L2 and S2 and 85.24% between L3 and S4), and 2) seg-

regation of biological functions represented by the

communities, e.g., communities L2, L3 and L4 repre-

sent mostly metabolism related pathways. L1 shows a

mixed enrichment, akin to the mixed pathways repre-

sented by the L3 and L5 communities of the combined

network (Additional file 1: Tables S4 and S6). Some

differences in the nature of the broad results for the

combined network vs. the physical interaction-only

network are likely due to the fact that the physical

interaction-only network is much sparser (just 1/3rd

of the edges are retained) as compared to the com-

bined network. Using Cytoscape [27], we also analyzed

the properties (Additional file 1: Table S26) and node-

degree distribution for the combined network and the

physical interaction-only network (Figs. 5(a) and 5(b)).

Figure 5(c) shows a comparison of count of nodes for

a given degree between the combined and the physical

interaction-only networks. As can be seen from Fig. 5(c),

good R2-value suggests good agreement between the two

degree distributions.

Optimization of method-specific parameters

We wanted to find out if the Q value for the different

methods could be improved by optimizing their parame-

ters, if any, or if their results varied across different runs.

Of six methods, three of them, namely Combo, Con-

clude and Spinglass used a random number generator in

the procedure for finding communities, although they

do not have any parameters to be optimized. We carried

out 10 repeats of Combo, Conclude and Spinglass on

the combined Yeast PPI network to assess the variation

in Q across the runs. Additional file 1: Table S27 shows

the results of 10 runs for these methods (similar to those

for the Combo and Spinglass methods for the Human

PPI network in Tables 8 and 9, respectively). The stand-

ard deviations of Q across the 10 runs are much larger

for Conclude (5.11%, std./mean) as compared to those

for Combo (0.05%) and Spinglass (0.36%). Thus, for a

small number of allowed runs, the results from Combo

and Spinglass are more reliable.

We selected the run with the highest modularity for

Conclude method and performed KEGG pathway

enrichment analysis. Then we compared these enrich-

ment results with the enrichment results for the com-

munities from the Conclude method reported earlier.

Although the size of communities are a little different,

the broad categories of pathways for majority of the

communities are still the same. For example, there is

one community in both runs which has pathways mainly

related to metabolic processes. Additional file 1: Table

S28 shows the results for comparison between the two

communities with pathways related to metabolic pro-

cesses (CL3) in the two runs.

Spinglass method uses simulated annealing in its pro-

cedure. Hence, we ran it 10 times with 10 different start

and stop temperatures and cooling factor, but the de-

fault values in the igraph package yielded the best result

Fig. 5 a Node-degree distribution for the combined network. b

Node-degree distribution for the physical interaction-only network. c

Comparison of counts of nodes between the combined network

and the physical interaction-only network
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in terms of the largest modularity. Overall, at a broad

level, we found that in our case studies, the methods

providing well-interpretable communities also resulted

in near-optimal (largest) Q values. The fact that the Q

value for Conclude in one of the runs is slightly higher

(0.29) than those for Combo and Spinglass (0.265) does

not violate this conclusion because some of the com-

munities from Conclude are also well-interpretable.

However, we note that the Q values across different

runs vary substantially for Conclude as compared to

those for Combo and Spinglass, suggesting that Combo

and Spinglass methods are likely more robust than the

Conclude method.

Conclusions

In this paper, we tested six methods to detect commu-

nities within the Yeast and Human PPI networks. An

in-depth comparison of communities detected by these

different methods has led us to conclude that Louvain

and Spinglass are most similar for the Yeast PPI net-

work whereas Combo and Spinglass are most similar

for the Human PPI network. In terms of finding com-

munities that include core pathways based on KEGG

pathway and GO term enrichment results, Combo,

Louvain and Spinglass were able to find similar com-

munities in which important biological functions and

pathways were enriched. For the Yeast PPI network, all

genes from the network belonging to a pathway also

generally belong to only one or two communities. In

terms of running time or computational complexity,

for the Yeast PPI network, Louvain was the fastest

method and Combo was faster than Spinglass. For the

Human PPI network, Louvain was much faster than

Spinglass, and Spinglass was faster than Combo. Over-

all, Combo, Louvain and Spinglass provide reasonable

results for community detection in biological net-

works. Their corresponding modularity values were

also among the highest, except that Conclude yielded

slightly better modularity for the Yeast PPI network in

some runs; variation in modularity for Conclude was

much larger than that for Combo and Spinglass across

multiple runs. Overall, since Combo and Spinglass use

stochastic search in their procedure and their running

time is also more than that for Louvain, Louvain is

likely the best method to find reasonably sized com-

munities for biological networks in a reasonable time.

While we applied these methods to PPI networks, we

expect the broad results to be applicable to other types

of networks such as gene-coexpression networks and

hybrid/integrated networks.

Methods
The focus of this work is on undirected, unweighted and

connected graphs defined as G(n,m) where n = {n1, n2, …,

n|n|} is an ordered set of nodes and m a subset of n*n, is

the set of edges; for convenience, here, n and m repre-

sent sets. In our case studies on the Yeast and Human

PPI networks, each node represents an Entrez gene ID

and each edge represents an interaction between two

nodes. By finding communities, we imply the segrega-

tion of nodes into groups such that there is a higher

density of edges within each group than between

groups. Although there are many algorithms for detecting

communities, we selected six algorithms that performed

well in terms of finding core pathways in biological

networks with several thousands of nodes and hundreds

of thousands of edges within reasonable computing time

(e.g., one day on a 24 processor machine).

Each of these algorithms tries to optimize an objective

function which in most cases is modularity. However,

two algorithms with the same objective function will

generally yield slightly different communities using

different amounts of run time if they use different

optimization strategies. The algorithms that will be

briefly described below are: Girvan-Newman [1, 7], Fast

Greedy [11], Combo [28], Louvain [10], Conclude [29],

Infomap [30], Leading Eigen [8] and Spinglass [9]. We

used an R package named igraph [31] to run Fast Greedy,

Louvain, Leading Eigen and Spinglass. There is a Cytos-

cape plugin, named GLay, to visualize the network and

the communities [32]. The GLay plugin utilizes igraph C

library which provides the same methods as the igraph R

package [31]. For the other two methods (Conclude and

Combo), authors have made java [33] and C++ [34] codes

of their algorithms available online. Girvan-Newman

method did not provide any result for our networks in

24 h on a 24 processor machine, so we did not consider

its results in our comparison. Another method, called

Infomap, did not find reasonably-sized communities

(e.g., for the Yeast PPI network with 6532 nodes, one

community has 6195 nodes, and the rest have less than

10 nodes). Due to these reasons, we did not consider

Girvan-Newman and Infomap methods in our analysis.

However, Fast Greedy and Louvain, which we have used in

our comparison, are based on the original Girvan-Newman

method. So, we will briefly describe Girvan-Newman

algorithm in the next subsection.

Algorithms for community detection

Girvan-Newman

This is a divisive algorithm for identifying communities

in networks where edges are iteratively removed based

on the value of their betweenness. The steps of the algo-

rithm are as follows [1, 7]:

1. Calculate betweenness score for all edges in the

network. Betweenness is a measure that favors

edges that lies between communities and disfavors
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those that lie inside communities. While there are

many measures to find betweenness, Girvan-

Newman algorithm uses the fast algorithm of New-

man to find betweenness scores [35].

2. Find the edge that has the maximum value of

betweenness and remove it from the network.

3. Recalculate betweenness for all remaining edges in

the network and repeat from step 2 for the new

scores until there are no edges remaining.

The output of this algorithm is a dendrogram that

captures the possible divisions of the network into com-

munities. In order to select the optimal division among

all possible options, Modularity (Q) is used.

Q ¼
1

2m

X

i; j

Aij−
k ik j

2m

� �

δ ci; c j
� �

ð1Þ

where Aij is the weight of the edge between node i and

j (is equal to 1 when all edges have the same weight), ki
is the sum of the weights of the edges attached to node

i or degree of node i, ci is the community to which

node i belongs to and the δ function is defined as

δ(u,v) = 1 if u = v and 0 otherwise. Local peaks in the

modularity during the process of community detection

indicate good divisions of the network into communi-

ties. While using this algorithm gives good results in

many cases, its computational complexity is O(m2n) or

O(n3) on a sparse graph, where n is the number of

nodes and m is the number of edges. This makes it

impractical for very large graphs with several thousands

of nodes and hundreds of thousands of edges.

Fast greedy by Clauset, Newman and Moore

This algorithm (namely, Fast Greedy) involves finding

the changes in modularity that results from combining

pair of communities, selecting the combination yielding

largest gain in modularity, and implementing the combi-

nation of the corresponding pair [11]. At the beginning,

each node is considered as a community. One way of

performing the combination process is to consider the

network as a multigraph where a whole community is

represented by a node and the elements of the adja-

cency matrix are equal to the number of edges between

the communities. Joining two communities (namely i

and j) corresponds to replacing the ith and jth rows and

columns of the adjacency matrix by a single row and

column formed by their sum, respectively; the record of

the list of nodes in the communities formed thus far is

updated. In the algorithm proposed by Newman [13],

this operation is carried out explicitly on the entire

adjacency matrix. Calculating the change of modularity

(ΔQ) and finding the pair i, j with the largest gain is

time-consuming. Hence, here, instead of using the

adjacency matrix and calculating ΔQij, a matrix of ΔQij

values is initialized and updated directly. For sparse

matrices, e.g., adjacency matrices for large networks,

this results in substantial reduction in computation.

The following parameters have to be set initially:

∆Qij ¼

1
.

2m
−
k ik j

.

2mð Þ2
if i; j are connected

0 otherwise

8

<

:

ð2Þ

ai ¼
k i

2m
ð3Þ

for each i. The next steps are as follows:

1. Calculate the initial values of ΔQij and ai based on

Eqs. 2 and 3, and form the max-heap, H, which

contains the largest element of each row of the

matrix ΔQij along with the labels i, j of the corre-

sponding pair of communities.

2. Select the largest ΔQij from H, combine the

corresponding communities, update the matrix ΔQ,

H and ai (Eq. 4) and increase Q by ΔQij.

3. Repeat step 2 until only one community exists.

Due to the sparsity of the original adjacency matrix A,

we will be able to perform updates in step 2 quickly and

we need to only adjust a few elements of ΔQ. If commu-

nities i and j are joined together, labeling the combined

community as j, we update the jth row and column, and

delete the ith row and column altogether. The update

rules are as follows:

If community k is connected to both i and j, then:

∆Q0
jk ¼ ∆Qik þ ∆Qjk ð4aÞ

If k is connected to i but not to j, then:

∆Q0
jk ¼ ∆Qik−2a jak ð4bÞ

If k is connected to j but not to i, then:

∆Q0
jk ¼ ∆Qjk−2aiak ð4cÞ

To update a: a0j ¼ a j þ ai:

Fast Greedy algorithm runs in time O(m.d.logn) for a

network with n nodes and m edges where d ~ logn is the

depth of the dendrogram. For sparse networks (m ~ n),

the running time is O(nlog2n), which is essentially lin-

ear [11].

Combo

Most community detection algorithms use one of the

following steps in the process of finding communities:

they may join two communities, split a community into

Rahiminejad et al. BMC Bioinformatics          (2019) 20:212 Page 19 of 25



two, or move nodes between two distinct communities.

Combo involves all three possibilities [28]. After select-

ing an initial partition made of a single community, the

following steps are iterated until there is no gain in the

objective function which may be modularity (Eq. 1) or

description code length:

1. For each source community, the best possible

repartition of every source node into each

destination community (either an existing

community or a new community) is calculated. It

would be possible that the source community

totally joined the destination community in this

step.

2. The best merger, split, or recombination is

performed.

The basis of Combo is the selection of the best repar-

tition of nodes between two communities. For each pair

of source and (maybe empty) destination communities,

a shift of all the nodes using Kernighan-Lin algorithm

[36] is performed. Particularly, Combo recombines the

two communities starting from several initial configu-

rations including: (a) the original communities, (b) the

case in which the whole source community is moved to

the destination community and (c) a few intermediate

mergers, where a random subset of the source commu-

nity is shifted to the destination community.

For each starting configuration, a series of Kernighan-

Lin shifts [36] is iterated until no further improvement

is possible. Each configuration is carried out by initia-

lizing a list of available nodes to cover all the nodes from

the original source community and then iterating the

following steps until there are no more nodes in the list:

1. Find the node i in the list which when switched to

another community results in the largest gain in

modularity.

2. Switch i to the other community, remove it from

the original list and save the intermediate result.

After performing a series of Kernighan-Lin iterations

for each of the starting configurations, the intermediate

result with the best score in terms of objective function

(modularity) is selected.

Combo outperforms all other known algorithms when

the objective function is modularity. However, it has lim-

itations on the size of the network it could handle within

a reasonable time, which is currently around 30,000

nodes and is not a serious limitation for most biological

networks. When the objective function is description

code length, Combo’s results are similar to Infomap

(which will be described later in this section) in most

cases. Since the sequence of operations depends on

the specific network, obtaining exact evaluations of

the computational complexity of Combo is difficult,

but the upper bound is O(n2logc) where n is the num-

ber of nodes and c is the number of communities in

the network [28].

Louvain

This algorithm detects communities in large networks

by maximizing modularity and is much faster as com-

pared to other methods [10, 37, 38]. The limiting

factor for this method is the memory (RAM) require-

ment rather than the computation time, as is the case

with Girvan-Newman and Spinglass algorithms. The

algorithm is divided in two phases, which are re-

peated iteratively. First phase is to assign a different

community to each node of the network. So, in the

beginning, there are as many communities as there

are nodes. Then, the gain of modularity (Eq. 5) is

calculated for removing node i from its community

and placing it in one of its neighboring communities.

The gain of modularity in moving node i into a com-

munity C can be computed by:

ΔQ ¼
Σin þ k i;in

2m
−

Σtot þ k i

2m

� �2
" #

−
Σin

2m
−

Σtot

2m

� �2

−
k i

2m

� �2
" #

ð5Þ

where Ʃin is the sum of the weights (or count for un-

weighted networks) of the edges inside C, Ʃtot is the sum

of the weights of the edges incident to nodes in C, ki is

the sum of the weights of the edges incident to nodes i

(degree of i), ki,in is the sum of the weights of the edges

from i to nodes in C and m is the sum of the weights of

all the edges in the network. If the gain is positive, the

node i is placed in the community for which the gain is

maximum. This process is applied repeatedly for all

nodes until no further improvement can be achieved.

The second phase is to build a network whose nodes

are now the communities detected during the first

phase. In order to perform that, the weights of the edges

between the new nodes are given by the sum of the

edges between nodes in the corresponding two com-

munities. Edges between nodes of the same community

result in self-loops for this community in the new net-

work. When this phase is completed, the first phase of

the algorithm is reapplied to the new network. The com-

bination of these two phases is referred to as a “pass”.

The passes are iterated until a maximum of modularity

is reached. This algorithm is extremely fast (O(nlogn))

and could be even faster by using some heuristics, e.g.,

stopping the first phase when the gain of modularity is

less than a given threshold [10].
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COmplex Network CLUster DEtection (CONCLUDE)

CONCLUDE is a fast community detection method. The

algorithm takes a graph G, an integer κ and an integer φ

as inputs. The steps are:

1. Compute κ-path edge centralities using Edge

Random Walk κ-path Centrality (ERW-Kpath)

algorithm (described by De Meo, et al. [29]) on

nodes of G by carrying out at most φ iteration.

The output of ERW-Kpath algorithm is an array

of weights.

2. Calculate the distance among all pairs of nodes by

taking two inputs: graph G and the array of weights

from the previous step. It uses the following

equation (Eq. 6) to find pairwise distances:

σ ij ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X

kϵN ið Þ−CN i; jð Þ

Lκ ekið Þ½ �2

j N ið Þ−CN i; jð Þ j
þ

X

kϵN jð Þ−CN i; jð Þ

Lκ ekj
� �	 
2

j N jð Þ−CN i; jð Þ j
þ

X

kϵCN i; jð Þ

Lκ ekið Þ−Lκ ekj
� �	 
2

j CN i; jð Þ j

v

u

u

u

t

ð6Þ

where Lκ is κ-path edge centrality and is calculated by:

Lk eð Þ ¼
X

sϵV

Pr e; sð Þ ð7Þ

Pr(e,s) is the probability of selecting the edge e in a

random simple κ-path originating from an arbitrary

source node s. The symbol N(i) is the set of neighbors of

the node i and CN(i,j) indicates the subset of neighbors

common to i and j.

The output of this step is a matrix Δ containing all

pairs of distances between nodes.

3. Finally, apply Louvain method [10] on matrix Δ to

find communities of G.

Maps of random walk (Infomap)

The Infomap approach closely follows the Louvain

approach [10]; neighboring nodes are joined together to

make small communities which subsequently are joined

into bigger communities. The difference between these

two methods is that the objective function of Louvain is

modularity while the objective function of Infomap is a

lower bound on a quantity referred to as code-length

(M), defined as,

L Mð Þ ¼ q
↷
H Qð Þ−

X

c

i¼1

pi
↻
H Pi
� �

ð8Þ

The aim of Infomap is to minimize the lower bound,

L(M). The equation comprises of two terms: first is the

entropy of the movement of nodes between communi-

ties and second is the entropy of movements of nodes

within communities. Further details about this equation

can be found elsewhere [30].

Each node is initially assigned to its own community.

Then, in random sequential order, each node is placed

into the neighboring community that results in the lar-

gest decrease in L(M) (Eq. 8). If no move decreases

L(M), the node will stay in its original community. This

procedure is repeated in a new random sequential order

each time until no move could decrease L(M). In each it-

eration, the nodes of the new network are the communi-

ties found at the last level and the process of joining

nodes into communities is repeated on the new network

until L(M) cannot be reduced further. The computa-

tional complexity of Infomap is a linear function of the

number of edges, i.e., O(m) [30, 39].

Leading Eigen

Leading Eigen method [8] is also based on the modu-

larity maximization but here, the modularity is expressed

in terms of the eigenvalues and eigenvectors of a matrix

called the modularity matrix, B:

Bij ¼ Aij−
k ik j

2m
ð9Þ

where, A is the adjacency matrix, ki is the sum of the

weights of the edges attached to node i (or degree of

node i), kj is the degree of node j and m is the total

number of edges. The modularity matrix is a characteris-

tic property of the network and is independent of any

division of the network into communities. The proced-

ure of finding communities of a network with this

method consists of finding the eigenvector correspond-

ing to the most positive eigenvalue of the modularity

matrix, and then dividing the network into two groups

based on the sign of the elements of the eigenvector. De-

fining an index vector, s, the sign of elements are:

si ¼
þ1 if ui

1ð Þ
≥0

−1 if ui
1ð Þ
< 0

�

ð10Þ

where, ui
(1) is the ith element of u1 (the normalized eigen-

vector of the modularity matrix). The nodes with positive

sign form one community and the rest of the nodes form

the other community. To avoid dividing the network into

only two communities, an n (total number of nodes) by c

(the number of non-overlapping communities) index

matrix S has to be defined. Each column of this matrix is

an index vector of (0,1) elements, such that:

Sij ¼
1 if vertex i belongs to community j
0 otherwise

�

ð11Þ

The modularity of this division of the network is then

equal to:
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Q ¼
X

n

i; j¼1

X

c

k¼1

BijSikSjk ¼ Tr STBS
� �

ð12Þ

This form of modularity is different from other forms

in a leading multiplicative constant 1/(2 m) but since it

has no effect on the position of the maximum of the

modularity, it has been omitted from the equation. Writ-

ing B=UDUT where U = (u1|u2| …) is the matrix of ei-

genvectors of B, and D is the diagonal matrix of

eigenvalues Dii = βi, Q can be written as:

Q ¼
X

n

j¼1

X

c

k¼1

β j uTj sk

� 
2

ð13Þ

The aim is still maximizing the modularity Q, but now,

there is no constraint on the number of communities, c [8].

Spinglass

In this method, the community structure of a network is

described as the spin configuration that minimizes the en-

ergy of the spin glass (Hamiltonian) with respect to the

spin states (the community indices) [9]. Similar to any

other quality function for an assignment of nodes into

communities, Hamiltonian has to follow the principle of

grouping together the nodes that are linked (there is an

edge between them) and keep apart the ones that are not

linked. From this, four requirements have to be satisfied:

a) rewarding internal edges between nodes of the same

community (in the same spin state), b) penalizing

missing edges (non-links) between nodes in the same

community, c) penalizing existing edges between different

communities and d) rewarding non-links between diffe-

rent communities. The following equation (Eq. 14) satis-

fies these properties:

H σf gð Þ ¼ −

X

i≠ j

aij Aijδ σ i; σ j

� �

internal links

þ
X

i≠ j

bij 1−Aij

� �

δ σ i; σ j

� �

internal non−links

þ
X

i≠ j

cij Aij 1−δ σ i; σ j

� �� �

external links

−

X

i≠ j

dij 1−Aij

� �

1−δ σ i; σ j

� �� �

external non−links

ð14Þ

where, σi denotes the community index of node i in the

graph, δ is the Kronecker delta function and aij, bij, cij,

and dij represent the weights of the individual contribu-

tions, respectively. If links and non-links are each

weighted equally, no matter they are external or internal,

aij = cij and bij = dij, then it would be enough to consider

the internal links and non-links. Convenient choices of

coefficients are aij = 1 – γpij and bij = γpij where pij
denotes the probability that a link exists between node i

and j, normalized, such that
X

i≠ j

pij ¼ 2m , where m is

the total number of edges in the network. When γ = 1, it
leads to the natural situation in which the total amount
of energy that can possibly be contributed by links and

non-links is equal, i.e.,
X

i≠ j

Aijaij ¼
X

i≠ j

ð1−AijÞbij . As we

are dealing with undirected, unweighted networks, our
choice of weights allows us to simplify the Hamiltonian
(Eq. 14):

H σf gð Þ ¼ −

X

i≠ j

Aij−γpij

� 


δ σ i; σ j

� �

ð15Þ

where, pij, the probability, can be written as pij ¼
kik j

2m

and ki and kj represent degree of node i and degree
of node j, respectively. Now, minimizing H gives the
number of spin states (or communities) in a net-
work. The minimization is carried out by using sim-
ulated annealing on the entire network. This method
is rather fast and the computational complexity is
approximately O(n3.2). However, it cannot be used
for disconnected networks as there is no guarantee
that nodes from disconnected parts of the network
also have different spin states and belong to different
communities.

Substituting pij as
kik j

2m
and γ = 1 in Eq. 15, we have:

H σf gð Þ ¼ −

X

i≠ j

Aij−
k ik j

2m

� �

δ σ i; σ j

� �

and comparing this equation with Eq. 1 (modularity)

yields:

Q ¼ −
H σf gð Þ

2m
ð16Þ

It is clear from Eq. 16 that minimizing Hamiltonian is

equivalent to maximizing modularity. Thus, we expect

to get same results for Louvain (which maximizes modu-

larity) and Spinglass (which minimizes Hamiltonian)

when applied to our networks.

Table 18 summarizes the above methods described in

this section.

Metrics for comparison of different algorithms

To compare different methods, we used three metrics,

namely, Rand Index (RI), Adjusted Rand Index (ARI),

and Normalized Mutual Information (NMI). We also

used Jaccard Index for measuring similarity between

different communities. These metrics are based on topo-

logical similarities of the communities identified and

hence are relevant for biological networks; we expect

that topologically similar communities will likely yield

similar biological interpretations.
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Rand index (RI)

Rand proposes a simple measure of agreement be-

tween the results of (i.e., the communities identified

by) two methods A and B [40]. RI represents the

fraction of node-pairs that are distributed to the com-

munities obtained by the two methods in a similar

manner. Let n11 be the number of pairs of nodes

from a network G which are both in the same com-

munity detected by method A and are also in the

same community detected by method B. Let n00 be

the number of pairs of nodes from G which are in

different communities in A and are also in different

communities in B. n00 and n11 are interpreted as

agreements in the classification of the nodes from a

pair. Accordingly, two disagreement quantities n01
and n10 are also defined: n01 (n10) is the number of

pairs of nodes from G which are in the same commu-

nity detected by method A (B) but they are in differ-

ent communities detected by method B (A). Then,

Rand Index (RI) is given by [41]:

RI A;Bð Þ ¼
n00 þ n11

n00 þ n11 þ n01 þ n10
ð17Þ

As seen from Eq. 17, RI has a probabilistic interpret-

ation with respect to picking a pair of nodes at random,

i.e., n00þn11
N
2

� � , which is a probability of agreement (N is the

total number of nodes). RI is not a normalized quantity,

e.g., the upper bound is 1 but the lower bound is more

than zero (network dependent). Due to this lack of

normalization, Hubert and Arabie [42] suggested an im-

provement to RI as described below.

Adjusted Rand index (ARI)

ARI is equivalent to a normalized Rand Index. Consider

a confusion matrix for methods A and B where rows

correspond to the communities in A and columns cor-

respond to the communities in B. Nij, the (i,j)th entry

in this matrix, is the number of nodes in both commu-

nity i of method A and community j in method B.

Denote by Ni. the sum of all columns for row i; thus

Ni. is the number of nodes in community i of method

A. Define N.j to be the sum of all rows for column j,

i.e. N.j is the number of nodes in community j in

method B. The Adjusted Rand Index (ARI), is calcu-

lated from the values Nij of the confusion matrix for

the two methods as follows [42]:

t1 ¼
X

cA

i¼1

N i:

2

� �

; t2 ¼
X

cB

j¼1

N : j

2

� �

; t3 ¼
2t1t2

N N−1ð Þ

ARI A;Bð Þ ¼

X

cA

i¼1

X

cB

j¼1

N i j

2

� �

−t3

1

2
t1 þ t2ð Þ−t3

ð18Þ

where, cA and cB are the number of communities de-

tected by methods A and B, respectively.

Normalized mutual information (NMI)

Another metric to calculate the similarity between two

methods is Normalized Mutual Information (NMI). NMI

is the normalized form of Mutual Information (MI). MI

measures similarity between the results of two methods

and is given by [41]:

MI A;Bð Þ ¼
X

cA

i¼1

X

cB

j¼1

N ij

N
log

N ijN

N i:N : j

� �

ð19Þ

where, A and B are the methods being compared. The

terms used in this equation are the same as those used

in the equation for ARI (Eq. 18). Then, NMI between

methods A and B is calculated as:

NMI A;Bð Þ ¼

−2
X

cA

i¼1

X

cB

j¼1

N ij

N
log

N ijN

N i:N : j

� �

X

cA

i¼1

N i: log
N i:

N

� �

þ
X

cB

j¼1

N : j log
N : j

N

� �

ð20Þ

Jaccard index

Jaccard index is a measure of similarity for two sets of

nodes, with a range from 0 to 1 and is defined as the size

of the intersection (overlap) divided by the size of the

union of the sets:

J A;Bð Þ ¼
# A∩Bð Þ

# A∪Bð Þ
ð21Þ

where, the numerator is the number of common elements

between the sets A and B and the denominator is the

number of all the elements in A and B combined.

Table 18 Summary of community detection methods

Name of Method Equation # Computational complexity Reference

Girvan Newman 1 O(m2n) [1, 7]

Fast Greedy 2, 3, 4 O(nlog2n) [11]

Combo 1 O(n2logc) [28]

Louvain 1, 5 O(nlogn) [10]

Conclude 6, 7 O(m) [29]

Infomap 8 O(m) [30]

Leading Eigen 9, 10, 12 O(n2) [8]

Spinglass 15 O(n3.2) [9]

Rahiminejad et al. BMC Bioinformatics          (2019) 20:212 Page 23 of 25



Overall approach for topological and functional

comparison of communities detected by different

algorithms

Applying the above methods to PPI networks yields dif-

ferent number of communities with different number of

nodes. The communities detected are compared in two

ways: topological comparison and functional compari-

son. In topological comparison, methods are compared

using different metrics (RI, ARI and NMI). Based on the

results of these metrics, we are able to figure out which

methods are similar to each other and which are dissimi-

lar. When a method is compared with itself, RI, ARI and

NMI are 1. Larger (smaller) the value of metrics, more

(less) similar are the two methods being compared. After

finding which methods are similar to each other from a

topological perspective, functional comparisons (such as

KEGG pathway enrichment analysis) have been used to

further assess the functional similarity of the communi-

ties identified by these methods. Figure 6 shows a flow

chart of our analysis pipeline.
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