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Topological BF theories in 3 and 4 dimensions

Abstract

In this paper we discuss topological BF theories in 3 and 4 dimensions. Observables are associated to
ordinary knots and links (in 3 dimensions) and to 2‐knots (in 4 dimensions). The vacuum expectation
values of such observables give a wide range of invariants. Here we consider mainly the 3 dimensional
case, where these invariants include Alexander polynomials, HOMFLY polynomials and Kontsevich
integrals. © 1995 American Institute of Physics.
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E-mail: juerg@itp.ethz.ch

Maurizio Martellini
Dipartimento di Fisica, Università di Milano
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Abstract

In this paper we discuss topological BF theories in 3 and 4 dimensions. Observables
are associated to ordinary knots and links (in 3 dimensions) and to 2-knots (in 4
dimensions). The vacuum expectation values of such observables give a wide range
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I. Introduction

This paper deals with a special kind of topological quantum field theories, the BF theories,
that is the only known topological field theories that can, in principle, be defined on a a
manifold M of any dimension. The symbol BF means that the action contains a term given
by the wedge-product of an (n − 2)-form B of the adjoint type times the curvature F of a
connection A. Here we have set n = dimM .

Topological field theories have been systematically considered by Witten [31], but some-
how appeared in the literature much before [29].

In a celebrated paper of 1989, Witten [32] showed that it is possible to recover, via
topological quantum field theories, the invariants of links and knots known as Jones and
HOMFLY polynomials ([22, 21, 26, 18]). The key idea was to consider a special observable
(“Wilson loop”) associated to knots and links and compute its vacuum expectation value
(v.e.v.) with respect to the Chern–Simons theory.

Let us now specifically consider BF theories (for an introduction to such theories see [8])
and ask ourselves what kind of topological invariants can we recover.

In an n-dimensional BF theory, it is natural to look for observables associated to imbed-
ded (or immersed) manifolds in M of codimension 2. The v.e.v. with respect to BF theory,
should then give topological invariants of these imbeddings (higher dimensional knots).

Even though the more interesting part of this program is related to the 4-dimensional
case, we have only systematically developed, up to now, the 3-dimensional case, namely the
case of ordinary knots and links. We have some hint and some preliminary computations
about the 4-dimensional case (see [16]), but most of the work has yet to be done and, in this
paper, the 4-dimensional case is only briefly sketched.

In the 3-dimensional case, we realized that, surprisingly enough, BF theory can signifi-
cantly improve, in comparison with Chern–Simons theory, our understanding of the relation
between quantum field theory and knot invariants. Moreover, it allows us to recover, as
v.e.v.’s, some knot invariants that previously have not been associated to quantum field
theories (Alexander–Conway polynomials)[13].

The original approach of Witten to Chern–Simons field theory put the main emphasis on
the non-perturbative treatment. Here, instead, we stress the rôle of perturbation expansions
in the construction of knot invariants. The use of perturbative methods is akin to the
Vassil’ev approach to knot theory. More to the point: the coefficients of the perturbative
series of topological field theories are precisely knot invariants of finite type.

We have essentially two kinds of BF theories. The first kind is what is called BF
theory with a cosmological constant. The action is given by the difference of two Chern–
Simons actions (computed for two different connections A + κB and A − κB), where A is
a connection, κ is a real parameter and B is a 1-form of the adjoint type. Pure BF theory
is related to the Turaev-Viro [30] invariants just as pure Chern–Simons theory is related to
Reshetikhin-Turaev [28] invariants.

In the BF theory with a cosmological constant, the observable to be associated to a knot
is the trace of the holonomy of the connection A + κB expanded in a Taylor series in the
variable κB, at κ = 0.

In BF theory, the fields that are canonically conjugate are A and B, instead of A being
conjugate to itself (as in Chern–Simons). Hence only contractions between the fields A and B
are to be considered. This feature of the BF theory is a very good one, since by considering,
at the same time, the Taylor expansion (in κB) and the vertex insertions (each of them
containing a factor multiplied by κ2), one is able to keep track of the various contributions
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order by order in the variable κ. This provides a much better control of the perturbation
series than in Chern–Simons theory.

The BF theory with a cosmological constant leads to the same knot invariants (HOMFLY
and Jones polynomials) considered in Chern–Simons theory. But different choices of gauge
produce different perturbation expansions, i.e., different sequences of Vassil’ev invariants of
knots, but associated to the same knot polynomial. In this respect, let us point out that
suitable normalization factors are to be taken into account, before one can show that different
perturbation expansions lead to the same knot polynomials.

The scheme for BF theories is roughly as follows:

• Covariant gauge. In this gauge the terms of the perturbative expansion are multiple
linking-integrals.

• Holomorphic gauge. In this gauge the terms of the perturbative expansion are Kont-
sevich integrals.

• Axial gauge. In this gauge the terms of the perturbative expansion are expressed as
sums of “tensors” over the set of vertices of a given projection of the knot.

The second kind of 3-dimensional BF theory that we consider is the one without cos-
mological constant. The action here is given by the derivative of the Chern–Simons action
computed for the connection A+ κB at κ = 0. The observable is an exponential function of
the derivative of the holonomy.

The perturbative expansion of the BF theory without cosmological constant produces
the coefficients of the Alexander–Conway polynomial. They cannot be recovered in the
framework of Chern–Simons field theory.

Finally, concerning the higher dimensional BF theories, it is very likely that invariants
of 2-knots as well as invariants of 4-manifolds can be recovered in the framework of such
theory. In this respect BF theories can play a rôle in the loop-variables formulation of
quantum gravity.

II. Geometry of BF theories

Topological BF theories are the only known topological quantum field theories that can
be consistently defined in any dimension. Thus we consider a (compact, oriented, closed,
Riemannian) manifold M of dimension n, with a G-principal bundle P −→M . Here G is a
compact simple Lie group with Lie algebra g. We will mainly consider G = SU(N).

Let us denote by Ω∗(M) the space of differential forms on M and by Ω∗(M, adP ) the
space of differential forms on M with values in the adjoint bundle adP ≡ P ×Ad g (locally
g-valued forms on M).
On M we can consider a quantum field theory depending on two fields:

• the connection A (with curvature denoted by FA, or simply by F , that is a form in
Ω2(M, adP ))

• a form B ∈ Ωn−2(M, adP )

With the above ingredients we can construct an action

SBF =

∫

M

Tr (B ∧ F ), (1)
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where the trace refers to an assigned representation of g. Most commonly, we will consider the
fundamental representation. The corresponding Gibbs measure will be given by exp(ifSBF )
where f denotes a coupling constant.

We denote by G the group of gauge transformations. For any ψ ∈ G, locally given by a
map ψ : M 7→ G, the field B transforms as B −→ ψ−1Bψ. The action (1) is then gauge
invariant. Moreover it is invariant under diffeomorphisms (being given by the integral of a
n-form) and it is independent of the metric in M . In other words, the action (1) defines, in
principle, a topological field theory in any dimension.

In 3 and 4 dimensions we can study other types of BF action. Namely for any values of
the parameter κ we can consider, in 3 dimensions, the action:

SBF,κ =

∫

M

Tr (B ∧ F ) +
κ2

3

∫

M

Tr (B ∧ B ∧B), (2)

and, in 4 dimensions, the action:

SBF,κ =

∫

M

Tr (B ∧ F ) +
κ

2

∫

M

Tr (B ∧ B). (3)

In order to understand the geometrical significance of the above actions, we recall that in
4 dimensions there is a topological invariant represented by the integral of the Chern–Weil
form:

Q2(F ) ≡
∫

M

Tr (F ∧ F ) (4)

while, in 3 dimensions, we have the secondary topological invariant, locally represented by
the integral of the Chern–Simons form:

SCS(A) ≡
∫

M

Tr (A ∧ dA+
2

3
A ∧ A ∧ A). (5)

The actions (1) (with dimM = 3, 4), (2) and (3) are all variants of the above topological
invariants.

More precisely the following simple relations hold in dimensions 3 and 4 respectively:

(1/2)[SCS(A+ κB)− SCS(A− κB)] = 2κSBF,κ

d

dκ
SCS(A + κB)

∣
∣
∣
κ=0

= 2SBF (dimM = 3)
(6)

and
Q2(F + κB)−Q2(F ) = 2κSBF,κ,
d

dκ
Q2(F + κB)

∣
∣
∣
κ=0

= 2SBF (dimM = 4)
(7)

The action (2) (and sometimes also the action (3)) is called BF action with a cosmological
term. The reason for this terminology is easily explained: let us consider in 3 dimensions,
the frame bundle LM (with group G = GL(3)). The soldering form θ is a 1-form with values
in R3 associated to the fundamental representation of GL(3). When θ is restricted to the
orthonormal frame bundle and is expressed in local coordinates we obtain the “dreibein”
{ei}i=1,2,3.

In the so-called first-order formalism, the classical action for gravity is given by
∫

M

∑

i,j,k

ǫijke
i ∧ Rjk + κ2

∫

M

∑

i,j,k

ǫijke
i ∧ ej ∧ ek (8)
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where the matrix R is the curvature 2-form and the second term in the integral is the
cosmological term (κ2 is the cosmological constant). In 3 dimensions we can consider the
linear isomorphism R3 7→ LieSO(3) given by ei −→

∑

j,k ǫijk(E
j
k − Ek

j ) where ei are the

elements of a canonical basis of R3 and Ej
k is the matrix whose (m,n)-entry is given by

δj,mδk,n. Under this isomorphism, the soldering from is transformed into the B-field, and (8)
becomes, up to a constant, the BF action (2).
Next we discuss the symmetries of the BF theories. First of all we have to consider the
group of gauge transformations, whose infinitesimal action on the fields is given by:

A −→ A+ dAξ; B −→ B + [B, ξ]. (9)

Here the infinitesimal gauge transformation ξ is an element of Ω0(M, adP ).
In BF theories there exists another important set of symmetries. In this regard, we have

to distinguish between the 3-dimensional and the 4-dimensional case.
In 3 dimensions the action (2) is invariant also under the following infinitesimal trans-

formations:
A −→ A+ κ2[B, χ], B −→ B + dAχ, (10)

where χ ∈ Ω0(M, adP ) is an infinitesimal gauge transformation (in general different from ξ).
Instead in 4 dimensions (3) is invariant under the following infinitesimal transformations:

A −→ A+ κη, B −→ B − dAη, (11)

where η is a form in Ω1(M, adP ), i.e. is the difference of two connections.
The geometrical meaning of the combination of transformations (9) and (10) is straight-

forward; when κ 6= 0, (9) and (10) are equivalent to the following infinitesimal gauge trans-
formations:

A+ κB −→ A + κB + dA+κB(ξ + κχ)
A− κB −→ A− κB + dA−κB(ξ − κχ) (12)

when κ = 0, (9) and (10) are equivalent to the two sets of transformations obtained by

1. evaluating both sides of (12) at κ = 0 and

2. applying the operator
d

dκ

∣
∣
∣
κ=0

to both sides of (12).

It is important to remark that in BF theory (with κ = 0 and with κ 6= 0) we have two
distinct infinitesimal gauge transformations ξ and χ that generate the symmetries. In the
corresponding quantum theory, this implies that there are two distinct set of ghosts that will
produce cancellations in the perturbative expansion.

In 4 dimensions the invariance of (3) (with κ 6= 0) under (11) is nothing else but the
independence of the BF action of the connection A. In this way we ensure that the 4-
dimensional BF action has the same kind of symmetries as the Chern–Weil form.

When κ = 0 the 4-dimensional BF action is, in general, not independent of A anymore
and the invariance under the transformation B −→ B + dAη is simply a consequence of the
Bianchi identity.

In contrast to the 3-dimensional case, the two sets of ghosts generated by the invariance
under (9) and (11) have a different nature (0-forms vs. 1-forms).
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III. BF observables in 3 dimensions

The fundamental fields of our theory (in an n-dimensional manifold) are the connection 1-
form A and the (n− 2)-form B. This suggests that the right observables for the topological
BF theories should be associated to collections of loops (links) in M (i.e. one-dimensional
submanifolds) and to (n− 2)-submanifolds.

Before discussing the precise definition of our observables, let us consider the case of an
abelian BF theory in Sn that is both simple and instructive.

The action for such a theory is given by SBF =

∫

Sn

B ∧ dA. This action is invariant under

the transformations: A −→ A+ dξ, B −→ B + dη, where ξ ∈ Ω0(M) and η ∈ Ωn−2(M).
In such a theory we can associate an observable to any imbedded oriented loop C and

an observable to any imbedded oriented closed n− 2 submanifold S.

These observables are given by O1(C) ≡
∫

C

A and On−2(S) ≡
∫

S

B. They are obviously

invariant under the symmetries of BF theory.
The holonomy along an embedded circle C is given, in the abelian case, by

Hol (A;C) = exp (O1(C)).

Since only the kinetic term B ∧ dA appears in the lagrangian, we only have to consider
vacuum expectation values (v.e.v.) of the form:

〈
Aν(x)Bµ1,µ2,···,µn−2(y)

〉
=

1

ifΩn

∑

k

ǫν,µ1,µ2,···,µn−2,k
xk − yk

||x− y||n ; (13)

where Ωn is the “volume” of the unit sphere in n dimensions, and xk are the coordinates
of x, Hence only observables with a number of A-fields equal to the number of B-fields will
have non-vanishing expectation values.

In particular:

if < O1(C)On−2(S) >=

∫

C

∫

S

dxνdyµ1dyµ2 · · · dyµn−2

〈
Aν(x)Bµ1,···,µn−2(y)

〉
= lk(C, S)

where lk(C, S) is the (higher-dimensional) linking number between C and S.
The v.e.v. of all the observables one can consider in the abelian theory are thus given by

functions of linking numbers between loops and closed (n− 2)-submanifolds.
The non-abelian theory is more complicated. To each loop C we can still associate the

relevant (trace of the) holonomy of the connection A. As we will discuss below, to each
(n− 2)-dimensional imbedded submanifold S we can associate an observable closely related
to the integral over S of the (n− 2)-form B.

Since the kinetic part of the non-abelian theory is the same as the one of the abelian one,
(13) still holds in the slightly modified form:

〈
Aa

ν(x)B
b
µ1,µ2,···,µn−2

(y)
〉

= δa,b
1

ifΩn

∑

k

ǫν,µ1,µ2,···,µn−2,k
xk − yk

||x− y||n . (14)

Moreover, in a non abelian theory, vertex terms are present; so we have other non trivial
v.e.v.’s like

〈
Aa(x)Bb(y)Bc(z)

〉
;

〈
Aa(x)Ab(y)Ac(z)

〉
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that will produce multiple integrals of (convolutions) of the same kernels that appear in (14)
(iterated linking numbers). Here neither we have v.e.v.’s of the type:

〈
Aa(x)Ab(y)Bc(z)

〉

nor we have “loops” since loops are cancelled by the corresponding diagrams involving ghosts.
In this way, non abelian gauge theories yield invariants associated to (n−2)-submanifolds

and imbedded circles that are more sophisticated than the invariants related to the abelian
theory.

In this paper we are mainly interested in the case n = 3, so imbedded (n−2)-submanifolds
are knots. The 3-dimensional BF theory then becomes a theory of links in a 3-dimensional
manifold.

We now consider the precise definition of our observables. In the framework of 3-
dimensional BF theory with a cosmological constant, the natural observables to be associated
to a knot C are given by

Tr Hol (A± κB;C) (15)

while the natural observable to be associated to a knot C in a 3-dimensional BF theory
without cosmological constant is given by

d

dκ

∣
∣
∣
κ=0

Tr Hol (A + κB;C) = Tr

∫

C

Hol y
x0

(A;C)B(y) Hol x0
y (A;C). (16)

In this expression, x0 ∈ C is a fixed point on the knot, Hol y
x0

(A;C) ≡ P exp
∫ y

x0
A, where

P denotes path-ordering and the integral is meant to be computed along the arc of C join-
ing x0 to y in the direction prescribed by the orientation of the knot. Given a section
σ : M −→ P , the group element Hol y

x0
(A;C) can be equivalently described by the equation

σ(y) Hol y
x0

(A,C) = Ch(y) where Ch denotes the horizontal lift of C with starting point σx0.
Also, by the symbol Hol x0(A;C) we denote the holonomy along C with base point x0.

We now consider the Taylor expansion of (15) at κ = 0. For this purpose we compute

γn(C, x0) ≡
1

n!

dn

dκn

∣
∣
∣
κ=0

Hol x0(A+ κB;C), obtaining

γ0(C, x0) = Hol x0(A;C)

γ1(C, x0) =

∫

C

Hol y
x0
B(y) Hol x0

y

γ2(C, x0) =

∫

y1<y2∈C

Hol y1
x0
B(y1) Hol y2

y1
B(y2) Hol x0

y2

· · · · · ·
γn(C, x0) =

∫

y1<···<yn∈C

Hol y1
x0
B(y1) Hol y2

y1
B(y2) · · · Hol yn

yn−1
B(yn) Hol x0

yn
.

(17)

In our notation we do not write explicitly the dependence of γn(C, x0) on A and B.
The above formulas are iterated Chen integrals. In fact, let us define

B̂(x) ≡ Hol x
x0
B(x)[ Hol x

x0
]−1. (18)

This is a g-valued 1-form on C. The geometrical meaning of B̂ is as follows: we can view
the 1-form B equivalently as an element of Ω1(M, adP ) or as a g-valued 1-form on the total
space of the principal bundle P (M,G) which is tensorial under the adjoint action. Given
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a reference section σ : M −→ P , we can consider the horizontal lift Ch of C with starting
point σ(x0). The integral of B (seen as a 1-form on P ) along Ch is exactly the integral of B̂
along the loop C.

The definitions (17) coincide with the following Chen integrals [15]:

γn(C, x0) =

∮

x0

B̂ · B̂ · · · B̂ · B̂
︸ ︷︷ ︸

n− 1 times

·(B̂Hol x0(A;C)) (19)

We recall that the iterated integral

∫ b

a

ω1 · ω2 · · ·ωn of n 1-forms {ωi}i=1,···n (with values in

any algebra) is given (in our notation) by the formula

∫

a<x1<···<xn<b

ω1(x1) ∧ ω2(x2) ∧ · · · ∧ ωn(xn).

Our Taylor expansion finally reads

Hol x0(A + κB;C) =
∑

n

κnγn(C, x0) (20)

We may also try to consider as observables the quantities Tr γn(C, x0). They are all gauge
invariant, i.e. invariant under (9), but unfortunately they are not invariant under (10). In
fact, under the transformations (10) we have the following transformation:

γn(C, x0) −→ γn(C, x0) + κ2γ̃n+1(C, x0)− γ̃n−1(C, x0)− [χ(x0), γn−1] (21)

Here the map γ −→ γ̃ is meant to be the derivation that replaces in (17), the field B
evaluated at a given set of points {yi} by the field [B, χ] evaluated at the same points yi.

As a consequence of the above transformation laws, we conclude that only particular
combinations of γn(C, x0) give rise to good observables.

Namely the observables that we can consider for the BF theory with a cosmological
constant are only the traces of the following quantities

Hol (A± κB)
Hol even

x0
(C) ≡ (1/2)[ Hol x0(A+ κB;C) + Hol x0(A− κB;C)] =

∑

s κ
2sγ2s(C, x0)

Hol odd
x0

(C) ≡ (1/2)[ Hol x0(A + κB;C)− Hol x0(A− κB;C)] =
∑

s κ
2s+1γ2s+1(C, x0).

(22)
Moreover, as expected, the BF theory without cosmological constant (i.e., with κ = 0),
admits as observables, either Tr [γi(C; x0)], i = 0, 1 or traces of products of γi(C; x0), i =
0, 1.

When we consider the last case, we have to allow only infinitesimal transformations (10)
that satisfy the extra-condition χ(x0) = 0. In other words χ must belong to the Lie algebra
of the group of gauge transformations, whose restriction to x0 is the identity.

In particular, we will be interested in the following set of observables for the BF theory
without cosmological constant:

Γn(C, x0) =
1

n!

∮

x0

B̂

∮

x0

B̂ · · ·
∮

x0

B̂

︸ ︷︷ ︸

n− 1 times

∮

x0

B̂Hol x0(A;C) (23)

The observables γn and Γn do not coincide, since B̂(x) and B̂(y) are not commuting quan-
tities. We now define

H(C;λ) ≡
∑

n

λnΓn(C; x0). (24)
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The quantity TrH(C;λ) replaces Tr Hol (A + κB,C) as the basic observable for the BF
theory with zero cosmological constant. The geometrical meaning of (24) is related to the
action of the group G (or of its tangent bundle) on the tangent bundle of the total space P
and will be discussed elsewhere.

IV. Formal relations between Chern–Simons and BF

theories

Let us consider the Chern–Simons partition functions:

ZCS(M,C; k) ≡
∫

DA exp(ikSCS(A))Tr Hol (A;C)

ZCS(M ; k) ≡
∫

DA exp(ikSCS(A))
(25)

and the BF partition functions:

ZBF,κ(M,C; f) ≡
∫

DADB exp(ifSBF,κ(A,B))Tr Hol (A+ κB)

ZBF,κ(M ; f) ≡
∫

DADB exp(ifSBF,κ(A,B))
(26)

where k and f are coupling constants. The constant k is quantized, namely must be an
integer multiple of (4π)−1 in order to guarantee the invariance of the action SCS under
gauge transformations not connected to the identity. At the formal level we have:

ZCS(M ; k)ZCS(M ; k) = ZBF,κ(M ; f). (27)

In fact, the first term in the above equation is given by:
∫

DA1DA2 exp [ikSCS(A1)− ikSCS(A2)] ,

and this quantity is equal to ZBF,κ(M ; f), provided we set:

2A = A1 + A2; 2κB = A1 − A2; f = 4κk. (28)

Assuming that ZCS(M ; k) represents the Reshetikhin–Turaev [28] invariant, then ZBF,κ(M, f)
represents the Turaev–Viro [30] invariant.

Next we discuss the relations between the BF and the CS actions with knots incorporated.
We require again relations (28). Then we have that

ZCS(M,C; k)ZCS(M ; k) = ZBF,κ(M,C; f), (29)

and hence
ZCS(M,C; k)

ZCS(M ; k)
=
ZBF,κ(M,C; f)

ZBF,κ(M ; f)
. (30)

When we choose M = S3 and consider the fundamental representation of SU(N), then
the normalized partition function (30) gives (a regular isotopy invariant version of) the
HOMFLY polynomial P (l,m) evaluated at l = exp(−if−1κN), m = l1/N − l−1/N . From
now on we set f = (2π)−1.

The polynomial P (l,m) satisfies the skein relation: lP (l,m)(C+) − l−1P (l,m)(C−) =
mP (l,m)C0, where {C+, C−, C0} is a Conway triple, and the normalization condition P (l,m)(∅) =
1 for the empty knot ∅ is imposed.
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V. Choice of gauge and v.e.v’s

In order to quantize BF theory we first need to make a choice of gauge. The most natural
choice of gauge is the (background) covariant gauge. Namely, we fix a background connection
A0 and we require that the fields A and B satisfy the following constraints:

d∗A0
(A− A0) = d∗A0

B = 0, (31)

where d∗A0
is the adjoint of the covariant derivative. This is a complete gauge condi-

tion, namely it provides us with a honest (local) section of the the bundle of gauge orbits
A −→ A/G, where A denotes the space of all (irreducible) connections.

With this choice of gauge, we conclude that, for any equivalence class of connections [A],
[B] represent a tangent vector in TA (A/G) the space of gauge orbits (or a cotangent vector
if use the Hodge star operator to introduce an inner product in TA (A/G).

In physics one would like to choose the canonical flat connection, as a background connec-
tion, and hence replace the covariant derivative with the exterior derivative. This is always
possible in 3-dimensions, when the group G is SU(N). In this case, the covariant gauge
condition read, in local coordinates,

∑

µ

∂µAµ =
∑

µ

∂µBµ = 0.

When the 3-dimensional manifold is R3 , or more generally Σ×R , for a given surface Σ,
we can consider other gauges. These are not true complete gauge conditions, in the sense
specified above, since, after imposing them, we are left with a residual freedom in the choice
of gauge.

For M = Σ×R, we denote by t the coordinate of R. We introduce a complex structure
in Σ (with local coordinates z = x1 + ix2, z̄ = x1 − ix2). This yields a decomposition of
Ω1(Σ, adP ) into a holomorphic part Ω1,0(Σ, adP ) and an anti-holomorphic part Ω0,1(Σ, adP )
[1]. By saying that we choose the light-cone gauge in the holomorphic formulation, we mean
that we assume that, for each t ∈ R, both the connection A(t) and the 1-form B(t), restricted
to Σ, are holomorphic. In other words, in local coordinates, A and B are expressed as:

Azdz + A0dt, Bzdz +B0dt.

This choice of gauge is equivalent to requiring that, in real coordinates x1, x2, t, we have
A1 = A2 and B1 = B2. In this gauge the BF action becomes:

SBF,κ =

∫

M

Tr
(
Bz ∧ ∂̄A0 −B0 ∧ ∂̄Az

)
, (32)

namely it is quadratic and independent of κ. The quantization of Chern–Simons theory in
the light-cone gauge has been studied in [19].

Finally we consider the axial gauge A0 = B0 = 0. Here, again, the BF action is quadratic
and independent of κ:

SBF,κ =

∫

M

Tr (B2 ∧ d0A1 − B1 ∧ d0A2) . (33)

Let us consider the vacuum expectation values of the BF theory in the three different
gauges defined above. In the two singular gauges, we only have a quadratic kinetic term in
the lagrangian; this implies that the two-point correlation functions determine all n-point
correlations (by Wick’s theorem). The v.e.v.’s in the different gauges are as follows
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• Covariant gauge (M = R3):

〈
Aa

µ(x)Bb
ν(y)

〉
= −4πiδabl(x, y)

〈
Aa

µ(x)Bb
ν(y)B

c
ρ(z)

〉
= −(4π)2fabcvµνρ(x, y, z)〈

Aa
µ(x)Ab

ν(x)A
c
ρ(x)

〉
= −(4π)2κ2fabcvµνρ(x, y, z)

(34)

where we have set:

lµν(x, y) ≡ 1

4π

∑

ρ

ǫµνρ
xρ − yρ

||x− y||3

vµνρ(x, y, z) ≡
∫

R3

d3w
∑

α,βγ

ǫαβγ lµα(x, w)lνβ(y, w)lργ(z, w)

(35)

• Holomorphic gauge (M = C×R):

〈
Aa

z(z, t)B
b
0(w, s)

〉
= −2δab 1

(z − w)
δ(t− s) (36)

• Axial gauge (M = R3):

〈
Aa

1(x1, x2, x0)B
b
2(y1, y2, y0)

〉
= −(2πi)δab sgn (x0 − y0)δ(x1 − y1)δ(x2 − y2). (37)

VI. The framing of the knot and the skein relation

We require that v.e.v.’s involving the fields A and B are not computed at coincident points.
This is equivalent to requiring that, in all the integrals of the perturbative expansion of
v.e.v.’s of observables, the field A lives on a companion knot Cf of the original knot C where
the field B is supposed to be integrated over. Thus we must consider a framing of the original
knot.

We denote by ǫ the distance of the companion knot Cf from C. Eventually we will have
to consider the limit ǫ→ 0, in order to restore the diffeomorphism-invariance broken by the
introduction of the framing.

Now we want to study the effect of a small deformation of the knot, concentrated around
a given point x of C and, simultaneously, of its companion Cf .

These deformations will change the holonomies by a factor proportional to the curvature,
i.e. they will modify the v.e.v. as follows:

〈Tr Hol (A+ κB)(C)〉 −→
〈
Tr {Hol x

x0
(A+ κB)FA+κB(x) Hol x0

x (A+ κB)}
〉
.

Notice that FA+κB = FA + κdAB + κ2B ∧ B. As in [17], we assume that we can perform
an integration by parts. In order to do so, we first compute the functional derivatives of the
BF action, obtaining:

δSBF,κ

δAa
µ(x)

=
1

4

∑

ν,ρ

ǫµνρ(dAB)a
νρ(x)

δSBF,κ

δBa
µ(x)

=
1

4

∑

ν,ρ

ǫµνρ
(
F a

νρ(x) + κ2fabcBb
ν(x)B

c
ρ(x)

)
.

(38)
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Assuming that an integration by part can be performed, we have, for any observable O
classically represented by a G-valued function that transforms under conjugation (or a g-
valued function that transforms under the adjoint action), that

〈

Tr

[

(F +
κ2

2
[B,B])a

µν(x) + κ(dAB)a
µν(x)

]

O
〉

=

4πi
∑

ρ

ǫµνρ

{〈
δO

δBa
ρ(x)

+
δO

δAa
ρ(x)

〉}

.

(39)

In other words we can replace the terms dAB and F +κ2B ∧B by the functional derivatives
with respect to A and, respectively, B.

When we are given a crossing point x in the (diagram of a) knot C we associate to it
four configurations: C±, C0 and C×.

The first two configurations C± correspond to positive and negative crossing points in
the diagram, C0 corresponds to the link obtained by removing the crossing point in the only
orientation-preserving way and, finally, C× corresponds to a singular knot where the crossing
point x is a transversal double point.

The observable Tr Hol (A + κB;C) can be extended to singular knots. In fact all the
v.e.v.’s are regularized by the separation of the knot C from its companion Cf . Also the
same observable can be easily extended to links as the product of the traces of the above
holonomies evaluated along the various components of the link.

The framework of quantum field theory suggests that we should study the effect of two
families of singular deformations applied to the knot C and its companion Cf :

1. a singular deformation of the knot C and its companion Cf , concentrated around a
regular point x and characterized by the requirement that the surface element spanned
by this deformation is transversal to the knot itself. In other words we are “twisting”
the knot, or, in the terminology used by Kauffman, changing the writhe.

2. a singular deformation of a singular knot C× (and of its companion (C×)f ) around a
transversal double point x. The effect of this deformation will be to remove the double
point and to create two different non-singular knots C+ and C−, depending on the
direction of the deformation. In this case we are assuming that the surface element
spanned by the deformation lies in the same plane with one of the two tangent vectors
to the knot at x and is transversal to the other one (see [9] for a related approach).

We choose the fundamental representation of SU(N). If we denote by Ra a basis of
Lie(SU(N)), normalized so that 2 TrRaRb = −δab, then we can derive, as a consequence of
the fact that {(1/

√
N) I, (i

√
2)Ra} is an orthonormal basis in the space of complex n × n

matrices, the well known Fierz identity, namely:

2
∑

a

Ra ⊗ Ra = P−(1/N) I (40)

where P denotes the twist operator (P(x⊗ y) = (y ⊗ x)) and I is the identity. In components
the Fierz identity reads:

2
∑

a

Ra
ijR

a
kl = δilδkj − (1/N)δijδkl.

11



We write the Casimir operator in the fundamental representation as:
∑

aR
aRa = c2 I

with c2 = (2N)−1(N2 − 1).
First we consider a singular infinitesimal deformation of type 1. By integrating by parts

we obtain that
δ 〈Tr Hol (A+ κB)〉 = ∓4πiκc2 〈Tr Hol (A+ κB)〉 (41)

where the sign ∓ depends on whether, by combining the orientation of the small surface
bounded by the deformed loop and the orientation of the the knot, we obtain the given
orientation of the ambient space or its opposite, respectively.

If we want to consider a finite deformation of type 1, as opposed to an infinitesimal
one, we can use the non-abelian Stokes formula introduced in [3]. The holonomy of a loop
bounding a rectangular surface Σ (with initial point x0), is expressed in terms of a path
ordered exponential of the surface integral

P exp

∫

Σ

dyHol y
x0

(σ)F (y)( Hol y
x0

)−1(σ) (42)

where σ is a path joining x0 and y ∈ Σ with a prescribed pattern.
In the above formula, we now replace the curvature Fν,ρ, computed w.r.t. the connection

A+ κB, by the operator

exp

{

4πi
∑

µ

ǫµνρ

(
δ

δBa
µ(x)

+
δ

δAa
µ(x)

)}

and by a succession of integrations by part (see [11]), we can prove that a positive twisting
of the given knot will multiply the v.e.v. by a factor α ≡ exp(−4πiκc2). In other words, our
v.e.v., computed over a knot-diagram Cw with a given writhe w, transforms, under a change
of writhe, as follows:

〈
Tr Hol (A+ κB)(Cw±1)

〉
= α±1 〈Tr Hol (A + κB)(Cw)〉 . (43)

The formula above follows from the fact that, thanks to integration by parts, the n-th order
variation δn, inserts, into the v.e.v., a term

∑

a1,...an

Ra1Ra2 · · ·RanRanRan−1 · · ·Ra1 = (c2)
n
I . (44)

Next, we perform an infinitesimal deformation of type 2 and use integration by parts again.
Here the n-th order variation δn inserts, into the v.e.v., a matrix S

(n)
i,j,,k,l ∈ End(CN ⊗CN ),

given by

S
(n)
i,j,k,l =

∑

a1,...an

(Ra1Ra2 · · ·Ran)i,j (Ra1Ra2 · · ·Ran)k,l . (45)

By a repeated use of the Fierz identity we obtain that

S(n) = a(n)
P+b(n)

I

where we have set

2a(n) = (N − 1)n2−nN−n − (−1)n(N + 1)n2−nN−n

2b(n) = (N − 1)n2−nN−n + (−1)n(N + 1)n2−nN−n.
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The infinitesimal variation is

δ 〈Tr Hol (A+ κB;C×)〉 = ∓2πiκc2 〈Tr Hol (A+ κB;C0)〉+
2πiκ

N
〈Tr Hol (A+ κB,C×)〉.

(46)
By considering the total variation, δtot, (sum of variations of all orders) we obtain

〈Tr Hol (A+ κB;C±)〉 = a± 〈Tr Hol (A+ κB;C0)〉+ b± 〈Tr Hol (A+ κB,C×)〉, (47)

where we have set

a± ≡ (1/2) exp {(∓2πiκ(N − 1)/N} − exp{±2πiκ(N + 1)/N}
b± ≡ (1/2) exp {(∓2πiκ(N − 1)/N}+ exp{±2πiκ(N + 1)/N} .

By defining β2 = b−/b+ = exp(−4πiκ/N), we finally obtain a skein relation:

β 〈Tr Hol (A+ κB;C+)〉− β−1 〈Tr Hol (A+ κB;C−)〉
= (βA+ − β−1A−) 〈Tr Hol (A+ κB;C0)〉 , (48)

By combining (43) and (48), we conclude that 〈Tr Hol (A+ κB;C)〉 is the HOMFLY poly-
nomial P (l,m) evaluated at l = αβ, m = l1/N − l−1/N .

VII. Choice of gauge and link-invariants

In the previous section we showed that, by assuming that integration by parts is allowed in
the functional integral, BF theory with a cosmological constant reproduces knot-invariants
given by the HOMFLY polynomials evaluated at some specific values of the variables.

We expect that, by computing the perturbation expansion, we are able to recover these
knot-invariants as power series. But in order to perform the perturbation expansion we need
to make one of the (non-equivalent) choices of gauge.

Different gauge-choices produce different expansions that are recognized to be equal only
after some global normalization factor (that may be given by a power series) is taken into
account. Moreover, order by order in perturbation theory, one finds, in different gauges,
different sets of Feynman diagrams to be summed over. In conclusion different gauge-choices
may very well lead to the same invariant in ways that appear completely different.

Let us examine more closely the different choices of the gauge in perturbative BF theory
(with cosmological constant).

• Covariant gauge

In this gauge the knot-invariants are expressed as multiple integrals given by convo-
lutions of kernels of type l and v ((35)). In fact, starting from (20), we can write the
v.e.v. of the holonomy operator associated to a knot C as

〈
∑

n

κn Tr γn(C, x0)

〉

=
∑

n

κnVn(C)

where the coefficients Vn(C) are defined as follows: first we define 〈Tr γs(C)〉j to be
the terms in 〈Tr γs(C)〉 that are obtained by inserting exactly j times the vertex term
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proportional to B3 (this vertex term is multiplied by a factor κ2). Then we define:

V2n(C) ≡
n∑

i=0

〈Tr γ2i(C, x0)〉n−i

V2n+1(C) ≡
n∑

i=0

〈Tr γ2i+1(C, x0)〉n−i.

(49)

Formally, we can prove that all the Vn(C) [11] are knot-invariants. In fact let us
consider a small deformation of the knot C and, simultaneously, of its companion Cf .
When we study the effect of this deformation on the terms V2n(C) , we collect the
different contributions with the same order in κ and obtain:

δV2n =
∑n−1

i=0

[
〈Tr (γ2iF )〉n−i + 〈Tr (γ2iBB)〉n−i−1

]
+

+
∑n

i=0 〈Tr (γ2i−1dAB)〉n−i + 〈Tr (γ2nF )〉0 .
(50)

Now (50) vanishes identically. In fact we have the following equations:

〈Tr (γ2nF )〉0 = 0
〈Tr (γ2iF )〉n−i + 〈Tr (γ2iBB)〉 = 0
〈Tr (γ2i−1dAB)〉 = 0,

that are, respectively, a direct consequence of the identities

〈B(x)B(y)F (z)〉 = 0 (51)

〈A(x)A(y)F (z)〉+ 〈A(x)A(y)B(z)B(z)〉 = 0 (52)

〈A(x)B(y)(dAB)(z)〉 = 0 (53)

The proof of the above identities is straightforward: for instance the r.h.s. of (51)
satisfies the following equation (where group factors have been omitted)

〈B(x)B(y)dA(z) +B(x)B(y)A(z) ∧ A(z)〉 = (d3v)(x, y, z) + l(x, z) ∧ l(y, z) = 0.

Here the kernels l and v are defined by (35) and can be interpreted as forms on (R3)
2

(of type (1,1)) and, respectively, on (R3)
3

(of type (1,1,1)). The operator d3 acts on
(1,1,1)-forms and produces (1,1,2)-forms (see [10, 6]). In other words the d3-differential
of the form v compensates the term l∧l when the latter form is restricted to the part of
the boundary of the configuration space C4(R

3) characterized by 2 coincident points.
The proof of (52) and (53) is completely similar. The variation of V2n+1(C) can be
dealt with in a completely similar way.

Now each term 〈Tr γ2i(C)〉n−i gives rise to multiple integrals involving the kernels l
and v (35). The kernel v corresponds to vertex contractions (B ←→ A ←→ B and
A←→ A←→ A), while the kernel l corresponds to a contraction A←→ B.

In conclusion, in 〈Tr γ2i(C)〉n−i we encounter the following contributions: an integral
with n kernels of type v, an integral with n− 1 kernels of type v and 2 kernels of type
l, . . ., and finally an integral with 2i kernels of type l and n− i kernels of type v.

A similar computation yields V2n+1. In this way we can represent the coefficients of
the HOMFLY polynomial evaluated as in section VI, as sums of multiple integrals
given by convolutions of the kernels (35). This representation of the coefficients of the
HOMFLY polynomials is the one considered in the work of Bott and Taubes [10], that
is in turn inspired by [20] and [6].
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• Holomorphic gauge

The holomorphic and the axial gauge involve a projection onto a plane. In these
gauges one cannot expect that the coefficients of the perturbative expansion directly
give knot invariants. The (3-dimensional) diffeomorphism invariance is broken and
some correcting factor must be introduced in order to restore this invariance. Both
the holomorphic and the axial gauge do not have vertex terms. This implies that, in
contrast to the covariant gauge, the n-th term in the perturbative expansion in the
variable κ is given by 〈Tr γn(C)〉.
The temporal delta function in (36) implies that we have to consider contractions
between a B-field and an A-field only when these fields lie at the same height (in the
t-variable). We take these level surfaces, to be transversal to the knot, for generic, i.e
non critical, times. From (36) we see that the forms to be integrated are given by

∧

i

−2(dzi − dwi)

(zi − wi)

where the pairs of points (zi, wi) represent points of the knots C and on the companion
Cf , where contractions occur [19].

Perturbatively, the quantum theory is described by a family of Feynman diagrams DP ,
depending on the set P of all possible contractions at a given order in κ. To each of
these Feynman diagrams, and to each representation R of the group G, we associate a
group factor WR(DP ). The v.e.v.’s of interest are given by

〈

Tr
∑

n

κnγn(C)

〉

= WR(Zǫ(C))

where Zǫ(C) is a diagram-valued function (ǫ being the spacing between C and Cf ). It
is possible to let C approach Cf , by considering (see [2])

Z(C) = lim
ǫ→0+

e−2κ(n+−n−)ΘZǫ(C), (54)

where n± are the number of critical points (positive and negative) of the height-function
on the knot C, while Θ denotes the insertion of an isolated chord.

The resulting diagram-valued partition function has been considered by Kontsevich
[25, 7]:

Z(C) =
∞∑

m=0

(−2κ)m

∫

tmin<t1<···<tm<tmax

∑

P={(zi,z′i)}

(−1)#P↓DP

m∧

i=1

dzi − dwi

zi − wi

, (55)

where tmin and tmax denote the lowest and highest height of C, respectively, (zi, ti) and
(wi, ti) denote distinct points on C and #P↓ denotes the number of points (zi, ti),(wi, ti)
where the height is a decreasing function.

In [7], it is shown that such integrals are well-defined knot invariants, provided that
we use the normalization:

Ẑ(C) =
Z(C)

Z(∞)
c
2
−1
, (56)

where c is the number of critical points and∞ denotes the particular unknot with one
crossing point whose diagram looks like the symbol ∞.
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• Axial gauge

The v.e.v.’s in this gauge (see eq. (37)) indicate that the interactions to be considered
are localized only at the crossing points of the projected knot C (B-field line) with
its framing Cf (A-field line). These crossing points occur either when Cf is “twisted”
around C or when we have an actual crossing point of the projected knot C.

There is an obvious invariance of v.e.v.’s under orientation-preserving transformations
of the plane (or, more generally, of the surface Σ) onto which the knot is projected.
Hence these interactions only depend on the type of the crossing (positive or negative)
of the projected knot C with its companion Cf .

We have first to take into consideration a change of the framing (i.e. a twisting of
Cf). Once we have done this, we can then choose a specific framing (the “blackboard
framing”) where Cf is always at the right of C (with respect to the given orientation of
C) and hence intersects C only near an actual vertex of the knot C. In this way, only
actual vertices of C contribute to the interaction. After having chosen the framing as

above, we explicitly compute

〈

Tr
∑

n

κnγn(C)

〉

.

At the n-th order of perturbation we have n interactions localized at the vertices. These
interactions will be represented by (traces of) group factors. For the fundamental
representation of SU(N), they are given by functions of N .

Moreover, among the n interactions that we are considering, n1 of them can be localized
at one vertex, n2 at another vertex and nj at a j-th vertex. The requirement here is
that

∑

j nj = n.

In other words, we can write the n-th term in the perturbation expansion as a sum

∑

i1,i2,···,in
ǫi1ǫi2 · · · ǫinDi1,i2,···,in

n,n (C)+
∑

i1,i2,···,in−1
ǫi1ǫi2 · · · ǫin−1D

i1,i2,···,in−1

n,n−1 (C)

+ · · ·+ ∑

i ǫiD
i
n,1(C),

(57)

where the indices ij label the vertices of the knot C and Dn,i are (traces of) group
factors corresponding to n interactions concentrated at i different vertices.

We cannot hope to obtain the HOMFLY polynomial directly from (57), since we have
had to make a particular choice of the framing (blackboard framing).

But a good choice of the normalization factor for (57) will show that the perturbation
theory in the axial gauge (with the fundamental representation of SU(N)) provides
the expression of the coefficients of the HOMFLY polynomials in terms of tensors over
the vertices of the knot (see the discussion in the appendix).

The similarity between (78) and (57) is striking.

IX. The BF theory without cosmological constant and

the Alexander–Conway polynomial

In this section we consider the BF theory without cosmological constant. The observable
associated to a knot C is then given by TrH(C;λ), where λ is an expansion parameter and
H is defined by (23) and (24).
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Another observable that could be considered in BF theory without cosmological constant
is Tr exp (λΓ1(C; x0)), the difference between the v.e.v.’s computed for the two observables
being given by powers of lk(Cf , C). In [13] the latter definition of the observable was
assumed; but the choice TrH(C;λ) is a more natural one if one wants to deal with arbitrary
values of lk(Cf , C).

For simplicity we assume that lk(Cf , C) = 0 (standard framing); this makes the distinc-
tion between the two choices of observables irrelevant and allows us to use the results of
[13].

The perturbation expansion in the covariant gauge reads
〈

∑

n

λn Tr Γn(C, x0)

〉

=
∑

n

λnWn(C)

where the coefficients Wn(C) are defined as

Wn(C) = 〈Tr Γn(C, x0)〉 . (58)

In contrast to (49), we do not have to take into account the effect of vertex terms propor-
tional to B3 in eq. (58). Hence the structure of BF theory without cosmological constant is
considerably simpler than the one of the BF theory with a cosmological constant.

We now formally prove that the terms Wn(C) are knot-invariants.
In fact, the effect of a small deformation of the knot C is given by

δW2n =

n∑

i=0

〈Tr (Γ2iF )〉+
n∑

i=0

〈Tr (Γ2i−1dAB)〉 = 0. (59)

In order to prove (59), we have used again equations (51) and (53), while equation (52) did
not play any rôle, since, here, there are no vertex terms proportional to B3, and hence no
terms like 〈A3〉.

When we consider a knot C (not a link) and when the standard framing for Cf is selected,
then it has been shown in [13] that

W2n+1 = 0 (60)

holds for any n.
As far as integration by parts for BF theories without cosmological constant is concerned,

formulas (38) still hold, provided that κ is set equal to zero. Formula (39) becomes

〈
Tr

[
F a

µν(x)O
]〉

= 4πi
∑

ρ

ǫµνρ

〈
δO

δBa
ρ(x)

〉

〈
Tr

[
(dAB)a

µν(x)O
]〉

= 4πi
∑

ρ

ǫµνρ

〈
δO

δAa
ρ(x)

〉

.

(61)

We consider, once again, a deformation of the knot C and, simultaneously, of its framing Cf ,
while keeping lk(Cf , C) = 0. We redo the computations of section VI by using integration
by parts and the abelian Stokes formula.

We do not need to take into consideration deformations of type 1 (see section VI), since
the imposition of the requirement lk(C,Cf) = 0 will offset the effect of such deformations.

When we consider deformations of type 2 (see section VI) then the form of our observables
shows that the B-field is not path-ordered any more. Hence, instead of (45), the n-th order
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variation inserts, at the selected crossing point, the matrix U
(n)
i,j,k,l ∈ End(CN ⊗CN), given

by

U
(n)
i,j,k,l =

1

n!

∑

a1,...an;σ

(Ra1Ra2 · · ·Ran)i,j (Raσ(1)Raσ(2) · · ·Raσ(n))k,l , (62)

where σ denotes a permutation of {1, 2, · · · , n} and the sum is extended over all permutations
and over the indices {aj}. It is possible to show that (45) is still a matrix of the form
αn P+βn I [27]. This implies that we still obtain a relation like (47):

〈TrH(C±;λ)〉 = α± 〈TrH(C0;λ)〉+ β± 〈TrH(C×;λ)〉

that, in turn, implies a skein relation that we write as:

q(λ)
∑

λnWn(C+)− q−1(λ)
∑

λnWn(C−) = z(λ)
∑

λnWn(C0). (63)

In conclusion, the v.e.v. associated to a knot C (or a link) in the BF theory without
cosmological constant assigns a skein polynomial

P (q(λ), z(λ))(C)

to C. In order to identify this polynomial P (q(λ), z(λ)) with the Alexander–Conway poly-
nomial, we need one further observation: the transformation

λ −→ −λ

can be absorbed, in field theory, by the transformation B −→ −B that, in turn, is equivalent
to a change in the sign of the BF action, or to a change in the orientation of the manifold
M (= R3).

So we have that

P (q(−λ), z(−λ))(C) = P (q(λ), z(λ))(C !) = P ([q(λ)]−1,−z(λ))(C) (64)

where C ! denotes the mirror image of C. The first identity in (64) is a consequence of
the property (CT-symmetry) of field theory mentioned above,while the second identity is a
consequence of the skein relation.

We now take a knot C, for which (60) implies that P (q(λ), z(λ))(C) = P (q(λ), z(λ))(C !).
Hence, for a knot C, we have q(λ) = 1 and, when we choose the normalization P (1, z(λ))(©) =

1 for the unknot, then P (1, z(λ))(C) must necessarily be the Alexander–Conway polynomial.
BF theory without cosmological constant yields the Alexander–Conway polynomial also

in the case of links: but for the discussion of this case we refer to [13].

X. Observables for the four-dimensional BF theory

Our purpose, in this section, is only to sketch a few preliminary ideas on how to deal with
4-dimensional situations, leaving further developments to be carried out elsewhere.

As has been mentioned in Section III, the observables associated to a 4-dimensional
BF theory must be associated to 2-dimensional surfaces Σ imbedded (or immersed) in the
4-manifold M . As in [16], we can associate to Σ (with a selected point x0) the quantity:

Tr

∫

M

Hol (A)y
x0
B(y) Hol (A)x0

y . (65)
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In this formula the holonomies are meant to be computed along loops with base-point x0,
passing through the point y ∈ Σ.

What we would like to do is to associate to each point of the surface Σ a loop with
base-point x0. This can be a difficult task, if we want to preserve smoothness.1

A simpler situation is encountered if we are given an oriented torus T = S1 × S1. The
torus T is imbedded in M (or, more generally, generically immersed i.e. with only transversal
double points).

We still denote by Σ the image of such imbedding (or immersion). Here we can define, as
in [3], a special path joining x0 to the generic point y ∈ T. If the coordinates of the points
x0, y are (s0, t0), (s, t) ∈ T , then we define a path σy by combining a (positively oriented)
meridian arc joining (s0, t0) to (s, t0) with a (positively oriented) longitudinal arc joining
(s, t0) to (s, t).

As in section III, we consider the g-valued 2-form of the adjoint type:

B̂(y) ≡ Hol (A, σy)
y
x0
B(y)

[
Hol (A, σy)

y
x0

]−1
(66)

and consider ∫

Σ

B̂(y)

Moreover, we can “complete” the above holonomies and obtain:

O(Σ) ≡
∫

Σ

B̂(y) Hol (A)s,t0
s0,t0 Hol

(l)
s,t0 Hol s0,t0

s,t0 (67)

where by Hol
(l)
s,t0 we mean the holonomy of the longitudinal circle with base point (s, t0).

At this point we can exhibit the observable for the 4-dimensional BF theory, namely

O(Σ, k) ≡ Tr exp (k O(Σ)) . (68)

This is an observable for the 4-dimensional BF theory without cosmological constant.
We can now compute the relevant v.e.v.’s by perturbation expansion in the coupling constant
k. The gauge-choices that we have here at our disposal are either the covariant gauge or the
real axial gauge.

BF theory in 4 dimensions should provide the right framework for invariants of 2-knots
(embedded surfaces) or of singular 2-knots (generally immersed surfaces).

Preliminary computations (see [16]) suggest that the expression of these invariants in the
covariant gauge, should be given in terms of iterated integrals of kernels that are the higher
dimensional generalization of (35).

Preliminary computations in another direction, show that the observable (68) could play
a rôle in the recovery of some essential information concerning the differentiable structure of
the four manifold M (Donaldson polynomial) in the framework of a pure Yang–Mills theory
[14].

Finally let us point out that the observable (68) can be a relevant object in the approach to
quantum gravity based on loop-variables (see [4] and reference therein). In this framework,
imbedded (or generically immersed) surfaces (or tori) represent the time-evolution of the
loop variables of [4]. An elementary consideration shows moreover that, once we are given a
background metric g (and so a corresponding *-operator) theB-field can provide a fluctuation
of the background metric.

1We acknowledge a useful discussion with John Baez, in this respect.
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In fact one can construct a symmetric tensor

hµ,ν ≡ fa,b,cB
a
µ,ρ

∗(Bb)ρ,σBc
σ,ν

where fa,b,c denote the structure constant and a sum over repeated indices is understood
(see [12]).

We will discuss more about the 4-dimensional BF theory in future work.
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Appendix: On the coefficients of the skein-polynomials

In this appendix we want to review the representation of the coefficients of the skein-
polynomials in terms of suitably defined “tensors” with coefficients in Z.

The motivation for this appendix is that this representation is the one obtained from the
quantization of the BF theories in the (real) axial gauge, with the fundamental representa-
tion of the group SU(N).

First we consider a link diagram L with |L| oriented components, and we denote by V (L)
the set of vertices of L (crossing points). We order the set V (L) by ordering arbitrarily the
components of L and by choosing arbitrarily a starting point in each component of L. We
denote the sign (writhe) of the i-th vertex by ǫi = ±1. A k-tensor T ≡ T i1,i2,···,ik is defined
as a map

V (L)× · · · × V (L)
︸ ︷︷ ︸

k times

−→ Z .

Once we are given a k-tensor T, we can “saturate” it with the writhe of the vertices in V (L)
∑

V (L)×···×V (L)

ǫi1ǫi2 · · · ǫikT i1,i2,···,ik. (69)

Here we want to show that the coefficients of the skein polynomials are given by sums of
expressions (69).

We denote by Sj the operation of switching the vertex vj ∈ V (L) (i.e. changing the
writhe) and by Ej the operation of eliminating the vertex vj in the only orientation-preserving
way. Let σ be any sequence of the above operations. Given a k-tensor T on σL we can pull
it back to a k-tensor on L by defining:

[σ∗(T )]i1,i2,···,ik =







0 if one of the vertices vir

has been eliminated,
ρσ(vi1 , vi2, · · · , vik)T

σ(i1),σ(i2),···,σ(ik) if none of the vertices vir

has been eliminated,

where ρσ(vi1 , vi2 , · · · , vik) is defined as 1 if an even number of the vertices vi1 , · · · , vik has
been switched by σ and is defined as −1 otherwise. The pulled-back k-tensor satisfies the
relation:

∑

i1,i2,···,ik

ǫi1ǫi2 · · · ǫik [σ∗(T )]i1,i2,···,ik(L) =
∑

j1,j2,···,jk

ǫj1ǫj2 · · · ǫjk
T j1,j2,···,jn

n (σL), (70)
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where the first sum is extended over all the k-uples of vertices of L, while the second sum is
extended over all the k-uples of vertices of σ(L).

We now consider the Alexander–Conway polynomial ∆(L)(z) ≡ ∑

n an(L)zn, with the
standard normalization conditions.

Let {vj1, vj2, · · · , vjs
} be any sequence of vertices of L with the property that when we

switch all these vertices then the link diagram L is transformed into the diagram of the
unlink U|L| (with |L| components). We have ([5, 23]):

an(L)− an(Sj1L) = ǫj1an−1(Ej1L)
an(Sj1L)− an(Sj2Sj1L) = ǫj2an−1(Ej2Sj1L)
· · · · · ·
an(Sjs−1 · · ·Sj1L)− an(Sjs

Sjs−1 · · ·Sj1L) = ǫjs
an−1(Ejs

Sjs−1 · · ·Sj1L).

(71)

By assumption we have that Sjs
Sjs−1 · · ·Sj1L = U|L| and hence

an(Sjs
Sjs−1 · · ·Sj1L) =

{
1 if |L| = 1 and n = 0
0 otherwise.

When n > 1 we obtain:

an(L) =

l=s∑

l=1

ǫjl
an−1(Ejl

Sjl−1
· · ·Sj1L). (72)

We are now ready to prove, by induction, that for any link L, the n-th coefficient of the
Alexander polynomial is given by an expression like:

an(L) =
∑

i1,i2,···,in

ǫi1ǫi2 · · · ǫinAi1,i2,···,in
n (L), (73)

where An(L) is a suitable n-tensor with integer entries and the sum is extended over all the
n-uples of vertices in L.

For n = 1, we have a1(L) ≡∑

j ǫjA
j(L), where the 1-tensor Aj is defined as

Aj(L) =

{
1 if |L| = 2 and the first component passes over

the second one at the j-th vertex
0 otherwise

. (74)

Equation (72) can be rewritten as a sum extended over all the vertices of L:

an(L) =
∑

i

ǫiã
i
n−1, (75)

where ãi
n−1 is defined as either 0 (when the i-th vertex is not one of vertices vjl

that we
need to switch in order to transform L into the unlink) or is given by (72). We now as-
sume that an−1(Ejl

Sjl−1
· · ·Sj1) can be expressed in terms of an (n − 1)-tensor of the link

(Ejl
Sjl−1

· · ·Sj1). This implies that it can also be expressed in terms of an (n− 1)-tensor of
the link L, and so eq. (75) directly gives (73).

We finally consider the 1-variable HOMFLY Polynomial P (exp(hN), 2 sin(h)). We rep-
resent this polynomial as a power series in the variable h, namely as

∑∞
n=0 anh

n, where it is
understood that the coefficients an depend on the link L and on the integer N . We choose
the following normalization condition for the unlink with k components

P (Uk) =

(
exp(hN)− exp(−hN)

exp(h)− exp(−h)

)k

. (76)
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The skein relation and eq. (76) imply that for, any link L, we have a0(L) = N |L|. We also
have a1(Uk) = 0, and, for any vertex vj ,

a1(L)− a1(SjL) = ǫj2(N |EjL| −N |L|+1).

This implies that if L is a link with zero linking numbers between its components, then
a1(L) = 0. More generally, for a link L with k > 1 components, we have:

a1(L) =
∑

s

ǫjs
2(Nk−1 −Nk+1)

where {vjs
} is a set of vertices, where different components of L meet and whose switching

separates the components.
For the generic coefficient an we now have a set of equations that is more complicated

than (71)

∑n
k=0(n− k)!

[
Nn−kak(L)− (−N)n−kak(Sj1L)

]
= ǫj1

∑n−1
k=0(n− k)![1− (−1)n−k]ak(Ej1L)

· · · · · ·
∑n

k=0(n− k)!
[
(Nn−kak(Sjs−1 · · ·Sj1L)− (−N)n−kak(Sjs

Sjs−1 · · ·Sj1L)
]

=

ǫjs

∑n−1
k=0(n− k)![1− (−1)n−k]ak(Ejs

Sjs−1 · · ·Sj1L).
(77)

Here {vjs
} is a set of vertices of L whose switching transforms L into the unlink U|L|.

By an argument similar to the one considered before, instead of (73) we now have equa-
tions like:

an(L) =
∑

i1,i2,···,in
ǫi1ǫi2 · · · ǫinAi1,i2,···,in

n,n (L)+
∑

i1,i2,···,in−1
ǫi1ǫi2 · · · ǫin−1A

i1,i2,···,in−1

n,n−1 (L)

+ · · ·+ ∑

i ǫiA
i
n,1(L),

(78)
where to each index n we associate tensors An,i of order i for i = 1, · · · , n. In (78) the sums
are extended over the set V (L).
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