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Abstract—Software systems designed to solve Maxwell’s equations
need abstractions that accurately explain what different kinds of
electromagnetic problems really do have in common. Computational
electromagnetics calls for higher level abstractions than what is
typically needed in ordinary engineering problems. In this paper
Maxwell’s equations are described by exploiting basic concepts of
set theory. Although our approach unavoidably increases the level
of abstraction, it also simplifies the overall view making it easier to
recognize a topological problem behind all boundary value problems
modeling the electromagnetic phenomena. This enables us also to
construct an algorithm which tackles the topological problem with
basic tools of linear algebra.
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1. INTRODUCTION

Electromagnetic phenomena is fully described by the Maxwell
equations, which are typically described in terms of vector algebra.
Although seldom mentioned, in the background such an approach
relies on an Euclidean space, which is what enables one to talk of
distances and angles, or of magnitudes of vectors. Since the notions
of distances and angles are everyday routines, one may arrive at a
conclusion that physics (i.e., modeling of nature) somehow did require
Euclidean spaces. But to recognize the nature of Euclidean spaces,
let us call them with another name: “Euclidean” is a synonym to pre-
Hilbertian with finitude of dimension usually implied. Here, there is no
need to go to the details of pre-Hilbertian spaces [1], it is just enough
to realize that they are something which are made of several layers of
structures: An Euclidean space is not a simple structure.

As is argued in [2] science is about trying to understand and see
what complicated and diverse events really do have in common and to
explain or to describe the behaviour accurately, simply and elegantly.
When it comes to electromagnetism, vector fields and Euclidean spaces
are a heavier structure than needed [3, 4, 5, 6], and they may block
from seeing the principal information of Maxwell’s equations. The
irony is that Euclidean spaces and vector fields are rather intuitive.
As soon as simpler –and thus, in principle, easier– structures are
employed, unavoidably the level of abstraction has to increase. This
is perhaps why the more powerful, accurate, and elegant models are
easily considered less physical. Some may even questioned whether
they are needed at all.

The nature of software design is very close to that of science.
The fundamental problem in developing software is to find the right,
i.e., simple, accurate, and elegant abstractions [7]. Computational
electromagnetism makes no difference, and thus, there is a practical
call to find better abstractions describing Maxwell’s equations in a
precise and elegant way, and such that they become easily convertible
into pieces of software.

The software systems developed for electromagnetic design are
typically inflexible requiring the user to input certain data (sometimes
even in a certain order) to generate the result the user needs.
Furthermore, such systems may also suffer for the problem that they
are not able to recognize missing, incorrect, or conflicting data until it
gets to the point when the solution process of a system of equations
fails. But even then, there are little tools to recognize what really went
wrong. One reason for this inflexibility is perhaps the method driven
approach commonly employed in generating software. In other words,
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the software is a realization of some methods and algorithms, and the
user is required to insert data which fits into this model. Of course,
the software may try to list out all cases that are not solvable, but this
is an extensive and unreliable approach.

The motivation for this paper comes from the opposite direction.
The idea is to develop a data driven approach which by an abstract
representation of the category of problems generates by top-down
development an orderly (code) structure, which then enables to
recognize what can or cannot be done with the data inserted by the
user. The very idea is that the software system is driven by the inserted
data instead of trying to fit data into a priori selected approach.

It is plain that in a single paper there is not enough room
to thoroughly discuss such a topic. (There are books, such as
[8], published in this kind of questions). In this paper we shall
focus on the topological issues behind Maxwell’s equations. In the
first part of the paper we introduce a topological problem behind
electromagnetic problems. By employing the language of differential
geometry [9, 10, 11, 12, 3, 4, 5, 6] and algebraic topology [13], and
especially of homology [13, 14, 15], we shall express Maxwell’s equations
using some simple concepts of set theory. In the second part we
introduce an algorithm exploiting the basic tools of linear algebra to
tackle the topological problem introduced in the first part. In addition,
an example and some practical hints are presented.

2. MAXWELL EQUATIONS AS RELATIONS

Electromagnetic fields are characterized by Maxwell’s equations. Their
main information is in how the integral of a field over the boundary
of any chain [16] matches with the integral of some other field over
that chain. In more formal terms, the boundary operator ∂p is a map
from the module Cp of all p-chains into the module Cp−1 containing
all (p − 1)-chains. Thus, a chain and its boundary are linked by (the
graph of) a relation R(∂p) ⊂ Cp × Cp−1, and evidently for all pairs
(c, c′) ∈ R(∂p) one has

(c, c′) ∈ R(∂p) ⇔ ∂pc = c′ .

Maxwell’s equations involve integration, which is a bilinear
operator from the cartesian product of Cp and the space F p of p-
cochains to the field of reals R (or to some other field F):

∫ p

: Cp × F p → R .
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In general, if one has bilinear operators f1 : A1 × B1 → F and
f2 : A2 × B2 → F, and R(A) is a linear relation in (i.e., a linear
subspace of) the cartesian product A1 × A2, then relation R(A) and
operators f1, f2 induce a linear relation R(A, f) ⊂ B1 × B2 such
that (b1, b2) ∈ R(A, f) if and only if for all (a1, a2) ∈ R(A) hold
f1(a1, b1) = f2(a2, b2).

Relation R(∂p) is linear –i.e., the boundary operator is linear– and
thus, R(∂p) and the integral operators

∫ p

: Cp × F p → R

∫ p−1

: Cp−1 × F p−1 → R,

induce relation R(∂p,
∫ p) ⊂ F p×F p−1 such that, if (f, g) ∈ R(∂p,

∫ p)
then

∫
c

p

f =
∫

c′

p−1

g

has to hold for all (c, c′) ∈ R(∂p).
Maxwell’s equations may be considered as this kind of induced

relations. For instance, Ampère’s law
∫

∂c

h =
∫
c

(j + ∂td) , (1)

expressing the relationship between magnetic field h and current j and
the time derivative of electric flux d can be interpreted as a relation
(j + ∂td, h) ∈ R(∂2,

∫ 2). Correspondingly, Gauss’s law
∫

∂c

b =
∫
c

qm (2)

saying the magnetic flux b over all bounding 2-chains should equal to
the magnetic charge qm that chain bounds can be viewed as a relation
(qm, b) ∈ R(∂3,

∫ 3).
A relation R(A) ⊂ A1 × A2 is said to be one-to-one if there

is a 1-to-1 correspondence between the elements a1 and a2 of pair
(a1, a2) ∈ R(A). The constitutive laws can also be interpreted as
relations. We assume that permeability µ belongs to the set M
of “admissible” permeabilities, and that n is the dimension of the
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ambient space. Then, the constitutive law corresponds with a one-to-
one relation R1−1(µ) ∈ F 2×F 1 defined with aid of the Hodge operator
∗ mapping p-cochains into (n− p)-cochains [10] such that

(b, h) = R1−1(µ) ⇔ b = µ ∗h .

Besides the emphasis shifted towards the principal information of
Maxwell’s equations, the motivation for the use of relations is that such
notions of naive set theory [17] can easily be transformed into pieces
of software.

3. TOPOLOGICAL PROBLEM

The tools we have enable us to formulate electromagnetic problems in
an alternative way. Let us assume that µ ∈ M , i = j + ∂td ∈ F 2,
and qm ∈ F 3 are known in all space. Then the magnetic field is the
solution of problem:
Problem 1: Find (b, h) ∈ F 2 × F 1 such that

(b, h) ∈ R1−1(µ) ,

(j + ∂td, h) ∈ R(∂2,
∫ 2) ,

(qm, b) ∈ R(∂3,
∫ 3)

hold.
Problem 1 is not, however, well posed. The conditions for the

solution are sufficient in the sense that if there is a solution, then the
solution is also unique. But the existence of the solution depends on
whether i is solenoidal1 or not.

In practical software design such problems are typically avoided
by testing whether the inserted data fits into the model. However,
since our goal was to develop a data driven approach to computational
electromagnetism, we shall tackle the problem in another way.

To go on, we need next to introduce the concept of an isomorphic
relation. A relation is isomorphic if it is one-to-one and linear. Let
us now denote by cod(∂p) the codomain (range) of operator ∂p. If the
linear relation R(∂p) ⊂ Cp × Cp−1 is restricted such that the map

∂p : C ′p → cod(∂p)

is an isomorphism from C ′p onto cod(∂p), then the relation R(∂p) ⊂
C ′p × cod(∂p) in the restricted space is obviously also isomorphic.

1 A field f ∈ F 2 is solenoidal if its integral over all bounding 2-chains (of the form c = ∂3c′)
vanish.
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When the relation R(∂p) is isomorphic, symbol Ri(∂p) is employed
to emphasize this property.

The key point is that existence of the solution of problem 1
can be guaranteed if relations R(∂2, ∫2) and R(∂3, ∫3) are induced by
isomorphic relations Ri(∂2) and Ri(∂3). In such cases we shall use
symbols Ri(∂2, ∫2) and Ri(∂3, ∫3) to denote this property.

Now, the topological problem of “conflicting” data is resolved.
With the same assumptions as above the magnetic field can be
characterized as the solution of problem:
Problem 2: Find (b, h) ∈ F 2 × F 1 such that

(b, h) ∈ R1−1(µ) ,

(j + ∂td, h) ∈ Ri(∂2,
∫ 2) ,

(qm, b) ∈ Ri(∂3,
∫ 3)

hold. This is a well posed problem meaning there exists a unique
solution2 for it.

When it comes to numerical computation there still remains an
algebraic problem of finding a linearly independent basis for Ri(∂2)
and Ri(∂3). In practice this means that Ampère’s and Gauss’s laws
need not to be imposed over all pairs (c, ∂c) in Ri(∂2) and Ri(∂3), but
instead only over sets which form linearly independent bases of these
relations.

Obviously, the electric field makes no difference with respect to
the magnetic field, so as an immediate generalization we may state:
In computational electromagnetics there is a problem of algebraic
topology to find isomorphic relations Ri(∂p) and a problem of linear
algebra constructing linearly independent bases for these spaces.

4. EXACT SEQUENCES AND DECOMPOSITIONS

The isomorphic relation Ri(∂p) is related to so called exact sequences,
which are sequences of abelian groups in the following way: A mapping
α from abelian group U to another abelian group V is a homomorphism
preserving the structure if α satisfies α(ai + aj) = α(ai) + α(aj). A
sequence of abelian groups and homomorphisms

· · · −→ Un+1
αn+1−→ Un

αn−→ Un−1 −→ . . .

2 All the solutions of problem 1 are also solutions of problem 2, but not vice versa.
Furthermore, if the first problem has a solution, it is also a solution of the second one.



Topological approach to CEM 195

is exact if the kernel of αn is the codomain, i.e. the image of αn+1 for
all n. Now, an exact sequence enables one to decompose the underlying
groups in the following way [15]:

Theorem 1: If 0 → U
α→ V

β→ W → 0 is an exact sequence, then
there is a direct decomposition of V such that

V = α(U)⊕ V ′ ,

where V ′ is a subgroup of V such that the restriction of β onto V ′ is
an isomorphism from V ′ onto W . ✷

Now, to see what this theorem has to do with problem 2, notice
first that cod(∂p+1) ⊂ Cp. Thus, there is a natural injection ι from the
group Bp = cod(∂p+1) onto Cp. Second, as the boundary operator ∂p
is a map from Cp onto Bp−1, and since in all space the kernel Zp of ∂p
(consisting of all p-chains whose boundary is null) coincides with Bp,
we have an exact sequence

0 −→ Zp
ι−→ Cp

∂p−→ Bp−1 −→ 0 . (3)

And now, according to theorem 1, module Cp can immediately be
decomposed such that

Cp = Zp ⊕ C ′p = Bp ⊕ C ′p , (4)

where ∂p is an isomorphism from C ′p onto Bp−1. (Notice, that C ′p is
what we needed in introducing Ri(∂p).) So, the topological problem
reduces to developing an algorithm decomposing Cp into Zp and C ′p,
and it is a problem of linear algebra to find a basis for these subgroups
and Bp−1.

Before introducing an algorithm which tackles this problem,
we shall first generalize the approach to boundary value problems
supported in bounded domains with various kinds of boundary
conditions and non-local conditions. (The non-local conditions
correspond with things like imposed currents or voltages.)

5. BOUNDED DOMAINS

The case of a bounded domain with different kinds of boundary
conditions seems to make the problem setup far more complex. This
additional complexity is, however, superficial, as the problem is still
built out of same kind of layers. Compared to a problem supported in
the whole space, in case of a bounded domain there are, so to speak,
more layers but they all are still of the same level. Let us next work
this out step by step to see what it means.
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The topology of all space is trivial, which means that the sequence

· · · −→ Cp+1
∂p+1−→ Cp

∂p−→ Cp−1
∂p−1−→ . . . , (5)

is exact. In other words the codomain of the boundary operator is
the kernel of the next one, and thus, all chains whose boundary vanish
–that is, cycles– are themselves boundaries of some other chains. But
in a bounded domain this property of exactness is lost: A cycle is not
necessary a boundary of another chain. So, in a bounded domain one
can’t rely on the exactness property of sequence (5). To recover from
this problem another exact sequence is needed.

Let Bp = cod(∂p+1) and Zp = ker(∂p) denote the groups of
bounding p-chains and p-cycles, respectively. We shall name Hp the
quotient group Zp/Bp whose elements are cosets of the form z + Bp

where z ∈ Zp. This means that two cycles z1, z2 ∈ Zp belong to the
same coset of Hp if z1 − z2 ∈ Bp. As all bounding chains are also
cycles, again there is a natural injection ι : Bp → Zp. By introducing
operator κp taking a cycle z ∈ Zp into the corresponding coset of Hp,
a new exact sequence [16]

Bp
ι−→ Zp

κp−→ Hp , (6)

is obtained. Now, a combination of the exact sequences (3) and (6)
yields a diagram

Bp

↓ ι

Zp
ι−→ Cp

∂p−→ Bp−1

↓ κp
Hp ,

and instead of (4) theorem 1 implies now that

Cp = Zp ⊕ C ′p = Bp ⊕ Z ′p ⊕ C ′p , (7)

where ∂p is an isomorphism from C ′p onto Bp−1 and κp from Z ′p onto
Hp. In other words, in bounded domains the decomposition of Cp is
threefolded, whereas in all space it is always twofolded.

To complete with bounded domains we still need to take into
account the effect of boundary conditions. Let us name Γ the boundary
of the bounded domain Ω. The boundary itself is split into two parts
Γ = Γt∪Γc, where Γt represents the part of the boundary on which the
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tangential trace3 of a field is known, and Γc is the complement of Γt on
Γ. For example, in case of b, Γt is the part of the boundary on which
the magnetic flux is locally known, and in case of h, Γt is the part
on which the magnetomotive force is locally imposed by the boundary
conditions. (Of course, one may well have Γt = Γ or Γt = ∅.)

We shall denote by Cp(Ω) and Cp(Γt) the modules of p-chains
in domain Ω and in Γt, respectively. As all p-cells on Γt lie also
in Ω, there exists a rather trivial map ηtp from Cp(Γt) onto Cp(Ω).
(A superscript, here t, is employed to point to the submanifold, here
to Γt, with respect to which the operator is relative.) The quotient
group Cp(Ω,Γt) consists of cosets of the form c + Cp(Γt) where c is a
chain of Cp(Ω). Informally, the elements of Cp(Ω,Γt) are chains whose
properties are not dictated by Γt. The quotient group Cp(Ω,Γt) is
often called a relative chain group. [18]

In this case the boundary operator should also be extended to the
relative case. The relative boundary operator ∂tp is defined as a map

∂tp : Cp(Ω,Γt)→ Cp−1(Ω,Γt)

extending the meaning of ∂p such that

∂tp : c + Cp(Γt)→ ∂pc + Cp−1(Γt) .

As an immediate consequence one can also find the relative groups of
cycles and bounding cycles: If one has z ∈ Zp(Ω) and b ∈ Bp(Ω), then

z′ = z + Cp(Γt) and (8)

b′ = b + Cp(Γt) (9)

are evidently elements of Cp(Ω,Γt). The relative groups Zp(Ω,Γt) and
Bp(Ω,Γt) are formed such that [18]

z′ ∈ Zp(Ω,Γt) if ∂tpz
′ = 0 ,

in other words if ∂pz ∈ ηp(Cp(Γt)), and

b′ ∈ Bp(Ω,Γt) if b′ = ∂tpc
′ for some c′ ∈ Cp+1(Ω,Γt) ,

that is, if ∂pc− b ∈ ηp(Cp(Γt)) for some c ∈ Cp+1(Ω).
Intuitively, a chain belongs to Zp(Ω,Γt), and it is called a relative

cycle mod Γt if its boundary lies completely in Γt. Correspondingly, a
p-chain c is in Bp(Ω,Γt), and it is called a bounding cycle mod Γt, if one
3 This corresponds with Dirichlet type of boundary conditions.
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can find a (p+ 1)-chain c′ in Cp+1(Ω) such that ∂c′− c lies completely
on Γt.

Now, let us name λtp the operator taking a chain c ∈ Cp(Ω) into
the corresponding coset Cp(Ω,Γt) of relative chains. Then we have
three short exact sequences:

Zp(Ω,Γt) ι−→ Cp(Ω,Γt)
∂tp−→ Bp−1(Ω,Γt) , (10)

Bp(Ω,Γt) ι−→ Zp(Ω,Γt)
κtp−→ Hp(Ω,Γt) , (11)

Cp(Γt)
ηtp−→ Cp(Ω)

λtp−→ Cp(Ω,Γt) . (12)

and by combining them all together, the following diagram is obtained:

Bp(Ω,Γt) ι−→Zp(Ω,Γt)
κtp−→ Hp(Ω,Γt)

↓ ι

Cp(Γt)
ηtp−→ Cp(Ω)

λtp−→Cp(Ω,Γt)

↓ ∂tp
Bp−1(Ω,Γt) .

The corresponding decomposition is

Cp(Ω) = Bp(Ω,Γt) ⊕ Z ′p ⊕ C ′p ⊕ C ′′p , (13)

where ∂tp is an isomorphism from C ′p onto Bp−1(Ω,Γt), κtp from Z ′p onto
Hp(Ω,Γt), and ηtp from Cp(Γt) onto C ′′p .

Let the boundary be split such that Γ = Γb ∪ Γh. The boundary
conditions of b = B on Γb and of h = H on Γh can now be
characterized using induced relations Ri(ηb2, ∫2) and Ri(ηh1 , ∫1), where
the corresponding operators are defined by

ηb2 : C2(Γb)→C2(Ω) , (14)

ηh1 : C1(Γh)→C1(Ω) . (15)

There may also be non-local conditions, for instance due to external
circuits, which set the flux of b to Φ and the circulation of h to Ψ
over (possibly relative) nonbounding 2-cycles and over nonbounding 1-
cycles, respectively. The non-local conditions correspond with relations
Ri(κb2, ∫2) and Ri(κh1 , ∫1) defined by

κb2 : Z2(Ω,Γb) → H2(Ω,Γb) , (16)

κh1 : Z1(Ω,Γh) → H1(Ω,Γh) . (17)
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Putting everything together, in a bounded domain with given
µ ∈M , i = j+∂td ∈ F 2(Ω), qm ∈ F 3(Ω), given trace of b which equals
to B ∈ F 2(Γb), given trace of h which is H ∈ F 1(Γb), ∫z b = Φ ∈ R for
some z ∈ Z ′2, and ∫z h = Ψ ∈ R for some z ∈ Z ′1, the magnetic field
can be expressed as the solution of the problem:
Problem 3: Find (b, h) ∈ F 2(Ω)× F 1(Ω) such that

(b, h) ∈ R1−1(µ) ,

(i, h) ∈ Ri(∂h2 ,
∫ 2) ,

(qm, b) ∈ Ri(∂b3,
∫ 3) ,

(B, b) ∈ Ri(ηb2,
∫ 2) ,

(H,h) ∈ Ri(ηh1 ,
∫ 1) ,

(Φ, b) ∈ Ri(κb2,
∫ 2) and/or (Ψ, h) ∈ Ri(κh1 ,

∫ 1) ,

hold.4
This problem has precisely the same structure as problem 2. When

it comes to numerical computing there also remains the same problem
of linear algebra to construct a linearly independent bases for the
underlying spaces of the relations. Thence, once again, there is a call
for an algorithm decomposing the groups of an exact sequence into
appropriate subgroups and yielding a basis for them.

6. IMPLEMENTATION

A short exact sequence which is general enough for our purpose can
be given by

U
α−→ V

β−→ W/W0 , (18)

where W/W0 is a quotient group. (The quotient group W/W0 coincides
with group W if one selects W0 = {0}.)

In finite dimensional spaces operators correspond with matrices
and the elements of the linear vector spaces can be represented by
vectors of coefficients. As a linear space is also a module and a group,
theorem 1 of the decomposition of groups applies to linear spaces as
4 For each pair of “magnetic connectors” it is enough to know either Φ or Ψ. This is in
full analogy with voltages and currents in circuit theory: For each pair of entry ports one
needs to know either the voltage or current [19]. If they both are known, then there is
nothing to solve, as the impedance Z = U/I is fixed. (Solving a boundary value problem
corresponds with finding the impedance [8, 19].) In more precise terms, relations Ri(κ

b
2, ∫2)

and Ri(κ
h
1 , ∫1) are isomorphic [18, 20, 21].
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well. This enables us to employ tools of linear algebra to develop an
algorithm yielding the decompositions we need.

We assume now that domain Ω and the boundary Γ are split into
a cellular mesh. In common words, the question is of any mesh of
the finite element type. Hence, all our spaces will also be of finite
dimension. In general, finite dimensional spaces are, as is well known,
isomorphic to spaces of vectors of coefficients. Here, the sets of nodes,
edges, faces, and volumes –i.e., the sets of p-cells, p = 0, . . . , 3–
equipped with some coefficients correspond with the chains of Cp,
p = 0, . . . , 3, respectively. For instance, the ith edge of the finite
element mesh corresponds with a vector [0, . . . , 1, . . . , 0]T , where only
the ith entry is nonzero and equal to one. A 1-chain (a p-chain)
corresponds then with any vector or array of coefficients assigned in
a 1-to-1 sense with the edges (with the p-cells, resp.). To guarantee
exact arithmetics, we shall assume that the coefficients belong to the
field Q of rational numbers.

According to theorem 1, sequence (18) implies decomposition

V = ker(β)⊕ V ′ , (19)

such that Ri(β) ⊂ V ′ × cod(β). So, the algorithm should yield a
linearly independent basis for ker(β) and for the isomorphic relation
Ri(β). Next, such an algorithm is presented.

6.1. Algorithm

Let U be a n-dimensional vector space. Assuming a basis for U , the
corresponding coefficient space isomorphic to U is denoted by Ū .

PURPOSE: Assuming finite dimensional spaces V , W , subspace W0

of W , operator β such that

β : V −→W/W0 ,

and matrix βββ representing operator β in the coefficient spaces, the
algorithm decomposes space V̄ such that

V̄ = ker(βββ)⊕ V̄ ′ ,

and creates the basis of ker(βββ), V̄ ′, and of cod(βββ) such that βββ maps
the ith basis vector of V ′ to the ith basis vector of cod(βββ).

INPUT: First, the nv = dim(V̄ ) and nw = dim(W̄0) vectors forming
the linearly independent bases of V̄ and W̄0 have to be inserted in
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input:

V̄ = span{vi}nvi=1 ,

W̄0 = span{wi}nwi=1 ,

Second, matrix βββ has to be given in input.

STEP 1: Form matrices V and Wβ such that

V := [v1,v2, . . . ,vnv] ,
Wβ := [w1,w2, . . . ,wnw] .

Next initialize two matrices Kβ and Vβ, and counters nk and nv′:

Kβ := [ ] ,
Vβ := [ ] ,
nk := 0 ,

nv′ := 0 .

(Symbol [ ] denotes to a matrix with no columns.)

STEP 2: FOR i = 1 TO nv
a := βββvi

% Test whether a ∈ cod(Wβ)
Solve vector x such that WT

βWβx = WT
β a

Boolean TEST := (Wβx EQUAL a)

IF (TEST) THEN
nk := nk + 1

% Take elements nw + 1, . . . , nv′ of vector x
Vector x′ := x(nw + 1, . . . , nv′)
Vector d := vi −Vβx′

% Add d into the basis of ker(βββ).
Kβ := [Kβ,d ]

ELSE
nv′ := nv′ + 1

% Add vi and a to the basis of
% V̄ ′ and cod(βββ), respectively.

Vβ := [Vβ,vi ]
Wβ := [Wβ,a ]

END IF

END FOR



202 Tarhasaari and Kettunen

OUTPUT: The columns of matrices Kβ, Vβ, and Wβ yield the basis
vectors of ker(βββ) and Ri(βββ) such that

ker(βββ) = span
{
(Kβ)i

}nk
i=1

,

Ri(βββ) = span
{(

(Vβ)j , (Wβ)nw+j

)}nv′
j=1

,

where ( )i denotes the ith column of a matrix.

USAGE: Assume one has an exact sequence

U
α−→ V

β−→ W/W0 , (20)

where U , V , and W are finite dimensional spaces and W0 is a subspace
of W . Now, by running the algorithm one gets the decomposition

V̄ = ker(βββ)⊕ V̄ ′ ,

and immediately from this one also has

V̄ = cod(ααα)⊕ V̄ ′ , (21)

as cod(ααα) and ker(βββ) coincide due to the exactness of sequence (20).
But now, (21) is nothing else than a realization of theorem 1 in
coefficient spaces, and thus –as the construction of the decomposition
was a central question– the algorithm is truly all what is needed to
solve the topological problem. In order to generate decompositions
such as (7) and (13) the algorithm has to be run recursively.

6.2. Example

Let us denote by C0, C1, C2, and C3 (identity) matrices whose
columns are the vectors of coefficients corresponding with the nodes,
edges, faces, and volumes of the cellular mesh of Ω, respectively. These
matrices represent on the discrete level the bases of the spaces of chains
Cp, p = 0, . . . , 3. The number of columns in matrix Cp is denoted by
np.

A so called incidence matrix [8] Dp is a rectangular matrix, with
Cp−1 and Cp as column and row set, which describes how p-cells
connect to (p − 1)-cells. The entries of matrix Dp are either 0, 1,
or −1: The entry {c, c′} of Dp is ±1 only if (p − 1)-cell c′ bounds
p-cell c and otherwise equal to zero. The sign of the entry depend on
whether the orientations of c and c′ match or not. On the discrete level
the boundary operator ∂p corresponds with the transpose DT

p of the
incidence matrix.
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Figure 1. A cellular mesh forming a trefoil knot.

As an example, let’s see how the topological properties of the (be
aware) complement of a so called trefoil knot [22] in a box can be
computed with the algorithm, Fig. 1.

First, the bases for the subspaces of cycles, and bounding cycles
are found as follows:

INPUT OF RUNS p = 1, 2, 3:

V̄ := span{(Cp)i}npi=1 ,

W̄0 := [ ] ,

βββ := DT
p .

OUTPUT: The algorithm yields the bases of spaces Z̄p, B̄p−1, and C̄ ′p
such that

Z̄p = ker(DT
p ) ,

B̄p−1 = cod(DT
p ) ,

C̄p = ker(DT
p )⊕ C̄ ′p ,

and where DT
p is a map from C̄ ′p onto B̄p−1 in a one-to-one sense. ✷

The output of the first stage gives discrete counterparts of the
decompositions (3) when p = 0, 1, 2, 3. In three dimensions the 3-
chains cannot be boundaries of 4-chains, and thus, space B3 is trivial.
In addition, by definition a 0-chain does not have a boundary, and
therefore, Z0 coincides with C0.

Next, the representatives of the quotient spaces Hp are found by
constructing a discrete counterpart of decompositions (6). In this case
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the identity matrix represents operator κp on the discrete level. The
output of the first run is now the input for the second stage:

INPUT OF RUNS p = 0, . . . , 3:

V̄ := Z̄p

W̄0 := B̄p ,

βββ := I .

OUTPUT: The algorithm yields a basis for space Z̄ ′p consisting of the
coefficient vectors representing the cosets of Hp, i.e.

Z̄ ′p = span {(Vβ)i}nv
′

i=1 .

Space ker(κκκp) coincides with B̄p, and thus, it does not yield anything
new in this case. ✷

By calculating the dimension of spaces Z̄ ′p, p = 0, . . . , 3, the Betti
numbers [15]

dim(H0) = dim(Z̄ ′0) = 1 ,

dim(H1) = dim(Z̄ ′1) = 1 ,

dim(H2) = dim(Z̄ ′2) = 1 ,

dim(H3) = dim(Z̄ ′3) = 0 ,

characterizing the topological properties of this problem can be found.

6.3. Practical Issues

In practice a critical part of the algorithm is the test whether βββvi ∈
cod(Wβ) holds. This is the same as asking whether there exists a
vector x such that

Wβx = βββvi (22)

holds.
A technique to answer this question is to employ the Smith normal

form [23]. If the invariant factors obtained by finding the Smith normal
forms of matrices Wβ and [Wβ,βββvi.] are the same, then the existence
of a x, such that (22) holds, is guaranteed. Furthermore, once the
Smith normal form is found getting x thereafter is trivial.

Another possibility is to exploit the least square solver. One can
always solve x from

WT
βWβ x = WT

ββββvi , (23)
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and then verify whether vector x fulfills also (22).
If the coefficients are rational numbers, then arithmetics is exact.

In practice, however, computing with rational numbers (i.e., with pairs
of integers) is inefficient when the matrices become large in size, and
thus, one may have to use real numbers (in single or double precision)
instead, But then, also an ε-test to check the equality between real
numbers is needed.

As the topological properties have nothing to do with the
cardinality of the sets of nodes, edges, faces and volumes, in practice,
computing time can be minimized by employing as coarse cellular
meshes as possible.

It is also useful to notice that the algorithm generalizes the
spanning-tree techniques to construct trees and cotrees of graphs [24].
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