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Abstract

There have been significant recent advances in realizing band structures with geometrical and 
topological features in experiments on cold atomic gases. This review summarizes these 
developments, beginning with a summary of the key concepts of geometry and topology for Bloch 
bands. Descriptions are given of the different methods that have been used to generate these novel 
band structures for cold atoms and of the physical observables that have allowed their 
characterization. The focus is on the physical principles that underlie the different experimental 
approaches, providing a conceptual framework within which to view these developments. Also 
described is how specific experimental implementations can influence physical properties. Moving 
beyond single-particle effects, descriptions are given of the forms of interparticle interactions that 
emerge when atoms are subjected to these energy bands and of some of the many-body phases that 
may be sought in future experiments.

I. INTRODUCTION

Topology is a mathematical concept that refers to certain properties that are preserved under 
continuous deformations. One familiar example is the number of twists put into a belt before 
its buckle is fastened. Usually we aim to fasten a belt without any twists. But if we were to 
introduce a single twist we would produce a Möbius strip. No continuous deformation of the 
closed belt would get rid of this uncomfortable twist. The number of twists is said to be a 
“topological invariant” of the closed belt.

The importance of topological invariants in stabilizing spatial deformations and defects is 
also well known in physics in diverse areas ranging from cosmology to condensed matter. 
For a superfluid confined to a ring, the number of times that the superfluid phase ϕ changes 
by 2π around the ring
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N =
1

2π∮ ∇ϕ ⋅ dl (1)

is a topological invariant. This winding number cannot change under smooth deformations 
of the superfluid: a change would require the superfluid density to vanish somewhere—such 
that ϕ is ill defined—requiring the motion of a quantized vortex line across the ring. Here the 
topological stability arises from the interplay of the underlying space (the ring) and the form 
of the local order parameter (the phase of the superfluid wave function).

In recent years it has come to be understood that topology enters physics in another, very 
fundamental way through the nature of the quantum states of particles moving through 
crystalline lattices. The energy eigenstates of electrons moving through periodic potentials 
are well known to form energy bands, a result that follows from the existence of a conserved 
crystal momentum via Bloch’s theorem. Remarkably, under certain circumstances, each 
Bloch energy band can be assigned a robust integer-valued topological invariant related to 
how the quantum wave function of the electron “twists” as a function of crystal momentum. 
This integer is invariant under continuous changes of material properties, “continuous” 
meaning that the energy gaps to other bands should not close. The first example of such a 
topological invariant for Bloch energy bands arose from a highly original analysis of the 
integer quantum Hall effect in a two-dimensional (2D) lattice (Thouless et al., 1982). Recent 
theoretical breakthroughs have shown that, once additional symmetries are included, 
topological invariants are much more widespread. These ideas underpin a recent revolution 
in our understanding of band insulators and superconductors (Hasan and Kane, 2010; Qi and 
Zhang, 2011). The topological nature of these materials endows them with physical 
characteristics that are insensitive to microscopic details, a notable example being the exact 
quantization of the Hall resistance in 2D irrespective of the presence or form of a random 
disorder potential.

A great deal of current research focuses on understanding the physical consequences of 
these new materials, and experimental studies of topological insulators and superconductors 
in solid state systems continue apace. Furthermore, there is significant activity in exploring 
the nature of the strongly correlated phases of matter that arise in these materials, notably to 
construct strong-correlation variants of these topological states of weakly interacting 
electrons. Theory suggests many interesting possibilities, which are still seeking 
experimental realization and verification.

Such questions are ideally addressed using realizations with cold atomic gases. Cold atomic 
gases allow strongly interacting phases of matter to be explored in controlled experimental 
settings. However, a prerequisite for quantum simulations of such issues is the ability to 
generate topological energy bands for cold atoms. This poses a significant challenge, even at 
this single-particle level. Realizing topological energy bands typically requires either the 
introduction of effective orbital magnetic fields acting on neutral atoms and/or the 
introduction of a spin-orbit coupling between the internal spin states of an atom and its 
center-of-mass motion. This is an area of research that has attracted significant attention over 
the last years, both theoretical and experimental. Much progress has been made in 
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developing techniques to generate artificial magnetic fields and spin-orbit coupling for 
neutral atoms (Zhai, 2015; Dalibard, 2016; Aidelsburger, Nascimbène, and Goldman, 2017). 
The use of these techniques in the setting of optical lattices has led to the realization and 
characterization of topological Bloch bands for cold atoms.

In this review we describe how topological energy bands can be generated and probed in 
cold atom systems. We focus on existing experimental studies, for which the essential 
behavior can be understood in terms of noninteracting particles. We start by explaining the 
concepts underpinning topological energy bands in Sec. II. We describe the key physical 
effects that are required to generate these bands and how these can be engineered in cold 
atom systems in Sec. III. Our emphasis is on recent experimental developments. In Sec. IV 
we describe the principal observables that have been used to characterize the geometrical 
and topological characters of the resulting energy bands. In Sec. V we move beyond single-
particle physics to discuss some of the theoretical understanding of the consequences of 
interactions in these novel optical lattices and to describe some of the interacting many-body 
phases that can be sought in future experiments on these systems. We conclude in Sec. VI 
with comments on the outlook for future work and point out connections to broader research 
areas.

Throughout this review we explain just the essential physics underlying recent 
developments, so the content is necessarily incomplete. The review should be used as a 
starting point from which to explore the literature, rather than as a comprehensive survey of 
the field. We note that we focus on topological bands for atoms in periodic lattices. Related 
phenomena can appear for photons and hybrid light-matter objects (cavity polaritons) in 
novel optical materials, and we refer the interested readers to the review by Ozawa et al. 
(2018). We note also that all our discussions are based on the notion of band structure, 
meaning that we ourselves restrict to periodic materials and that we do not address the case 
of atoms or photons moving in quasiperiodic systems (Kunz, 1986; Kraus et al., 2012; 
Tanese et al., 2014; Dareau et al., 2017).

II. TOPOLOGY OF BLOCH BANDS

In this section we provide an introduction to how topology enters into band theory for 
particles moving in periodic potentials. We focus on quantities and models that are relevant 
to later sections. More comprehensive accounts are available in review articles on 
topological insulators (Hasan and Kane, 2010; Qi and Zhang, 2011; Chiu et al., 2016).

A. Band theory

Here we describe the essential properties of a quantum particle moving through a periodic 
lattice potential. Our aim is to understand both the resulting eigenenergies (giving the 
conventional band structure) along with the underlying structure of the eigenstates (from 
which the band topology is derived).

Any lattice potential is invariant under displacements by a set of lattice vectors R, which can 
be written R = ∑imiai in terms of integer {mi} multiples of basis vectors {ai} (with i = 

1,...,d in dimension d). From Bloch’s theorem, the energy eigenstates take the form
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ψq
(n)(r) = eiq ⋅ ruq

(n)(r), (2)

with uq
(n)(r) = uq

(n)(r + R) having the periodicity of the lattice. These eigenstates are 

characterized by the band index n and the crystal momentum q. Although we retain ℏ in 

equations, we refer to momentum and wave vector inter-changeably. Starting from the 

Schrödinger equation for the energy eigenstate ψq
(n)(r):

−
1

2m
∇

2 + V (r) ψq
(n)(r) = Eq

(n)
ψq

(n)(r), (3)

one readily finds that the Bloch states uq
n(r) are eigenstates of the q-dependent Hamiltonian

Ĥq = −
1

2m
(∇ + iq)2 + V (r) . (4)

If there are internal degrees of freedom, e.g., spin, then one should replace uq
n(r) by uq

n(α, r)

with α labeling these additional degrees of freedom.

States that differ in crystal momentum q by a reciprocal lattice vector G = ∑imiGi are 

physically equivalent. (The reciprocal lattice is constructed from basis vectors {Gi} defined 
by the condition Gi ⋅ aj = 2πδij.) Thus, q can be chosen to be restricted to the first Brillouin 

zone (BZ): the locus of points q that are closer to the origin than to any reciprocal lattice 
vector G. For example, for a 2D lattice with basis vectors a1 = (a1, 0) and a2 = (0, a2) the 

reciprocal lattice has basis vectors G1 = 2π/a1, 0  and G2 = 0, 2π/a2 , and the BZ is the 

region −π < qxa1 ≤ π and −π < qya2 ≤ π.

Many of the cases we describe will be tight-binding models, for which there are M single-
particle orbitals within each unit cell of the lattice. These could be multiple lattice sites 

and/or other internal degrees of freedom. The system Hamiltonian Ĥ acts on the set of M × 

Nc single-particle states |α, R〉 = |α〉 ⊗ |R〉 with α = 1,…,M labeling the states within a unit 

cell and R the position of each of a total of Nc unit cells. For periodic boundary conditions, 
the energy eigenstates are plane waves

|ψq
(n)〉 =

1
Nc

∑
R

eiq ⋅ R|uq
(n)〉 ⊗ |R〉, (5)

where n = 1,…,M is the band index and |uq
(n)〉 are the associated Bloch wave functions in the 

M-dimensional internal space. The band energies and Bloch wave functions follow from the 

spectrum of a wave-vector-dependent Hamiltonian Ĥq that acts in this internal space. For 

example, Ĥq can be represented by the M × M matrix
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Hq
αβ =

1
Nc

∑
R, R′

eiq ⋅ R − R′ 〈α, R′ |Ĥ |β, R〉 . (6)

Note that the Bloch Hamiltonian Ĥq and thus its matrix representation is not uniquely 

defined: it can be replaced by Ĥq
′ = ÛqĤqÛq

†
, where Ûq is a wave-vector-dependent unitary 

transformation. Because the states at wave vectors q and q + G are physically equivalent, one 

can always choose the Hamiltonian to have the same periodicity as the Ĥq = Ĥq + G. We 

make this choice throughout this section. However, as will be explained later, some care is 
required in doing so when considering geometrical properties of the bands. Other choices 
are discussed in Appendix A.2.

B. Geometrical phase

At its most basic level, the band structure of a periodic potential is specified by the energies 

Eq
(n). However, the bands are also characterized by geometrical and topological features. 

These relate to how the wave functions |uq
(n)〉 vary with wave vector q across the BZ. No 

variations can occur for simple tight-binding models with one orbital per unit cell M = 1 
(i.e., one-band models). However, topological features arise already for two orbitals per unit 
cell, M = 2. We describe topological classifications of Bloch bands in 1D and 2D and 
illustrate these using two-band tight-binding models.

Our presentation relies heavily on the concept of the geometrical phase (Berry, 1984), which 

we briefly review. Consider a Hamiltonian ℋ̂(X) which depends on a set of parameters X 

and with nondegenerate spectrum

ℋ̂(X)|Ψ(n)(X)〉 = E
(n)(X)|Ψ(n)(X)〉 . (7)

The system is prepared in an eigenstate |Ψ(n)(X)〉 at an initial time ti, and the parameters Xt 

are changed slowly in time t such that the state evolves adiabatically, following an 

instantaneous eigenstate of ℋ̂(Xt). The parameters are taken around a cycle such that 

Xtf = Xti. Since the Hamiltonian returns to the initial form at tf, so too must any eigenstate 

up to an overall phase factor (in this case of a nondegenerate spectrum). This phase has both 
dynamical and geometrical contributions

|Ψf
(n)〉 = ei γdyn

(n) + γgeo
(n)

|Ψi
(n)〉, (8)

γdyn
(n) = −

1
ℏ∫ti

tf
E

(n)
Xt′ dt′, (9)
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γgeo
(n) = ∮ i〈Ψ

(n) | ∂XΨ
(n)〉 ⋅ dX . (10)

The geometrical phase is the integral of the Berry connection

A
(n)(X) ≡ i〈Ψ

(n) | ∂XΨ
(n)〉 (11)

around the closed loop in parameter space X. The Berry connection plays a role similar to 
that of the vector potential for a magnetic field. It is gauge dependent, varying under local 

gauge transformations |Ψ(n)〉 eiΦ(X)|Ψ(n)〉. However, if X has more than one component, 

one can define a gauge-invariant Berry curvature

Ωij
(n) ≡ ∂Xi

Aj
(n) − ∂Xj

Ai
(n) . (12)

If the closed loop X can be viewed as the boundary of a 2D surface (X1, X2) on which the 
Berry curvature is everywhere well defined, then the geometrical phase (10) is the flux of the 
Berry curvature

Ω(n) ≡ ϵij∂Xi
Aj

(n) = ϵiji∂Xi
〈Ψ

(n) | ∂Xj
Ψ

(n)〉 (13)

through this 2D surface. Here ϵij is the antisymmetric tensor of two indices ϵxy = − ϵyx = 1

and the summation over repeated indices is assumed.

We apply these concepts to physical situations in which the role of external parameters X is 
played either by the crystal momentum q or by the real-space position r. In both cases, the 
Berry connection and Berry curvature define local geometric properties of the quantum 
states. The integrals of these geometric quantities over a closed manifold—the BZ for q, or 
the unit cell of the lattice for r—give rise to topological properties. As discussed in later 
sections, trajectories of q can be imposed in physical systems by the application of external 
forces, inducing adiabatic dynamics of the Bloch states.

C. Topological invariants

1. The Zak phase—Owing to the periodicity of the BZ under the addition of any 
reciprocal lattice vector G, a trajectory in wave vector from qi to qf = qi + G is a closed loop. 

Since the Hamiltonian is periodic, Ĥq = Ĥq + G, the ideas of Berry apply directly. The 

integral of the Berry connection along such closed loops

ϕZak
(n) = ∫

qi

qi + G

i〈u(n) | ∂qu(n)〉 ⋅ dq (14)

was proposed by Zak as a way to characterize the energy bands (Zak, 1989).
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The first glimpse of how the mathematics of topological invariants can arise in band theory 
is provided by computing the Zak phase for simple two-band tight-binding models in one 
dimension (1D). We illustrate this for the Su-Schrieffer-Heeger (SSH) model.

The SSH model is a tight-binding model in which there are two sites in the unit cell labeled 
A and B. The sites are connected by alternating tunnel couplings J and J′; see Fig. 1. The 
single-particle Hamiltonian reads

Ĥ = − ∑
j

(J′âj
†
b̂ j + Jâj

†
b̂ j − 1 + H . c . ), (15)

where âj
† and b̂ j

†
 create a particle on the A and B sites of the jth unit cell. For a bulk system 

with periodic boundary conditions, we look for the energy eigenstates using the Bloch wave 
form

|ψq〉 = ∑
j

eijaq(uq
A|Aj〉 + uq

B|Bj〉), (16)

with a the lattice constant. The problem reduces to finding the eigenvectors (uq
A, uq

B)
T  of the 

Hamiltonian in reciprocal space, which has matrix representation

Ĥq = −
0 J′ + Je−iqa

J′ + Jeiqa 0
(17)

within the BZ−π/a < q ≤ π/a.

The Hamiltonian (17) can be written in the general form

Ĥq = − h(q) ⋅ σ̂, (18)

where σ̂α are the Pauli operators. Throughout this review, we use the conventional matrix 

representation of the Pauli operators in which σ̂z is diagonal. Then the SSH model has

ℎx(q) + iℎy(q) = J′ + Jeiqa, ℎz = 0, (19)

with hx,y(q) real periodic functions of q. The energy spectrum is composed of the two bands

Eq
( ± ) = ± |h(q) | = ± J

2 + J′2 + 2JJ′cos(qa)
1/2

, (20)

which are separated by a gap provided |h| does not vanish at any q. Assuming J , J′ > 0, the 

gap 2|J − J′| closes only when J = J′ for the quasimomentum q = π/a.

Provided there is a nonzero gap, i.e., |h | ≠ 0 for all q, one can write ℎx + iℎy = |h | eiϕq with a 

well-defined ϕq, and the Bloch states are
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uq
A

uq
B

=
1
2

1

∓eiϕq
. (21)

In this pseudospin representation, the fact that hz = 0 in Eqs. (18) and (19) for the SSH 
model entails that these eigenstates lie on the equator of the Bloch sphere. The resulting Zak 
phases of the bands (14) are

ϕZak
( ± ) = −

1
2∫BZ

∂ϕq

∂q
dq . (22)

Thus,

N ≡ −
1
π

ϕZak
( ± ) =

1
2π∫BZ

∂ϕq

∂q
dq (23)

is the number of times ϕq changes by 2π as q runs over the BZ. Since the Hamiltonian is 
periodic, ϕq = ϕq + G modulo 2π, N is an integer winding number, analogous to that for the 
phase of a superfluid around a ring (1). It measures the solid angle drawn by the pseudospins 

uq
( ± ) along the equator of the Bloch sphere when q spans the BZ.

The winding number (23) is a topological invariant of 1D band insulators arising from 
Hamiltonians of the form (18): N cannot be changed unless |h(q)| vanishes at some q, i.e., 

unless the band gap closes. The case of the SSH model is illustrated in Fig. 2, which shows 
the locus of (hx, hy) as q runs over the BZ. For J′/J < 1 the curve encircles the origin once, 

N = 1; while for J′/J > 1 the curve does not encircle the origin, N = 0. These two curves 

cannot be smoothly interconverted without crossing hx = hy = 0, i.e., without the band gap 
closing. One could evade this conclusion by including terms proportional to σ̂z in the 

Hamiltonian. Then two gapped states with different N could be continuously deformed into 
each other. [We explore this later for the Rice-Mele (RM) model.] However, as explained in 
Sec. II.E, including σ̂z terms would break an underlying “chiral” symmetry of the SSH 

model. The winding number in 1D is an example of a topological invariant whose existence 
relies on an underlying symmetry.

A perceptive reader will notice that the topological invariant [Eq. (23)] we constructed 
appears to be rather unphysical. The two parameter regimes of the SSH model which have 
different winding numbers, at J′/J > 1 and J′/J < 1, could be trivially related by reversing 

the labeling of the A and B sublattices in Fig. 1, at least deep in the bulk of the system. In 
what sense are these two parameter regimes topologically distinct? A key point to note is 
that the winding number (23) has a basis-dependent offset. In place of Eq. (16) we could just 
as well have sought an energy eigenstate of the form

|ψq〉 = ∑
j

eijaq(ũq
A|Aj + NA

〉 + ũq
B|Bj + NB

〉) (24)
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= ∑
j

eijaq(ũq
Ae−iNAaq|Aj〉 + ũq

Be−iNBaq|Bj〉), (25)

associating site A in the cell j + NA with site B in cell j + NB. Comparing Eq. (25) with (16) 

shows that this amounts to replacing (uq
A, uq

B)
T  by (ũq

Ae−iNAaq, ũq
Be−iNBaq)

T
, i.e., to a q-

dependent unitary transformation Ûq. In this new basis (ũq
A, ũq

B)
T

, the eigenstates (21) are 

replaced by

ũq
A

ũq
B

=
1
2

eiqaNA

∓eiϕqeiqaNB
. (26)

For NA = NB this transformation may be viewed as a reciprocal-space gauge transformation. 
A direct calculation of the Zak phase for Eq. (26) shows that the winding number 
N ≡ − ϕZak/π is increased by NA + NB as compared to that for Eq. (21). This example 

shows that the absolute value of the winding number cannot be physically meaningful. 
Instead, physical consequences can involve only differences of winding numbers, which are 
well defined when computed within the same reciprocal-space basis choice. In Sec. II.D we 
describe how the winding number difference at a boundary between two regions influences 
the spectrum of states on the edge. However, note that we already found one physical 
consequence of the winding number difference: the parameter space of microscopic 
couplings becomes disconnected, in the sense that there is no way to continuously change 
the physical parameters to evolve between regions of different winding numbers without 
crossing a critical point at which the band gap closes. Such gap closings between 
topologically distinct regions have direct physical consequences in measurements of the bulk 
excitation spectrum. In particular, for a set of noninteracting fermions filling one such band, 
the gap closing implies a thermodynamic phase transition between two insulating regimes, 
separated by a semimetallic state. We illustrated this gap closing for the SSH model. 
However, this also holds for any 1D model in which h = ℎx, ℎy, 0  i.e., with chiral symmetry. 

The requirement of the closing of a band gap in order to change the winding number is a 
defining feature of a topological invariant of the energy band.

2. The Chern number

A topological classification of (nondegenerate) energy bands in 2D exists without requiring 
any underlying symmetry and without ambiguities related to the choice of basis in reciprocal 
space. The topological invariant is the Chern number

C =
1

2π∫BZ
iϵij∂qi

〈uq| ∂qj
|uq〉d2

q . (27)

We suppress the band index n, but note that a Chern number exists for each band. This 
topological invariant, and terminology, arises from the mathematics of fiber bundles (Stone 
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and Goldbart, 2009). However, it can be readily interpreted more physically in terms of the 
Berry curvature (13) of the Bloch states

Ω(q) ≡ ∇q × A(q) ⋅ ez = iϵij∂qi
〈uq| ∂qj

|uq〉 . (28)

The Chern number is related to the flux of the Berry curvature Ω(q) through the BZ. Just as 
the Dirac quantization condition requires the magnetic flux through a closed surface to be 
quantized (in units of h/e), the flux of the Berry curvature through the BZ (a closed surface 
with the topology of a torus) is quantized (in units of 2π). This follows by using Stokes’s 
theorem to relate the integral of Ω(q) over the BZ to the line integral of A(q) around its 
boundary. Since the BZ is a closed surface this line integral must be an integer multiple of 
2π. This integer C is the number of flux quanta of Berry curvature through the BZ. Since the 
Berry curvature is a gauge-invariant quantity, so too is the Chern number.

The Chern number vanishes for systems with time-reversal symmetry (TRS), for which 
uq(r) ∝ u−q* (r) and hence Ω(q) = − Ω( − q). The realization of Chern bands therefore requires 

a means to break TRS. In Sec. III we describe ways in which this can be achieved for cold 
atom systems. One class of implementation involves tight-binding models, in which a 
spinless particle hops on a lattice with complex tunneling matrix elements, e.g., to represent 
the Peierls phase factors for a charged particle in a magnetic field. TRS is broken if, for 
some closed loop on the lattice, the phases acquired on encircling the loop in the clockwise 
(+ϕAB) and anticlockwise (−ϕAB) directions differ modulo 2π, i.e., provided ϕAB is not an 
integer multiple of π. Another class of implementation exploits internal atomic states, 
labeled by index α. Quite generally, the nondissipative action of laser light on an atom is to 
couple state α to state α′ with a well-defined momentum transfer κ. An optical lattice is 

defined by a set of such couplings V κ
α′α, which to preserve periodicity must build up a 

regular lattice in momentum space. The couplings V κ
α′α therefore define a tight-binding 

model in momentum space with amplitudes and phases determined by the laser fields. For 
shallow lattices, the net phase acquired on encircling a closed loop on this momentum-space 
lattice determines the integrated Berry curvature through that loop, allowing lattices with 
broken TRS Ω(q) ≠ − Ω( − q) to be directly constructed (Cooper and Moessner, 2012).

To illustrate how a nonzero Chern number arises in tight-binding models, we discuss here 
the key features of the Haldane model (Haldane, 1988). This is a two-band model, so the 
Bloch Hamiltonian is a 2 × 2 Hermitian matrix

Ĥq = − h(q) ⋅ σ̂ (29)

with h(q) a three-component vector coupled to the Pauli matrices σ̂x, y, z. Just as in the SSH 

model, the energy bands are Eq
( ± ) = ± |h(q)| and there is a gap provided |hq| does not vanish 

at any q. However, now the Bloch state of the lower band depends on the three-component 
unit vector e(q) ≡ h(q)/ |h(q)|, e.g.,
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|uq〉 =
cos θq/2

sin θq/2 eiϕq
(30)

for e(q) = (sinθqcosϕq, sinθqsinϕq, cosθq). The Chern number can be written in terms of this 

unit vector as

C = N2D ≡ −
1

8π
ϵij∫

BZ
e ⋅

∂e

∂qi
×

∂e

∂qj
d2

q (31)

N2D counts the number of times that the unit vector e(q) wraps over the unit sphere as q 
spans the BZ; it is the 2D analog of the 1D winding number (23).

The Haldane model is described in detail in Sec. III. It is defined on a honeycomb lattice, for 
which the unit cell contains two sites, which we label A and B, as in Fig. 3(a). Nearest-
neighbor tunneling is off diagonal in the sublattice index and leads to

ℎx(q) + iℎy(q) = J(eiq ⋅ a1 + eiq ⋅ a2 + 1) (32)

in Eq. (29), where a1,2 are the lattice vectors marked on Fig. 3(a). The Hamiltonian has been 
chosen to be periodic under the addition of reciprocal lattice vectors. Note, however, that 
other choices can be made, related to the Hamiltonian via unitary transformations 

Ĥq ÛqĤqÛq
†
. Indeed, in Sec. III we replace

ℎx(q) + iℎy(q) J(eiq ⋅ ρ1 + eiq ⋅ ρ2 + eiq ⋅ ρ3) (33)

which arises for Ûq = exp(−iσ̂zq ⋅ ρ3/2), with ρ3 the nearest-neighbor lattice vector in Fig. 

3(a). This transformation does not change the energy spectrum nor the topology of the band. 
However, it can be more helpful to work with Eq. (33) when considering physical 
observables (Bena and Montambaux, 2009). As discussed in Appendix D, unitary 

transformations of the form Ûq affect the definition of the force and current operators as well 

as the local Berry curvature.

The resulting band structure is well known from studies of graphene: there are two points at 
the corners of the BZ q = Q± with

Q± = ±
4π

3 3a
(1, 0),

at which the bands touch, i.e., hx + ihy = 0. Close to either band-touching point, with q̃ ≡ q − 

Q±, the Hamiltonian has the 2D Dirac form

Ĥq

±
≈ ℏv ±q̃xσ̂x + q̃yσ̂y + ℎz

±
σ̂z

(34)
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with velocity v = (3/2)Ja/ℏ. The terms ℎz
± arise from effects other than nearest-neighbor 

tunneling and open gaps at the Dirac points between the two bands. One such effect is an 

energy splitting Δ between A and B sublattices. In this case the coefficients ℎz
+ and ℎz

− are 

both equal to Δ and the gap openings at the two Dirac points are equivalent. This causes the 
resulting Bloch bands to have vanishing Chern number, so the two resulting bands are 
nontopological. This is consistent with the fact that this model has TRS. Introducing next-
nearest-neighbor hopping with the Aharonov-Bohm phase ϕAB ≠ 0 mod π breaks TRS and 

provides a term with ℎz
+ = − ℎz

− for which the Chern numbers of the bands are 1 and −1. 

Figure 3 shows how e(q) varies in reciprocal space in this topological phase.

The preceding discussions are somewhat abstract, focusing on mathematical aspects of the 
energy bands in 2D. However, the Chern number has direct physical consequences. As first 
shown by Thouless et al. (1982), a band insulator exhibits the integer quantum Hall effect if 
the total Chern number of the filled bands is nonzero, with a Hall conductivity quantized at 
C times the fundamental unit of conductance e2/h. This result can be extended to systems 

subjected to disorder and interparticle interactions by defining a Chern number for the 
many-body ground state in a geometry with periodic boundary conditions (Niu, Thouless, 
and Wu, 1985). For noninteracting systems without translational invariance, a local Chern 
marker can be defined (Bianco and Resta, 2011). The quantization of the Hall conductance 
is intimately related to the existence of edge states, which we now discuss.

D. Edge states

Topological band insulators have the generic feature that although they are bulk insulators—
owing to the energy gap between the filled and empty bands—they host gapless states on 
their surfaces.

The existence of gapless edge modes for 2D systems with nonzero Chern number is well 
known from studies of the integer quantum Hall effect (Halperin, 1982). Each filled Landau 
level gives rise to a chiral edge mode. This can be understood semiclassically in terms of the 
skipping orbit of the cyclotron motion around the edge of the sample; see Fig. 4. These 
semiclassical skipping orbits consist of two features. The rapid skipping motion at the 
cyclotron frequency is a feature which in a quantum description arises when the wave 
function has nonzero amplitude in more than one Landau level, such that its time 
dependence involves the Landau level energy spacing (cyclotron energy); it is therefore 
related to the inter-Landau level excitation known as a “magnetoplasmon.” The drift of the 
guiding center of the orbit around the perimeter of the sample is a feature that exists for 
quantum states within a single Landau level and that represents the chiral edge mode of that 
Landau level. The existence of these edge modes is required for consistency of the quantized 
bulk Hall conductance (Laughlin, 1981).

More generally, gapless edge states occur at the boundary between two insulating regions 
with different values of a topological invariant. A simple semiclassical view of these gapless 
regions is provided by considering the boundary to arise from a smooth spatial variation in 
the parameters of the Hamiltonian, between two phases with different topological indices. 
Since the two insulators far to the left and far to the right of the boundary are topologically 
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distinct, at some point in space the gap between the filled and empty bands must close. This 
gap closing motivates the existence of gapless edge states. While this semiclassical argument 
applies only for smooth variations in space, the result is a robust feature for any form of 
boundary, referred to as the bulk-boundary correspondence (Hasan and Kane, 2010). The 
only restriction is that, in cases where the topological invariant relies on an underlying 
symmetry, this symmetry must be preserved also in the boundary region. This is illustrated 
later for the edge state of the SSH model.

We demonstrate the emergence of edge states in the SSH and Haldane models within 
continuum approximations for which the edge state wave functions take simple analytic 
forms.

1. SSH model—Consider a 1D band insulator formed by filling the lower energy band of 
a Hamiltonian of the form (18), which is purely nondiagonal in the sublattice basis and 
parametrized by the two-component vector (hx, hy). This restriction on the form of the 
Hamiltonian arises from the chiral symmetry of the model as discussed further in Sec. II.E. 
Let the properties of the system depend on some quantity M such that 

ℎx + iℎy ≡ |ℎ(q, M) | eiϕ(q, M) is a function of both wave vector q and M. We introduce a 

boundary between two gapped phases at position x = 0 by allowing M(x) to vary slowly in 
space, as compared to the lattice constant α and setting M(x ≪ 0) = M− and 

M(x ≫ 0) = M+. The two phases are characterized by winding numbers N± (23) computed 

from ϕ(q, M±). It is straightforward to show that ℎx + iℎy must have N− − N+ vortices within 

the boundary region; see Fig. 5. So if N+ ≠ N− then |h(q, M)| must vanish at certain points 

(q, M): these are the gap-closing points, discussed semiclassically, which lead to gapless 
edge states.

For the SSH model, ℎx + iℎy = J′ + Jeiqa, the gap-closing point (J′/J = 1, qa = π) hosts a 

single vortex. Defining M = 1 − J′/J and q̃ = q − π/a, we expand the Hamiltonian around 

M = q̃ = 0 to first order in q̃ (suitable for the continuum limit, |q̃ | ≪ 1/a) to give

Ĥ
SSH

/J ≈ q̃aσ̂y + M(x)σ̂x
(35)

= − iaσ̂y ∂x + M(x)σ̂x . (36)

In the last line we replaced q̃ by −i∂x to give a 1D Dirac Hamiltonian in which M(x) can be 

viewed as a spatially varying “mass.” This was a model studied by Jackiw and Rebbi (1976), 
who showed that, provided M(x) changes sign, there is a solution that is localized at the 
boundary with exactly zero energy. For M+ > 0 and M− < 0, this is

|Ψ〉 = e−∫0
x

M x′ dx′/aeiπx/a

0
. (37)
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That the state is an eigenstate of σ̂z with |σz = + 1〉 indicates that it has nonzero amplitude 

only on the A sublattice. M+ < 0 and M− > 0 the nonzero amplitude would be on the B 

sublattice. This is the gapless edge mode of the SSH model which arises because M± 

describe different topological phases. That the state has energy E = 0 is a consequence of a 
chiral symmetry that protects the relevant 1D topological invariant, as discussed in Sec. II.E. 
If the Hamiltonian were to depart from this chiral form, for example, by including terms hz 

that couple to σ̂z, the energy of this subgap state would depart from E = 0. This could occur 

either by a change of the bulk Hamiltonian or due to breaking of the symmetry near the 
edge: for example, arising from an on-site potential that shifts the energy of the A site 
relative to the B site near the edge.

Although we derived this edge state for a continuum model, the properties are robust to 
lattice effects provided the chiral symmetry is preserved. A derivation of the edge state of 
the SSH model for a sharp boundary is provided in Appendix A.1.

2. Haldane model—one can use this solution for the edge state of the SSH model to 
construct a 1D band of edge states on a surface of the topological band insulator formed 
from the Haldane model. Consider the low-energy theory for the Haldane model (34) in a 

topological phase with ℎz
± = ∓ |H|. We impose a boundary to a nontopological phase at x > 

xR by adding a spatially dependent energy offset Δ(x)σ̂z, such that ℎz
±(x) = Δ(x) ∓ |H|. The 

low-energy Hamiltonians close to Q± become

Ĥq

±
≈ ∓ iℏvσ̂x∂x + ℎz

±(x)σ̂z + ℏvq̃yσ̂y
(38)

where we replaced q̃x − i∂x. Translational invariance is maintained along the y direction, 

such that qy (and therefore q̃y = qy − Qy
±) is conserved.

For Δ(x) an increasing function of x at x > 0 there is a boundary between topological (x < 

xR) and nontopological (x > xR) regions where Δ(xR) = |H|. At this point, ℎz
+(xR) = 0 so the 

gap at Q+ vanishes. The low-energy Hamiltonian close to Q+ (38) takes the form of the 
Jackiw-Rebbi Hamiltonian (36), just under a permutation of the Pauli matrices 

σ̂x, σ̂y, σ̂z σ̂y, σ̂z, σ̂x , plus a term ℏvq̃yσ̂y for which the zero mode (37) is also an 

eigenstate (noting the permutation of the Pauli matrices), with eigenvalue Eqy
R = ℏvq̃x. This is 

the chiral edge mode, which propagates along the right-hand boundary xR at velocity vey. 
For a finite-width strip, with another boundary to a nontopological phase at x < xL, there is 

an edge mode with the opposite velocity Eqy
L = − ℏvq̃y. The dispersion is illustrated in Fig. 6.

E. Topological insulators

1. Discrete symmetries—The Chern number for 2D systems is an example of a 
topological invariant for energy bands in a setting where no symmetries constrain the form 
of the Hamiltonian. The field of topological insulators arose from the realization that, when 
one constrains the Hamiltonian to have additional symmetries, new topological invariants 
emerge in various spatial dimensions. The general theory of symmetry-protected topological 
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invariants for gapped fermionic systems concerns global symmetries—time-reversal, 
particle-hole symmetry, chiral symmetry—which make no reference to spatial structure or 
dimension (Altland and Zirnbauer, 1997). These define ten distinct symmetry classes which, 
combined with the spatial dimensionality, determine the possible topological invariants 
(Chiu et al., 2016). An important example is time-reversal symmetry which leads to the 
existence of a ℤ2 topological invariant in 2D and 3D for electronic systems with spin-orbit 

coupling. This led to the discovery of materials which behave as topological insulators in 
these dimensions (Hasan and Kane, 2010; Qi and Zhang, 2011). Furthermore, this formalism 
also allows a unified description of topological superfluids, formed from the pairing of 
fermions. Within the Bardeen-Cooper-Schrieffer (BCS) mean-field theory, the spectrum of 
quasiparticle excitations of such superfluids is obtained from the Bogoliubov–de Gennes 
(BdG) theory, which takes the form of a noninteracting fermionic system albeit with 
anomalous terms that mix particle and hole excitations. The intrinsic particle-hole symmetry 
of the BdG theory stabilizes gapped topological superfluids. We discuss such topological 
superfluids in Sec. V.B.2.

Here we explore the physics of symmetry-protected topological band insulators in the 
context of the SSH model previously described. This provides an example of a topological 
band insulator that arises in 1D when there is an underlying chiral symmetry. This chiral 

symmetry arises from the existence of a unitary operator Û that anticommutes with the 

Hamiltonian Ĥ

Ĥ Û = − Û Ĥ (39)

Then for an energy eigenstate |Ψ〉 of eigenvalue E, the state Û |Ψ〉 is readily shown to be an 

energy eigenstate with energy −E. Thus, the chiral symmetry enforces a symmetry on the 
spectrum about E = 0. This rather formal construction arises in tight-binding models, such as 
the SSH model, in which the Hamiltonian involves only terms that hop between two 

different sublattices (labeled A and B). Defining P̂A/B as projectors onto the A/B sublattices, 

then Û ≡ (P̂A − P̂B) satisfies Eq. (39) if P̂AĤP̂A = P̂BĤP̂B = 0 i.e., provided the 

Hamiltonian Ĥ couples only A and B sublattices. The chiral symmetry constrains the 

Hamiltonian for the SSH model (18) to be off diagonal in the sublattice basis. As described 
in Sec. II.C.1 this form ensures that the winding number is a topological invariant. 
Furthermore, the symmetry of the energy spectrum ensures that the edge mode, found in 

Sec. II.D.1, is at exactly zero energy E = 0 and is also an eigenstate of Û = P̂A − P̂B. This 

implies that there is at least one zero energy in-gap mode, but other nonzero energy in-gap 
modes are allowed by chiral symmetry provided they come in ±E pairs. For boundaries that 
break the chiral symmetry, the in-gap states will have no particular relation to zero energy. A 
disordered potential that acts differently on the two sublattice sites will break chiral 
symmetry and also shift the energies of in-gap states away from zero energy. However, if the 
disorder is such that Eq. (39) is preserved, the topology of this model is robust and the in-
gap states remain at zero energy.
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2. The Rice-Mele model—Since the topological invariant of the SSH model is ensured 
by a (chiral) symmetry, it is possible to smoothly evolve between states with different 
topological invariants by breaking this symmetry. To illustrate this, we study the Rice-Mele 
model which generalizes the SSH model by relaxing the assumption that the A and B sites 
have the same energy and assigning energy offsets ±Δ. The Hamiltonian (17) is replaced by

Ĥq

RM
=

Δ −J′ − Je−iqa

−J′ − Jeiqa −Δ
(40)

within the BZ−π/a < q ≤ π/a. The two bands have energies

Eq
( ± ) = ± [Δ2 + |J′ + Je−iqa|

2
]
1/2

, (41)

and so are separated by a gap provided Δ ≠ 0. (For Δ = 0 the gap closes at the topological 
transition of the SSH model J′/J = 1.) The eigenstate of the lower band can be written as

|uq
( − )〉 =

sin γq/2

−eiϕqcos γq/2
(42)

with γq and ϕq defined by − J′ + Je−iqa /Δ ≡ tanγqe−iϕq. The resulting Zak phase (14) is 

shown in Fig. 7 (left) as a function of J′/J and Δ/J. Along the line Δ = 0 the Zak phase steps 

by π across J′/J = 1, consistent with the change in winding number by one at the 

topological transition of the SSH model, and Eq. (23). However, note that the gapped band 
insulators at Δ = 0, J′/J > 1 and Δ = 0, J′/J < 1 can now be continuously connected by 

tracing out a path that has Δ ≠ 0 when J′/J = 1 (Fig. 7, right).

F. Adiabatic pumping

Consider again the Rice-Mele model, whose Zak phase is illustrated in Fig. 7. There is a 
vortex in ϕZak around the gap-closing point (Δ = 0 and J′/J = 1) at which the Zak phase is 

undefined. The winding of ϕZak by 2π around a closed loop encircling the gapless point, 
such as the loop shown in Fig. 7, is a topological invariant of the model: this winding is 
preserved under smooth variations of the Rice-Mele Hamiltonian that do not cause the gap 
to close on this loop.

The existence of this invariant is at the basis of the concept of a quantized pump (Thouless, 
1983). It describes the generic situation of a crystal with filled bands, which is characterized 
by parameters that can be externally controlled. When these parameters are varied around a 
closed loop, the number of particles that are transported is quantized. It is thus a robust 
quantity that is not affected by a small change of the geometry of the loop in parameter 
space. Note that at this stage no intuition has been provided on the mechanism at the basis of 
the transport, nor its direction. For a physical discussion see Sec. IV.C.1, in particular, Fig. 
22.

This quantization has the same topological origin as the integer quantum Hall effect. To see 
this, consider tracing out the closed loop in parameter space as time t varies from t = 0 to t = 
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T. The Zak phase at any given time t is defined by the integral of the Berry connection along 
the BZ−π/a < q ≤ π/a at that instant. The change in Zak phase between any two times t1 and 

t2 can be written as a line integral

ϕZak t1 − ϕZak t2 ≡ ∮
ℒ

A ⋅ dq (43)

where we label the position in the q–t plane by a two-component vector q = (q1, q2) = (q, t) 
and the associated Berry connection Ai ≡ i〈uq| ∂i|uq〉, with ∂1 ≡ ∂ / ∂q and ∂2 ≡ ∂ / ∂t. The 

integration contour ℒ is shown in Fig. 8. The horizontal lines at fixed t = t1 and t = t2 

recover ϕZak t1 − ϕZak t2 , while the integrals on the lines at q = ±π/a cancel as a result of 

the periodicity of the BZ. Applying Stokes’s theorem, the line integral in Eq. (43) can be 
written as the integral of the Berry curvature Ω = ϵij∂iAj over the area bounded by ℒ. The 

fact that the parameters of the Hamiltonian return to their original values as t = 0 → T 
enforces periodicity also in t, such that the q−t plane has the topology of a torus. Thus, 
extending the contour to enclose the full region from t = 0 to t = T, thereby computing 
ϕZak(0) − ϕZak(T ), recovers 2π times a Chern number. The relevant integral is entirely 

analogous to Eq. (27) with the measure d2q replaced by dqdt.

The link between the winding of ϕZak and the transported particle number for a filled band 
can be established using arguments detailed in Appendix A.4. The transported particle 
number is determined by computing the change in the mean particle position Δx over one 
cycle of the pump, averaged over all states in the band. The result is that this net 
displacement of particles over one cycle, for example, the closed loop in Fig. 7, is

Δx =
a

2π
ϕZak(T ) − ϕZak(0) . (44)

Because ϕZak(T) equals ϕZak(0) plus 2π times the winding number corresponding to the 
vortex of Fig. 7, the displacement is quantized in units of the lattice period α. When the 
band is filled with exactly one particle per state, this entails the quantization of the number 
of transported particles.

III. IMPLEMENTATIONS OF TOPOLOGICAL LATTICES

To this point in this review, we have developed our understanding of lattices and discussed 
how topology presents additional “labels” tied to individual Bloch bands: providing a new 
way to categorize band structure. This section takes the next step and describes the currently 
implemented techniques by which 1D and 2D band structures with nontrivial topology have 
been created.

A. Iconic models

Cold atom experiments are often able to nearly perfectly realize iconic topological models 
from condensed matter theory. Here we briefly describe two such models—the Harper-
Hofstadter model (Harper, 1955; Hofstadter, 1976) and the Haldane model (Haldane, 1988)
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—as particularly simple examples of topological lattices and explore what is essential about 
each of these models. This allows us to place experimental approaches in context and to 
identify what types of new terms must be added to standard optical lattices.

1. Harper-Hofstadter model—The Harper-Hofstadter model, describing charged 
particles in a square lattice with a uniform of magnetic field, derives from the simple 2D 
tight-binding Hamiltonian

Ĥ = − J∑
j, m

(âj + 1, m
†

âj, m + âj, m + 1
†

âj, m + H . c . ) (45)

for particles hopping in a square lattice with tunneling strength J. Each individual site of this 
lattice is labeled a pair of integers j and m. The first term in Eq. (45) denotes tunneling along 
the j direction (horizontal) and the second term marks tunneling along the m direction 
(vertical). This model results in a single, nontopological, cosinusoidal band with full width 
8J.

As shown in Fig. 9(a), our task is to imbue the tunneling matrix elements with nonzero 
Peierls phase factors so that the phase accrued by a particle encircling a single plaquette is 
ϕAB, equivalent to the Aharonov-Bohm phase ϕAB = qBA/ℏ acquired by a particle with 

charge q moved around a plaquette of area A. The resulting complex tunneling matrix 
elements are required to break time-reversal symmetry and allow a nonzero Chern number. 
As can be confirmed by the phases depicted in Fig. 9(a), the associated Harper-Hofstadter 
Hamiltonian expressed in the Landau gauge

Ĥ = − J∑
j, m

(eimϕABâj + 1, m
†

âj, m + âj, m + 1
†

âj, m + H . c . ), (46)

gives a phase ϕAB for tunneling around each plaquette. For rational ϕAB/2π = p/q, expressed 
in reduced form, the single band of Eq. (45) fragments into q (generally) topological bands, 
with zero aggregate Chern number.

We can focus in on the essential features of this model by considering the special case of 

one-third flux per unit cell, i.e., ϕAB = 2π/3. First take note of the tunneling phase eimϕAB for 

motion along j: As shown in Fig. 9(a), this tunneling phase depends on m and has a spatial 
period of three lattice sites, implying that the lattice’s unit cell is enlarged beyond the 
plaquettes of the underlying square lattice (the unit cells without magnetic flux) to three 
plaquettes at ϕAB = 2π/3. In Fig. 9(b), these unit cells are graphically indicated by the gray 

dashed lines, with a representative unit cell shaded (light blue) for clarity. Each of these unit 
cells is identified by integers j and M. In order to distinguish between the three inequivalent 
sublattice sites within each unit cell, we introduce also the site index s = − 1, 0, + 1, related 

to the individual plaquette index m via m = 3M + s.

As a result of this expanded unit cell, the associated Brillouin zone is reduced to 1/3 of its 
initial size along the m direction, and the number of bands correspondingly increases from 1 
to 3. Following textbook techniques, we express this Hamiltonian in the Fourier 
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representation, i.e., giving states labeled by their crystal momentum q = (qj, qm) along with 

the sublattice index s, i.e., for ϕAB = 2π/3 the states are |q, − 1〉, |q, 0〉, |q, + 1〉 . For each 

crystal momentum q the Hamiltonian matrix coupling these sublattice sites together is

Hq = − J

2cos qja − 2π/3 1 exp iqm 3as

1 2cos qja 1

exp −iqm 3as 1 2cos qja + 2π/3

, (47)

where a and as denote the nearest-neighbor lattice spacings in the directions of increasing j 
and m, respectively. (Even if m denotes a “synthetic dimension” the notion of length as 

remains a useful bookkeeping device, by which 3as is the side of the expanded unit cell.) 
The three eigenvalues of this matrix define three separate bands. Figure 9(c) shows the 
resulting band structure, where each of the three bands is endowed with a nonzero Chern 
number. The expansion of the unit cell to contain three sublattice sites is essential for the 
formation of topological bands. Recall that Chern numbers are derived from the integrated 
Berry curvature over the Brillouin zone. For a tight-binding model, the Berry curvature can 
only be nonzero when each Bloch wave function has a spin or pseudospin degree of 
freedom, here provided by the sublattice degree of freedom.

In Sec. III.D we describe how to experimentally imprint these hopping phases using tailored 
laser fields and will comment on the limitations of different experimental approaches.

2. Haldane model—The Haldane model (Haldane, 1988), an extension of the well-
known honeycomb lattice, was an early model of topological band structure but without the 
presence of an overall magnetic field which requires the expansion of the unit cell size. 
Figure 10(a) plots the Haldane lattice in the conventional honeycomb geometry. We also 
show its deformation to a “brick-wall” geometry most relevant for its experimental 
realization with cold atoms. The tunneling matrix elements (black solid lines) with strength J 
define the underlying honeycomb lattice, along the three nearest-neighbor bonds. As 
indicated, even the simple honeycomb lattice describes a dimerized lattice with |A〉 and |B〉

sublattice sites (possibly offset in energy by ±Δ), making it an ideal starting point for 
realizing topological band structures. Figure 10(b) shows the resulting two bands kissing at a 
pair of Dirac points. Haldane’s addition of next-nearest-neighbor tunneling with strength J′ 
and phase ϕAB [pink dashed lines in Fig. 10(a), along bonds connecting sites of the same 
sublattice] renders this model topological.

This Hamiltonian too can be readily expressed in a crystal momentum-dependent matrix, 
now with two contributions. First the energy offset and nearest-neighbor tunneling from the 
underlying honeycomb lattice contribute the matrix

Hq, 0 =

Δ −J∑
i

exp −iq ⋅ ρi

−J∑
i

exp iq ⋅ ρi −Δ
, (48)

and the next-nearest-neighbor links contribute a second term
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Hq, 1 = − 2J′

∑
i

cos q ⋅ Ai − ϕAB 0

0 ∑
i

cos q ⋅ Ai + ϕAB

. (49)

We have defined A1 = a1, A2 = −a2, A3 = a2 − a1, with the vectors ρi and ai labeling nearest-
neighbor and next-nearest-neighbor separations as indicated in Fig. 3(a). (For practical 
realizations of the brick-wall lattice, the next-nearest-neighbor coupling, along A3, is 
suppressed compared to couplings along A1,2. However, we use equal strengths for all in 
Fig. 10.)

Figure 10(b) plots the topological phase diagram associated with this model as a function of 
the Aharonov-Bohm tunneling phases ϕAB and tilt 2Δ. This system supports three distinct 
topological regions: zones with Chern number ±1, with the majority of parameter space in 
the topologically trivial phase with Chern number 0.

The Haldane model is particularly amenable to experimental study because tuning 
experimental parameters such as ϕAB can directly drive topological phase transitions. While 
for the Harper-Hofstadter lattice, tuning ϕAB does lead to different Chern numbers, the size 
of the unit cell also changes, leading to more dramatic changes in the band structure. In Sec. 
III.C we show how strongly driving the parameters of a brick-wall lattice can break time-
reversal symmetry and imbue the lattice’s two bands with nontrivial topology.

In these examples of topological band structure, we identified two common elements that 
experimentalists need to introduce to create nontrivial topology: complex-valued tunneling 
matrix elements and unit cells with more than one underlying lattice site or spin degree of 
freedom.

B. Realization of SSH model

The 1D SSH model of polyacetylene and its generalization the Rice-Mele model are among 
the most simple topological models to realize. As described in Sec. II.E.2, the Rice-Mele 
model, Eq. (40), consists of a bipartite 1D lattice with tunneling strengths alternating 
between J and J′, and energies of the two sublattice sites, staggered by ±Δ.

Figure 11(a) depicts a typical laser system required to approximate this idealized model, 
similar to the experimental realization of Atala et al. (2013). Here a conventional 1D optical 
lattice with period λ0/2 is generated by a pair of counterpropagating lasers each with 
wavelength λ0. In this lattice, the tunneling is uniform with strength J0 and the energy 
minima of the lattice sites are degenerate, as indicated by the pale blue dotted curve in Fig. 
11(b). A second, weaker, lattice with period λ0, generated by a laser with wavelength 2λ0 

[pink dashed curve in Fig. 11(b)], gives a combined potential [black solid curve in Fig. 
11(b)] with generally staggered energy minima and alternating tunneling. This gives the 
overall potential

V (x) = V short sin2
kRx + V long sin2

kRx + ϕ /2 , (50)
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where we defined the single-photon recoil momentum ℏkR = 2πℏ/λ0, the associated recoil 

energy ER = ℏ2
kR

2 /2m, and the atomic mass m of the atom under study.

Figure 11(c) shows the Zak phase ϕZak, Eq. (14), computed for this physical system in terms 
of the experimental control parameters. This figure depicts the singularity expected when 
Vlong = 0, which at ϕ = π/2 corresponds to the location of the topological transition in the 
SSH model when J = J′.

Figure 12 shows the bottom part of the infinite band spectrum for Vshort = 6ER and Vlong = 
1ER, with the relative phase set to ϕ = π/2. The right part of this figure shows a zoom on the 
lowest pair of bands, which are the only relevant ones when the temperature and the 
interaction energies are comparable to or lower than ER. The result for Vlong = 0 is indicated 
for comparison with dotted lines. The BZ is reduced in size by a factor of 2 as compared to 
that of the short period lattice only. This is reflected by the Vlong = 0 bands touching at the 
edge of the BZ; in 1D this marks each such linked pair as truly being one band in a doubled 
BZ.

Then the additional independent control of both J , J′, and Δ requires two additional 

experimental degrees of freedom. In this realization these parameters are the relative phase ϕ 
of the long and short period lattices (displacing one lattice with respect to the other) and the 
depth of the long period lattice Vlong. Figure 12 has been calculated for ϕ = π/2, in which 
case all minima of V(x) have the same energy while the barrier heights between adjacent 
minima alternate between two values. This realizes the SSH model and the dashed lines in 
the right panel of Fig. 12 show a fit of the SSH prediction (20) to the two lowest bands, 
providing thus the relevant values of J and J′.

Model parameters: The Vshort = 6ER short period lattice depth used in these simulations, 
a typical laboratory scale, sets the nominal tunneling strength of J ≈ 0.05ER. Intuitively, we 
expect that the energy difference between the minima to be about Vlong cos(ϕ). Similarly, the 
barriers between the sites differ in height by roughly Vlong sin(ϕ). The tunneling strength in 
the effective SSH model has a nontrivial, but monotonically decreasing, exponential-type 
behavior in the barrier height. This then begs the question of obtaining the parameters of the 
Rice-Mele model in Eq. (40), including the two tunneling strengths J and J′ along with the 

energy difference Δ between sublattice sites.

First, recall that the band structure of simple 1D optical lattice potential V sin2
kRx  only 

approaches that of a tight-binding model with nearest-neighbor tunneling when V ≫ ER. For 

nearest-neighbor tunneling strength J, the resulting dispersion is simply −2Jcos πq/kR . As a 

result the effective nearest-neighbor tunneling strength can be directly obtained from the 
lowest term in a Fourier expansion of the band structure of the physical 1D optical lattice. 
[The higher terms in the series describe longer range tunneling, which becomes negligible 
for deep lattices; see Jiménez-García and Spielman (2013) for an introduction.] This 
approach is insufficient for the Rice-Mele band structure 

± Δ2 + δJ
2 + (4J

2 − δJ
2)cos2 πq/kR

1/2
, because fits to this dispersion alone cannot 
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effectively disentangle Δ from δJ = J − J′, nor δJ from J = J + J′ /2. One practical 

resolution to this difficulty is to employ symmetry and evaluate the band structure of the 
bipartite lattice for two cases: first compute the band structure for ϕ = 0 where J and J′ are 

manifestly equal, and then compute the band structure for ϕ = π/2 where Δ = 0. This then 
allows for the independent determination of Δ, J, and J′. For example, for Vshort = 6ER and 
Vlong = ER this procedure gives J = 0.053ER, almost independent of ϕ. For ϕ = 0, we further 

find Δ = 0.43ER and δJ = 0, while for ϕ = π/2, this becomes Δ = 0 and δJ = 0.032ER.

C. Inertial forces

The common experience of starting water in a pail spinning by moving the bucket in a 
circular manner, not rotating the bucket, suggests that applied inertial forces might produce 
effects akin to those present in rotating systems: described best by effective Lorentz forces. 
We see later how these ideas are implemented for ultracold atoms in optical lattices and also 
come to understand the limitations of these approaches.

The tight-binding model depicted in Eq. (45) is representative of the tunnel-coupling 
structure present for atoms confined in optical lattices. It is of particular importance that the 
tunneling matrix elements J are real valued (more specifically, transformations between 
different gauges can introduce “trivial” complex amplitudes to the tunneling matrix 
elements, but in these simple lattices there always exists a gauge choice for which the 
amplitudes are real valued). In this section we develop a simple model illustrating how 
inertial forces (linear potential gradients or equivalently spatially shaking the lattice 
potential) can add tunable complex hopping phases to these matrix elements.

From a quantum mechanical perspective the essential concept is to engineer nontrivial 
phases acquired by the unitary evolution of a time-periodic Hamiltonian which can be cast 
as complex hopping amplitudes in an effective time-independent Hamiltonian. This physics 
is minimally captured by the tunnel-coupled pair of lattices sites shown in Fig. 13, 
essentially comprising a single unit cell of the Rice-Mele model. We aim for a two-site 
model described by the Hamiltonian

Ĥ = − J(|r〉 〈l|eiϕP + |l〉 〈r | e−iϕP) + Δ( |r〉 〈r | − | l〉 〈l | )
= − Jcos(ϕP)σ̂x + Jsin(ϕP)σ̂y + Δσ̂z,

(51)

including a laboratory-controllable tunneling phase ϕP, alas, our lattice is born with ϕP = 0. 
In the second line we expressed this Hamiltonian in terms of the Pauli operators σ̂x, y, z, 

allowing us to follow a simple analysis of a spin-1/2 system (Haroche et al., 1970).

We earlier noted that gauge transformations can introduce complex-valued tunneling phases. 
A gauge transformation is simply a position-dependent unitary transformation that adjusts 
the local phase of the wave function and compensates the Hamiltonian accordingly; in our 
double-well model, a gauge transformation in the spatial picture becomes a σ̂z rotation in the 

spin picture. Evidently, the Peierls phase factor ϕP can be fixed to a nonzero value by the 
choice of gauge. Since such a choice is of no physical consequence, it is instead the ability 
to change ϕP (either spatially to induce Aharonov-Bohm fluxes or temporally to induce 
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artificial electric fields) that is the essential content of this discussion. Here we adopt the 
most straightforward gauge choice that sets ϕP = 0 for unadulterated lattices.

In the following, we show how a time-periodic linear gradient provides control over both the 
tunneling amplitude J and phase ϕP. In our two-site model, this modulation (i.e., detuning) is 
described by Δ(t) = Δ(t + T), with period T, angular frequency ω = 2π/T , and with zero per-

cycle average 〈Δ(t)〉T = 0.

It is straightforward to eliminate the time-dependent Δ(t) term in Eq. (51) (initially, with ϕP 

= 0) by making the unitary transformation

|ψ′(t)〉 = exp
i
ℏ∫0

t

Δ t′ σ̂zdt′ |ψ(t)〉; (52)

in the language of quantum optics this is akin to the transformation into the time-dependent 
“interaction” picture. Since this transformation is a σ̂z rotation it is equivalent to a time-

dependent gauge transformation, leading to a nonzero, time-dependent Peierls phase factor

ϕP(t) =
2
ℏ∫0

t

Δ t′ dt′ . (53)

When the modulation frequency’s associated energy ℏω is greatly in excess of the tunneling 

J, we make a rotating wave approximation to replace the time-dependent terms introduced 
by this rotation by their time averages, giving the time-averaged interaction picture 
Hamiltonian

Ĥ = − J〈cosϕP(t)〉T σ̂x + J〈sinϕP(t)〉T σ̂y, (54)

with a potentially nonzero dc Peierls phase factor

tan(ϕP,dc) =
〈sinϕP(t)〉T

〈cosϕP(t)〉T
. (55)

Physically, the time-dependent gauge transformation in Eq. (52) allows the system to sample 
a range of Peierls phase factors and retain a nonzero average. In effect, our task is to make 
〈sinϕP(t)〉T  nonzero, and because sin is an odd function we seek a waveform ϕP(t) that takes 

on positive and negative values in an “imbalanced” manner.

The most simple example to deploy in the laboratory is a monochromatic sinusoidal 
modulation Δ(t) = Δcos(ωt) of the tilt. In this case, the Bessel series expansion gives 

〈cosϕP(t)〉T = J0(2Δ/ℏω) and 〈sinϕP(t)〉T = 0. Because the integrated sinusoidal waveform 

takes on positive and negative values with equal frequency the average tunneling phase is 
zero; however, this modulation does renormalize the tunneling strength J J × J0(2Δ/ℏω)

as was observed experimentally (Lignier et al., 2007). While monochromatic sinusoidal 
modulation is simple to deploy, it can obscure the underlying physics, rapidly becoming a 
tangle of Bessel functions.
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Instead consider a waveform consisting of two delta-function “kicks” in each drive cycle 
(Sørensen, Demler, and Lukin, 2005; Anderson, Spielman, and Juzeliūnas, 2013), the first 
with strength Δ/ω at time t = 0 and the second with strength −Δ/ω at time f × T, a fraction f 
through the drive period T. Integrating this waveform gives the time-dependent peierls phase 
factor

ϕP(t) =
2Δ
ℏω

×
1 − f for 0 ≤ t ≤ fT ,

−f for fT < t ≤ T ,
(56)

a pulse-width modulated waveform with zero average, with duty cycle f ∈ [0, 1). For 

f ∉ {0, 1/2}, the resulting asymmetric and skewed waveform leads to a nonzero average of 

〈sinϕP(t)〉T .

For the special case Δ/ℏω = π, the time-averaged Peierls phase factor is 

ϕP,dc = − 2π(f − 1/2) with tunneling strength unchanged at J. The basic physical picture is 

that after an atom tunnels between sites it acquires a phase different from what it would have 
acquired on its initial site, and ϕP,dc expresses the differential phase acquired upon returning 

to its initial site. The time-dependent phase ϕP(t) must break time-reversal symmetry to give 

a nonzero average of sin ϕP(t). Figure 13(c) depicts the first experimental realization of a 

nonzero peierls phase factor imprinted using inertial forces (Struck et al., 2013). Rather than 
tilting the lattice potential, Struck et al. (2013) found it more convenient to spatially shake 
the lattice potential by modulating the phase of the lasers creating the optical standing wave, 

giving the potential V (x̂, t) = V 0cos 2kR(x̂ − δx(t)) /2. Here V0 is the lattice depth and kR is 

the two-photon recoil momentum from the wavelength λ of the lasers creating the lattice 
potential.

Although this shaking process is physically quite different from applying a time-dependent 
gradient, they are functionally equivalent. The connection between the two can be seen 
clearly in terms of a pair of time-dependent transformations. We begin by using the spatial 

displacement operator D̂x[ − δx(t)] = exp[ik̂δx(t)] to transform to the non-inertial frame 

comoving with the lattice, i.e., D̂x[ − δx(t)]x̂ D̂x[ − δx(t)]† = x̂ + δx(t). This exchanges the 

lattice’s motion for a new time-dependent contribution to the Hamiltonian −ℏk̂ ∂tδx(t). The 

once-transformed Hamiltonian

Ĥ
(1)

(t) =
ℏ2

2m
k̂ −

m

ℏ
∂tδx(t)

2
+

V 0
2

cos 2kRx̂

−
m

2
∂tδx(t) 2

(57)

contains a new time-dependent vector potential and a global time-dependent energy shift 

that does not impact the system’s dynamics. Evoking Hamilton’s equation ẋ = ∂ℏkĤ, we see 

that the appearance of this vector potential simply describes the fact that in the moving 
frame the velocity of an object differs from that in the lab frame by the instantaneous 
velocity of the moving frame − ∂tδx.
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We complete our argument using the time-dependent momentum displacement operator 

D̂k[ − δk(t)] = exp[ − iδk(t)x̂], a gauge transformation, that converts the time-dependent vector 

potential into a potential gradient V̂ = m∂t
2
δx(t) x̂. This reminds us that inertial forces are 

present in accelerating frames and informs us that experimenters are free to use either 
shaken lattices or potential gradients equivalently to produce the inertial forces required to 
induce ϕP.

While this nonzero and uniform peierls phase factor is an essential first step for emulating 
Aharonov-Bohm fluxes, a uniform peierls phase factor in 1D can be eliminated via a gauge 
transformation (although any temporal change can still lead to effective electric fields). In 
contrast by moving to 2D systems such as in modulated and shaken honeycombgeometry 
lattices, this technique has nontrivial alterations to band structure (Struck et al., 2013) and 
including those topologically equivalent to the Haldane model (Jotzu et al., 2014).

We now extend our discussion to 2D to understand Aharonov-Bohm fluxes. Figure 13(d) 
depicts a minimal model of shaking in 2D; the top panel illustrates the two triangular 
plaquettes that make up a single unit cell of a triangular lattice, while the bottom panel 
graphs a shaking protocol that first accelerates parallel to the A-B link of the left plaquette 
(i.e., along ex), then accelerates parallel to B-C, and finally accelerates parallel to C-A. For 
each link, this protocol leads to the same time-dependent peierls phase factor given in Eq. 
(53), with each phase shifted in time by 2π/3, giving the same nonzero tunneling phase ϕP,dc 

to each side of the plaquette. This then leads to an overall Aharonov-Bohm ΦAB = ϕP,dc.

It might appear that our task is complete, but have we truly created a uniform Aharonov-
Bohm phase over all plaquettes? Unfortunately Struck et al. (2013) demonstrated that this is 
not the case. Following the same argument for the second (inverted) plaquette that completes 
a single unit cell shows that accumulated phases give a negative flux ΦAB = − ϕP,dc, leading 

to a staggered flux. Therefore on average the Aharonov-Bohm flux through this lattice is 
zero. One way to understand this is that the Peierls phase factors are created with uniform 
amplitude throughout the lattice, rather than with the linear dependence on position as for 
our Landau-gauge example of the Harper-Hofstadter Hamiltonian. Sørensen, Demler, and 
Lukin (2005) proposed remedying this by applying a potential whose gradient itself 
increased away from the systems center, which they termed a quadrupole potential.

Evidently shaking of this type does not provide a straightforward route for realizing 
Hamiltonians such as the Harper-Hofstadter model with uniform fields, but it has proven a 
successful route for creating a Haldane-type Hamiltonian that has a zero average flux but 
still with topological bands (Jotzu et al., 2014). Important to this realization is the fact that 
the effective Hamiltonian for the shaken lattice acquires a next-nearest-neighbor hopping 
with a nonzero Peierls phase factor. Beyond the time-averaged Hamiltonian discussed, 
perturbative corrections from the time-varying part of the nearest-neighbor tunneling lead to 

next-nearest-neighbor tunneling of order J′ J
2/ℏω, arising from a second-order process 

through an intermediate virtual state detuned by ℏω. Such terms are conveniently obtained 

from the Magnus expansion of this tight-binding model described in Appendix B. An 
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analysis of the effective model for the shaken lattice that goes beyond this Magnus 
expansion approach was provided by Modugno and Pettini (2017).

D. Resonant coupling: Laser-assisted tunneling

The previous section outlined the broad range of engineered tunnel couplings possible via 
temporal modulation of the parameters of the lasers underlying the lattice potential. While it 
was possible to create complex-valued tunneling, it was not possible to independently 
control the phase and amplitude of tunneling on each lattice link: more control is required. 
Following the ideas of Jaksch and Zoller (2003), we describe how such a fine-grained 
control is in principle possible using laser-assisted tunneling and how experimental 
implementations have approached this task. As we shall see, although this laser-assisted 
tunneling is effected by temporal modulation, the modulation results from additional lasers, 
rather than the lasers from which the underlying lattice is assembled.

The essential concept of this technique is straightforwardly illustrated in the 2D square 
lattice depicted in Fig. 14(a): the native tunneling along the vertical direction is first 
eliminated by applying a potential gradient (i.e., tilting the lattice), then coupling between 
neighboring lattices sites is reestablished with a traveling wave potential. Here the spatially 
nonuniform phase of the traveling wave is imprinted upon atoms as they are moved from site 
to site described by complex-valued tunneling amplitudes. Because local optical phases are 
relatively easy to control [for example, by creating higher-order optical modes such as 
Laguerre-Gauss modes, as was done by Chen et al. (2018)], these techniques in principle 
allow for more subtle engineering of the local Aharonov-Bohm phases than is possible with 
whole-scale modulation of lattice parameters. Still, current implementations (Aidelsburger et 
al., 2013; Miyake et al., 2013) rely only on the uniformly changing phase from plane waves 
to generate homogeneous fields.

The basic principle can be understood in terms of the same sort of two-level system 
discussed in Sec. III.C, but from a perspective in which the rotating wave approximation 
(RWA) is valid. In the present case, we focus on two neighboring lattice sites in Fig. 14(a), 
labeled by |j, m〉 and | j, m + 1〉 coupled by the traveling wave potential 

V R(x) = V Rsin 2kR ⋅ x − ωt) that locally modulates the potential intersecting em with angle θ. 

Physically this is directly realized (Aidelsburger et al., 2013; Miyake et al., 2013) by a pair 
of interfering lasers giving rise to a moving standing wave with periodicity λR/2, and recoil 
wave vector |kR| = 2π/λR (the wavelength λR incorporates all geometric factors present 
from the intersection angle between these lasers).

Midway between these two sites, at position x0 = a(j, m + 1/2), this potential is

V R(x) ≈
V R
2i

ei(2kR ⋅ x0 − ωt) 1 + 2ikR ⋅ (x − x0) − c . c . , (58)

to first order in position. In this expression (1) the first term describes a modulated, but 
spatially uniform shift in the potential with no physical consequence that may therefore be 
neglected; and (2) the horizontal, ej dependence drops out at this order because the localized 
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wave functions, both centered at aj, are symmetric and compact in square geometry optical 
lattices. The remaining terms add a modulated contribution to the detuning

Δ(t) ≈ kRacos(θ) V Rcos 2kR ⋅ x0 − ωt : (59)

the same sort of shaking potential we studied in Sec. III.C, now with an overall phase 
dependent on the center position x0. Here we focus on the limit in which ℏω = 2Δ ≫ J that 

leads to the time-independent RWA Hamiltonian

ĤRWA = − JRWA[|j, m + 1〉 〈j, m | eiϕRWA(m, j) + H . c], (60)

with double-well tunneling strength

JRWA = − J
V R
2Δ

kRacos(θ) (61)

and phase

ϕRWA(m, j) = 2kRa[jsinθ + m +
1
2

cosθ] . (62)

Here the local phase of the traveling wave potential 2kR ⋅ x0 at the double well is directly 

imprinted onto the atoms as they tunnel in the m direction, but not when they tunnel in the j 
direction. The result of this double-well analysis can be extended to the whole lattice, where 
the expression for ϕRWA is unchanged, and JRWA is qualitatively the same but quantitatively 

altered.

Summing the tunneling phase around any plaquette gives an Aharonov-Bohm flux

ΦAB = 2kRasinθ, (63)

with no spatial dependence. As a result, the RWA Hamiltonian is gauge equivalent to the 
Landau-gauge Harper-Hofstadter Hamiltonian

H = − ∑
j, m

Jâj + 1, m
†

âj, m + JRWAeijϕABâj, m + 1
†

âj, m + H . c.. (64)

This Hamiltonian was realized in the manner described by both the Munich and the 
Massachusetts Institute for Technology (MIT) groups (Aidelsburger et al., 2013; Miyake et 
al., 2013), illustrated in Fig. 14. The MIT group used a lattice derived from a 1064 nm laser, 
with a traveling wave generated by beams from the same laser intersecting the em axis at θ = 
π/4. This geometry gives a flux ΦAB/2π = 1/2 per plaquette and illustrates an important 

practical point of this technique. In a similar manner, but with a different laser geometry the 
Munich group realized 1/4 flux per plaquette. In both cases, the laser-induced tunneling 
strength is proportional to cos θ, while the Aharonov-gohm phase is proportional to sin θ, 
requiring a compromise dependent on the experimental goals. Following this initial 
experiment, the Munich group retooled their technique as pictured in Fig. 14(c) by using the 
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staggered potential inside individual four-site plaquettes and laser-induced hopping to 
establish tunneling along all the lattice directions, enabling the measurement of the Chern 
number (Aidelsburger et al., 2015); see Sec. IV.C.2.

E. Synthetic dimensions

The concept of synthetic dimensions is rooted in the fact that a lattice is no more than a set 
of states labeled by integers, e.g., j and m in the preceding discussions labeled the atoms at 
sites described by wave functions |j, m〉. This insight allows the creation of lattices that use 

the atoms’ internal or “spin” degrees of freedom as additional synthetic dimensions. Boada 
et al. (2012) and Celi et al. (2014) described how the techniques discussed in Sec. III.D can 
be used to create a lattice with one spatial dimension (denoted by j) and one synthetic 
dimension (denoted by m to evoke the atomic mF states from which it is built). Large 
artificial magnetic fields using synthetic dimensions were simultaneously realized at the 
National Institute of Standards and Technology (NIST) and the European Laboratory for 
Nonlinear Spectroscopy (LENS) (Mancini et al., 2015; Stuhl et al., 2015) using hyperfine 
ground states of bosonic 87Rb and fermionic 173Yb, respectively.

Both synthetic dimension experiments then replaced photon-assisted tunneling with two-
photon Raman transitions. Physically, these transitions simultaneously change the internal 
atomic state and impart the two-photon recoil momentum. For a 1D optical lattice—
essentially one chain along ej of the 1D lattice in Fig. 14—the spatially imprinted phase is 
ϕsyn = 2kRajsinθ. This expression is equivalent to Eq. (62) derived for photon-assisted 

tunneling, but without any dependence on m since the Raman laser’s k vector is always 
“perpendicular” to the synthetic m direction, rendering cosθ 0. This thereby eliminates the 

geometric compromise required to maximize the laser-assisted tunneling strength at 
simultaneously large flux.

Although synthetic dimension and photon-assisted tunneling experiments can produce the 
same sort of magnetic lattice geometrics, the techniques have important practical 
differences. For example, spin selective measurements allow the synthetic dimension lattice 
site to be measured with near-perfect “spatial” resolution. In addition the limited number of 
spin states (typically 3 to 5) produce synthetic dimension lattices with striplike geometrics 
with perfect hard-wall boundary conditions, rather than extended planes as for conventional 
2D optical lattices. In addition synthetic dimension lattice sites with the same spatial index j 
but with different internal index m are in reality spatially overlapping, so that the spatially 
local atom-atom interactions become anisotropic: long ranged in m and short ranged in j.

Both experimental synthetic dimension realizations [87Rb and 173Yb in Mancini et al. (2015) 
and Stuhl et al. (2015), respectively] created large flux, highly elongated strips along j, with 
just three sites in width along m. More recently two-leg ladder implementations of the 
synthetic dimension concept have been realized (Livi et al., 2016; Kolkowitz et al., 2017) 
using the optical clock transition of both 173Yb and 87Sr, and synthetic dimensions have 
even been constructed using momentum states in lieu of spin states (Meier, An, and Gadway, 
2016).
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F. Flux lattices: Intrinsic topology

Each of the topological lattices discussed in the preceding sections was engineered 
beginning with a nontopological lattice to which modulation or light-assisted tunneling was 
added to engineer a desired topological model. In this section we focus on a different 
approach for generating a topological lattice without the need for modulation or light-
assisted tunneling. This approach applies to an atom with several internal states and 
subjected to a combination of three light-matter interactions: those that are independent of 
internal atomic states, those that depend on internal atomic states, and those that couple 
between the different internal atomic states. In particular, as we show in Appendix C, the 
far-detuned light-matter interaction for alkali atoms takes the form

ĤRWA = U(r)1̂ + κ(r) ⋅ F̂ , (65)

where U (r) and κ(r) ⋅ F̂  describe the rank-0 (scalar) and rank-1 (vector) light shifts acting 

on an atom with internal angular-momentum operator F̂ . The possible lattices formed from 

Eq. (65) have a very rich range of structures, characterized by the spatial variations of U(r) 
and the three components of κ(r). Because this approach is not tied to a preexisting tight-
binding lattice, it is not limited to deep optical lattices and can have topological properties 
even for very shallow or weak optical coupling strengths.

We discuss the essence of this approach in two ways: (1) we explore “flux lattices” in which 
the Aharonov-Bohm flux emulated by a Berry phase in real space leads to lattices with 
nonzero effective magnetic fields, and (2) we explore the connection between spin-
dependent lattices and established topological models. Indeed in our initial discussion of the 
Haldane model, we identified the two sublattice sites in each unit cell with a pseudospin 
degree of freedom and arrived at a spin-dependent band structure, Eq. (48); we now make 
this literal.

1. Flux lattices—Before turning to our discussion of flux lattices, we pause to reflect on 
our discussion of topological lattices to this point. Section II introduced the concept of 
topological invariants in terms of the Berry connection (Zak phase) or Berry curvature 
(Chern number) integrated over the BZ. In the latter case, the Chern number can be cast as a 
momentum-space statement of Gauss’s law, in which the Berry curvature integrated over the 
toroidal BZ counts an integer number of topological “charges” in the inside of the torus 
yielding the Chern number.

A “flux lattice” is an optical lattice potential that instead is defined as a lattice in which the 
integrated Berry curvature in each spatial unit cell is nonzero, suggesting that the atoms 
might behave as if large magnetic fields are present. This provides an intuitive framework in 
which to link the physics of Landau levels and lattice bands. Indeed, in general, the atom 
experiences a combination of a periodic magnetic field (with nonzero average) and a 
periodic scalar potential. Figure 15(b) depicts a bichromatic laser configuration that gives 
the same κ used in the initial flux lattice proposals (Cooper, 2011; Cooper and Dalibard, 
2011), with four frequency degenerate in-plane lasers and with a single down-going laser at 
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a different frequency. As shown by Juzeliūnas and Spielman (2012), this geometry can be 
tuned to produce the desired effective magnetic field with vector strength

κ = κ⊥ cos
πx

a
ex + cos

πy

a
ey

+ κ‖sin
πx

a
sin

πy

a
ez,

(66)

where κ⊥ and κ‖ are set by the intensity and polarization of the laser fields, and a = λ is 

equal to the laser wavelength λ. This result follows directly from the expressions in 
Appendix C. The right panel of Fig. 15(b) shows the spatial distribution of the Berry 
curvature in a single unit cell with spatial extent a, with a clear non-negative mean, evaluated 
for κ⊥ = κ‖. Thus, it achieves the goal of having a net nonzero effective magnetic field 

piercing the unit cell. In both the square geometry and a similar three-beam setup with 2π/3 
intersection angle, the resulting band structure can have topological bands (Cooper, 2011; 
Cooper and Dalibard, 2011).

This discussion hides one subtle point: the integrated curvature over each unit cell must be a 
multiple of 2π. In the present case the integrated curvature is 8πmF over the complete unit 
cell. The circles in Fig. 15(b) mark the locations of the minima of the adiabatic potential 
ℏmF | κ |. For a deep lattice, in which this potential is large compared to the recoil energy, the 

atoms are strongly confined close to these minima. Their locations define effective lattice 
sites of a tight-binding description, with the unit cell containing four such sites and therefore 
divided into four plaquettes. For a spin-1/2 system, with mF = ±1/2, each of these plaquettes 
will have a flux Φ = π, while for bosonic alkali atoms, mF takes on integer values implying 

Φ = 2πmF  is a multiple of 2π. In either case, nearest-neighbor hopping on this square lattice 

geometry would not break time-reversal symmetry, so the Berry curvature of the bands must 
vanish. As a result, for topological band structure to emerge in a straightforward way, longer 
range hopping as in the Haldane model is required. These considerations indicate that, for 
this square geometry, the flux lattice would not lead to topological bands in the deep-lattice 
limit. However, we reiterate that the flux lattice approach is not restricted to deep lattices, 
but applies also for shallower lattices in which the atoms can move throughout the unit cell 
and a restriction to nearest-neighbor hopping is inappropriate.

We demonstrated that flux lattices can give rise to a net nonzero magnetic field piercing the 
real-space unit cell. The comparison with free particles in a uniform magnetic field, which 
form Landau levels, suggests the appearance of topological Chern bands. However, this is 
not guaranteed: such lattices may or may not be topological, as defined by the usual Chern 
number computed in momentum space. (The deep-lattice limit of the square flux lattice 
described above provides an example in which the bands are not topological despite the 
nonzero effective magnetic flux.) Moreover, as we now discuss, there can be cases in which 
the net flux through the unit cell vanishes, yet the bands are topological (Cooper and 
Moessner, 2012). In general, to determine the band topology requires a full calculation of 
the band structure, including the atom’s kinetic energy.
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2. Fluxless lattices—A key insight from the Haldane model is that a net magnetic field 
is not a prerequisite for topological band structure. It is sufficient to break time-reversal 
symmetry, a condition that can readily be achieved for lattices that couple internal states. 
The appearance of topological bands for zero net flux is readily established for shallow 
lattices (Cooper and Moessner, 2012). Here we focus on the regime of deep lattices, where 
an effective (spin-dependent) tight-binding model can be developed. As we made explicit in 
our discussion of the Haldane model, the two basis sites consisting of a single unit cell can 
be assigned a pseudospin label, and these pseudospins are then arrayed to form a honeycomb 
or brick-wall lattice. Building from this understanding, we conclude by discussing the 
topology of state-dependent lattices, without any explicit reference to Berry phases.

Figure 15(c) displays the phase-stable lattice geometry realized by Sun et al. (2017), which 
is closely related to the flux lattice geometry, absent the vertical beam and with the in-plane 
beams driving Raman transitions. A predecessor of this setup described by Wu et al. (2016) 
generated a 2D optical lattice with spin-orbit coupling with 87Rb atoms [a first realization of 
2D spin-orbit coupling was reported by Huang et al. (2016) for a bulk geometry]. The two 
pseudospin states are the Zeeman levels |F = 1, m = − 1〉 and |F = 1, m = 0〉 of the lowest 

hyperfine state of the ground state manifold. The essential concept of this lattice is to first 
use the scalar light shift from the detuned, counterpropagating beams to create a 
conventional 2D optical lattice operating in the tight-binding regime, and then to use the 
vector contribution of the light shift to give a combination of local effective magnetic fields 
and spin-dependent tunneling. The resulting tight-binding model is very closely related to 
that of the Haldane model and shares its topological properties. The left panel of Fig. 15(d) 
shows the experimentally measured band structure in good agreement with the predictions of 
theory displayed in the right panel.

IV. EXPERIMENTAL CONSEQUENCES

This section presents recent experimental investigations of nontrivial (global or local) 
topological properties of energy bands, in either 1D or 2D geometries. Interactions play a 
nonessential role for the experiments described next; hence phenomena addressed here 
correspond to single-particle (or ideal gas) physics.

This section is divided into three parts. In the first one we describe measurements that are 
performed on an atomic system at equilibrium, using local probes in momentum space that 
allow one to reconstruct the topology of the occupied band(s). In the second part we present 
analyses performed by looking at the dynamics of wave packets. These wave packets are 
well localized at the scale of the Brillouin zone and one can bring them close to some points 
of specific interest, Dirac points, for example, using an external force. The last part is 
devoted to transport measurements, which are closer in spirit to the techniques that are 
commonly used in condensed matter physics.

A. Characterization of equilibrium properties

1. Time-of-flight measurements—Before entering into a discussion of specific 
measurements, we briefly comment on implications of the time-of-flight (TOF) 
measurements commonly used in experiment. In the vast majority of cold atom experiments, 
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the measurement procedure begins with the rapid removal of all applied fields (both those 
involved in trapping the ensemble and those required to create the topological lattice of 
interest). After this abrupt, projective, turn-off, the atoms then undergo a period of ballistic 
expansion followed by a measurement of their density (often in a spin-resolved manner). In 
many experiments, this procedure gives a direct measurement of the momentum distribution 
as it was when the applied fields were just removed.

While this sounds simple in principle, this procedure can appear to give measurement results 
that are gauge dependent. Fortunately any supposed contradiction with general principles of 
local gauge invariance is illusory. For example, two different experiments might well create 
a Harper-Hofstadter lattice with the same flux using very different laser geometries, which 
naturally define the synthetic vector potential in two different gauges. The observed 
momentum distribution will in general differ in these two cases (Kennedy et al., 2015). As 
discussed by Möller and Cooper (2010) and LeBlanc et al. (2015) these differences arise 
because the synthetic vector potential vanishes during TOF when the laser fields are 
removed: there are physical differences in how exactly the synthetic vector potential returns 
to zero when TOF begins and physically different effective electric fields present during this 
turn-off. All physical observables remain invariant to local gauge transformations, provided 
these are applied consistently, i.e., changing the vector potential both before and during 
TOF.

2. Local measurement of the Berry curvature—We consider here a cold atomic gas 
at equilibrium in a 2D optical lattice. With the so-called band-mapping technique one can 
precisely measure the distribution N(q) of the quasimomentum q for each energy band. With 

this technique the laser beams forming the lattice are turned off in a controlled manner, so 
that the populations of the Bloch states forming the various energy bands in the presence of 
the lattice are transferred to states with a well-defined momentum in the absence of the 
lattice (Greiner et al., 2001). The measurement of N(q) in combination with a suitable 

temporal variation of the lattice parameters before the complete turn-off allows one to 
characterize the band topology, i.e., to access not only the energies, but also the Berry 
curvature Ω(q).

To illustrate this point we consider a 2D lattice and use the same two-band model as in Sec. 
II, assuming a unit cell with two nonequivalent sites labeled A and B. The generic 

Hamiltonian in reciprocal space is Ĥq = ℎ0(q)1̂ − h(q) ⋅ σ̂ where (h0, h) is a 4-vector with real 

components that are periodic over the BZ. The energies of the two bands are 

Eq
± = ℎ0(q) ± |h(q)| and the Bloch states |uq

±〉 can be written as linear combinations of |q, A〉

and |q, B〉. Using the expression (30) for these Bloch states, one finds

Ω
±(q) = ∇q 〈uq

±| × ∇q |uq
±〉

= ±
1
2

∇q cosθq × ∇qϕq,
(67)

where (θq, ϕq) defines the direction of h(q) in spherical coordinates.
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A procedure to determine θq and ϕq, hence the curvature Ω, in such a two-band situation was 
proposed by Hauke, Lewenstein, and Eckardt (2014) and implemented by Fläschner et al. 
(2016). The starting point is the momentum distribution Nq(k) associated with a Bloch state

ψq
( − )(r) = ∑

s = A, B

∑
Rs

αq, sw(r − Rs)e
iq ⋅ Rs . (68)

Here w(r) is the Wannier function of the band, supposed to be identical for the two 

sublattices s = A, B, and (αq, A, αq, B) = (cos(θq/2), eiϕqsin(θq/2)). The momentum distribution 

Nq(k) is the square of the Fourier transform of ψq
( − )(r). For k inside the first BZ, it is peaked 

around k = q and given by |w̃(k) |2 |αk, A + αk, B|2, where w̃(k) is the Fourier transform of w(r). 

When the lowest band is uniformly filled with independent fermions, the momentum 
distribution of the gas is obtained by summing the contributions Nq(k) over all 

quasimomenta q of the BZ:

N(k) = |w̃(k) |2 1 − sinθkcosϕk . (69)

This distribution can be measured using a ballistic expansion after a sudden switch-off of the 
lattice. The key point of Eq. (69) is that the measured distribution N(k) is sensitive to the 

relative phase of the contributions αq, s of the two sites s = A, B in the expression of each 

Bloch state |ψq
−〉. More precisely, although not sufficient to determine unambiguously the 

angles θ and ϕ, this measurement already provides the value of the product sin θ cos ϕ. To 
go one step further, Hauke, Lewenstein, and Eckardt (2014) suggested to apply an abrupt 

quench to the lattice parameters so that the Hamiltonian becomes Ĥq
′ = ℏω0/2 σ̂z. One then 

lets the gas evolve in the lattice during a time interval t before measuring the momentum 
distribution. Since the evolution during this time simply consists of adding the phase 
±ω0t/2 to αq, s the momentum distribution at time t reads

N(k, t) = |w̃(k) |2 1 − sinθkcos ϕk + ω0t . (70)

By repeating this procedure for various times t and measuring the amplitude and the phase 
of the time-oscillating signal, one can determine simultaneously ϕ and θ at any point in the 
BZ.

This procedure was implemented by Fläschner et al. (2016) using a hexagonal lattice of 
tubes filled with fermionic 40K atoms. The unit cell for this graphenelike geometry contains 
two sites and the lattice parameters are chosen such that there is initially a large energy 
offset ℏωAB between the A and B sites, corresponding to essentially flat bands with no 

tunneling. As explained in Sec. III.D, the dynamics in the lattice can be restored by a 
resonant, circular shaking of the lattice at a frequency Ω ≈ ωAB. In the experiment of 

Fläschner et al. (2016), the shaking was produced by a phase modulation of the three laser 
beams forming the lattice, and it also resulted in a non-negligible value for the Berry 
curvature. Once the atoms equilibrated in this lattice, the abrupt quench needed for the 
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procedure of Hauke, Lewenstein, and Eckardt (2014) was obtained by simply switching off 
the modulation. Measured amplitudes and phases of the time oscillation of N(k, t) are 

plotted in Fig. 16, together with the Berry curvature reconstructed from Eq. (67). One then 
expects the integral of Ωq to be an integer C times 2π, where C is the Chern index of the 

populated band. Here the reconstructed Berry curvature leads to a value of C compatible 

with 0 (Fläschner et al., 2016). This is in agreement with the expected band topology in this 
case.

The method outlined by Hauke, Lewenstein, and Eckardt (2014) is reminiscent of a previous 
proposal by Alba et al. (2011). There the two lattice sites A and B are supposed to be 
occupied by two different internal (pseudospin) states |a〉 and |b〉. The momentum 

distribution measurement can be done in a spin-resolved way, which provides the local spin 
polarization for the lowest band [see Eq. (30)]:

ℎz(q)
|h(q)|

= cosθq =
Nb(q) − Na(q)
Na(q) + Nb(q)

. (71)

The other two components of h/|h| can be obtained by inducing a coherent transition 
between |a〉 and |b〉. (Raman pulse) with an adjustable phase and duration in order to rotate 

the pseudospin during the time of flight. Once the direction of h(q) is known at all points of 
the Brillouin zone, the value of the Berry curvature follows from Eq. (67).

3. Topological bands and spin-orbit coupling—When the considered lattice has 
some specific geometrical symmetries, the assessment of the topological nature of a band 
can be notably simplified with respect to the procedure outlined above. One does not need to 
characterize the eigenstates of the Hamiltonian at all points of the Brillouin zone to 
determine if the integral of the Berry curvature (67) over this zone is nonzero, and it is 
sufficient to concentrate on some highly symmetric points. The basis of this simplification, 
which is discussed in Appendix A for the case of a 1D lattice [see, in particular, Eq. (A6)], 
was outlined by Liu et al. (2013) for a 2D square optical lattice for pseudospin 1/2 particles 
in the presence of spin-orbit coupling terms.

Let us briefly outline the main result of Liu et al. (2013). Suppose that the Hamiltonian is 
invariant under the combined action of the spin operator σ̂z and the spatial operator 

transforming a Bravais lattice vector R into −R. Consider the energy eigenstates (Bloch 
states) at the four points of the BZ: Λi = (0, 0), (0, π), (π, 0), (π, π) , i = 1,…, 4. The two 

Bloch states |ψ± Λi 〉 at each of these locations are also eigenstates of σ̂z, and the 

corresponding eigenvalues ξi, ±  can take only the values +1 or −1. Now one can show that 

the sign of the product Pη = ∏iξi, η of the four ξi, η of a given subband η = ± is directly 

related to the Chern number of this subband. More specifically, if the sign of Pη is negative, 
the Chern number of the subband η is odd, hence nonzero: this unambiguously signals a 
topological band. If Pη has a positive sign, the Chern number of the subband η is even, and 
this most likely signals a nontopological character for this subband (zero Chern number).
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This procedure was realized experimentally by the type of lattice we described in Sec. III.F.1 
involving two pairs of retroreflected Raman lasers intersecting at right angles. This 
configuration can produce the reciprocal-space tight-binding Hamiltonian with the following 
generic form (29):

Ĥq = 2tSO[sin(aqy)σ̂x + sin(aqx)σ̂y]
+ [mz − 2t0(cos(aqx) + cos(aqy))]σ̂z,

(72)

where mz is proportional to the detuning from Raman resonance. The two amplitudes t0 and 
tSO characterize the tunneling amplitudes without and with spin flip, respectively. They can 
be controlled independently by varying the intensities of the two pairs of laser beams. In 
particular the term proportional to tSO can be simplified in the limit of low momenta into 
∝ kyσ̂x + kxσ̂y corresponding to the usual form of the Rashba-Dresselhaus spin-orbit 

coupling for a bulk material (Galitski and Spielman, 2013).

An interesting feature of this Hamiltonian is the possibility to control the topology of the 
lowest band: It is nontrivial if and only if |mz| < 4t0. Wu et al. (2016) tested this prediction by 

loading the 87Rb gas at a temperature T ~ 100 nK such that the lowest band was 
quasiuniformly filled, whereas the population of higher bands remains small. The 
polarization defined in Eq. (71) was measured by a spin-resolved imaging of the atomic 
cloud after time of flight, and the product P− for the lowest band was found to be negative in 
the expected range of values of mz.

4. Momentum distribution and edges states—It is well known from integer 
quantum Hall physics that the nontrivial topology of a band can give rise to a quantized Hall 
conductance σxy. Applying a voltage difference Vy between the two opposite edges of a 
rectangular 2D sample gives rise to a global current Ix = σxyV y along the x direction. This 

current flows on the edges of the sample in a chiral way, with a positive value Ix
( + ) on the y 

> 0 side of the sample and a negative value Ix
( − ) on the y < 0 side (Hatsugai, 1993). In the 

absence of an applied voltage (Vy = 0), the edge currents are still nonzero but they exactly 

compensate each other: Ix
( − ) = − Ix

( + )

The possibility to engineer a 2D atomic gas with one real dimension and one synthetic 
dimension that we discussed in Sec. IV.B.4 offers a way to directly access these edge 
currents in a cold atom experiment. Indeed when the second dimension (labeled y) is 
synthetic, i.e., associated with an internal degree of freedom (pseudospin), one expects a 
given sign of Ix for the largest value of the pseudospin and the opposite sign for its smallest 
value.

The advantage of a synthetic dimension for observing these edge states is clear: It provides a 
sharp boundary to the sample, whereas a standard 2D optical lattice would lead to edge 
states that would be smeared over several lattice sites, and hence much more difficult to 
observe. In addition, the momentum distribution can be measured individually for each 
pseudospin value. One thus obtains the value of the current on each “site” of the synthetic 
direction. The transposition of such a measurement to a real direction y implies a single-site 
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resolving imaging, which is much more demanding from an experimental point of view. 
However, the use of spin states for synthetic dimensions greatly limits the potential extent of 
the synthetic dimension: in the extreme limit of just two spin states, the system can even 
behave as if it were all edge with no bulk (Hügel and Paredes, 2014). For narrow systems 
with synthetic extent less than q for flux p/q, the states behave more like those in a 
continuum [with a single guiding center, see the supplementary material in Stuhl et al. 
(2015)], and as the width further increases, the familiar topological edge modes emerge, but 
remain slightly gapped at the edge of the 1D Brillouin zone from the bulk bands.

In addition, recent experiments have instead turned to using momentum states for a synthetic 
dimension, in principle allowing for more extended systems. Indeed the edge states 
associated with the 1D SSH model have already been observed using a momentum-space 
lattice (Meier, An, and Gadway, 2016).

We show in Fig. 17 the results of an experiment performed by Mancini et al. (2015). A gas 
of fermionic 173Yb atoms can tunnel between the sites of an optical lattice along the x 
direction, with an essentially frozen motion along the two other (real) y and z directions. The 
synthetic direction consists of three Zeeman substates m = −5/2, −1/2, +3/2 selected among 
the six Zeeman states of the ground level. The “tunneling” along this synthetic direction is 
provided by a pair of light beams. These beams induce stimulated Raman processes between 
the Zeeman states, hence the desired laser-induced hopping. These beams also provide an 
artificial gauge field thanks to the space-dependent phase ±φ(x) printed on the atomic state 
in a Δm = ±2 transition.

The atoms are prepared in a metallic state (less than one atom/lattice site) in the lowest band 
of the single-particle Hamiltonian. Figure 17 shows the momentum distributions nm(k) along 
the x direction for the three values m of the pseudospin. Here the central value of the 
pseudospin (m = −1/2) plays the role of the bulk of the material. The momentum distribution 
in this internal state is thus symmetric around 0, corresponding to a null net current. In 
contrast, a nonzero current is associated with the side values of the pseudospin: The 
distribution for the largest (smallest) value of m is displaced toward positive (respectively, 
negative) values. The displacement is made even clearer in the second row of Fig. 17 where 
the function hm(k) = nm(k) − nm(−k) is plotted. Mancini et al. (2015) also checked that the 
sign of the edge current is reversed when the sign of the artificial magnetic field is changed.

B. Wave-packet analysis of the BZ topology

Cold atom experiments offer the possibility to prepare the particles in a state described by a 
wave packet that is well localized in momentum space, in comparison with the size of the 
Brillouin zone. In this case, the dynamics of the wave packet directly reveals the local 
properties in the BZ: energy landscape E(q) and Berry curvature Ω(q). These properties can 
be encoded either on the dynamics of the center of the wave packet or on the interference 
pattern that occurs when several paths can be simultaneously followed.

1. Bloch oscillations and Zak phase in 1D—Conceptually the simplest example of a 
wave-packet analysis of the band topology is found in a 1D lattice of period a, for which the 
BZ extends between q = −π/a and π/a. When an atom initially prepared with the 
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quasimomentum q0 is submitted to an additional uniform force F, its quasimomentum q(t) 
periodically spans the Brillouin zone (Bloch oscillation) at a frequency aF /ℎ:q(t) = q0 + F t/ℏ

(mod2π/a). The phase that is accumulated in this periodic motion contains relevant 
information about the topology of the energy bands.

Since Bloch oscillations play a key role in several instances in the following, we briefly 
outline the principle of their theoretical description. The Hamiltonian of the particle in the 
presence of the periodic lattice potential V(x) and of the force F reads 

Ĥ = p̂
2

/2m + V (x̂) − F x̂. Let us write the initial state of the particle ψ(x, 0) = eixq0uq0
(n)(x), 

where uq0
(n)(x) is the periodic part of the Bloch function associated with the nth band and the 

quasimomentum q0. One can look for a solution of the time-dependent Schrödinger equation 

under the usual Bloch form ψ(x, t) = eixq(t)u(x, t). The evolution of u is governed by the 

periodic Hamiltonian Ĥq(t) = [p̂ + ℏq(t)]
2

/2m + V (x̂); therefore the solution u(x, t) remains 

spatially periodic at any time. If we add the assumption that the force F is weak enough so 
that interband transitions play a negligible role, the state of the particle will adiabatically 

follow the corresponding Bloch state of the nth band, i.e., u(x, t) = eiφ(t)uq(t)
(n) (x), and the 

relevant information is encoded in the phase φ(t). Let us focus on the state of the particle 

after one Bloch period. At this moment, the quasimomentum is back to its initial value q0 

and the phase is the sum of two contributions: (i) the dynamical phase −∫ E[q(t)]dt/ℏ and (ii) 

the Zak phase of the band, Eq. (14).

The first measurement of the Zak phase in a cold atom context was performed by Atala et al. 
(2013). A 1D superlattice was made out of two standing waves with a long and a short 
period [see Sebby-Strabley et al. (2006) and Trotzky et al. (2008) for two methods for 
creating double-well superlattice potentials], generating the potential (50) where both the 
relative phase ϕ and the amplitudes Vlong,short are control parameters. As detailed in Sec. 
III.B, this constitutes a realization of the Hamiltonian proposed by Rice and Mele (1982), 
reducing to the SSH model (Su, Schrieffer, and Heeger, 1979) for ϕ = π/2. Here we restrict 
for simplicity to the SSH case and we refer the reader to Atala et al. (2013) for a discussion 
of the general case. First we recall that, as discussed in Sec. II.C.1, the Zak phase itself is not 
invariant under gauge transformations in momentum space. Indeed it depends on the choice 
of the relative phases between Wannier states, i.e., the arbitrariness in deciding if the unit 
cell is formed by a pair {Aj, Bj} [NA = NB in Eq. (24)] or by a pair {Bj − 1, Aj} [NA = NB + 
1 in Eq. (24)]. However, once this choice is made, the gauge-invariant quantity 

δϕZak ≡ ϕZak
D1 − ϕZak

D2 = π, where D1 and D2 correspond to the two possible dimerizations of 

the system, obtained by choosing either ϕ = 0 or ϕ = π.

In order to measure δϕZak, Atala et al. (2013) first prepared the atoms in a wave packet 

localized at the bottom of the lowest band. Then using a π/2 microwave pulse the atoms 
were placed in a superposition of two spin states | 〉 and | 〉 which underwent Bloch 

oscillations in opposite directions in the presence of a magnetic gradient (Fig. 18). At the 
moment when the two wave packets reach the edges of the BZ, the Zak phase is encoded in 
the relative phase between these wave packets. In principle it could thus be read using a 
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second π/2 microwave pulse, closing the interferometer in quasimomentum space. However, 
the magnetic field fluctuations in the lab cause a random dephasing between the two arms of 
the interferometer and prevent one from performing this direct measurement. To circumvent 
this problem, Atala et al. (2013) used a spin echo technique. A second microwave pulse 
flipped the spins as the atoms reached the edges of the BZ and at the same moment, the 
dimerization was changed by switching ϕ from 0 to π, corresponding to an exchange of 
states between the lower and the upper bands. Finally the two paths were recombined when 
the wave packets reached the top of the upper band, and the accumulated phase revealed the 
value of δϕZak. The experimental result δϕZak/π = 0.97(2) was in excellent agreement with 

the expected value.

2. Measurement of the anomalous velocity—We now turn to the case of a 2D 
lattice and we investigate how the semiclassical dynamics of a wave packet can reveal the 
topological features of a given energy band. The starting point is the set of equations that 
govern the evolution of the average quasimomentum q and average position r when a 
constant force F is superimposed to the lattice potential

ℏq
.

= F , (73)

ℏr
.

= ∇qE(q) + Ω(q) × F . (74)

This set of equations is valid when the applied force F is weak enough, so that transitions to 
other bands can be neglected. With the first equation we recover the Bloch oscillation 
phenomenon: The momentum drifts linearly in time in response to the applied force F. The 
second equation provides the value of the velocity of the wave packet at a given position in 
the BZ. It contains two contributions: The first one is the well-known expression for the 
group velocity [see, e.g., Ashcroft and Mermin (1976) for the case of a periodic potential]. 
The second contribution, which is sometimes called the “anomalous velocity” (Xiao, Chang, 
and Niu, 2010), couples the wave-packet dynamics to the local value of the Berry curvature 
Ω(q). As a result of this contribution, the recording of a given trajectory inside the Brillouin 
zone allows one to reconstruct the Berry curvature along this trajectory (Price and Cooper, 
2012).

This method was implemented by Jotzu et al. (2014) in order to analyze the topology of a 
2D optical lattice in the vicinity of Dirac points. The experiment was performed with a 
brick-wall lattice [Fig. 10(a)], which is topologically equivalent to the hexagonal lattice of 
graphene, with two sites A and B per unit cell (Tarruell et al., 2012). In such a lattice, when 
only nearest-neighbor couplings A → B and B → A are taken into account, the spectrum 
consists of two bands touching at two Dirac points Q+ and Q− in the BZ [Fig. 19(a)]. As 
explained in Sec. III.C, an additional circular shaking of the lattice breaks the time-reversal 
symmetry of the system and allows one to lift the degeneracy at the Dirac points, with the 
two subbands acquiring a nontrivial topology. Another possibility to lift this degeneracy 
consists of simply introducing an energy offset between sites A and B. However, in this case 
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each subband is topologically trivial (Sec. II.C.2). With this setup one can thus explore the 
phase diagram of the Haldane model shown in Fig. 10(b).

Using an analysis of wave-packet dynamics close to the points Q±, Jotzu et al. (2014) 
studied the transition between the topological and trivial cases. Starting from a wave packet 
at the center of the BZ, they dragged it close to Q+ or Q− using the force F created by a 
magnetic gradient. The curvature of the motion of the wave packet in the BZ revealed the 
sign of the anomalous velocity, hence of the Berry curvature. In the trivial case, Ω(Q+) and 
Ω(Q−) have opposite signs, hence the Chern number which is proportional to the integral of 
Ω(q) over the BZ is zero [Fig. 19(b)]. In the topologically nontrivial case, Ω(Q±) have the 
same sign [Fig. 19(c)]. The measurements of the drift of the wave packet performed by Jotzu 
et al. (2014) quantitatively confirmed this scenario.

3. Interferometry in the BZ—We now come back to the simple case of a graphenelike 
lattice with only nearest-neighbor (NN) couplings, in which case the two subbands touch at 
two Dirac points Q±. In this case it is not possible to calculate the Berry curvature Ω for each 
subband because the definition (67) is singular in Q±. The situation can be viewed as an 
equivalent (for momentum space) of an infinitely narrow solenoid (in real space) providing a 
finite magnetic flux. In the latter case it is known that the presence of the solenoid can be 
probed by interferometric means. This is indeed a paradigmatic example for the Aharonov-
Bohm effect: Using a two-path interferometer such that the solenoid passes through its 
enclosed area, there exists between the two paths a phase difference proportional to the 
magnetic flux. In the case of a two-path interferometer enclosing a Dirac point in 
momentum space, the phase difference between the two paths is π (Mikitik and Sharlai, 
1999).

This phase shift was measured in the cold atom context by Duca et al. (2015). The 
graphenelike structure was generated using an optical lattice with three beams at 120° 
angles. Initially the external state of the 87Rb atoms is a wave packet located at the center of 
the BZ, and their internal state is a given Zeeman state | 〉. A microwave π/2 pulse prepares 

a coherent superposition of | 〉 and | 〉, where the magnetic moment of | 〉 is opposite to 

that of | 〉. Then the displacements of the two corresponding wave packets are controlled 

using simultaneously: (i) a lattice acceleration along y which creates the same inertial force 
on the two Zeeman states; (ii) a magnetic gradient which creates opposite forces on them 
along x; and (iii) a π microwave pulse which exchanges the atomic spins in the middle of 
the trajectories, in order to close the interferometer in momentum space. The result obtained 
by Duca et al. (2015), shown in Fig. 20, shows that a phase difference of ~π between the 
two paths appears if and only if the enclosed area contains one of the two Dirac points. 
Using a similar technique Li et al. (2016) could also access the Wilson line regime, which 
generalizes the Berry phase concept to the case where the state of the system belongs to a 
(quasi) degenerate manifold. Li et al. (2016) investigated the case where the transport from 
one place to another in the BZ is done in a time much shorter than the inverse of the 
frequency width of the bands. In that experiment the transport was characterized by a single 
phase factor and could be analyzed within the framework of Stückelberg interferometry 
(Lim, Fuchs, and Montambaux, 2014, 2015). However, in more complex situations, 
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interferometry can also reveal non-Abelian features of the transport (Alexandradinata, Dai, 
and Andrei Bernevig, 2014).

4. Direct imaging of edge magnetoplasmons—Although the synthetic-dimension 
systems can be described by the same Harper-Hofstadter Hamiltonian as with real-space 
laser-assisted tunneling approaches, using the spin degree of freedom to encode one spatial 
direction enables new preparation, control, and measurement opportunities. For example, the 
finite number of spin states in effect generates infinitely sharp hard-wall boundaries in the 
synthetic dimension; the synthetic-dimension tunneling can be applied and removed on any 
experimental time scale; atoms can be initially prepared in any initial synthetic-dimension 
site; and conventional time-of-flight measurements, along with Stern-Gerlach techniques, 
allow the near-perfect resolution of “position” in the spin direction.

Recent synthetic-dimension experiments (Mancini et al., 2015; Stuhl et al., 2015) used these 
techniques to directly image the evolution of edge magnetoplasmons. In a quantum Hall 
system, an edge magnetoplasmon is the quantum analog to the skipping cyclotron orbits 
which “bounce” down the edge of a system in a chiral manner, essentially following 
cyclotron orbits that are interrupted by the system’s edge; see Fig. 4. These dynamical 
excitations evolve with a characteristic frequency given by the cyclotron frequency and are 
superposition states between different Landau levels. These should not be confused with the 
chiral edge modes that underlie quantized conductance: these modes are built from states all 
within the same Landau level. These modes have not been observed in two-dimensional 
experiments; however, their analog has been observed in 1D experiments, also using 
synthetic dimensions, where the end modes of 1D systems have been observed (Meier, An, 
and Gadway, 2016).

In condensed matter systems, edge magnetoplasmons certainly have been launched and 
detected, both in steady state, in magnetic focusing experiments (van Houten et al., 1989), 
and directly in the time domain using electrostatic gates (Ashoori et al., 1992). Cold atom 
experiments complete the picture by allowing for direct space and time resolution of these 
skipping orbits.

In these experiments (Mancini et al., 2015; Stuhl et al., 2015), the system was initialized 
with no hopping along the synthetic dimension, and with all atoms in either one or the other 
edge along the synthetic dimension. Once this initial state was prepared, tunneling was 
instantly turned on. The highly localized initial state, described by a superposition of 
different Landau levels, then began to evolve, skipping down the system’s edge. Following a 
tunable period of evolution time-of-flight measurements directly imaged the position along 
the synthetic direction along with velocity in the spatial direction,1 which gives position by 
direct imaging. As shown in Fig. 21, this prescription allows for direct imaging of edge 
magnetoplasmons.

1Because TOF measurements yield the momentum distribution, some effort is required to derive the velocity in the lattice from this 
information.
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C. Transport measurements

In the last part of this section, we turn to experimental procedures that are closer in spirit to 
well-established condensed matter techniques. Starting from a uniformly filled band, one 
can perform a transportlike experiment, measure the displacement of the whole cloud in the 
lattice after a certain duration, and infer nontrivial topological aspects from this dynamics 
(Dauphin and Goldman, 2013).

1. Adiabatic pumping—The concept of a quantized pump introduced by Thouless 
(1983) has been described in general terms in Sec. II.F. It requires a lattice whose shape is 
controlled by at least two effective parameters, such as Δ and J′ − J for the Rice-Mele model 
[see Eq. (40)]. One starts with a gas that uniformly fills a band of the lattice. Then one 
slowly modifies the lattice shape in a way that corresponds to a closed loop in parameter 
space. As shown in Appendix A, the resulting displacement of the center of mass of the gas 
is then quantized in units of the lattice spacing.

This concept can be addressed in a 1D geometry, using a superlattice with the potential (50). 
As explained in Sec. III.B, the motion of atoms in the two lowest bands of this potential for a 
deep enough lattice can be described by the Rice-Mele Hamiltonian. Suppose that the 
relative phase ϕ of the long-period lattice is scanned from 0 to 2π, while the lattice depths 
Vlong and Vshort are kept fixed; see Fig. 22. Initially when ϕ = 0, the energy of an A site is 
below that of a B site, i.e., Δ < 0 in the framework of the Rice-Mele model. At this moment 
the superlattice is symmetric, hence the tunnel matrix elements J′ and J from Bj to Aj and 
Aj + 1 are equal. When 0 < ϕ < π, the energy barrier between Aj and Bj is smaller than that 
between Bj and Aj + 1, hence J′ > J. During this time period, Δ increases and changes sign 
when ϕ = π/2. During the second half of the cycle π < ϕ < 2π, one now finds J′ < J and Δ 
again changes sign. When ϕ = 2π, the system has performed a closed loop in the parameter 
space (J′ − J, Δ), encircling the vortex localized in J′ − J = 0, Δ = 0. One can therefore 
conclude that the center of mass of the cloud has moved by one lattice cell. In the limiting 
case of a particle initially localized in one of the lattice sites, one can recover this result by a 
simple reasoning based on the adiabatic following of the instantaneous energy levels; see 
Fig. 22.

A Thouless pump was implemented in cold atom setups (Lohse et al., 2016; Lu et al., 2016; 
Nakajima et al., 2016). The experiment by Nakajima et al. (2016) used a superlattice 
potential similar to that represented in Fig. 22, with Vlong = 30ER and Vshort = 20ER, 

respectively, with ER = ℏ2/(8ma2). Using a gas of noninteracting 171Yb atoms (fermions), 

Nakajima et al. (2016) verified that the displacement of the cloud when ϕ varies from 0 to 
2π is equal to one lattice period, as expected; see Fig. 23. They also checked that it is 
topologically robust, i.e., it does not change if one slightly deforms the path in parameter 
space by adding a time variation modulation of Vlong and Vshort. However, if the 
modification is such that the closed trajectory in parameter space (J′ − J, Δ) does not 
encircle the origin point anymore, the displacement per pump cycle drops to zero.

2. Centre-of-mass dynamics in 2D—As a last example of a cold atom probe of band 
topology, let us briefly describe the analysis of the dynamics associated with the Harper-
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Hofstadter Hamiltonian (46) by Aidelsburger et al. (2015). This Hamiltonian was 
implemented using the laser-induced hopping method explained in Sec. III.D, producing the 
flux per plaquette ϕAB = π/2. As a result of this applied gauge field, the lowest band of the 
lattice was split in four subbands, with Chern numbers (+1, −1, −1, +1) with the two 
intermediate subbands touching at Dirac points. Bosonic 87Rb atoms were loaded in 
majority in the lowest subband of the lattice, at a temperature such that this subband was 
filled quasiuniformly. Then a weak uniform force along the y axis originating from a 
gradient of the light intensity of an auxiliary beam was applied to the atoms for an adjustable 
duration t. The position of the center of mass of the atom cloud was monitored as a function 
of time and it revealed the topology of the bands. At short times (typically less than 50 ms), 
the drift of the cloud along the x direction, similar to a Hall current, was found to be linear 
with t; see Fig. 24. It provided a measurement of the anomalous velocity in good agreement 
with the expected value for the Chern number of the lowest subband. For longer times t, 
heating originating from the resonant modulation applied to the lattice induced transitions 
between the various subbands, which eventually get equally populated. Since the sum of all 
four Chern numbers is zero, the drift of the center of mass then stopped. A careful analysis 
of this dynamics, associated with an independent measurement of the population of each 
subband, provided a measurement of the individual Chern numbers with a 1% precision.

V. INTERACTION EFFECTS

Some of the most interesting directions for future work on cold atoms in topological optical 
lattices involve studies of collective effects that arise from interparticle interactions. Such 
studies hold promise for the exploration of novel phases of matter and to elucidate the role 
of topology in strongly correlated many-body systems.

A. Two-body interactions

The methods previously described for generating topological lattices consist either of 
periodic modulation of site energies, forming a so-called “Floquet” system (see Appendix 
B), or of Raman coupling of internal spin states, leading to optically “dressed states” of the 
atoms. Both of these methods lead to effective interactions between particles in the resulting 
energy bands that have some novel features.

1. Beyond contact interactions—For ultracold atoms in the continuum, the typical 
two-body interactions are dominated by the s-wave scattering, which can be represented by a 
short-range (contact) interaction gδ(r1 − r2), where the Dirac δ distribution is supposed to be 
properly regularized. However, for particles “dressed” by a laser field as in the optical 
lattices described, the interactions typically acquire nonlocal character.

a. Continuum models: For the continuum setting of optical flux lattices of Sec. III.F with 
laser plane waves inducing Raman couplings between internal spin states, nonlocal 
interactions can arise from the momentum dependence of the dressed-state wave functions. 
For the two-state system described by the Hamiltonian (72), an energy eigenstate in a given 
band can be written as
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|Ψq〉 = |ψq〉 ⊗ |Σq〉, (75)

i.e., the product of an orbital Bloch state |ψq〉 of quasimomentum q and of a q-dependent 

spin state |Σq〉 written in the basis | ± 〉z. The dependence of the spin component |Σq〉 on a 

wave vector has direct consequences on the two-body scattering matrix elements within this 
band.

Let us first recall the simple case of spinless or fully polarized particles. For the contact 

interaction V̂ = gδ(r̂), the matrix element of V̂  for a pair of free distinguishable particles 

transitioning from (q1, q2) → (q1 + Q, q2 − Q) is equal to g (up to a normalization factor) 
and it is independent of the momentum transfer Q. Here we neglect for simplicity energy-
dependent corrections of the s-wave scattering amplitude, which is valid when Q−1 is larger 
than the s-wave scattering length, a criterion usually satisfied in quantum gases. For two 
indistinguishable particles, physical observables involve the sum over the two permutations

q1, q2 q1 + Q, q2 − Q or q2 − Q, q1 + Q (76)

with a relative sign of ε = ±1 for bosons or fermions. The matrix element of V̂  is doubled for 

polarized bosons and vanishes for polarized fermions: the latter result simply reflects the 
fact that single-component fermions are insensitive to the contact interaction, since the Pauli 
principle precludes them from having the same spatial position.

Consider now the scattering of atoms in the dressed-state band with wave functions (75) and 
assume for simplicity that the contact interaction is independent of the internal states | ± 〉. 

For bosons and fermions (ε = ±1), the transition matrix element of V̂  for the two-path 

process (76) is now

〈ψq1 + Q, ψq2 − Q | V̂ |ψq1, ψq2〉〈Σq1 + Q |Σq1〉〈Σq2 − Q |Σq2〉

+ ε〈ψq2 − Q, ψq1 + Q | V̂ |ψq1, ψq2〉〈Σq2 − Q |Σq1〉〈Σq1 + Q |Σq2〉 .

For fermions, this matrix element no longer vanishes in general. For example, for Q = 0, it is 

∝ g(1 − |〈Σq2 |Σq1〉|2). This is an important result that shows that starting from contact-

interacting fermions occupying a nondegenerate band, the optical dressing leads to an 
interacting one-component Fermi gas, more precisely to effective p-wave interactions 
(Zhang et al., 2008). The possibility of interaction between two identical fermions can be 
viewed as arising from nonadiabatic corrections to the optical dressing, allowing two 
particles to coincide in real space by being in different internal dressed states, dependent on 
their momentum (Cooper and Dalibard, 2011). The momentum dependence of the dressed-
state wave functions converts the contact interactions into a momentum-dependent 
interaction for atoms, thereby allowing effective p-wave scattering even at ultralow 
temperatures. Similarly, dressed-state bosons can acquire a momentum-dependent 
interaction allowing the appearance of d-wave and higher angular-momentum channels in 
the scattering (Williams et al., 2012).
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b. Tight-binding models: For tight-binding lattice systems, we described in Sec. III how 
periodic driving at frequency ω can be used to tailor the amplitudes and phases of the 

hopping matrix elements between the sites. We demonstrated how, at rapid driving 
frequencies, an effective Hamiltonian with potentially complex modified tunneling 
amplitudes arises. This is the effective Floquet Hamiltonian for the modulated system, which 
governs the dynamics of the particles on time scales large compared to the period of the 
modulation, T = 2π/ω, as described in Appendix B. In the presence of interparticle 

interactions, e.g., Hubbard interaction U between particles on the same lattice site, new 
terms appear in this effective Floquet Hamiltonian, including nonlocal interactions (Eckardt, 
2017). To understand the origin of the nonlocal interactions, consider the modulated two-site 
system described in Sec. III.C under a harmonic drive of the energy offset between the sites 
Δ(t) = (Δ/2) cos ωt. The unitary transformation Eq. (52) leads to a Hamiltonian

Ĥ′ = − J[eiϕP(t) |r〉〈l|+e−iϕP(t)|l〉 〈r|], (77)

ϕP(t) =
Δ

ℏω
sin(ωt) . (78)

It is convenient to expand this Hamiltonian in its harmonics

Ĥ′ = − J ∑
m = −∞

∞

Jm
Δ

ℏω
eimωt |r〉〈l | + H . c (79)

where Jm(z) are Bessel functions of the first kind. The m = 0 term gives the time-averaged 

Hamiltonian discussed in Sec. III: it describes intersite tunneling with an effective tunneling 
rate that is modified from the bare rate J by J0(Δ/ℏω). For ℏω large compared to all other 

energy scales (tunneling J and any on-site-interaction energy U) the higher-order terms |m| > 
0 are far off resonant, so are rapidly oscillating and have small effects on the wave function. 
Still these terms do perturb the atomic wave function, leading to the new features we are 
interested in here. For a particle that is initially in the right well |r〉, a rapidly oscillating 

perturbation V̂ meimωt (i.e., m ≠ 0) causes a first-order correction to the wave function of

|ψ′〉 ≈ |r〉 + | l〉 〈l|V̂ m|r〉eimωt/2sin(mωt/2)
mℏω

(80)

≈ |r〉 − JJm(Δ/ℏω)eimωt/2sin(mωt/2)
mℏω

| l〉 . (81)

Thus, these terms induce a small nonzero probability for the particle to be in the left well,

pl = ∑
m ≠ 0

J
2

2(mℏω)2 Jm
Δ

ℏω

2
, (82)
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after averaging over the rapid oscillations and summing over all such terms. If in addition to 
the tunneling (78) the static Hamiltonian has an on-site interaction between particles in the 

left well, which we consider to be a Hubbard interaction U n̂l n̂l − 1 /2 (with n̂l the number 

operator in the left well), then these rapidly oscillating terms that move particles from the 

right to the left well will give rise to effective nonlocal interactions Ulr
eff

n̂ln̂r, with

Ulr
eff = Upl ∝

UJ
2

(ℏω)2 . (83)

A similar nonlocal term will arise from interactions in the right well. A full analysis of such 
effects is best achieved through a construction of the Floquet Hamiltonian at high drive 
frequency via the Magnus expansion (Goldman and Dalibard, 2014) or other systematic 
approach (Eckardt and Anisimovas,2015). An overview of the Magnus expansion is given in 
Appendix B.

c. Synthetic dimensions: An extreme example of nonlocal interactions arises for systems 
involving synthetic dimensions (Celi et al., 2014; Mancini et al., 2015; Stuhl et al., 2015). 
There interactions are typically long ranged among the set of s = 1, Ns internal states which 
form the synthetic dimension and short ranged in the d spatial coordinates. For a synthetic 
dimension formed from an internal spin degree of freedom, the interactions are of infinite 
range in the synthetic dimension and of conventional short range in position. For example 
spin-exchange interactions can be viewed as a correlated tunneling, such as 
m, m′ m − 1, m′ + 1 . Such systems realize interesting intermediate situations in which the 

single-particle physics can be viewed as d + 1 dimensional (for Ns is large) while the 
interactions remain d dimensional. For a synthetic dimension formed from simple harmonic 
oscillator subband states (Price, Ozawa, and Goldman, 2017) the interactions fall off with 
increasing spacing along the synthetic dimension. Interactions in an effective two-leg ladder, 
formed from spin-orbit coupled strontium atoms, have been studied experimentally by 
Bromley et al. (2018).

d. Current-density coupling: Finally, we note that the novel two-body interactions that 
are induced by Raman coupling or Floquet modulation can also include terms that are not 
just density-density interactions, but that couple the particle motion to particle density. These 
effects arise naturally in photon-assisted tunneling between lattice sites as a consequence of 
interaction-induced energy shifts. The imposed energy offset between two adjacent lattice 
sites is modified by the on-site interactions U in such a way that the photon-assisted 
tunneling can be brought into or out of resonance depending on the occupations of the sites 
by other particles. This leads to a density-dependent tunneling term of the form

∑
i

J n̂i, n̂i + 1 b̂ i

†
b̂ i + 1 + H . c . , (84)

shown here for spinless bosons. Such situations were analyzed by Aidelsburger et al. (2015), 
Bermudez and Porras (2015), and Račiūnas et al. (2016). The density-dependent corrections 
are typically a small modification of the photon-assisted hopping in current experimental 
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setups of gauge fields on optical lattices [see supplementary information in Aidelsburger et 
al. (2015)]. However, they can be made to dominate in regimes where U is large, such that 
the photon drive frequency ω is not resonant with the bare detuning Δ but with Δ ± U. Such 

situations have been explored in experiments on two-component Fermi systems (Görg et al., 
2018; Xu et al., 2018). Analogous coupling between current and density arises also in the 
continuum if interactions lead to detunings that influence the local dressed states, thus 
causing the induced vector potential A to be density dependent (Edmonds et al., 2013). 
Density-mediated hopping can also arise in settings where the single-particle energy bands 
are flat (dispersionless). Then individual particles do not move, being localized to a region 
of size of the Wannier orbital, and particle motion arises only through interparticle 
interactions. Such settings include the flat energy bands of frustrated lattices, such as the 
Creutz ladder (Creutz, 1999; Mazza et al., 2012; Jünemann et al., 2017) in 1D, and the 
kagome (Huber and Altman, 2010) and dice lattices (Möller and Cooper, 2012) in 2D, as 
well as for particles in dressed states of internal spin states in which the direct nearest-
neighbor tunneling can be made to vanish (Bilitewski and Cooper, 2016).

2. Floquet heating—The explicit time dependence of the Hamiltonian in periodically 
driven systems relaxes energy conservation and leads to forms of inelastic scattering and 
heating not present in the time-independent case. For a Floquet system at frequency ω, these 

correspond to the absorption (or emission) of an integer number of “photons” of energy ℏω

from the external drive. For the “Floquet-Bloch” waves of a spatial- and time-periodic 
potential, such inelastic scattering could occur even for a single particle that scatters from a 
defect in the lattice, which allows a momentum transfer. However, an important source of 
potential inelastic scattering is for pairs of particles via the interparticle interactions, i.e., 
inelastic two-body collisions.

A general description of the inelastic scattering of Floquet-Bloch waves was provided by 
Bilitewski and Cooper (2015b). Consider a time-periodic Hamiltonian of frequency ω and 

denote the single-particle energy band, with band index ν, by the energies ϵν(q) defined as 
continuous functions of q over the Brillouin zone. Owing to the time periodicity, this can be 

viewed as one member of a sequence of Floquet energy bands ϵν
(m)(q) = ϵν(q) + mℏω

(Eckardt, 2017). We define inelastic scattering to be those processes in which m or ν, or 
both, change under a scattering event. For weak scattering from state i to state f, the inelastic 
rate can be computed through a “Floquet Fermi golden rule” (Kitagawa et al., 2011)

γi f =
2π

ℏ ∑
m

|〈〈Φf
(m) | V̂Φi

(0)〉〉|
2
δ Ei − Ef − mℏω , (85)

where |Φf,i
(m)(t)〉 ≡ e−imωt|Φf,i

(0)(t)〉 and 〈〈Φ1 |Φ2〉〉 ≡ (1/T )∫0
T 〈Φ1 |Φ2〉dt. Here V̂  can denote a 

one-body potential (e.g., a lattice defect) or a two-body interaction. Processes with nonzero 
Δm correspond to the exchange of Δm quanta from the drive field, changing the energy of 
the atom by mℏω. This provides a simple prescription by which to calculate the inelastic (Δm 
≠ 0) contribution to the two-body scattering of Floquet-Bloch states. Stepping beyond the 
two-body calculation to a many-body setting can be achieved by analyzing instabilities 
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within the Gross-Pitaevskii description (Choudhury and Mueller, 2014, 2015; Lellouch et 
al., 2017).

Calculations for the parameters used in the experimental studies of weakly interacting 
bosons in the Harper-Hofstadter model (Aidelsburger et al., 2015) show that the heating 
rates observed in those experiments are consistent with the expected inelastic two-body 
scattering processes dominated by single-photon absorption (Bilitewski and Cooper, 2015a). 
This analysis emphasizes the role played by the motion transverse to the 2D plane along the 
weakly confined third dimension. The application of an optical lattice to confine this motion 
and open up gaps at the one-photon resonance is expected to significantly reduce the heating 
rate in such experiments (Bilitewski and Cooper, 2015a; Choudhury and Mueller, 2015). The 
excitation of motion along tubes, transverse to the optical lattice, has been argued to also be 
responsible for heating rates in an experimental study of a periodically modulated 1D lattice 
(Reitter et al., 2017). In strongly driven systems (Weinberg et al., 2015) particle transfer to 
higher bands can arise from multiphoton resonances at the single-particle level (Sträter and 
Eckardt, 2016).

Floquet heating in the full, many-body system presents an interesting theoretical issue which 
remains an active area of investigation. That energy is not conserved leads to the expectation 
that the system will be driven to an infinite temperature state at long times (Lazarides, Das, 
and Moessner, 2014). This expectation relies on the assumption that energy is redistributed 
between all degrees of freedom through the interparticle interactions. There can, however, 
arise situations in which many-body systems show steady states that are not at infinite 
temperature (D’Alessio and Polkovnikov, 2013; Chandran and Sondhi, 2016), or in which 
there form prethermalized states on intermediate time scales (Bukov et al., 2015; Canovi, 
Kollar, and Eckstein, 2016). Furthermore, in settings involving disorder, it has been shown 
that many-body localized (MBL) phases can be robust to Floquet modulations, allowing the 
existence of nonthermal steady states to arbitrarily long times (Abanin, De Roeck, and 
Huveneers, 2016). A striking example of such a “Floquet MBL” phase is the Floquet time 
crystal (Moessner and Sondhi, 2017).

B. Many-body phases

The topological optical lattices described support an array of many-body phases. Novel 
features arise for weakly interacting gases through the geometrical and topological 
characters of the underlying band structure. Furthermore, there can arise interesting strongly 
correlated phases, driven by strong interparticle interactions.

1. Bose-Einstein condensates—For an optical lattice loaded with a gas of 
noninteracting bosons one expects the ground state to be a Bose-Einstein condensate (BEC), 
in which all particles condense at the minimum of the lowest energy band. This expectation 
applies just as well to the topological optical lattices as to regular optical lattices. However, 
topological optical lattices can bring several novel features.

(1) For systems without time-reversal symmetry (as required to generate a Chern 
band), the individual Bloch wave functions have phase variations which in 
general give rise to nonzero local current density. Since the Bloch wave 
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functions are stationary states, these currents must be divergenceless, but this 
still allows the BEC to support circulating currents in dimensions d > 1. These 
currents take the form of the local current density of a vortex lattice. An example 
is shown in Fig. 25.

(2) For topological optical lattices in d > 1 the energy minimum in which the BEC 
forms will, in general, be characterized by a nonzero Berry curvature. As 
described in Sec. V.C this Berry curvature affects the collective modes of the 
BEC.

(3) There can arise situations in which there are a set of degenerate energy minima. 
An important example is provided by the Harper-Hofstadter model, for which 
the energy band typically has multiple degenerate minima. For example, at flux 
ϕAB= 2π/q the band has q degenerate minima in the magnetic Brillouin zone. 
For noninteracting particles, there is a macroscopic degeneracy associated with 
the occupation of these q degenerate single-particle states: a BEC could form in 
any linear superposition of these states; or indeed a “fragmented” condensate 
could form (Mueller et al., 2006). The inclusion of interactions U ≠ 0 is required 
to resolve this macroscopic degeneracy. The simplest way to include interactions 
is via Gross-Pitaevskii mean-field theory. This is valid for sufficiently weak 
interactions U ≪ J and at high mean particle density n ≫ 1. Studies of the mean-

field ground state (in regimes of both weak and strong interactions, Un ≪ J and 

Un ≫ J) show that repulsive interactions stabilize a simple BEC with the form 

of a vortex lattice (Straley and Barnett, 1993; Zhang et al., 2010; Powell et al., 
2011). This state breaks the underlying translational symmetry of the lattice, so 
there are several discrete (symmetry-related) states that are degenerate. For 
example, for flux ϕAB = 2π/3 it has the form of vortex lines along diagonals of 
the lattice; see Fig. 25. Numerical studies of the vortex lattice ground states for 
Un ≫ J have been conducted for a wide range of flux ϕAB: these show complex 

behavior with many competing vortex lattice structures (Straley and Barnett, 
1993).

Similar vortex lattice states appear in ladder systems. In experiments on weakly interacting 
bosons on a two-leg ladder with flux, Atala et al. (2014) demonstrated a transition between a 
uniform superfluid phase with Meissner-like chiral currents and a vortex phase (with broken 
translational symmetry along the ladder) as a function of the tunneling strength across the 
rungs of the ladder, akin to the Meissner and vortex lattice phases of a type-II 
superconductor.

2. Topological superfluids—In both the tight-binding lattices and the Raman-dressed 
flux lattices, situations can arise in which there are nonlocal interactions between fermions 
in a single band. This allows attractive p-wave pairing and can lead to interesting forms of 
topological superfluidity with “Majorana” excitations. Here we discuss the general features 
of these topological superfluids.

Their properties are understood within mean-field theory, as described by the BdG 
Hamiltonian. This takes the form
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Ĥ − μN̂ = ∑
α, β

εαβĉα
†
ĉβ +

1
2

(Δαβĉα
†
ĉβ

†
+ Δαβ

* ĉβĉα) , (86)

where ĉα
(†) are fermionic creation or annihilation operators for the single-particle states 

labeled by α = 1,...,Ns, which encodes both positional and internal (spin) degrees of 
freedom. They obey the fermionic anticommutation relations 

{ĉα, ĉβ} = {ĉα
†
, ĉβ

†
} = 0, {ĉα, ĉβ

†
} = δαβ. The Ns × Ns matrix ε describes the conventional 

particle motion and potentials and must be Hermitian εαβ
* = εβα; the Ns × Ns matrix Δ

represents the superconducting pairing and is antisymmetric Δαβ = − Δβα.

It is convenient to express the Bogoliubov–de Gennes Hamiltonian as (up to a constant shift)

Ĥ − μN̂ =
1
2

(ĉ
†
ĉ)ℋBdG ĉ

ĉ
† , (87)

ℋBdG =
ε Δ

−Δ* −ε*
, (88)

where (ĉ, ĉ
†
)
T
 is a 2Ns-component column vector formed by listing all fermionic destruction 

ĉα = 1,…, Ns
 and creation ĉα = 1,…, Ns

†  operators. The quasiparticle excitations are determined 

by the spectrum of the 2Ns × 2Ns matrix ℋBdG

Eλ

u(λ)

v(λ)
= ℋBdG u(λ)

v(λ)
(89)

in terms of the 2Ns-component vector of amplitudes uα = 1,…, Ns

(λ)  and vα = 1,…, Ns

(λ) , where λ 

labels the 2Ns eigenvalues. The matrix BdG Hamiltonian (88) has a special symmetry:

ℋBdG = −
0 I

I 0
[ℋBdG]*

0 I

I 0
, (90)

where 0 and I are the Ns × Ns null and identity matrices, respectively. This has the 

consequence that for any eigenstate (u(λ), v(λ))
T with eigenvalue Eλ there is another 

eigenstate

u(λ)

v(λ)
=

v(λ) *

u(λ) *
(91)

with eigenvalue Eλ = − Eλ: i.e., the spectrum is symmetric in energy around E = 0. (Note 

that energies have been defined relative to the chemical potential μ.) This intrinsic particle-
hole symmetry represents an inherent redundancy in the theory, by which the eigenstates of 
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ℋBdG must include both the destruction and the creation operator of any quasiparticle state 

(Bernevig and Hughes, 2013). Specifically, defining the operator associated with each 
eigenvector λ = 1,...,2Ns

Ĉλ = ∑
α

uα
(λ)ĉα + vα

(λ)ĉα
†

(92)

the Hamiltonian may be expressed in the diagonalized form

Ĥ − μN̂ =
1
2 ∑

λ = 1

2Ns

EλĈλ

†
Ĉλ . (93)

The symmetry (91) allows this to be written as

Ĥ − μN̂ =
1
2 ∑

λ = 1

Ns

EλĈλ

†
Ĉλ + EλĈλ

†
Ĉλ (94)

=
1
2 ∑

λ = 1

Ns

Eλ Ĉλ

†
Ĉλ − ĈλĈλ

†
(95)

= ∑
λ = 1

Ns

Eλ Ĉλ

†
Ĉλ −

1
2

, (96)

where the sum is now over just Ns eigenstates. These are conventionally chosen to be states 

for which Eλ ≥ 0, such that the ground state |0〉 is defined by Ĉλ | 0〉 = 0, and Ĉλ
†
 are the 

quasiparticle creation operators.

For spinless fermions in translationally invariant settings we can use the plane-wave 

operators ĉ̃q ∝ ∑αe−iq ⋅ rαĉα to write

Ĥ − μN̂ =
1
2 ∑

q

ĉ̃q

†
ĉ̃−q

εq Δq

Δq* −εq

ĉ̃q

ĉ−q

† (97)

with the superconducting gap required to satisfy Δ−q = −Δq. The BdG matrix (88) reduces to 

a momentum-dependent 2 × 2 matrix ℋq
BdG. An important example is the Kitaev model of a 

p-wave superfluid in 1D, described in detail in Appendix A, for which

ℋq
BdG =

−2Jcos(qa) − μ −2iΔsin(qa)

2iΔsin(qa) μ + 2Jcos(qa)
(98)

≡ − h(q) ⋅ σ . (99)
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The energy eigenvalues show the above particle-hole symmetry Eq
± = ± |h(q)|. Furthermore, 

as shown in Appendix A, the bands are characterized by a winding number relating to how 
h(q) encircles the origin, analogous to the winding number of the SSH model. This winding 
number can be used to identify a topological superconducting phase.

On a finite geometry this topological phase hosts an exact zero-energy state on its boundary, 
i.e., with Eλ0 = 0 in Eq. (96). The prescription that we used to define the form (96) is 

ambiguous for such zero modes. Consider the operator Ĉλ0 constructed via Eq. (92) from the 

eigenvector of such a zero mode λ0. The particle-hole symmetry implies that there is 
another zero-energy state with label λ0, which, using Eq. (91), would lead to an operator 

Ĉλ0 = Ĉλ0
†

. Together, these two operators Ĉλ0
†

and Ĉλ0 describe the destruction or creation of 

a fermionic quasiparticle at Eλ0 = Eλ0 = 0. Since this excitation has zero energy, it describes 

a ground state that is twofold degenerate depending on whether this zero-energy mode is 
occupied or filled. It is therefore immaterial which of these operators we choose to view as a 
particle creation or destruction. Indeed, we could also choose to work in terms of operators 
that are linear superpositions. One particular choice is to define the Majorana operators

γ̂1 ≡ Ĉλ0 + Ĉλ0

†
, (100)

γ̂2 ≡ i Ĉλ0 − Ĉλ0

†
, (101)

which obey anticommutation relations γ̂ i, γ̂ j = 2δij. Since the Majorana operators are self-

adjoint γ̂ i
†

= γ̂ i, they can be viewed as describing particles that are their own antiparticles.

The above transformation to Majorana operators appears rather arbitrary: from a 
mathematical perspective one can always choose to work either in terms of the two 

Majorana operators γ̂1, γ̂2 or in terms of Ĉλ0 and its adjoint Ĉλ0
†

. For topological 

superconductors there is a clear physical reason to prefer the Majorana operators: the 
Majoranas are spatially localized, each one tied to a single boundary or defect. Thus, local 

probes couple directly to the Majorana operators. In contrast, the quasiparticle operators Ĉλ0
†

are nonlocal. The locality of the Majorana operators is shown explicitly in Appendix A for 
the Kitaev model, where one Majorana operator acts on the right boundary and one acts on 
the left boundary.

That the Majorana modes are spatially localized causes the system to have properties that are 
robust to external perturbations, including disorder potentials: the exact particle-hole 
symmetry enforces the mode to have E = 0. Departures from E = 0 can arise only from 
mixing with other Majorana modes; since the intervening superconducting state is gapped 
these corrections are suppressed exponentially in the distance between the local Majorana 
modes, e.g., the length of the 1D Kitaev chain. Note that the two Majorana modes—one at 
each end of the 1D Kitaev chain—describe a single fermionic excitation, such that one 
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should view the Majorana as a fractionalized quasiparticle. In contrast, the zero-energy edge 
states of the SSH model correspond to two separate fermionic excitations, one at each end of 
the chain. As discussed in Sec. II.E.1 the edge states of the SSH model are sensitive to local 
perturbations which break the chiral symmetry.

The above example for the 1D topological superconductor has a very natural generalization 
to 2D. There, the bulk spectrum is of the form

ℋq
BdG =

ϵq − μ Δq

Δq* μ − ϵq

≡ − h(q) ⋅ σ, (102)

where q now runs over a 2D Brillouin zone. Topological superconducting states can appear 
in situations where the h(q) acquires all three components, such as in the continuum px + ipy

superfluid, for which

ℎz = ℏ2 |q |2 /2m − μ, ℎx + iℎy = Δ0(qx + iqy) . (103)

For μ > 0, the quasiparticle spectrum is fully gapped, and the unit vector h(q)/|h(q)| wraps 
the sphere as q runs over all values, indicating that this is a topological phase (Read and 
Green, 2000). At μ = 0 there is a gap-closing transition to a superconducting phase at μ < 0 
which is nontopological. The 1D surface of this topological 2D superconductor has an edge 
mode that has Majorana character, albeit in a setting in which there is a continuum of edge 
modes. In this 2D setting localized Majorana modes arise as bound states on the cores of 
quantized vortices, i.e., point defects localized in the bulk of the system (introduced by 
rotation or other external means).

It is natural to search for topological superfluids using cold atoms. Many routes to p-wave 
pairing of single-component fermions have been suggested. These include methods 
involving a p-wave Feshbach resonance (Gurarie and Radzihovsky, 2007), long-range 
dipolar interactions (Baranov et al., 2012), or induced interactions via a background BEC 
(Wu and Bruun, 2016). In the context of this review, the connections arise through the use of 
spin-orbit coupling (optical dressing) to allow contact interactions (e.g., s-wave pairing) to 
lead to effective p-wave interactions between single-component fermions. Proposals of this 
kind have been presented in 3D, 2D (Zhang et al., 2008), and 1D (Nascimbène, 2013; Yan, 
Wan, and Wang, 2015).

3. Fractional quantum Hall states—The conditions for realizing fractional quantum 
Hall (FQH) states in 2D semiconductor systems are well understood (Prange and Girvin, 
1990). The application of a strong magnetic field breaks the single-particle energy spectrum 
into degenerate Landau levels. When a Landau level is partially filled with electrons, the 
large number of ways in which the electrons can occupy the single-particle states gives a 
very high degeneracy. This degeneracy is lifted by repulsive interparticle interactions, 
leading to strongly correlated FQH ground states at certain ratios of particle density to flux 
density ν = n/nϕ. FQH states are characterized by a nonzero energy gap to making density 
excitations in the bulk. For temperatures below this gap they behave as incompressible 
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liquids: with a bulk energy gap, but carrying gapless edge modes. In this sense they resemble 
integer quantum Hall states. However, the edge modes are not simply described as single-
particle states but involve fractionalized quasiparticles (Wen, 1995). Similarly, the gapped 
particlelike excitations in the bulk of the system have fractional charge and are predicted to 
have fractional quantum exchange statistics (Stern, 2008).

The achievement of similar regimes with ultracold atoms would allow the exploration of 
several novel variations of FQH physics.

a. Bosons: Cold atom experiments have the potential to allow the first exploration of FQH 
states for bosons. Theory shows that contact-interacting bosons in the lowest Landau level 
exhibit FQH states provided the filling factor is not too large. These states include robust 
variants of interesting phases—the Moore-Read and Read-Rezayi phases—which are 
expected to exhibit non-Abelian particle exchange statistics (Cooper, 2008). The 
stabilization, and exploration, of non-Abelian phases is a much sought after goal, in part to 
find the first evidence that nature does exhibit this exotic possibility of many-body quantum 
theory and in part in connection with the possible relevance for quantum information 
processing (Nayak et al., 2008).

The physics of interacting bosons in the lowest Landau level can be accessed in the Harper-
Hofstadter model at relatively low flux density |ϕAB| ≲ 2π/3 for which the lowest band is 

similar to the continuum Landau level and where similar FQH states appear for bosons 
(Sørensen, Demler, and Lukin, 2005; Palmer and Jaksch, 2006; Hafezi et al., 2007; Möller 
and Cooper, 2009). Optical flux lattices, involving spin-orbit coupling, can lead to 2D 
energy bands that are very similar to the lowest Landau level: topological bands with unit 
Chern number and with very narrow energy dispersion. An advantage of this approach is 
that the flux density nϕ can be high, so FQH states are expected at high particle density n 
where interactions are strong. Exact diagonalization studies have established stable FQH 
states of bosons including exotic non-Abelian phases (Cooper and Dalibard, 2013; 
Sterdyniak et al., 2015).

b. Lattice effects: The use of optical lattices to generate topological energy bands 
naturally causes cold atomic gases to explore new aspects of FQH physics. The underlying 
lattice makes the single-particle states differ from those of the continuum Landau level and 
can influence the nature of the many-body ground states. For the Harper-Hofstadter model, 
the FQH states found at low flux density, where the bands resemble the continuum Landau 
level, are replaced by other strongly correlated phases at high flux densities where lattice 
effects become relevant.

It has been shown that states of the same form as FQH states of the continuum Landau level, 
the so-called “fractional Chern insulator” (FCI) states, can be formed, for bosons and 
fermions, in a variety of topological energy bands starting from models (such as the Haldane 
model) which are far removed from the continuum Landau level (Parameswaran, Roy, and 
Sondhi, 2013). Typically such models require the introduction of further-neighbor tunneling 
terms to flatten the lowest energy band, such that one can enter a regime of strong 
correlations (mean interaction energy larger than bandwidth) without mixing with higher 
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bands. Indeed, it has been shown that by tailoring the tunneling Hamiltonian, one can 
construct models for which the exact many-body ground states are FQH states (Kapit and 
Mueller, 2010) or FCI states (Behrmann, Liu, and Bergholtz, 2016). No general theorem 
exists concerning the nature of the many-body ground state in a given Chern band. However, 
beyond flatness of the energy band, it is believed that flatness of the geometry of the states, 
as measured by the Berry curvature and by a quantity known as the Fubini-Study metric, is 
advantageous in stabilizing topological many-body phases (Parameswaran, Roy, and Sondhi, 
2013).

A particularly interesting aspect of the topological energy bands in lattices is that these can 
differ qualitatively from a continuum Landau level, specifically if their Chern number differs 
from unity. Indeed, for the Harper-Hofstadter model at flux ϕAB = π + ϵ, with ϵ small, the 
lowest energy band has Chern number of 2, and so is topologically distinct from the lowest 
Landau level. Numerical calculations show the appearance of FQH phases for particles 
occupying this energy band. These are examples of FQH states that have no counterpart in 
the continuum Landau level but that are stabilized by the lattice itself (Möller and Cooper, 
2009, 2015; He et al., 2017).

c. Symmetry-protected topological phases: The topological states of noninteracting 
Fermi systems (topological insulators and superconductors) are now viewed as examples of 
a more general class of a symmetry-protected topological (SPT) phase, which allows for 
interparticle interactions and bosonic statistics. SPT phases are defined by the conditions 
that they are gapped phases, with gapless edge modes, but unlike the FQH effect they do not 
involve particle fractionalization. Hence these states have a unique ground state on a 
periodic geometry, and the many-body ground state has only short-range entanglement 
(Senthil, 2015). The phases of strongly interacting bosons in Chern bands include cases of 
“integer” quantum Hall states of the bosons, which provide one of the cleanest realizations 
of SPT phases (Möller and Cooper, 2009, 2015; He et al., 2017). Here integer refers to the 
fact that the Hall conductance is an integer as opposed to fractional. Such phases still arise 
from strong interparticle interactions, albeit without fractionalized quasiparticles.

d. Ladders: Cold atomic gases provide ways in which to study ladderlike systems which 
are quasi-1D variants of FQH systems. These arise both in Harper-Hofstadter models with 
superlattices to create ladder geometries, and in systems involving a synthetic dimension for 
which there is naturally tight confinement. Both situations have been shown theoretically to 
support strongly correlated states that are closely related to FQH states (Cornfeld and Sela, 
2015; Petrescu and Le Hur, 2015; Calvanese Strinati et al., 2017). A precise connection 
between FQH states on an infinite 2D system and the states in these quasi-1D settings can be 
made by considering the quantum Hall wave functions on a cylindrical geometry which is 
infinite in one direction but has finite circumference L in the other. Studies of the evolution 
of the ground state from 2D (L ≫ a, with a the mean interparticle spacing) into the 

“squeezed geometry” (small L ≲ a) show that many FQH states of the 2D systems evolve 

smoothly into charge-density-wave (CDW) states of the quasi-1D geometry. For example, 
the bosonic Laughlin state, at filling factor ν = 1/2, evolves into a CDW state which breaks 
translational symmetry to double the unit cell to give two degenerate ground states of the 
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CDW. The fractionally charged quasiparticles of the FQH states map onto domain walls 
between the different symmetry-related CDW states.

4. Other strongly correlated phases

a. Chiral Mott insulator: For the Harper-Hofstadter-Hubbard model at strong interactions 
U ≳ J the Gross-Pitaevskii approach fails. Just as in the case of vanishing magnetic field, 

there can be incompressible Mott phases, with ni = integer. However, other strongly 
correlated phases are predicted to appear. One striking example is the chiral Mott insulator: 
an incompressible phase at integer filling (like the Mott insulator), but which carries a 
nonzero local current in the ground state (as does a vortex lattice). Numerical calculations 
indicate that, within a region of stability between Mott insulator and superfluid, the chiral 
Mott insulator can form the ground state of the Bose-Hubbard model with external flux on a 
variety of 2D lattices (Dhar et al., 2013; Zaletel et al., 2014; Vasić et al., 2015). In ladder 
systems the Mott-vortex phase found in numerical calculations (Greschner et al., 2015; 
Petrescu and Le Hur, 2015; Piraud et al., 2015) can be viewed as the 1D analog of the chiral 
Mott insulator.

b. Chiral spin states: For hard-core interactions U → ∞, interesting many-body states 
can still arise in the Harper-Hofstadter-Hubbard model for bosons provided ni ≠ integer so 
the hard-core bosons are mobile. These bosons can be viewed as a spin-1/2 quantum magnet, 
with the phases of the tunneling matrix elements introducing frustrated magnetic interactions 
(Möller and Cooper, 2010). Thus, the FQH (or FCI) phases of these hard-core bosons can be 
viewed as quantum spin liquids (Kalmeyer and Laughlin, 1987). Other predicted quantum 
spin liquids may also find realization with these Bose-Hubbard models (Läuchli and 
Moessner, 2015). The phases of interacting fermions in Hubbard-like models with tunneling 
phases have also been studied theoretically. Much of the focus has been on the Haldane 
model for spin-1/2 fermions with on-site repulsion U. For systems close to half filling there 
is a competition between the band insulator, the Mott insulator, and various spin-symmetry-
broken phases (Zheng et al., 2015; Imriška, Wang, and Troyer, 2016; Vanhala et al., 2016). 
The Mott insulating state naturally leads to frustrated spin models, with possible 
unconventional forms of ordering at very low temperatures, at the superexchange energy 
scale J2/U or below, including chiral spin states (Arun et al., 2016) and chiral spin liquids 
(Hickey et al., 2016).

c. Number-conserving topological superfluids: The theory of topological superfluids, 
Sec. V.B.2, is based on the mean-field treatment of pairing described by the Bogoliubov–de 
Gennes theory. In this theory, the number of pairs of fermions is not conserved. For a 1D 
system, such a mean-field theory can be appropriate in settings in which the superfluid 
pairing is proximity induced, e.g., by coupling to a bulk superfluid of fermion pairs with 
which pairs of particles can be exchanged and which can impose a fixed superconducting 
order parameter. However, in the absence of such a proximitizing medium the quantum 
fluctuations in 1D systems preclude the existence of any long-range order in the 
superconducting pairing and the structure of the mean-field theory should fail. Theoretical 
work has shown how 1D topological superfluids can still arise in such number-conserving 
settings. Models with microscopic symmetry can give rise to zero-energy modes, arising as 
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exact degeneracies in the spectrum of an open chain in the topological phase (Fidkowski et 
al., 2011; Sau et al., 2011; Iemini et al., 2015, 2017; Lang and Buachler, 2015). This 
degeneracy is the many-body counterpart of the Majorana modes of the mean-field 1D 
topological superconductor. In settings without such a symmetry, topological degeneracies 
can arise in geometries in which modulation of the parameters along the chain lead to 
multiple interfaces between topological and nontopological phases (Ruhman, Berg, and 
Altman, 2015; Ruhman and Altman, 2017).

C. Experimental perspectives

Many of the experimental consequences of topological bands described in Sec. IV rely on 
the interactions between the particles being sufficiently weak that they can be treated as 
noninteracting. It is therefore important to consider what experimental observables can be 
used to characterize the properties of atoms in topological bands when interactions cannot be 
neglected.

1. Equilibrium observables—Some of the most important observables for 
characterizing the properties of the atoms are well established from studies of atomic gases 
in other settings without topological character. Measurements of the equation of state and 
observations of density-density correlations in time-of-flight imaging will be crucial for 
establishing the existence and forms of strongly correlated phases such as fractional 
quantum Hall states. Similarly, the possibility to image at the single-site level in quantum 
gas microscopes (Bakr et al., 2009; Sherson et al., 2010) will allow precise characterization 
of microscopic structure in these phases, including of the local currents, for example, in the 
chiral Mott insulator phase. A method for detecting local currents was presented in 
experiments from the Munich group (Atala et al., 2014).

2. Collective modes—Observations of the collective mode frequencies provide a 
sensitive way to detect properties of many-body systems (Dalfovo et al., 1999). For BECs 
formed in bands with geometrical character, the collective mode frequencies are sensitive to 
the Berry curvature at the band minimum (Price and Cooper, 2013). Consider a weakly 
interacting BEC in a single band minimum. We take the minimum to have isotropic effective 
mass M* and a local Berry curvature Ωez. The effect of Berry curvature on the collective 
modes can be readily determined by adapting the standard hydrodynamics approach (Pethick 
and Smith, 2002) to include the anomalous velocity from the Berry curvature. For a 

spherical harmonic trapping potential V (r) = (1/2)Λ |r |2 , the collective modes have the same 

spatial structure as for Ω = 0 (Stringari, 1996), but the frequencies depend on the Berry 
curvature. For example, for small Ω the three angular-momentum components of the dipole 
mode are split by Δω = ΛΩ/2ℏ, leading to a precessional motion of the center-of-mass 
oscillation of the cloud at this frequency.

3. Edge states—For incompressible fluids that are topological, e.g., a topological 
insulator of noninteracting fermions, or a FQH fluid, there exists a special class of low-
energy collective modes, which are the gapless edge states of the fluid. For noninteracting 
particles in Chern bands, these are the edge states discussed in Sec. II.D. For interacting 
systems these may not be easily described as single-particle excitations, but can still appear 
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as long-lived surface excitations. Measurements of the propagation of surface waves can 
directly probe the edge-state structure, for example, allowing one to detect the number of 
edge channels and their respective velocities (Cazalilla, Barberán, and Cooper, 2005). The 
edge states also lead to highly characteristic dynamics in far-from-equilibrium situations in 
which the confining potential is removed (Goldman et al., 2013). Edge states appear also at 
interfaces between bulk regions of differing topologies, prepared, for example, by spatial 
modulation of the lattice potential (Goldman et al., 2016) and have been probed 
experimentally for the SSH model (Leder et al., 2016). Experiments using a quantum gas 
microscope have shown the influence of strong interparticle interactions on the chiral edge 
states in Harper-Hofstadter ladders (Tai et al., 2017).

4. rf excitation—Another natural probe of the edge states is to measure the spectrum for 
the removal of particles via rf excitation, ideally performed with single-site resolution (Bakr 
et al., 2009; Sherson et al., 2010) to focus on the boundary. Such spectra have been proposed 
as a means to detect localized Majorana modes in topological superfluids, appearing as a 
near zero-energy contribution inside the spectral gap (Grosfeld et al., 2007; Nascimbène, 
2013). A definition of fractional statistics is provided by Haldane’s exclusion statistics 
(Haldane, 1991): a generalized version of Pauli blocking, by which the fractional 
quasiparticles reduce the number of available states for other quasiparticles in a well-
defined, but fractional, manner. An observation of this effect requires counting many-body 
states and may be possible in precision spectroscopy of small FQH clusters (Cooper and 
Simon, 2015) in which the exclusion statistics reveal themselves in the count of spectral 
lines.

5. Adiabatic pumping—For topologically ordered systems, the existence of fractional 
low-energy particlelike excitations allows for new features in Thouless pumping. 
Specifically, under one full cycle of the adiabatic evolution of the pump, it is possible to 
transfer a fractional particle number across the system. (In the examples discussed above, the 
number of particles transferred was constrained to be an integer, set by the Chern number.) 
This fractional pumping is related to the existence of a ground state degeneracy: one cycle of 
the adiabatic pump converts one ground state into another degenerate ground state, and 
multiple cycles (transferring multiple fractional particles) are required before the system 
returns to its starting state. This picture forms the basis for understanding of the quantization 
of the Hall conductance in the fractional quantum Hall effect of 2D systems (Laughlin, 
1981; Halperin, 1982). For narrow strips of quantum Hall systems, this physics smoothly 
evolves into the pumping of fractional charges in commensurate charge-density waves. The 
manifestation of such pumping for 1D fermionic systems with synthetic dimension was 
described by Mazza et al. (2015), Zeng, Wang, and Zhai (2015), and Taddia et al. (2017).

6. Hall conductivity from “heating”—An interesting way in which to measure the 
Hall conductivity σxy of a system, i.e., the transverse current density in response to a 
uniform force, is to measure the heating rate, as set by the rate of power absorption P±(ω) 
caused by the application of a circularly polarized force F±(t) = F0(cos ωt, ± sin ωt). The dc 
Hall conductivity is found to be set by
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σxy =
2

πF0
2
Asyst

∫
0

∞
dω

1
ω

P+(ω) − P−(ω) , (104)

i.e., the difference of the power absorption rates divided by frequency and integrated over all 
drive frequencies (Tran et al., 2017; Asteria et al., 2019). For noninteracting particles the 
power absorption can be found from measurements of the rates of depletion of initially 
occupied states Γ±, via P± = (ℏω)Γ±, allowing the Hall conductivity to be determined via 

measurements of this depletion rate. For a filled Chern band, the integrated difference of 
depletion rates (104) is therefore expected to recover the quantized Hall conductivity of the 
filled bands. Equation (104) is however valid even for interacting particles, arising from a 
general sum rule for the linear response functions, and so provides a possible way to 
measure the Hall conductivity also in strongly correlated phases.

VI. OUTLOOK

A. Turning to atomic species from the lanthanide family

In this review we explored several classes of lattice schemes for which a nontrivial topology 
originates from a two-photon Raman coupling between various sublevels of the electronic 
ground state manifold. So far most experiments of this type were performed with atoms 
from the alkali-metal family, which are relatively easy to manipulate and cool down to 
quantum degeneracy. However, for such atoms, recoil heating due to spontaneous emission 
of photons may cause severe problems. Indeed the desired Raman coupling is significant 
only when the laser is detuned from the resonance by less than the fine-structure splitting 
Δf.s. of the resonance line (see Appendix C). Because of this relatively small detuning, 
spontaneous emission of photons occurs with a non-negligible rate γ. More precisely, one 
can define the merit factor ℳ = κ/γ, where κ is the desired Raman matrix element. Taking as 

an example the case of the fermionic alkali-metal atom 40K, one finds after optimization 

ℳ Δf . s . /Γ 105, where Γ stands for the natural width of the electronic excited state [see, 

e.g., Dalibard (2016) for details]. If one takes as a typical value ℏκ equal to the recoil 
energy, the photon scattering rate is γ ~ 0.3 s−1, leading to the heating rate Ė kB × 100 nK/s .

This may be too large for a reliable production of strongly correlated topological states.

A more favorable class of atoms is the lanthanide family, with species such as erbium or 
dysprosium. These atoms have two outer electrons and an incomplete inner shell (6s2 and 
4f10 for Dy). Because of this inner shell, the electronic ground state has a nonzero orbital 
angular momentum (L = 6 for Dy). The lower part of the atomic spectrum contains lines 
corresponding to the excitation either of one of the outer electrons or of one electron of the 
inner shell. By choosing a laser excitation close to a narrow line resonance and thus with a 
large detuning Δb from the closest broad line, one reaches after optimization ℳ Δb/Γb .

Because Δb is now of the order of an optical frequency, the merit factor is ℳ 107, leading to 

γ ~ 10−3 s−1 and to the residual heating Ė ~ kB × 0.1 nK/s.
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B. Topological lattices without light

Laser fields constitute a common element for all of the techniques described herein, and in 
virtually all of these cases these fields lead to unwanted off-resonant scattering leading to 
heating, atom loss, or both. As discussed in the previous section, these scattering processes 
might be mitigated or eliminated by suitable selection of different transitions or working 
with different atoms; however, fundamentally different approaches are also possible.

Of particular interest is the possibility to replace the laser fields with rf or microwave 
magnetic fields generated by a microfabricated atom chip. Unlike optical fields, these fields 
have practically no off-resonant emission, solving the inprinciple atomic physics limitation, 
in exchange for the technical complexity of working in the vicinity of an atom chip.

In one category of proposals, the atom chip serves simply as the source of a large time-
modulated gradient magnetic field (Anderson, Spielman, and Juzeliunas, 2013). This 
produces in effect a series of pulses that generates spin-dependent gauge fields; the most 
simple implementation of this technique was realized in the lab (Luo et al., 2016), and 
although spontaneous scattering was eliminated, the fairly low frequency of their drive led to 
significant micromotion induced heating effects.

In a second category of proposals (Goldman et al., 2010), the atom chip consists of a large 
array of microfabricated parallel wires which give a near-field radio-frequency magnetic 
field that drives transitions in the same way as Raman lasers, as described here in the context 
of synthetic dimensions or intrinsic spin-dependent lattices. Because these fields are 
structured at the micrometer scale, far below the free-space wavelength of rf fields, these are 
near-field structures and the atomic ensemble must be on the micrometer scale from the 
chip’s surface.

C. Other topological insulators and topological metals

We have focused on specific recent experimental realizations of topological energy bands 
using cold gases: in 2D systems and in 1D systems with chiral symmetry. Routes to 
achieving topological superfluid phases in cold gases, arising from BCS pairing of fermions, 
have also been described in Sec. V.B.2.

As discussed in Sec. II.E other forms of topological energy bands can arise depending on 
dimensionality and the global symmetries that are imposed, according to the tenfold way 
(Chiu et al., 2016). Important cases in solid state systems are the ℤ2 topological insulators 

that arise in spin-orbit coupled systems with time-reversal symmetry, in 2D and 3D. There 
are proposals for how to realize bands with this topology for cold gases. The required TRS 
can be implemented by fine-tuned engineering of the relevant terms in the Hamiltonian 
(Goldman et al., 2010). TRS can also be established as an intrinsic property for cold gases: 
in the absence of Zeeman splittings and of any circularly polarized light fields (Béri and 
Cooper, 2011). In 2D, the insulating state formed by filling a ℤ2 topological band exhibits a 

quantized Hall effect for the spin current. A similar quantized spin Hall response also arises 
in a related setting without spin-orbit coupling, in which spin up and spin down fill Chern 
bands with equal and opposite Chern number: such energy bands have been realized for 
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bosons in cold atoms (Aidelsburger et al., 2013) using laser-assisted tunneling to generate a 
Harper-Hofstadter model with equal and opposite fluxes for the two spin states (Kennedy et 
al., 2013).

Cold atomic gases provide a natural setting with which to explore certain forms of 
topological band that are more difficult to implement in solid state materials. The sublattice 
(chiral) symmetry is very fragile in solid state systems, as it is typically broken by any 
disorder potential. However, it can readily arise for optical lattice potentials in cold atom 
gases for which disorder can be negligible (Essin and Gurarie, 2012; Wang, Deng, and 
Duan, 2014). Similarly, there are predicted to be topological insulators beyond those 
classified in the tenfold way, arising from lattice symmetries which rely on a high spatial 
regularity that can arise in cold gases. These include topological invariants stabilized by 
crystalline lattice symmetries (Fu, 2011), and the Hopf insulator (Moore, Ran, and Wen, 
2008; Deng et al., 2013), which also relies on a form of translational symmetry for stability 
(Liu, Vafa, and Xu, 2017). Note also that cold gases allow topology in dimensions higher 
than d = 3 to be explored, through the use of synthetic dimensions provided by internal 
degrees of freedom or by viewing a phase degree of freedom as an additional 
quasimomentum. Recent experimental work (Lohse et al., 2018) used pumping to 
demonstrate the topological response of an effective 4D quantum Hall system (Zhang and 
Hu, 2001) based on the theoretical proposal by Price et al. (2015).

An area of growing interest in solid state settings concerns so-called topological metals, or 
semimetals (Chiu et al., 2016). (There exist analogous topologically stable forms of gapless 
superconductors.) As for topological insulators, the classification of topological metals 
depends also on the dimensionality and the existence (or absence) of symmetries. However, 
since metals involve bands that are only partially filled by fermions, they cannot be 
characterized by the topological invariants used for insulators, which involve integrals over 
the filled energy bands. Instead, topological metals can be characterized by topological 
invariants defined in terms of integrals over the Fermi surface which separates filled from 
empty states (Volovik, 2003). One example of a topological metal is provided by the 2D 
honeycomb lattice with nearest-neighbor hopping. This realizes the band structure of 
graphene in which there are two Dirac points in BZ, each of which leads to a Fermi surface 
when the Fermi energy lies close to the Dirac point. Each of these Fermi surfaces is a 
topological metal, characterized by the Berry phase of Bloch states around the Fermi 
surface, which is π. This value is a topological invariant, i.e., it is robust to continuous 
changes of the underlying parameters, provided the system retains both time-reversal 
symmetry and inversion symmetry. (These symmetries ensure that the Berry curvature of the 
bands vanishes, except for singular delta-function contributions at the Dirac nodes which 
lead to the π Berry phases.) The Dirac node is topologically stable and can only be created 
or annihilated if it merges within another Dirac point. A related example that arises in 3D is 
the “Weyl point.” This can be viewed as a point source of Berry curvature in reciprocal 
space. The integral of the flux of Berry curvature through any closed 2D surface in 
reciprocal space is 2πC, where C is required to be an integer. If this surface encloses a Weyl 

point, |C | = 1. The Weyl point is topologically stable to deformations of the Hamiltonian, 

without any symmetry requirements, unless it annihilates with a second Weyl point of 
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opposite charge. Optical lattice with Weyl points can be constructed using the laser-induced 
tunneling methods described in Sec. III.D (Dubček et al., 2015).

D. Far-from-equilibrium dynamics

Cold atomic gases readily allow the study of coherent quantum dynamics in far-from-
equilibrium settings. Starting with a cold gas at thermal equilibrium, a sudden change of the 
Hamiltonian, a so-called “quantum quench,” typically leaves the system in a far-from-
equilibrium state. Here we discuss some of the consequences of quantum quenches between 
Hamiltonians for which the ground states have different topological character. We focus on 
cases of noninteracting particles in topological energy bands.

Consider first an optical lattice potential which is varied slowly in time, such that the 
topological invariant of the lowest energy band differs between initial and final 
Hamiltonians. If the relevant topological invariant is symmetry protected, it is possible to 
have a smooth evolution between these two cases provided that the Hamiltonian breaks the 
symmetry at intervening times. An example of this is the pumping sequence of the RM 
model, which breaks the chiral symmetry of the SSH model and therefore allows a smooth 
evolution between the topologically distinct phases of the SSH model. When there is no 
symmetry protection (e.g., Chern bands in 2D), then the change in band topology requires 
the band gap to close at some intermediate time, as illustrated in Fig. 26. For a BEC formed 
close to the band minimum, such a change in band topology need not induce any phase 
transition: the Bloch wave functions of those states which the bosons occupy can evolve 
smoothly, allowing adiabatic evolution of the BEC, albeit into a very different local wave 
function. This allows, for example, the adiabatic formation of a dense vortex lattice (Baur 
and Cooper, 2013). However, for noninteracting fermions that fill the lowest energy band, 
the ground states of the initial and final Hamiltonians have different topological characters, 
so these two states must be separated by a phase transition.

The far-from-equilibrium dynamics following a quantum quench between Hamiltonians 
whose ground states have different topologies has been explored for noninteracting fermions 
which fill a band. One striking result is that the topological invariant of the many-body state 
is often preserved under unitary time evolution. This has been shown for topological 
superfluids (Foster et al., 2013, 2014; Sacramento, 2016), and for Chern bands (Caio, 
Cooper, and Bhaseen, 2015; D’Alessio and Rigol, 2015). [Different behavior can arise for 
symmetry-protected topological invariants (McGinley and Cooper, 2018).] In interpreting 
this result it is crucial to distinguish between the topology of the Hamiltonian and the 
topology of the many-body state. The former is defined as the topological invariant 

constructed for the lowest energy band of the Hamiltonian, with Bloch wave functions |uq
(0)〉,

while the latter is defined as the topological invariant constructed from the wave functions 

which the fermions occupy |uq
s〉 . These two sets of wave functions need only coincide if the 

many-body wave function is the ground state of the Hamiltonian. Out of equilibrium, for 
example, following a quantum quench, the Bloch wave function occupied by the particle at 
momentum q need not be an eigenstate of the Hamiltonian, so it becomes time dependent 

|uq
s(t)〉 . We consider situations in which the periodicity of the lattice is preserved, such that 

wave vector q remains a good quantum number. That the topological invariant of the state is 
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preserved is guaranteed provided the unitary evolution of the Bloch states 

|uq
s(t)〉 = e−iĤqt/ℏ|uq

s(0)〉 is smooth in momentum space q, which is true for short-range 

hopping. [For topological invariants that are symmetry protected, it is also required that the 
symmetry is not broken either explicitly or dynamically (McGinley and Cooper, 2018).] 

That said, at long times, the Bloch wave functions of the many-body state |uq
s(t)〉 will become 

rapidly varying as a function of q. When the variation in q is so fast that this cannot be 
viewed as smooth on the scale of 2π/L, with L the typical sample dimension, then the bulk 
topological invariant becomes ill defined. Thus for any finite system, there is an upper time 
scale after the quench for which it is meaningful to expect the Chern number to be 
preserved. Simple estimates lead to the conclusion that this time is of order L/ν, with ν a 
characteristic group velocity of the final Hamiltonian (Caio, Cooper, and Bhaseen, 2016). 
Such systems can still be characterized by the Bott index (Loring and Hastings, 2010), 
which provides a real-space formulation of the Chern index applicable also to finite-sized 
systems. This has been used to find protocols for preparing nonequilibrium (Floquet) 
systems by which the Bott index undergoes transitions between topological values 
(D’Alessio and Polkovnikov, 2013; Ge and Rigol, 2017).

Although the topological invariant of the wave function is unchanged following the quench 
to a new Hamiltonian with different topology, this does not mean that there are no 
observable consequences of the new Hamiltonian. Local physical observables can be 
strongly influenced by the new Hamiltonian, despite the fact that the nonlocal topological 
invariant of the state is unchanged. Indeed, theory shows that under a quantum quench of the 
Haldane model the edge current quickly adapts to become close to that of the ground state of 
the final Hamiltonian (Caio, Cooper, and Bhaseen, 2015). Furthermore, by following the 

dynamics of the Bloch wave functions |uq
s(t)〉 detailed information on the final Hamiltonian 

can be recovered (Gong and Ueda, 2017; Wang et al., 2017). This has been demonstrated in 
experiments by the Hamburg group (Tarnowski et al., 2017; Fläschner et al., 2018), using the 
band-mapping techniques described in Sec. IV.A.2 to reconstruct the dynamical evolution of 

the occupied wave functions |uq
s(t)〉 . The experiments use a two-band model, for which the 

Hamiltonian at q may be written as

Ĥq = ℎ0(q)1̂ − h(q) ⋅ σ̂ . (105)

The wave function of the fermion with q can be represented by a three-component unit 
vector e(q). If e(q) is aligned with h(q), then this is an energy eigenstate of the Hamiltonian. 
In the quench experiment, the system is prepared with einitial(q) = (0,0, −1) for all wave 
vectors [the ground state of an initial Hamiltonian with hinitial(q) = (0,0,1)] and then the 
Hamiltonian is changed to its final value h(q). For general q this is not aligned with einitial(q) 
so the wave function evolves in time, precessing around the local h(q). This leads to the 
appearance of nonzero components of the vector (ex, ey) which indicate interband 
coherences. The evolution can lead to the creation of vortex-antivortex pairs in these 
components (ex, ey). The appearance of each vortex-antivortex pair was shown to be 
associated with a cusp in the Loschmidt echo, hence giving rise to the characteristic feature 
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of a “dynamical phase transition” (Heyl, 2018). Such singular features can arise even for 
quenches within a single topological phase, and so are not connected to the topological 
phase transition itself. Instead, the change in the topology of the Hamiltonian can be found 
by tracing the time evolution of e(q, t) and constructing the linking number of the 
trajectories (in q and t) of any two values of e [e.g., e = (1,0,0) and (0,0,1)] (Wang et al., 
2017). This linking number is the Hopf index of the map e(q, t). This procedure has been 
successfully carried out in experiments (Tarnowski et al., 2017). A related approach has 
recently been used to demonstrate the topological character of the effective Hamiltonian in a 
spin-orbit coupled BEC (Sun et al., 2018).

The above considerations rely on the assumption that the fermions are noninteracting. It will 
be of interest to explore the extent to which these, or similar, approaches can be applied in 
the presence of interparticle interactions. Being gapped phases of matter, associated with 
filled bands, the ground states of the Hamiltonian are expected to be robust to weak 
interactions. However, even weak interactions can lead to the generation of entanglement 
between single-particle states at different wave vectors under far-from-equilibrium 
dynamics, which may be viewed as a form of decoherence.

Moving beyond the phases of noninteracting fermions in topological bands, it will be of 
interest to explore similar quench dynamics in topological phases that arise only because of 
strong interparticle interactions. This is an area where results remain limited. Recent work 
on the Haldane phase of a spin-1 chain (a symmetry-protected topological phase of this 
interacting quantum spin system) has shown that the “string order” that characterizes the 
topological phase is lost following the quench (Calvanese Strinati et al., 2016), suggesting a 
difference from the noninteracting fermion cases described above. One important difference 
concerns the role of symmetry protection under dynamical evolution (McGinley and Cooper, 
2018).

E. Invariants in Floquet-Bloch systems

The topological invariants we focused on are those of static single-particle Hamiltonians, in 
which the spatial periodicity leads to the existence of a Bloch Hamiltonian that depends on a 
quasimomentum q within a BZ. If the Hamiltonian is time varying, but periodic with period 
T ≡ 2π/ω, then energy is replaced by a Floquet quasienergy that is defined up to the addition 

of integer multiples of ℏω. The combination of both temporal and spatial periodicities 
causes Floquet-Bloch systems to have topological invariants that are distinct from those of 
static Hamiltonians.

(1) The periodicity of the Floquet spectrum allows the Floquet bands to wind in quasienergy, 
by an integer multiple of h/T as q runs over the BZ. This winding in quasienergy gives rise 
to topological invariants of Floquet-Bloch bands (Kitagawa et al., 2010) that are absent in 
static settings. Figure 27 shows an example of a Floquet-Bloch band in a 1D system that 
winds in quasienergy once across the BZ.

To understand the physical significance of such situations, it is instructive to consider the 
band of Fig. 27 (top) to be filled with noninteracting fermions. [How one might prepare such 
a state is itself an interesting question (Dauphin et al., 2017; Lindner, Berg, and Rudner, 
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2017). Indeed, nonadiabatic effects associated with the switch-on of a pump can lead to 
deviation from quantization (Privitera et al., 2018).] The net current carried by the filled 
band is

I ≡
L

2π∫−π/a

π/a 1
ℏ

dϵq

dq
dq =

L

T
, (106)

where a is the lattice constant and L is the total length of the system. The number of particles 
in the filled band is N = L/a, so the current per particle is

I

N
=

a

T
. (107)

Thus, the current is equivalent to a displacement of each particle by a lattice constant a in 
each period of the cycle T. For a band that winds in quasienergy s times, the current is 
quantized at sa in each cycle T. For a band that winds in quasienergy s times, the current is 
quantized at sa in each cycle T. The quantized current from a filled Floquet-Bloch band that 
winds s times in quasienergy precisely matches the current expected from an adiabatic 
pump, as described in Sec. II.F, operated cyclically with period T and with Chern number s. 
Indeed, settings in which adiabatic Thouless pumping occurs give rise to Floquet-Bloch 
spectra in which a band winds in quasienergy. (The adiabaticity condition corresponds to the 
relevant Floquet-Bloch band crossing with all Floquet-Bloch bands that wind in the opposite 
sense.) However, the general structure of the Floquet-Bloch states and the associated 
topological invariants (Kitagawa et al., 2010) are not restricted to such adiabatic settings.

(2) New features also arise when one considers the edge states on systems with a boundary. 
One finds that finite-size systems can have protected edge states, at quasienergies between 
the bulk bands, even if the topological invariants constructed from the Floquet Hamiltonian 

Ĥq
F

 are trivial for all of the bulk energy bands (Kitagawa et al., 2010). A simple example of 

a 2D model which exhibits such “anomalous edge states” is illustrated in Fig. 28. One period 
T is broken into four subperiods T/4, during which the tunneling amplitude J is turned on 
only for a subset of the bonds. This tunneling is chosen to satisfy (J/ℏ)(T/4) = π such that a 
particle that starts on one side of the active bond is transferred to the other side of the bond 
during the time T/4. For particles in the bulk, the net action after all four parts of the cycle is 
to return the particle to its starting point (up to some overall phase). Thus the Floquet 
operator for time evolution over one cycle [see Eq. (B2)] is proportional to the identity and 
has a bulk Floquet-Bloch band structure with constant quasienergy and whose wave 
functions have trivial topological character. However, a particle that starts on the edge of the 
system is transported along the edge over one period; this motion appears as dispersive 
(chiral) edge states in the Floquet spectrum of the finite-size system; see Fig. 28(c). The 
understanding of such anomalous edge states is that the topological invariant of a band 
constructed from the Floquet operator determines the change in the number of edge states as 
the quasienergy passes through the band (Rudner et al., 2013). An edge state can pass 
through a set of topologically trivial bands and satisfy periodicity in quasienergy and 
quasimomentum; see Fig. 29. To compute the number of anomalous edge states requires one 
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to know not just the stroboscopic evolution defined by the Floquet operator, but also the full 
time-evolution operator at intermediate times, from which an additional invariant can be 
constructed (Rudner et al., 2013). Anomalous edge states have not yet been seen in atomic 
systems, but have been observed in experiments on light propagation in photonic structures 
(Maczewsky et al., 2017; Mukherjee et al., 2017).

(3) The concept of particle-hole symmetry needs be generalized for Floquet-Bloch systems. 
For static Hamiltonians, particle-hole symmetry (E → −E) stabilizes (edge) modes at 
energies E = 0 (SSH model or Majorana mode in the Kitaev model). The periodicity of the 
Floquet quasienergy ϵ under ϵ → ϵ + ℏω means that symmetry ϵ → −ϵ arises for ϵ = 0 or ϵ 
= ℏω/2. Indeed, topologically stable edge modes at quasienergies ϵ = ℏω/2 have been 
theoretically demonstrated in periodically driven lattice models with sublattice (chiral) 
symmetry analogous to the SSH model (Asbóth, Tarasinski, and Delplace, 2014), and in 
Floquet superfluid systems where they appear as Majorana modes (Jiang et al., 2011).

Recent works have constructed a general theory of the topological classification of time-
varying single-particle Hamiltonians (Nathan and Rudner, 2015; Fruchart, 2016; Roy and 
Harper, 2016). Extensions of these ideas to interacting, many-body phases is an active area 
of theoretical research.

F. Open systems

So far we focused our studies on the topological properties of the ground state of an isolated 
system. The possibility to introduce a coupling between this system and an environment 
opens new possibilities and raises new questions that we now discuss. We restrict our 
presentation to studies in direct relation with atomic gas implementations.

Consider first the case where the environment is at a nonzero temperature T. If the coupling 
is sufficiently weak, the energy levels of the system remain relevant and its steady state is 
now a statistical mixture of these levels. Since bands with various topologies that were 
empty at T = 0 now acquire a finite population, the Chern number calculated via a thermal 
average will not be an integer anymore. One could naively conclude that the system loses all 
its topological properties when T becomes non-negligible with respect to the gap protecting 
the bands that are populated at zero temperature.

However, one may look for more subtle topological invariants that can be associated with the 
density matrix describing the system at nonzero T. A possible direction consists of 
generalizing the notion of geometric phase, using the concept of parallel transport for 
density matrices introduced by Uhlmann (1986). This line was investigated by Huang and 
Arovas (2014) and Viyuela, Rivas, and Martin-Delgado (2014), who could derive in this way 
a classification of topological phases at nonzero T. It was subsequently revisited with a 
somewhat different perspective by Budich and Diehl (2015), who pointed out possible 
ambiguities of the previous approaches for a model 2D system. Another direction consists of 
establishing an equivalence between classes of density matrices using local unitary 
operations (Chen, Gu, and Wen, 2010), and deducing from this equivalence the desired 
classification of topological phases. It was developed for the particular case of mixed 
Gaussian states of free fermions by Diehl et al. (2011) and Bardyn et al. (2013), and recently 
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generalized by Grusdt (2017) [see also van Nieuwenburg and Huber (2014) for the specific 
case of 1D systems]. Independently of the tool that is used to define the topological class of 
density matrices, it is worth emphasizing that on the one hand these topological features are 
in principle observable, but on the other hand their relation with usual physical quantities 
associated with the response of the system is still the subject of ongoing research (Budich, 
Zoller, and Diehl, 2015).

Working with open systems also offers the possibility of creating novel topological states 
that emerge from the dissipative coupling itself. Here we take the reservoir at T = 0 for 
simplicity. In the conceptually simplest version of the scheme, the coupling is engineered so 
that the system ends up after some relaxation time in a pure state, often called a dark state. 
“Topology by dissipation” is achieved when this dark state possesses nontrivial topological 
properties. For a coupling compatible with the Born-Markov approximation (Gardiner and 
Zoller, 2004; Daley, 2014), the master equation describing the evolution of the density 
operator ρ of the system can be written in the Lindblad form (Lindblad, 1976) ρ̇ = ℒ(ρ)

where the linear operator ℒ, the Liouvillian, acts in operator space:

ℒ(ρ) = i[ρ, H] +
1
2 ∑

j

(2LjρLj
† − Lj

†
Ljρ − ρLj

†
Lj) . (108)

Here H is the Hamiltonian of the system in the absence of coupling to the reservoir, and the 
Lj’s are the Lindblad operators describing the various coupling channels to the bath. If one 
neglects for simplicity the Hamiltonian evolution of the system (H = 0), one finds that a pure 
state |ψ〉 satisfying Lj |ψ〉 = 0 for all j is an eigenstate of the Liouvillian with eigenvalue 0 

and thus a dark state. The topology associated with this state can be readily inferred from the 

fact that it is the ground state of the parent Hamiltonian H′ = ∑jLj
†
Lj . Conditions for the 

existence and uniqueness of such dark states were discussed in the context of fermionic 
setups by Bardyn et al. (2012, 2013).

The steady state of the master equation will be protected against small perturbations if it is 
an isolated point in the spectrum of the Liouvillian. One defines in this case the “damping 
gap” as the smallest rate at which deviations from the steady state are washed out. In this 
dissipative context, the damping gap plays a role that is formally equivalent to the energy 
gap in the Hamiltonian context.

The concepts of topology by dissipation and damping gap can be generalized to the case 
where the steady state of the master equation associated to Eq. (108) is a mixed state. Its 
analysis is relatively simple for free fermion systems on a lattice, assuming that the Lindblad 
operators Lj are linear functions of the on-site creation and annihilation operators. This 
corresponds, for example, to the case where dissipation occurs via an exchange of particles 
with a reservoir that is described by a classical mean field. In this case, the system density 
operator is Gaussian and the already mentioned tools developed by Bardyn et al. (2013) can 
be used to characterize its topological properties. Interestingly for such systems, a change of 
the topological properties of the system can occur either when the damping gap closes or 
when the “purity gap” closes. This notion of purity gap closure, first introduced by Diehl et 

Cooper et al. Page 66

Rev Mod Phys. Author manuscript; available in PMC 2020 March 18.

N
IS

T
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IS
T

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IS
T

 A
u
th

o
r M

a
n
u
s
c
rip

t



al. (2011) and later generalized by Budich and Diehl (2015), corresponds to a situation 
where there exist bulk modes associated with a subspace (e.g., a given q in momentum 
space) in which the state is completely mixed.

Examples of topologically nontrivial pure or mixed states and their corresponding edge 
modes were presented by Diehl et al. (2011) and Bardyn et al. (2012) in a 1D and a 2D 
setup, respectively. Budich, Zoller, and Diehl (2015) pointed out a remarkable property of 
steady states involving a mixed state: they may possess a nontrivial topological character 
even when all Lindblad operators Lj are local in space. This cannot occur when the steady 
state is pure, an impossibility that is reminiscent from the fact that in the Hamiltonian 
framework, Wannier functions of a topologically nontrivial filled band (nonzero Chern 
number) must decay slowly, i.e., algebraically, in space (Thouless, 1984).

The concept of topological pumping can also be extended to the case of open systems, as 
shown by Linzner et al. (2016) and Hu et al. (2017). Using a proper engineering of the 
Liouvillian (108) of a fermionic 1D chain, Linzner et al. (2016) could generalize the result 
of Sec. IV.C.1 for the Rice-Mele model and prove the quantization of the variation of the 
many-body polarization after a closed loop in parameter space. As for the other topological 
features described in this section, this quantization holds even when the steady state of the 
master equation is a mixed state.

Finally we note that dissipation also offers a new route for revealing an existing topological 
order. Rudner and Levitov (2009) considered the motion of a single particle on a 1D 
bipartite (AB) lattice similar to the one at the basis of the SSH model. Here dissipation 
corresponds to a nonzero decay rate of the particle when it resides on the sites of sublattice 
A. The particle is assumed to start on site B0, i.e., the B sublattice site in the lattice cell m = 
0. Here one is interested in the average displacement 〈Δm〉 = ∑mmPm, where Pm is the 

probability that the particle decays from the A site of the mth lattice cell. Quite remarkably 
this average displacement is quantized and can take only the values 0 and 1. This binary 
result corresponds to the two topological classes that we identified above for the SSH model 
within the Hamiltonian framework. This result holds for any values of the decay rate and on-
site energies, but it stops being valid if one introduces a dissipative component in the 
hopping process between the two sublattices. It was confirmed experimentally with a setup 
in the photonic context by Zeuner et al. (2015). They used a lattice of evanescently coupled 
optical waveguides, in which losses and dissipation were engineered by bending the 
waveguides. The scheme of Rudner and Levitov (2009) was recently generalized 
theoretically to multipartite lattices by Rakovszky, Asbóth, and Alberti (2017), who used a 
weak measurement of the particle position as the source of dissipation.

VII. SUMMARY

We have summarized the methods that have been used to engineer topological bands for cold 
atomic gases, and the main observables that have allowed characterizations of their 
geometrical and topological properties. Most experimental studies so far have been at the 
single-particle level. Theory suggests many interesting possibilities for novel many-body 
phases in regimes where interparticle interactions become strong. Such systems are in 
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regimes where theoretical understanding is very limited, so experimental investigation will 
be particularly valuable. Accessing this regime for large gases will require careful 
management of heating—from lattice modulation methods or from Raman coupling of 
internal states—as well as the development of robust detection schemes to uncover the 
underlying order. There is already progress in this direction. It seems likely to provide a rich 
vein to explore, with much scope for experimental discoveries and surprises.
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APPENDIX A:: TOPOLOGICAL BANDS IN ONE DIMENSION

1. Edges states in the SSH model

The Su-Schrieffer-Heeger (SSH) model was introduced to describe the electronic structure 
of polyacetylene (Su, Schrieffer, and Heeger, 1979). This molecule has alternating single 
and double bonds along the carbon chain, which are represented in a tight-binding model 
with one orbital per carbon atom (site) by alternating tunnel couplings J and J′ between the 

sites; see Fig. 1. There are two sites in the unit cell, which we label A and B and that are 
assigned the same energy in the SSH model (this constraint is relaxed in the Rice-Mele 
model). The single-particle Hamiltonian is given in Eq. (15), and we emphasized in the main 
text the existence of two distinct topological classes, corresponding to J < J′ (winding 
number N = 0) and J > J′ (N = 1).

This classification may appear rather formal for an infinite chain, since the labeling in terms 
of A and B sites is arbitrary and one can exchange the roles of J and J′ without changing the 

physical system. However, its physical relevance appears clearly if one considers a finite or 
semi-infinite chain. Then the two classes correspond to different possibilities for the edge 
state(s) of the chain, as an illustration of the general bulk-edge correspondence. In the 
following we first describe the case of a semi-infinite chain for which analytical calculations 
are straightforward and then discuss the case of a finite chain.

a. Semi-infinite chain

We consider a semi-infinite lattice, with unit cells labeled by j = 1, 2, 3, 4, .... Such a 
boundary could be formed by imposing a very large potential on the unit cells at j ≤ 0 on an 
infinite lattice. However, to retain the chiral symmetry it is convenient to view this as a 
boundary to a region, at j ≤ 0, where the intercell tunneling J = 0: this causes the J = 1 unit 
cell to be disconnected from any sites with j ≤ 0; see Fig. 30. The region on the left j ≤ 0 has 
J = 0 so its winding number is N = 0.

For the semi-infinite SSH chain (with j ≥ 1) the eigenvalue condition is
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Eψj
A =

−J′ψj
B − Jψj − 1

B j > 1,

−J′ψj
B j = 1,

(A1)

Eψj
B = − Jψj + 1

A − J′ψj
B j ≥ 1. (A2)

Assuming that there is only one edge state in this problem (which can be checked 
analytically), the chiral symmetry entails that it has a zero energy. Setting E = 0 in Eqs. (A1) 
and (A2) one readily finds the solution

ψj
A

ψj
B

∝ −J′/J j

0
. (A3)

This is a localized (normalizable) state provided J′ < J , i.e., provided the insulator to the 

right of the boundary j ≥ 1 is in the topological phase with N = 1. Recalling that the 
boundary is to a region with J = 0, and hence N = 0, we establish the existence of an E = 0 
edge state if and only if the insulators on either side have differing topological index N. The 
length ξ over which this edge state is localized is ξ aln J /J′ . Note that this edge state 

occupies only one type of site (here the A sites), in agreement with the general requirement 

of the chiral symmetry for a state |ψ〉 at zero energy: Û |Ψ〉 = (P̂A − P̂B) |Ψ〉 ∝ |Ψ〉 . This 

solution is the discrete version of the edge mode, Eq. (37), of the continuum model derived 
in Sec. II.D.1.

b. Finite chain

One can also consider a chain with M unit cells; see Fig. 31. For J′ < J and a length Ma 
much larger than the extension ξ of the edge state found for a semi-infinite chain, we expect 

now two edge states of energy ~0, each localized at one end of the chain. When J′/J

increases and approaches unity, this pair of edge states gradually hybridize and they finally 
merge into the quasicontinua corresponding to the two bands for J′/J above unity.

In practice, generating a boundary that preserves chiral symmetry could be delicate to 
achieve. Thus edge states of cold atom implementations of the SSH model are likely to be 
shifted away from zero energy. In contrast, the topological protection of the Majorana modes 
of the Kitaev chain described next (Appendix A.5) does not require any such local fine-
tuning. There the protecting symmetry is the exact particle-hole symmetry of the 
Bogoliubov–de Gennes Hamiltonian (90).

2. Gauge invariance and Zak phase

Strictly speaking the Zak phase is not a gauge invariant quantity. Here we illustrate this point 
using again the SSH model. In a local gauge transform, one can redefine the positions of the 
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sites Aj and Bj to be ja + ξA and jb + ξB, leading to the following modified form of the Bloch 

wave form:

|ψq〉 = ∑
j

ei ja + ξA q
uq

A |Aj〉 + ei ja + ξB q
uq

B|Bj〉 . (A4)

The vector h(q) defining the Hamiltonian in reciprocal space (18) is then changed into

ℎx(q) + iℎy(q) = J′ + Jeiqa eiq ξA − ξB , (A5)

so that the Hamiltonian Ĥq is not q periodic anymore. The phase q ξA − ξB  is added to ϕq in 

the definition (21) of the eigenstates of Ĥq . This in turn adds the quantity π ξB − ξA /a to the 

Zak phase [see, e.g., Atala et al. (2013)].

To decrease the ambiguity in the definition of the Zak phase, one may insist on keeping the q 

periodicity of Ĥ(q), and thus h(q), over the BZ. This restricts the local gauge transform 

described above to ξB − ξA = N′a, where N′ is an integer. The Zak phase then recovers the 

structure π × integer, but the corresponding winding number is increased by N′. In practice 
this has no impact because physical consequences involve only differences of winding 
numbers or phases between regions of possibly different topology, which are gauge 
invariant.

3. Time-reversal symmetry of the SSH model

Additional symmetries can be exploited to simplify the calculation (or measurement) of the 

topological invariant. The SSH model has time-reversal symmetry, such that Ĥq = Ĥ−q
*  and 

therefore ϕq = −ϕ−q. This allows the winding number (23) to be written as an integral over 
half of the BZ

N =
1
π∫0

π/a ∂ϕq

∂q
dq =

1
π

ϕπ/a − ϕ0 . (A6)

Thus, information on the winding number N can be obtained by measuring ϕq at just two 
points, q = 0 and π/a. Since the angle ϕq. is defined only mod2π, this method can determine 
only if N is even or odd. Nevertheless, this partial information can be useful, notably for ℤ2

topological invariants (Fu and Kane, 2007).

4. Adiabatic pumping for the Rice-Mele model

The Rice-Mele model generalizes the SSH model to the case where the energies of sites A 
and B may differ by a quantity 2Δ. As explained in Sec. II.F, the vortex in ϕZak around the 
gap-closing point (Δ = 0 and J′/J = 1) is a topological invariant which can be viewed as a 
Chern number in the periodic 2D space formed from crystal momentum −π/a < q ≤ π/a and 
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time 0 < t ≤ T. This Chern number counts the number of particles that are pumped through 
the system under this adiabatic cycle (Thouless, 1983).

To establish the link between the winding of ϕZak and the transported mass, we start from 
the fact that the lattice remains at any time periodic, so that the Bloch theorem ensures that 
the quasimomentum q is conserved during the evolution. Let us assume a slow evolution and 
a nonclosing gap, so that transitions to upper bands are negligible. The evolution operator 

Û(T ) for a closed cycle of duration T in parameter space J′/J ,Δ/J  is diagonal in the Bloch 

state basis |ψq〉: |ψq〉 Û(T )|ψq〉 = eiγ(q)|ψq〉 . Using the canonical commutation relation, the 

evolution of the position operator x̂ follows: Û
†
(T )x̂Û(T ) = x̂ − ∂qγ(q̂), from which we can 

deduce the global displacement Δx of the atomic cloud by averaging over all states in the 
band. Now there are two contributions to γ(q): (i) The dynamical phase related to the energy 
E(q), which has a vanishing contribution to Δx because the average of the group velocity 

∂qE(q) over the band is zero; (ii) Zak phase i∫0
T 〈uq | ∂tuq〉dt which leads after average over the 

band to

Δx =
a

2π∫0

T

∂tϕZak(t)dt . (A7)

Because ϕZak(T) equals ϕZak(0) plus the winding number corresponding to the vortex of Fig. 
7, this proves the quantization of the displacement in units of the lattice period a.

5. The Kitaev model for topological superconductors

In this model one considers spinless fermions moving on a 1D chain of identical sites with 
the hopping coefficient J between nearest neighbors; see Fig. 32. We assume that the chain is 
coherently coupled to a superfluid reservoir that can inject and remove pairs of fermions on 
neighboring sites. This coupling is characterized by the real parameter Δ, which stands for 
the p-wave superconducting gap induced by the reservoir. It also sets the chemical potential 
μ which controls the total population of the chain. We are therefore interested in the 
eigenstates and the corresponding energies of

Ĥ − μN̂ = ∑
j

−J(ĉ j
†
ĉ j + 1 + ĉ j + 1

†
ĉ j) − μĉ j

†
ĉ j

+Δ(ĉ jĉ j + 1 + ĉ j + 1
†

ĉ j
†
) .

(A8)

For an infinite chain (or a finite chain with periodic boundary conditions), translation 

invariance ensures that Ĥ − μN̂ takes a simple form in momentum space. It can be written in 

the standard Bogoliubov-de Gennes form

Ĥ − μN̂ =
1
2 ∑

q

(ĉ̃q

†
, ĉ̃−q)ℋq

BdG
ĉ̃q

ĉ̃−q

†
, (A9)
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where the operator ĉ̃q

†
∝ ∑jeiqjaĉ j

† creates a particle with quasimomentum q and each 

Hamiltonian ℋq
BdG is a 2 × 2 matrix:

ℋq
BdG = − h(q) ⋅ σ with

ℎy(q) = − 2Δsin(qa),

ℎz(q) = 2Jcos(qa) + μ,
(A10)

and hx = 0. Although the present physical problem is different from the SSH and Rice-Mele 
models, we recover in Eq. (A10) a Hamiltonian in reciprocal space which has a similar 
structure. In particular, the search for distinct topological phases can be performed by 
analyzing the trajectory of the vector h(q) when q travels across the BZ.

More precisely we see from Eq. (A10) that the vector h always lies in a plane (here y-z), 
which makes the discussion formally similar to the SSH model. The quasiparticle excitation 
spectrum is set by |h(q)|: this is gapped for all q in the BZ provided |μ | ≠ 2J . However, there 

are two topologically distinct phases; see Fig. 33. For |μ| < 2J the two-component vector h(q) 
encircles the origin, winding by 2π as q runs over the BZ: this is the topological 
superconducting phase, for which there exist localized (Majorana) modes on the boundaries 
of a finite sample. For |μ| > 2J the vector h(q) does not encircle the origin and has a 
vanishing winding number: this is the nontopological superconducting phase. These two 
topological phases cannot be smoothly connected without causing |h(q)| = 0 at some point in 
the BZ, i.e., a closing of the quasiparticle gap.

The existence of edge states for an open chain of M sites can be simply revealed by taking 
the particular case Δ = J and μ = 0 (Kitaev, 2001) (the energy spectrum as a function of μ is 
shown in Fig. 34). In this case, one can perform a canonical transformation using the new 
fermionic operators:

Ĉj =
i
2

(ĉ j
†

− ĉ j + ĉ j + 1
†

+ ĉ j + 1) (A11)

for j = 1,...,M − 1 and

ĈM =
i
2

(ĉM
†

− ĉM + ĉ1
†

+ ĉ1) (A12)

so that the {Ĉj, Ĉj
†
} satisfy canonical fermionic commutation rules. The Hamiltonian (A8) 

can then be written

Ĥ − μN̂ = 2J ∑
j = 1

M − 1

Ĉj

†
Ĉj −

1
2

. (A13)

A ground state of Ĥ − μN̂ is obtained by solving

Ĉj|ψ0〉 = 0, j = 1,…, M − 1. (A14)
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It is separated from the excited states by the gap 2J, as expected from the above analysis for 
the infinite chain: For J = Δ and μ = 0, |h(q)| = 2J is indeed independent of q. The existence 

of edge states in this case originates from the fact that the nonlocal fermion mode (ĈM, ĈM
†

),

acting on both ends of the chain, does not contribute to the Hamiltonian (A13). It can 
therefore be filled or emptied at no energy cost, leading to two independent ground states. 

More precisely, if |ψ0〉 is the ground state satisfying ĈM|ψ0〉 = 0, then |ψ1〉 = ĈM
†

|ψ0〉 is also a 

ground state. The states |ψ0〉 and |ψ1〉 correspond to different global parities of the total 

fermion number. The situation is thus different from a usual superconductor, where the 
ground state is nondegenerate and represents a condensate of Cooper pairs, hence a 
superposition of states with an even number of fermions.

As discussed in the main text, the gapless edge modes of the topological superconductor are 
better viewed in terms of the Majorana operators

γ̂1 ≡ ĈM + ĈM

†
= i(ĉM

†
− ĉM), (A15)

γ̂2 ≡ i(ĈM − ĈM

†
) = − (ĉ1

†
+ ĉ1) (A16)

in view of the fact that these Majorana operators are spatially localized on each end of the 
chain.

APPENDIX B:: FLOQUET SYSTEMS AND THE MAGNUS EXPANSION

We mention here several key results for Floquet systems of use in the main text. We refer the 
interested reader to Eckardt (2017) for a comprehensive recent account.

Consider a Floquet system, defined by a time-varying Hamiltonian Ĥ(t) that is periodic 

Ĥ(t + T ) = Ĥ(t) with period T = 2π/ω . The time evolution over an integer number of periods, 

from t0 to t0 + NT, is described by the unitary operator

Û t0, t0 + NT ≡ Texp −
i
ℏ∫t0

t0 + NT

Ĥ t′ dt′ , (B1)

where T denotes time ordering. This can be written

Û t0, t0 + NT = Û t0, t0 + T
N

≡ e−(i/ℏ)Ĥt0
F

T , (B2)

which defines the effective Floquet Hamiltonian Ĥt0
F

 in terms of the logarithm of the time 

evolution operator over a single period T. Clearly Ĥt0
F

 is undefined up to the addition of 

integer multiples of 2πℏ/T = ℏω, so its eigenvalues—defining the Floquet spectrum—have a 

periodicity in energy of The Floquet Hamiltonian describes the “stroboscopic” evolution of 
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the system, i.e., at the selected times t = t0, t0 + T,...,t0 + NT. This is relevant for 
understanding the dynamics over time scales long compared to the drive period T.

In addition to this stroboscopic evolution, the system undergoes a “micromotion” on a time 

scale of the period T. This causes the Floquet Hamiltonian Ĥt0
F

 to depend on the time during 

the cycle, via a t0-dependent unitary transformation (the Floquet spectrum is therefore 
invariant). A convenient way to account for this micromotion is to write the general time-
evolution operator, from time ti to tf, as (Goldman and Dalibard, 2014)

Û ti, tf = e−iK̂ tf e−(i/ℏ)Ĥ
eff

tf − ti eiK̂ ti . (B3)

This can be achieved with a time-independent effective Hamiltonian Ĥ
eff

 and a “kick” 

operator that is periodic in time K̂(t) = K̂(t + T ) and that has vanishing average over one 

period (Goldman and Dalibard, 2014). The kick operator takes account of the micromotion 
(related to how ti and tf fall in the period T) and the time-independent effective Hamiltonian 

Ĥ
eff

 controls the long-time behavior.

In general, the determination of the effective Hamiltonian Ĥ
eff

 (or the closely related Ĥt0
F

) is 

a difficult task. However, for a drive frequency ω that is large compared to other frequency 

scales, the effective Hamiltonian can often be approximated by the Magnus expansion in 
powers of 1/ω (Eckardt, 2017). Writing the Hamiltonian in terms of its harmonics

Ĥ(t) = ∑
m = −∞

∞

Ĥmeimωt

= Ĥ0 + ∑
m = 1

∞

Ĥmeimωt + Ĥ−me−imωt

(B4)

where Ĥm
†

= Ĥ−m, the Magnus expansion leads to (Goldman and Dalibard, 2014)

Ĥeff = Ĥ0 +
1

ℏω
∑

m = 1

∞
1
m

[Ĥm, Ĥ−m]

+
1

2(ℏω)2 ∑
m = 1

∞
1

m2 [[Ĥm, Ĥ0], Ĥm]

+ [[Ĥ−m, Ĥ0], Ĥm] +⋯ .

(B5)

The Magnus expansion underpins several results used in the main text as follows:

(i) The leading term Ĥ0 is the time-averaged Hamiltonian, as used in our discussion 

of inertial forces in Sec. III.C to construct nonzero Peierls phase factors for 
tunneling.
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(ii) The first-order term is important in generating the next-nearest-neighbor 
hopping from circular shaking of the honeycomb lattice, as required to simulate 
the Haldane model. Consider the three-site system shown in Fig. 35 with on-site 
energies Eα, α = A, B, C, a constant tunnel matrix element −J along the links 
AB and AC, and no “bare” tunneling between B and C:

Ĥ = − J( |B〉 〈A | + |C〉 〈A | + H . c . ) + ∑
α

EαP̂α (B6)

with the projectors P̂α = |α〉 〈α | . Shaking at a frequency ω leads to sinusoidally 

varying energy offsets that we model as EB (t) = Δ cos (ωt) and EC (t)= Δ cos 

(ωt − ϕ), whereas EA(t) is set to zero by convention. The phase offset ϕ arises 

from the circular shaking and the angle between the two nearest-neighbor bonds 
(typically ϕ = 2π/3). Using the unitary transformation generalizing Eq. (52)

Û(t) = ∑
α

ei∫0
t
Eα(t′)dt′/ℏP̂α, (B7)

we convert these energy modulations into time-varying phase factors on the 
hopping:

H̃
^

(t)
−J

= ei(Δ/ℏω)sinωt |B〉 〈A |

+ ei(Δ/ℏω)sin(ωt − ϕ) |C〉 〈A | + H . c .

(B8)

Expanding in terms of the harmonics leads to

Ĥm

−J
= Jm(Δ/ℏω) |B〉 〈A|+J−m(Δ/ℏω)|A〉 〈B |

+ e−imϕ Jm(Δ/ℏω) |C〉 〈A|+J−m(Δ/ℏω)|A〉 〈C| ,
(B9)

where Jm are Bessel functions. Computing the first-order correction to the 

effective Hamiltonian (B5), one finds

Ĥeff
(1)

≡
1

ℏω
∑

m = 1

∞
1
m

Ĥm, Ĥ−m (B10)

= − J
eff eiπ/2 |B〉 〈C|+e−iπ/2|B〉 〈C| (B11)

J
eff =

2J
2

ℏω
∑

m = 1

∞ sin(mϕ) Jm(Δ/ℏω) 2

m
. (B12)

This describes a next-nearest-neighbor tunneling term, between B and C sites, 
which inherits a Peierls phase factor of π/2. A particle that encircles the 
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plaquette A → B → C → A picks up a gauge-invariant phase ψAB = − π/2,

placing the system in the regime where the Haldane model has topological 
bands. It is interesting to note that for this 1/ω expansion, the leading term in Jeff 

corresponds to the m = 1 contribution in Eq. (B12), hence scales as 1/ω3 . Had 

we directly used the Magnus expansion (B5) for the initial Hamiltonian (B6), 
this would have required us to go up to the third order of the expansion, which 
would have been quite involved. Fortunately the unitary transformation (B7) 
involves an integral of the on-site energies over time, which provides a gain of a 

factor 1/ω. The Magnus expansion at order 1 applied to H̃
^

 is then sufficient to 

obtain the relevant effective Hamiltonian.

(iii) The second-order term in Eq. (B5), of order 1/ω2, is responsible for the nonlocal 

interactions discussed in Sec. V.A.1. These arise from the contribution of the 

Hubbard interaction U to Ĥ0, and from the oscillating tunneling matrix elements 

in Ĥm ≠ 0 in the double commutator, leading the term of order J2
U /(ℏω)2 of Eq. 

(83). We refer the interested reader to Eckardt and Anisimovas (2015) for a 
comprehensive analysis of such terms.

APPENDIX C:: LIGHT-MATTER INTERACTION

Here we describe the general form that the light-matter interaction must take for two-photon 
interactions and describe the specific structure of this interaction for alkali atoms. To briefly 
summarize what follows, the light-matter interaction can be divided into contributions from 
irreducible rank-0, −1, and −2 spherical tensor operators. In alkali atoms the rank-0 and −1 
contributions dominate, but in heavier atoms (or sufficiently close to atomic resonance) the 
rank-2 contribution can be large. In addition, a similar description of single photon 
transitions (as would be relevant to systems coupling ground and metastable excited states) 
gives only the rank-0 and rank-1 contributions.

Now consider a system of ultracold alkali atoms in their electronic ground state manifold 
illuminated by one or several laser fields which nonresonantly couple the ground states with 
the lowest electronic excited states. In the presence of an external magnetic field only, the 
light-matter Hamiltonian for the atomic ground state manifold is

Ĥ0 = AhfÎ ⋅ Ĵ +
μB

ℏ
B ⋅ (gJĴ + gIÎ ), (C1)

where Ahf is the magnetic dipole hyperfine coefficient, and μB is the Bohr magneton. The 

Zeeman term includes separate contributions from Ĵ = L̂ + Ŝ (the sum of the orbital L̂ and 

electronic spin Ŝ angular momentum) and the nuclear angular momentum Î , along with their 

respective Landé g factors. We next consider the additional contributions to the atomic 
Hamiltonian resulting with off-resonant interaction with laser fields.

As Deutsch and Jessen (1998), Dudarev et al. (2004), and Sebby-Strabley et al. (2006) 
observed, conventional spinindependent (scalar Us) optical potentials acquire additional 
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spin-dependent terms near atomic resonance: the rank-1 (vector Uν) and rank-2 tensor light 
shifts (Deutsch and Jessen, 1998). For the alkali atoms, adiabatic elimination of the excited 
states labeled by J = 1/2 (D1) and J = 3/2 (D2) yields an effective atom-light coupling 
Hamiltonian for the ground state atoms (with J = 1/2):

ĤL = Ĥ0 + Ĥ1 + Ĥ2 = us E* ⋅ E +
iuv E* × E

ℏ
⋅ J + Ĥ2 . (C2)

The rank-2 term Ĥ2 is negligible for the parameters of interest and henceforth neglected. 

Here E is the optical electric field uv = − 2usΔFS/3 ω − ω0  determines the vector light shift, 

ΔFS = ω3/2 − ω1/2 is the fine-structure splitting, ℏω1/2 and ℏω3/2 are the D1 and D2 transition 

energies, and ω0 = 2ω1/2 + ω3/2 /3 is a suitable average. us sets the scale of the light shift 

and proportional to the atoms ac polarizability.

The contributions from the scalar and vector light shifts featured in HL can be independently 
specified with informed choices of laser frequency ω and intensity. Evidently, the vector 

light shift is a contribution to the total Hamiltonian acting like an effective magnetic field

Beff =
iuv E* × E

μBgJ
(C3)

that acts on Ĵ  and not the nuclear spin Î . Instead of using the full Breit-Rabi equation (Breit 

and Rabi, 1931) for the Zeeman energies, we assume that the Zeeman shifts are small in 
comparison with the hyperfine splitting—the linear, or anomalous, Zeeman regime—in 
which case, the effective Hamiltonian for a single manifold of total angular momentum 

F̂ = Ĵ + Î  states is

H0 + HL = us E* ⋅ E +
μBgF

ℏ
B + Beff ⋅ F̂ . (C4)

Note that Beff acts as a true magnetic field and adds vectorially with B, and since 

|gI /gJ | ≈ 0.0005 in the alkali atoms, we safely neglected a contribution −μBgIBeff ⋅ Î /ℏ to the 

atomic Hamiltonian. We also introduced the hyperfine Landé g factor gF. In 87Rb’s lowest 
energy manifold with F = 1, for which J = 1/2 and I = 3/2, we get gF = − gJ /4 ≈ − 1/2. In 

the following, we always consider a single angular momentum manifold labeled by F and 
select its energy at zero field as the zero of energy.

Bichromatic light field:

Consider an ensemble of ultracold atoms subjected to a magnetic field B = B0ez. The atoms 
are illuminated by several lasers with frequencies ω and ω + δω, where δω ≈ |gFμBB0/ℏ|

differs by a small detuning δ = gFμBB0/ℏ − δω from the linear Zeeman shift between mF 

states (where |δ | ≪ δω) . In this case, the complex electric field 
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E = Eω−exp( − iωt) + Eω+exp[ − i(ω + δω)t] contributes to the combined magnetic field, 

giving

B + Beff = B0ez +
iuv

μBgJ
Eω−* × Eω− + Eω+* × Eω+

+ Eω−* × Eω+ e−iδωt + Eω+* × Eω− eiδωt .
(C5)

The first two terms of Beff add to the static bias field B0ez, and the remaining two time-
dependent terms describe transitions between different mF levels. Provided B0 ≫ |Beff| and 

δω are large compared to the kinetic energy scales, the Hamiltonian can be simplified by 

time averaging to zero the time-dependent terms in the scalar light shift and making the 
rotating wave approximation (RWA) to eliminate the time dependence of the coupling fields. 
The resulting contribution to the Hamiltonian

ĤRWA = U(r)1̂ + κ(r) ⋅ F̂ , (C6)

where we identify the scalar potential

U(r) = us Eω−* ⋅ Eω− + Eω+* ⋅ Eω+ (C7)

and the RWA effective magnetic field. This expression is valid for gF > 0 (for gF < 0 the sign 
of the ex and iey terms would both be positive, owing to selecting the opposite complex 
terms in the RWA)

κ = δ + i
uv

ℏ
Eω−* × Eω− + Eω+* × Eω+ ⋅ ez ez

−
uv

ℏ
Im Eω−* × Eω+ ⋅ ex − iey ex

−
uv

ℏ
Re Eω−* × Eω+ ⋅ ex − iey ey .

(C8)

Although this effective coupling is directly derived from the initial vector light shifts, κ is 
composed of both static and resonant couplings in a way that goes beyond the restrictive 
Beff ∝ iE* × E form. This enables topological state-dependent lattices.

APPENDIX D:: BERRY CURVATURE AND UNIT CELL GEOMETRY

As noted in the main text, it can be convenient to perform a unitary transformation of the 

Bloch Hamiltonian Ĥq
′ = ÛqĤqÛq

†
, with a Ûq wave-vector-dependent unitary operator. Such 

transformations can be used to render the Hamiltonian periodic in the BZ, but also can relate 
different choices of unit cell without change of periodicity. They must leave all physical 
observables unchanged. The energy spectrum is invariant under this unitary transformation E

′q = Eq, while the Bloch states transform as |uq′ 〉 = Ûq|uq〉 . (In this Appendix we drop the 

band index for clarity.) The new Berry connection in reciprocal space is
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A′ = i〈uq′ |∇q |uq′〉 = A + i〈uq|Ûq

†
[∇qÛq]|uq〉 . (D1)

It is interesting to note that, in general, this transformation causes the Berry curvature to 
change. How can one reconcile this with the fact that the Berry curvature has measurable 
physical consequences, e.g., within semiclassical dynamics (Sec. IV.B.2)? As we shall see, 
the answer lies in noting that these unitary transformations can lead to changes of the 
positions of the orbitals within the unit cell, i.e., changing the internal geometry of the unit 
cell.

We illustrate this for a two-band model, with a unitary transformation

Ûq = exp(
1
2

iq ⋅ ρσ̂z) . (D2)

This is the transformation used in our discussion of the Haldane model (33). It leads to the 
change

A′(q) = A(q) −
1
2

ρ〈σ̂z〉 (D3)

of the Berry connection, where we defined 〈σ̂z〉 ≡ 〈uq|σ̂z|uq〉 . Hence, the Berry curvature 

becomes

Ω′(q) ≡ ∇q × A′ = Ω(q) −
1
2

∇q〈σ̂z〉 × ρ . (D4)

In general, the Berry curvature changes, Ω′(q) ≠ Ω(q) . However, since the difference is a 

total derivative, its integral over the BZ vanishes, so there is no change in the Chern number 
of the band.

For a consistent application of the unitary transformation, one must consider how all relevant 
physical quantities transform. Semiclassical dynamics describes the velocity of a wave 
packet centered on q and r in response to a uniform force. A uniform force in the original 
basis arises from a potential

V̂ = − F ⋅ r̂ . (D5)

Under the unitary transformation this becomes

ÛqV̂ Ûq

†
= − F ⋅ r̂ −

1
2

F ⋅ ρσ̂z . (D6)

We used the fact that, with q replaced by the momentum operator, the unitary operator (D2) 

effects translations in real space, albeit in a spin-dependent manner, r̂ r̂ + (1/2)ρσ̂z .
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Indeed, this transformation encodes the important physical effect of the unitary 
transformation: it amounts to spatial displacement of the orbitals within the unit cell, here 
separating σz = ± 1 by ρ. In the new basis the force F has two effects. First, it provides a 

uniform potential gradient which leads to ℏq
.

= F  as usual. Second, it applies a state-

dependent potential that shifts the energy of the wave packet by −(1/2)F ⋅ ρ〈σ̂z〉 with the 

expectation value taken for the wave packet’s momentum q. This second contribution can be 
incorporated as an F-dependent change in the dispersion relation

Eq′ = Eq −
1
2

F ⋅ ρ〈σ̂z〉 . (D7)

The displacement of orbitals within the unit cell also changes the velocity operator. In the 
new basis the velocity is

v̂′ ≡
1
ℏ

∇qĤq
′ =

1
ℏ

∇q ÛqĤqÛq

†
(D8)

=
1
ℏ

Ûq ∇qĤq Ûq

†
−

i
2ℏ

ρ Ĥq
′ , σ̂z (D9)

= Ûqv̂Ûq

†
−

1
2

ρσ
.̂
z . (D10)

There is a correction to the velocity v̂ ≡ (1/ℏ)∇qĤq beyond the mere unitary transformation 

Ûqv̂Ûq
†

. In the last line this correction is written in terms of the rate of change of σ̂z (in the 

Heisenberg picture) to indicate its physical origin: the motion of a particle between orbitals 
within the unit cell corresponds to motion through space with nonzero velocity. In the 
semiclassical dynamics of the wave packet, this gives the correction

v′ = v −
1
2

ρ〈σ
.̂
z〉 = v −

1
2

ρq̇ ⋅ ∇q〈σ̂z〉 . (D11)

Starting from the standard semiclassical dynamics (74) in the original (unprimed) basis, and 
using the transformations (D4), (D7), and (D11), one recovers the correct semiclassical 
dynamics in the new (primed) basis

v′ =
1
ℏ

∇qEq′ + Ω′ × q
.

. (D12)

Thus, unitary transformations of this form lead to changes in the positions of the orbitals 
within the unit cell: these changes in cell geometry modify the effect of the forces applied 
and the velocity on the scale of the unit cell. These modifications compensate the change in 
the Berry curvature to recover the correct semiclassical dynamics.
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FIG. 1. 
Tight-binding (SSH) model of the polyacetylene molecule. For the SSH model (17), the on-
site energies for A and B are supposed to be equal. This constraint will be relaxed for the 
Rice-Mele model (40).
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FIG. 2. 
The winding number for the SSH model. The curves plot the locus of (hx, hy) as q runs over 
the BZ. For J′/J > 1 the vector (hx, hy) does not encircle the origin, but for J′/J < 1 it 

encircles the origin once, indicating that these two cases have winding numbers (23) of N = 
0 and 1, respectively.
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FIG. 3. 
(a) Real-space honeycomb lattice for the Haldane model. (b) Illustration of the unit vector 
e(q) in the topological phase of the Haldane model. The dashed line shows the conventional 
BZ, whose corners are the points Q±. The arrows show the projection of e(q) on the plane 
(ex, ey), while the colors and contours indicate ez. The unit vector wraps once over the 
sphere within the BZ, indicating the topological character with C = 1.
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FIG. 4. 
Skipping orbits for a charged particle in a uniform magnetic field. In the bulk, the 
semiclassical dynamics of a wave packet leads to a circular cyclotron orbit. The reflection of 
such an orbit from the (hard wall) edge leads to a skipping motion around the sample edge.
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FIG. 5. 
An edge of the SSH model is represented by ℎx + iℎy = |ℎq, M|eiϕ(q, M), which depends both 

on the wave vector q and on some control parameter M that varies smoothly between 
M− at x ≪ 0 and M+ at x ≫ 0 . The number of vortices of hx + ihy within this region can be 

computed by integrating ∇ϕ(q, M) around the boundary. The integrals along q = ± π/a

cancel (since the BZ is periodic), leaving only the integrals along M = M±, which give the 
difference of winding numbers N− − N+ .
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FIG. 6. 
The low-energy spectrum of the Haldane model on a finite-width strip. (a) The strip is 

bounded in the x direction, but uniform along y such that the wave vector q̃y = qy − Qy
+ is 

conserved. (b) The spectrum has a continuum of states in the bulk, shown shaded. The bulk 
bands are topological, with unit Chern number, so a single edge state connects between these 
bulk bands: the red solid line (green dashed line) shows the band corresponding to the edge 
mode on the left (right) boundary. We show only the part of the spectrum close to the Q+ 

point, at which the boundaries force a gap closing and at which the edge states appear.
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FIG. 7. 
Left: Zak phase of the lower band of the Rice-Mele model, represented by the unit vector 
cosϕZak, sinϕZak . The phase changes by 2π around the point Δ = 0 and J′/J = 1 at which 

the gap closes. The loop denotes a possible pumping cycle. Right: Representation of the 
eigenstates (42) on the Bloch sphere. Blue dashed line: Closed trajectory on the equator for 
the SSH model in the topological case Δ = 0, J′/J < 1 , obtained when q scans the Brillouin 

zone. The Zak phase, given by half the subtended solid angle, is equal to π. Green solid line: 
Trajectory in the nontopological case of the SSH model Δ = 0, J′/J > 1  with a zero 

subtended solid angle. Black dotted line: Closed trajectory obtained for the Rice-Mele model 
with a nonzero energy offset Δ. A continuous variation of Δ and J′/J in the Rice-Mele 

model allows one to connect the topological and nontopological SSH trajectories, without 
going through the singular point J′/J = 1,Δ = 0.
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FIG. 8. 
The relationship of the change in the Zak phase for a 1D band insulator, with momentum 
−π/a < q ≤ π/a, under adiabatic variation of parameters in time around a cycle of period T, 

i.e., with time 0 < t ≤ T. The change in Zak phase between times t1 and t2 is represented by 
the line integral around a contour ℒ . When ℒ is extended to include the full q–t plane, the 

periodicity in q q + 2π/a and t t + T  ensures that the line integral must by an integer 

multiple of 2π. This integer is the Chern number defined in the q–t plane.
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FIG. 9. 
The Harper-Hofstadter model. (a) Harper-Hofstadter lattice geometry with symmetric 
hopping J and a flux ϕAB in each plaquette. (b) Harper-Hofstadter lattice geometry with flux 
ϕAB = 2π/3 per plaquette. The individual magnetic unit cells are delineated by gray dashed 

lines with a representative magnetic unit cell set off in blue (dark shading) for clarity. (c) 
Computed band structure with ϕAB = 2π/3 showing the three topological bands with Chern 

numbers +1, −2, and +1 built from the three inequivalent sites within the magnetic unit cell.
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FIG. 10. 
Haldane model. (a) Haldane lattice geometry showing overall honeycomb lattice structure 
with the addition of next-nearest-neighbor hopping with Aharonov-Bohm tunneling phases 
ϕAB. The shaded (blue) box marks the two sites comprising a single unit cell. We also show 
the deformation of the underlying lattice to the brick-wall geometry, used to plot the 
dispersions with qxa = q · a1 and qya = q · a2. (b) Haldane model phase diagram showing the 
two topological lobes immersed in a nontopological background. (c) Band structure 
computed with only nearest-neighbor tunneling [black solid lines in (a), showing the 
familiar pair of Dirac points from this “brick-wall” lattice. (d) Band structure computed in 
the topological phase at the marked red square in (b), with ϕAB = π/2 and “tilt” 
Δ = 0, J′ = J /10. (e) Band structure at the topological transition, marked by the blue circle in 

(b), with ϕAB = π/2 and Δ = − 3 3J′, showing the formation of a single Dirac point.
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FIG. 11. 
Implementation of the SSH and Rice-Mele models. (a) Representative laser configuration: A 
pair of overlapping lasers with wavelengths λ0 and 2λ0 subject a cloud of ultracold atoms to 
1D optical lattices, with periods λ0/2 and λ0, respectively, and a spatial relative phase ϕ. (b) 
Energies of these two lattices and combined potential, showing the long-period lattice 
shifted in position with respect to the short period lattice by a controllable phase shift ϕ. The 
SSH model is realized for ϕ = π/2 + nπ (for integer n), in which case all minima have the 
same energy and are separated by potential barriers with staggered height. An example of 
band structure in this case is shown in Fig. 12. The choices ϕ = nπ (for integer n) lead to 
equal barrier heights between adjacent sites, and staggered site energies, but with 
J′ = J ,Δ ≠ 0. The displayed data are for an intermediate case of ϕ = π/4 where J′ ≠ J and Δ 

≠ 0. (c) Zak phase for the lower pair of bands controlled by tuning the phase shift ϕ between 
the long and short period lattices and the strength of the long-period lattice, as represented 
by the unit vector (cos ϕZak, sin ϕZak).
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FIG. 12. 
Bipartite lattice band structure compared to the Rice-Mele model. Left: Band structure 
computed for the superlattice potential given by Eq. (50) with Vshort = 6ER, Vlong = ER, and 
a relative phase ϕ = π/2 corresponding to the particular case of the SSH model. Right: Zoom 
on the lower pair of bands (continuous lines). The energy offset between adjacent minima 
and a fit to the prediction (41) for the band structure of the Rice-Mele model (dashed lines) 
allow one to extract the practical values of Δ, J, and J′. (Here Δ = 0, J = 0.069ER, and J′ = 
0.037ER.) The dotted lines show the (folded) lowest band for Vlong = 0, up to a global 
energy shift.
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FIG. 13. 
Inertial forces. (a) A simple double-well lattice subject to modulation, creating (b) 
experimentally tunable hopping phases. (c) Shaking or tilting in 1D gives rise to a uniform 
Peierls phase factor that shifts the minima of the tight-binding band structure (Struck et al., 
2012). (d) Shaking in 2D can break time-reversal symmetry giving rise to topological 
lattices.
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FIG. 14. 
Laser-induced hopping. (a) 2D square lattice (right) with a potential gradient along em 

(vertical) illuminated by a traveling wave potential. The coupling of any pair sites of this 
lattice |j, m〉 and | j, m + 1〉 is qualitatively described as a two-level system with detuning 2Δ 

coupled by the traveling wave. (b) Technique for creating the half-flux Harper-Hofstadter 
Hamiltonian in tilted spin-dependent lattices as implemented in MIT (Miyake et al., 2013) 
similar to Aidelsburger et al. (2013).
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FIG. 15. 
Spin-dependent topological lattices. (a) Level diagram for three-level total angular-
momentum f = 1 case with mF states labeled, as is applicable for the common alkali atoms 
7Li, 23Na, 39K, 41K, and 87Rb. For reference, the diagram shows the decomposition of these 
optical fields into σ± and π, but as discussed in the text, this is not an overly useful way of 

considering this problem. (b) Laser geometry for a typical optical flux lattice (left) 
producing a real-space Berry curvature with nonzero average (right). (c) Experimental 
geometry for spin-dependent topological lattice (Sun et al., 2017). (d) Directly observed 
topological band structure (left) and computed (right). From Sun et al., 2017.

Cooper et al. Page 107

Rev Mod Phys. Author manuscript; available in PMC 2020 March 18.

N
IS

T
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IS
T

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IS
T

 A
u
th

o
r M

a
n
u
s
c
rip

t



FIG. 16. 
(Left column) Amplitude ∝ sin θq and (middle column) phase ϕq obtained from the fits to 
the oscillation (70) of the momentum distribution. From those fit results, one can reconstruct 
the (right column) momentum-resolved Berry curvature given in units of the inverse 
reciprocal lattice vector length |b| squared. From Fläschner et al., 2016.
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FIG. 17. 
Direct visualization of an edge-state current for a two-dimension (one real, one synthetic) 
lattice in the presence of an artificial magnetic field. Upper row: Momentum distributions nm 

(k) along the real direction x for the three values of the pseudospin m corresponding to the 
synthetic direction. The value m = −1/2 can be viewed as the bulk, whereas m = +3/2 and m 
= −5/2 corresponding to the opposite edges of the sample along the synthetic dimension. 
Lower row: Function ℎm(k) = nm(k) − nm( − k). From Mancini et al., 2015.
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FIG. 18. 
Two-band spectrum of the SSH Hamiltonian and Zak phase measurement. An initial wave 
packet is prepared at the bottom of the lowest band (left column). Each atom is in the 
superposition of the | ± 〉 spin states, which experience opposite forces in the presence of a 

magnetic field gradient. After a combination of exchanges of the atomic internal state and of 
the dimerization (middle column), the two wave packets recombine at the top of the highest 
band (right column). The measurement of the accumulated phase provides the value of the 
Zak phase. From Atala et al., 2013.
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FIG. 19. 
(a) Brillouin zone and Dirac points Q± for the brick-wall lattice of Fig. 10. (b) When the 
degeneracy is lifted by introducing an energy offset between the A and B sites, the subbands 
are topologically trivial. For the lowest band, the Berry curvature has opposite signs in the 
vicinity of Q±. The anomalous velocity (white arrows) thus has opposite chirality at these 
points. (c) Lifting of degeneracy obtained by adding complex next-nearest-neighbor (NNN) 
couplings (Haldane, 1988). The Berry curvature then keeps a constant sign over the BZ, and 
the anomalous velocity has the same chirality at both points. Adapted from Jotzu et al., 
2014.
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FIG. 20. 
Aharonov-Bohm interferometer around a Dirac point. Starting from a wave packet localized 
at the center of the BZ of a graphenelike optical lattice, one measures the phase difference φ 
between the two paths of an interferometer ending at the quasimomentum (kx = 0, ky). When 
one of the Dirac points K or K′ is inside the enclosed area of the interferometer, the 
measured value for φ is in good agreement with the prediction φ = π. From Duca et al., 
2015.
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FIG. 21. 
Edge-magnetoplasmon trajectories, where the displacement was obtained by integrating the 
velocity. From Stuhl et al., 2015.
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FIG. 22. 
Topological pumping with a 1D superlattice described by the potential (50). Left: The phase 
ϕ of the long lattice [see Eq. (50)] is varied from 0 to 2π from top to bottom. Initially the 
phase ϕ = 0 and the particle is supposed to be localized on the site Aj of a given lattice cell j. 
In the limiting case where the energy difference between A and B sites is large compared to 
the tunnel matrix elements, this state would be stationary if ϕ was kept at the value 0. When 
ϕ is increased up to π/2, the sites Aj and Bj have the same energy and the particle is 
adiabatically transferred to Bj. Note that we neglect here the tunneling of the particle from 
Aj to Bj−1, assuming that it is inhibited by the large barrier between these two sites. The 
particle then remains in Bj until the phase reaches the value 3π/2, when the particle again 
undergoes an adiabatic transfer, now from Bj to Aj+1. (Here again we neglect tunneling 
across the large barrier now present between Bj and Aj.) When the phase ϕ = 2π the 
potential is back to its initial value and the particle has moved by one lattice site. Note that a 
motion in the opposite direction occurs if the particle starts for the site Bj when ϕ = 0. Right: 
In the two-band approximation corresponding to the Rice-Mele model, the system performs 
a closed loop around the origin in the parameter space (J′ − J, Δ).
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FIG. 23. 
Quantization of the displacement of a cloud of fermionic 171Yb atoms placed in a 1D optical 
superlattice described by the Rice-Mele Hamiltonian. Depending on the closed loop in 
parameter space (J′ − J ≡ 2δ, Δ), the displacement can be positive, zero, or negative. The 
time T represents the duration of a pump cycle. From Nakajima et al., 2016.
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FIG. 24. 
Transport measurement in a square lattice with a flux or plaquette ϕAB = π/2 (data 1). A 
Hall-type current is observed through the displacement of the center of mass of the cloud 
along the x direction, when a uniform force inducing Bloch oscillations (BO) is applied 
along y for an adjustable time. For short BO times, only the lowest subband is populated, 
resulting in a linear variation of x(t) with time, in agreement with the expected Chern index 
of this subband. At longer times, heating processes equalize the populations of the subbands 
and the Hall drift stops. When the flux is zero, no Hall current is observed (data 2). Adapted 
from Aidelsburger et al., 2015.
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FIG. 25. 
A vortex lattice configuration for weakly interacting bosons in the Harper-Hofstadter model 
at flux ϕAB = 2π/3. The gauge-invariant currents flow on the links between the sites of the 
square lattice. The pattern of current breaks the translational invariance of the system. The 
strongly circulating currents (shown as solid lines and arrows) are around plaquettes that lie 
along diagonal lines. These are the lattice equivalents of the “vortex cores,” now distorted 
from the triangular lattice expected in the continuum models, to be pinned to the plaquettes 
of the square lattice. There are weak countercirculating currents around other plaquettes, 
such that the net particle flow vanishes, when coarse grained on scales large compared to the 
lattice spacing.
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FIG. 26. 
The change of band Hamiltonian that causes the topological index of the lowest band v to 
change, via the closing of a band gap.
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FIG. 27. 
Floquet energy spectrum in units of ℏω for the driven Rice-Mele model in the topological 

(top) and nontopological (bottom) cases. The parameters J′/J ,Δ/J  are varied along a circle 

of radius 0.5 with angular frequency ω = 0.23 J /ℏ. The circle is centered on the point (2,0) 

in the nontopological case and on the point (1,0), i.e., the vortex in Fig. 7, in the topological 
one. In the topological case a particle starting in state A at momentum q = 0 arrives in B 
after an adiabatic motion across the full BZ, leading to the net current (107) for a filled band. 
The gray areas highlight given “temporal Brillouin zones,” of energy width ℏω.
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FIG. 28. 
A simple model that shows anomalous edge states. (a) A cycle consists of four steps in 
which specific sets of bonds are active and one step in which there is only a sublattice 
energy offset δAB. (b) Trajectories of particles initially in the bulk (blue closed loop) or on 
the edges [green (red) lines on top (bottom) edges]. (c) Floquet spectrum showing the 
dispersionless bulk band and the two anomalous edge states with equal and opposite nonzero 
velocities. From Rudner et al., 2013.
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FIG. 29. 
For Floquet-Bloch systems, the topological invariant of the bulk band determines the change 
in the number of edge modes as quasienergy passes through the band. The periodicity in 
quasienergy allows the existence of edge states even in settings where the bulk bands are all 
topologically trivial. From Rudner et al., 2013.
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FIG. 30. 
A semi-infinite SSH model. The left region (gray area) has J = 0, hence a winding number N 
= 0. The right region may have N = 0 or 1, depending on the ratio J /J′ . In the latter case a 

zero-energy edge state resides close to the boundary between the two domains.
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FIG. 31. 
Energy spectrum of a SSH chain of M = 10 dimers. A pair of edge states close to zero 
energy exists when J′/J is notably below 1. When J′/J increases above 1, these edge states 

are gradually transformed into bulk states. Adapted from Delplace, Ullmo, and 
Montambaux, 2011.
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FIG. 32. 
Kitaev model: A 1D chain of identical sites with nearest-neighbor hopping and a coherent 
coupling to a superfluid reservoir that injects and removes pairs of fermions on neighboring 
sites.
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FIG. 33. 
Distinct topological phases of the Kitaev model, evidenced by the trajectory of h(q)/|h(q)| on 
the unit sphere, as q scans the Brillouin zone. Left (μ < −2J) and right (μ > 2J): topologically 
trivial phases, with a zero winding around the origin. Middle (|μ| < 2J): topological phase.
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FIG. 34. 

Quasiparticle spectrum of Ĥ − μN̂ [Eq. (A8)] for an open chain of 20 sites and Δ = J. The 

pair of solutions (E, −E) with E ≈ 0 that appears in the topological region |μ| < 2J represents 
the Majorana zero energy modes at the two ends of the chain.
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FIG. 35. 
Hopping on three sites of the honeycomb lattice, with time-varying on site energies. The 
unitary transformation (B7) maps this problem to time-varying tunneling matrix elements 
between nearest neighbors A ↔ B and A ↔ C. Then the first-order correction in 1/ω from 

the Magnus expansion leads to a tunneling term of order J2/ℏω between next-nearest 

neighbors B ↔ C, with nonzero Peierls phase factor; see Eq. (B12).
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