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We study the perturbative behaviour of topological black holes in the presence of a cosmological

constant and a scalar field coupled to the Gauss-Bonnet term. We calculate both analytically and

numerically the quasi-normal modes of scalar perturbations in the extended scalar-tensor-Gauss-

Bonnet gravity. In the case of small black holes we find a phase transition of the topological black

hole to a hairy configuration.
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I. INTRODUCTION

The recent experimental results on gravitational waves [1–3] and more recently the observation of a shadow

of the M87 black hole [4], demonstrated that Einstein’s General Relativity (GR) is a very successful viable

theory. However on cosmological grounds, to explain the recent observational results on dark matter and on

dark energy a generalization of GR is required, in a attempt to have a viable theory of Gravity on short and

large distances [5–8]. These modified gravity theories can give us important information on the structure and
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properties of the compact objects predicted by these theories and also the observational signatures, which

they can introduce.

Some of the simplest and viable modifications of GR are the scalar-tensor theories [9]. When the scalar

field coupled to gravity backreacts to the background metric, hairy black hole solutions would be generated.

A hairy black hole solution in an asymptotically flat spacetime was found in [10] but it was shown that it was

unstable because the scalar field was divergent on the event horizon [11]. However, it was soon realized that

introducing a scale through the presence of a cosmological constant, making the space-time asymptotically

AdS/dS, such an irregular behaviour of the scalar field on the horizon was avoided. Then hairy black hole

solutions were found having a regular scalar field behaviour and all the possible divergence were hidden behind

the horizon [12–22].

If the cosmological constant is positive and the scalar field is minimally coupled or non-minimally coupled

with a self-interaction potential, black hole solutions were found [15, 16, 23] but it was shown to be unstable

[17, 24]. If the cosmological constant is negative numerical solutions were found [18, 19] and also a stable

exact black hole solution was discussed in [14] in which the space-time is asymptotically AdS with hyperbolic

geometry, known as MTZ black hole. Later this solution was generalized to include charge [25] while a

generalization to non-conformal solutions was discussed in [21].

No-hair theorems can also be evaded by considering black holes interacting with matter fields [26]-[31]. In

such cases black holes can support a non-trivial scalar field in their exterior region. Modified gravity theories

were proposed in which matter is coupled to the Einstein tensor. These theories belong to general scalar-

tensor Horndeski theories [32]. Then various hairy black holes were found in which scalar fields are coupled

to curvature [22, 33–41].

Hairy black hole solutions can also be obtained without the presence of matter sources if the scalar field is

directly coupled to second order algebraic curvature invariants. In this case the scalar hair is maintained by the

interaction with the spacetime curvature. Exploring the strong field regime of gravity with the aim to detect

gravitational waves and black hole shadows the effects of higher-order curvature terms become significant.

However, including such terms brings in the well-known ghost problem [42]. One high curvature correction

is the Gauss-Bonnet (GB) term which is ghost-free but it becomes a topological term in four-dimensional

spacetime and has no dynamics. To evade this problem, one has to couple this term to a scalar field in four

dimensions [43]. These gravity theories are known as extended scalar-tensor-Gauss-Bonnet (ESTGB) theories

and were studied extensively in the literature [44]-[49].

Recently there is a lot of activity studying the ESTGB gravity theories in an attempt to evade the no-hair

theorems and obtained hairy black hole solutions. In particular, for certain classes of the coupling function it

was shown that we have spontaneous scalarization of black holes [50]-[55]. It was found that below a certain

critical mass the Schwarzschild black hole becomes unstable in regions of strong curvature, and then when

the scalar field backreacts to the metric, new branches of scalarized black holes develop at certain masses as

solutions in the ESTBG theory [50, 51, 56]. An extension of these results is to consider the case of nonzero

black hole charge. Examining the entropy of the black holes with nontrivial scalar field it turned out that the

solution with the scalar field is thermodynamically favorable over the Reissner-Nordström one [57].

The spontaneous scalarization procedure has various applications. The scalarization due to a coupling of

a scalar field to Ricci scalar was studied in [58] and scalarized black hole solutions and compact objects in

asymptotical flat spacetime in the ESTGB gravity theories were obtained in [59]-[69] and also in AdS/dS

spacetimes [70–74]. The connections of asymptotically AdS black holes scalarization with holographic phase

transitions in the dual boundary theory was studied in [75, 76]. Recently the spontaneous scalarization in

f(R) gravity theories was discussed in [77].

The black hole spontaneous scalarization in ESTGB gravity theories with a probe scalar field in a black

hole background with different curvature topologies has been studied in [78]. It was found that the scalar field

near AdS black hole with positive curvature could be much easier to scalarize the black hole comparing with

negative and zero curvature cases. In particular, when the curvature is negative, the scalar field is the most

difficult to be bounded near the horizon. It was observed that scalarizations in hyperbolic AdS topological

black hole (TBH) backgrounds depend on the interplay of two factors, the coupling strength between the

scalar field and the GB term and the cosmological constant.
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As we already mentioned, the MTZ black hole [14] is an exact black hole solution in four dimensions

with a minimally coupled self-interacting scalar field, in an asymptotically AdS space-time in which the event

horizon is a surface of negative constant curvature enclosing the curvature singularity. It was shown that there

is a second order phase transition at a critical temperature below which a black hole in vacuum undergoes

a spontaneous dressing up with a non trivial scalar field. In a series of papers [79–81] this scalarization

procedure was studied for topological black holes. Calculating analytically and numerically the quasinormal

modes (QNMs) of tensor, electromagnetic and scalar perturbations, it was found that there is a critical value

of the horizon radius below which the topological black hole is scalarized to the MTZ black hole with scalar

hair. The thermodynamics of this transition was also studied.

Motivated by the above studies we will study the scalarization of a topological black hole in the presence of

the coupling of the scalar field to the GB term in the ESTGB gravity theories. In particular we will consider

a gravity theory with the presence of a cosmological constant in which there is matter parametrized by a

massive scalar field minimally coupled to gravity and also coupled to the GB term. The coupling of the scalar

field to the GB term is denoted by the parameter λ. At first place the scalar field does not back-react to

the metric. We fix the background metric to be a TBH leaving in a hyperbolic space-time expressed by a

parameter ξ, which is analogous of the orbital quantum number in the three-dimensional space.

The goal of this work is to study the behaviour of matter in this physical set up. For fixed cosmological

constant we have two competing effects. The first one is as λ is increasing we expect the matter to interact

more strongly with gravity while as ξ is getting larger the kinetic effects tend to dominate. We calculate both

analytically and numerically the QNMs of scalar perturbations of topological-AdS black holes in the presence

of matter coupled to the GB term. For each λ we found a critical value of ξ, below which there is instability.

As λ is increasing the imaginary part of some QNMs are getting positive indicating an instability. When the

coupling constant λ is getting very large, all of the QNMs develop a positive imaginary part. This behaviour

provides evidence of a phase transition to a scalarized TBH. We also noted that the absolute values of QNMs

are increasing as the parameter ξ is also increasing.

The work is organized as follows. In Section II we present the theory of the coupling of a scalar field to

the GB term in the background of a TBH and we discuss the tachyonic instabilities of this theory. In Section

III we carried out an analytical calculation of QNMs. In Section IV we consider scalar perturbations in the

extended scalar-tensor GB theory in which the background metric is the TBH and finally in Section V are

our conclusions.

II. TOPOLOGICAL BLACK HOLES, THE EINSTEIN-SCALAR-GAUSS-BONNET THEORY

AND TACHYONIC INSTABILITIES

In this Section we will first discuss the TBHs as the background of the scalar-GB gravity theories and then

we will discuss the possible tachyonic instabilities of these theories.

We consider the bulk action

I =
1

16πG

∫
d4x
√
−g
[
R+

6

l2

]
, (II.1)

in asymptotically AdS spacetime where G is the Newton’s constant and l is the AdS radius. The presence of

a negative cosmological constant (Λ = − 3
l2 ) allows the existence of black holes with a topology R×Σ, where

Σ is a two-dimensional manifold of constant negative curvature. These black holes are known as topological

black holes. The simplest solution of this kind reads

ds2 = −g(r)dt2 +
dr2

g(r)
+ r2dσ2 , g(r) = r2 − 1− 2µ

r
, (II.2)

where we employed units in which the AdS radius is l = 1 and dσ is the line element of Σ. The latter is

locally isomorphic to the hyperbolic manifold H2 and of the form

Σ = H2/Γ , Γ ⊂ O(2, 1) , (II.3)
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where Γ is a freely acting discrete subgroup (i.e., without fixed points) of isometries.

The geometry of the TBHs as well their basic properties have been studied extensively in the literature [82]-

[86]. It has been shown in [87] that the massless configurations where Σ has negative constant curvature are

stable under gravitational perturbations. The stability also of the TBHs was discussed in [88] and QNMs in

topological black holes were calculated in [89]-[91].

The Einstein-Scalar-Gauss-Bonnet theory is described by the following action functional

S =
1

16πGN

∫
d4x
√
−g
[
R− 2∇µφ∇µφ−m2φ2 + λ2f(φ)R2

GB − 2Λ
]
. (II.4)

This modified gravitational theory consists of a real scalar field minimally coupled to Einstein’s gravity and

non-minimally coupled to quadratic gravitational GB term R2
GB through a real function f(φ). A cosmological

constant Λ is also present, that may take either a positive or a negative value. We are interesting in hyperbolic

TBHs with negative curvature constant. So the metric ansatz reads as

ds2 = −eA(r)dt2 + eB(r)dr2 + r2
(
dθ2 + sinh2 θdϕ2

)
. (II.5)

Using natural units such that GN = c = 1 the gravitational field equations have the covariant form

Gµν = T̃µν , (II.6)

Gµν = T (φ)
µν + T (GB)

µν − Λgµν , (II.7)

Gµν + Λgµν = T (φ)
µν + T (GB)

µν , (II.8)

where Gµν is the Einstein tensor

Gµν = Rµν −
1

2
gµνR , (II.9)

and T
(φ)
µν is the energy-momentum tensor which receives contribution only from the kinetic term and the mass

term of the scalar field and T
(GB)
µν is the energy-momentum tensor which receives contribution only from the

interaction of the scalar field with the Gauss-Bonnet term

T (φ)
µν =− 1

2
gµνm

2φ2 + 2∇µφ∇νφ− gµν∇κφ∇κφ , (II.10)

T (GB)
µν =−R(∇µΨν +∇νΨµ)− 4∇αΨαGµν

+ 4Rµα∇αΨν + 4Rνα∇αΨµ − 4gµνR
αβ∇αΨβ ,

+ 4Rβµαν∇αΨβ , (II.11)

with

Ψµ = λ2ḟ(φ)∇µφ . (II.12)

The equation of motion of the scalar field is

∇µ∇µφ−
1

2
m2φ+

1

4
λ2ḟ(φ)R2

GB = 0 , (II.13)

where the dot denotes differentiation with respect to the scalar field. A condition for the coupling function

f(φ) arises from the Eq. (II.13), namely ḟ(0) = 0. This condition ensures that the trivial scalar field (φ = 0)

satisfies the equation of motion. In the case of a trivial scalar field the metric functions of the background

TBH are given by

eA(r) ≡ g(r) = −1− M

r
− Λ

3
r2 , (II.14)
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eB(r) =
1

−1− M
r −

Λ
3 r

2
=

1

g(r)
. (II.15)

The equation of motion of the scalar field (II.13) can be written as(
2− µ2

eff

)
φ = 0 , (II.16)

where

µ2
eff =

1

2
m2 − 1

4
λ2ḟ(φ)R2

GB . (II.17)

The sign of this effective mass is connected with the stability or instability of the underlining theory. To

clarify this issue consider the Lagrangian density for a free relativistic scalar field φ in a Minkowski spacetime

L = − ε
2
∂µφ∂

µφ− ε

2
m2φ2 . (II.18)

In the ε = ε = +1 case the Hamiltonian is positive semi-definite and therefore bounded from below, while in

the ε = ε = −1 case the Hamiltonian is negative semi-definite and therefore bounded from above. In the case

ε = −ε, the Hamiltonian is indefinite and so it is not bounded either from below or from above. The field φ

is called a ghost field if ε = ε = −1 (for a review on ghost fields see [92]), while it is called a tachyon field

if ε = +1 and ε = −1, finally, it is called a tachyonic ghost if ε = −1 and ε = +1. A Hamiltonian which is

unbounded from below is usually associated with instabilities of the system. If ε = −ε, a small perturbation

can grow exponentially, signalling an instability.

If the effective mass (II.17) is negative µ2
eff < 0 there is a tachyonic instability triggered by a negative

effective mass squared of the scalar field [71].

III. ANALYTICAL CALCULATION OF QNMS

We consider a function f(φ) coupled to the GB term, for which

df

dφ

∣∣∣∣
φ=0

= 0 ,
d2f

dφ2

∣∣∣∣
φ=0

= 2 > 0 . (III.1)

We suppose that φ is restricted in the well surrounding φ = 0, so that the expression λ2f(φ)R2
GB(0) reduces

in this limit to the approximate form λ2R2
GB(0)φ

2 . We consider the line element

ds2 = −g(r)dt2 +
1

g(r)
dr2 + r2(dθ2 + r2 sinh2 θdφ2) , g(r) = −1− M

r
− Λ

3
r2 = −1− M

r
+
r2

L2
, (III.2)

for which the GB invariant reads

R2
GB(0) =

24

L4
+

12M2

r6
. (III.3)

The starting point of our approach will be an equation describing the scalar perturbations, which derives from

the Klein-Gordon equation after substituting for the scalar field the form

φ(t, r, θ, φ) = Ψ(r)e−iωtYξm(θ, φ) , (III.4)

where Yξm(θ, φ) are the counterparts of the spherical harmonics and ξ is a parameter analogous to the orbital

quantum number. The equation reads

g(r)
d

dr

(
g(r)

dΨ

dr

)
+ [ω2 − V(r)]Ψ = 0 , V(r) ≡ g(r)

[
g′(r)

r
− λ2

4
R2
GB(0) +

ξ2 + 1
4

r2

]
. (III.5)
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Note that the parameter ξ indicates the hyperbolic geometry. A large value of ξ shows the departure from

the spherical topology.

Substituting g(r) and R2
GB(0) by their respective values, equation (III.5) takes the form

g(r)
d

dr

(
g(r)

dΨ

dr

)
+

[
ω2 − g(r)

(
2

L2
+
M

r3
− 6λ2

L4
− 3λ2M2

r6
+
ξ2 + 1

4

r2

)]
Ψ = 0 . (III.6)

We now introduce the new variable

u ≡
(r+

r

)2

⇔ r =
r+

u1/2
, (III.7)

so that

d

dr
= −2u3/2

r+

d

du
,
d2

dr2
=

4

r2
+

u3/2 d

du

(
u3/2 d

du

)
, (III.8)

and equation (III.6) becomes

4

r2
+

gu3/2 d

du

(
gu3/2 d

du

)
Ψ +

[
ω2 − g

(
2 +

Mu3/2

r3
+

− 6λ2 − 3λ2M2u3

r6
+

+
ξ2 + 1

4

r2
+

u

)]
Ψ = 0 . (III.9)

Setting L = 1 and using the notations

ĝ(u) ≡ g(r)

r2
+

=
1

u
− 1

r2
+

− M

r3
+

u1/2 , (III.10)

V̂(u) ≡ V(r)

r2
+

= ĝ(u)

[
2 +

Mu3/2

r3
+

− 6λ2 − 3λ2M2u3

r6
+

+
ξ2 + 1

4

r2
+

u

]
, (III.11)

the equation takes the form

−4u3/2ĝ(u)(u3/2ĝ(u)Ψ′)′ + V̂Ψ = ω̂2Ψ⇔ HΨ = ω̂2Ψ, ω̂ ≡ ω

r+
. (III.12)

It is possible to proceed with an analytical approach, in two cases, namely when the black hole is small with

r+ is around 1, or when the black hole is large.

A. Small black hole: the horizon is approximately one

We now restrict our attention to the critical case, where

r+ = 1⇔M = 0 .

In this case

ĝ(u) =
1− u
u

,

and the equation reduces to

−4u1/2f̂(u)(u1/2(1− u)Ψ′)′ + V̂(u)Ψ =
ω̂2

1− u
Ψ⇔ HΨ =

ω̂2

1− u
Ψ , (III.13)

with

ˆV(u) =
2− 6λ2

u
+

(
ξ2 +

1

4

)
,
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and then the Klein-Gordon equation becomes

−4u1/2(u1/2(1− u)Ψ′)′ +

(
2− 6λ2

u
+ ξ2 +

1

4

)
Ψ =

ω̂2

1− u
Ψ . (III.14)

We introduce the parameter a ≡ 2− 6λ2, so that the potential takes on the simple form

V̂ =
a

u
+ ξ2 +

1

4
,

and the equation to be solved reads

4(1− u)uΨ′′ + 2(1− u)Ψ′ − 4uΨ′ +
ω̂2

1− u
Ψ−

(
a

u
+ ξ2 +

1

4

)
Ψ = 0 . (III.15)

One may check that the (finite) approximate solution in the limit u→ 0 is proportional to u
1+
√

1+4a
4 , while in

the limit u→ 1 it is proportional to: (1− u)±
iω
2 . We choose (1− u)−

iω
2 , in which case a negative imaginary

part of ω corresponds to a stable system. It is convenient to make the transformation

Ψ(u) = u
1+
√

1+4a
4 (1− u)−

iω
2 X(u) . (III.16)

The function X(u) interpolates between the two limiting values of u → 1 and u → 0. Then the differential

equation becomes

16u(1− u)X ′′(u) + 8[−2−
√

1 + 4a+ u(4 +
√

1 + 4a− 2iω)]X ′(u)

+[5 + 4a+ 4
√

1 + 4a+ 4ξ2 − 8iω − 4i
√

1 + 4aω − 4ω2]X(u) = 0 , (III.17)

which may be readily solved in terms of hypergeometric functions

X(u) = C1 2F1

(
1

2
+

√
1 + 4a

4
− iξ

2
− iω

2
,

1

2
+

√
1 + 4a

4
+
iξ

2
− iω

2
, 1 +

√
1 + 4a

2
, u

)

+C2 u
−
√

1+4a
2 2F1

(
1

2
−
√

1 + 4a

4
− iξ

2
− iω

2
,

1

2
−
√

1 + 4a

4
+
iξ

2
− iω

2
, 1−

√
1 + 4a

2
, u

)
. (III.18)

Thus one obtains the solution of the original equation

Ψ(u)

= C1 u
1+
√

1+4a
4 (1− u)−

iω
2 2F1

(
1

2
+

√
1 + 4a

4
− iξ

2
− iω

2
,

1

2
+

√
1 + 4a

4
+
iξ

2
− iω

2
, 1 +

√
1 + 4a

2
, u

)

+C2 u
1−
√

1+4a
4 (1− u)−

iω
2 2F1

(
1

2
−
√

1 + 4a

4
− iξ

2
− iω

2
,

1

2
−
√

1 + 4a

4
+
iξ

2
− iω

2
, 1−

√
1 + 4a

2
, u

)
.

(III.19)

In view of the above expressions when 1 + 4a = 0 we get a critical value for the GB coupling

λc =

√
3

8
≈ 0.61 .

If λ is small enough, i.e. λ < λc, one should set C2 = 0 to ensure finiteness at u→ 0. The solution reduces

to

Ψ(u) = C1 u
1+
√

1+4a
4 (1− u)−

iω
2 (III.20)
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×2F1

(
1

2
+

√
1 + 4a

4
− iξ

2
− iω

2
,

1

2
+

√
1 + 4a

4
+
iξ

2
− iω

2
, 1 +

√
1 + 4a

2
, u

)
. (III.21)

The expansion of the hypergeometric function around u = 1 reads

2F1

(
1

2
+

√
1 + 4a

4
− iξ

2
− iω

2
,

1

2
+

√
1 + 4a

4
+
iξ

2
− iω

2
, 1 +

√
1 + 4a

2
, u

)
(III.22)

' K1
1

Γ
(

1
2 +

√
1+4a
4 − iξ

2 + iω
2

)
Γ
(

1
2 +

√
1+4a
4 + iξ

2 + iω
2

)
Γ (1− iω)

(III.23)

+K2
1

Γ
(

1
2 +

√
1+4a
4 − iξ

2 −
iω
2

)
Γ
(

1
2 +

√
1+4a
4 + iξ

2 −
iω
2

)
Γ (1 + iω)

(1− u)+iω , (III.24)

where K1 and K2 are constants, in the sense that they do not involve u. Since we insist on having only terms

of the form (1 − u)−
iω
2 near u = 1, it is obvious that the second term, which involves (1 − u)+iω, should be

discarded; the only way to discard it is the divergence to infinity of the Γ functions in the denominator, which

happens when

1

2
+

√
1 + 4a

4
+
iξ

2
− iω

2
= −n, ⇒ ω = ±ξ − i

(
2n+

2 +
√

1 + 4a

2

)
. (III.25)

The quantity n is a non-negative integer. Thus we have determined (to zeroth approximation) the QNMs

ωn = ±ξ − i

(
2n+

2 +
√

9− 24λ2

2

)
, n = 0, 1, 2, . . . (III.26)

for small GB coupling λ, less than its critical value λc.

If λ grows enough, so that λ > λc, we work along similar lines and we get

ωn = ±ξ +

√
24λ2 − 9

2
− i (2n+ 1) . (III.27)

Notice that the real part of the QNMs may be non-zero even when ξ vanishes.

1. Analytical predictions for the QNMs

The above analysis holds strictly at r+ = 1. Thus we have a prediction for the results if r+ = 1 :

• For small λ we expect to find QNMs ω ≡ ωR − iωI with a constant ωR = ±ξ (the same for all of them)

and with ωI , with an interval 2 between successive values.

• For large λ we expect ωR = ±ξ +
√

24λ2−9
2 .

One may depict the above changes in the Fig. 1, where the quantities ωR and ωI are shown versus λ. It is

evident that a qualitative change happens at λ = λc, since the slope presents a discontinuity. It is reasonable

to expect a phase transition to happen at this value of λ. The real part, ωR, vanishes for small λ, that is

λ < λc, while it takes non-zero values for large λ, even though ξ is set to zero. In addition, it does not depend

on the integer n. On the other hand, the imaginary part, ωI , depends on the integer n.

In the numerical calculations of the QNMs one works actually for values for r+ either slightly smaller or

slightly larger than 1. In [81] it was found that the real part for r+ 6= 1 is no more the same for all QNMs,
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FIG. 1: ωR (left) and ωI (right) versus λ for ξ = 0 and n = 0, 1 and 2. The value n = 0 corresponds to the uppermost

curve.

as predicted above, there is a slope, which is positive (negative) for r+ < 1 (r+ > 1). Thus the QNMs are

infinite in number for r+ > 1, while for r+ < 1 the QNMs approach the vertical axis and eventually cease to

exist. In addition, if ξ is small enough, no propagating modes exist.

From Fig. 1 we can see that for λ < λc, the real part of the QNMs is zero while the imaginary part is

negative. These results indicate that for values of λ below its critical value the TBH is stable under scalar

perturbations, while above that critical value of λ we have instability indicating that we have a phase transition

of the TBH to a MTZ-like black hole.

If we want to go to different (but close enough) values of r+, we may calculate corrections analytically, using

perturbation theory. However this is technically difficult, so we postpone it for a future work. We expect that

instabilities may show up in a perturbative calculation for r+ 6= 1, when λ takes on sufficiently large values.

B. Large black holes

Next we examine the limit r+ → +∞. In our case we have ĝ(u) = 1
u −

1
r2+
− M

r3+

√
u and the condition

ĝ(1) = 0 yields M = r3
+ − r+ ' r3

+, since r+ is large. Taking this into account we find that u3/2ĝ =
√
u− u2.

In addition

V̂ = ĝ
[
2 + u3/2 − 6λ2 − 3λ2u3

]
.

The Klein-Gordon equation reads

−4u3/2ĝ
(
(
√
u− u2)Ψ′

)′
+ ĝ

[
2 + u3/2 − 6λ2 − 3λ2u3

]
Ψ =

ω2

r2
+

Ψ . (III.28)

It is natural to assume that ω2

r2+
→ 0, as r+ → +∞, so Klein-Gordon equation simplifies to

−4u3/2
(
(
√
u− u2)Ψ′

)′
+
[
2 + u3/2 − 6λ2 − 6λ2u3

]
Ψ = 0 . (III.29)

We neglect the u3 term and we set a ≡ 2− 6λ2, so equation the

−4u3/2
(
(
√
u− u2)Ψ′

)′
+
[
a+ u3/2

]
Ψ = 0 (III.30)

is solved by

Ψ = C1u
1−
√

1+4a
4 2F1

(
1

2
−
√

1 + 4a

6
,

1

2
−
√

1 + 4a

6
, 1−

√
1 + 4a

3
, u3/2

)
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+C2u
1+
√

1+4a
4 2F1

(
1

2
+

√
1 + 4a

6
,

1

2
+

√
1 + 4a

6
, 1 +

√
1 + 4a

3
, u3/2

)
.

For λ = 0 the solution reduces to

Ψ = C1
ln(1− u3/2)√

u
+ C2

1√
u
, (III.31)

which diverges at both u = 0 and u = 1. In the case that λ 6= 0 the limits are the following

lim
u→0

Ψ = C1u
1−
√

1+4a
4 + C2u

1+
√

1+4a
4 , (III.32)

which may be finite for a wise choice of the integration constants. However

lim
u→1

Ψ = C1u
1−
√

1+4a
4 2F1

(
1

2
−
√

1 + 4a

6
,

1

2
−
√

1 + 4a

6
, 1−

√
1 + 4a

3
, 1

)

+C2u
1+
√

1+4a
4 2F1

(
1

2
+

√
1 + 4a

6
,

1

2
+

√
1 + 4a

6
, 1 +

√
1 + 4a

3
, 1

)
. (III.33)

We recall that

2F1(A,B,C, 1) =
Γ(C)Γ(C −A−B)

Γ(C −A)Γ(C −B)
.

Setting A, B, C equal to the relevant values we find

2F1

(
1

2
−
√

1 + 4a

6
,

1

2
−
√

1 + 4a

6
, 1−

√
1 + 4a

3
, 1

)

=
Γ(1 +

√
1+4a
3 )Γ(0)

Γ( 1
2 +

√
1+4a
6 )Γ( 1

2 +
√

1+4a
6 )

.

These relations, with the infinite expression Γ(0) in their right hand sides, seem to indicate that, also in this

case, only unphysical QNMs with limr+→+∞
ω2

r2+
6= 0 may exist.

We have not been able to analytically investigate the regime of tiny black holes, that is the ones with

r+ << 1. However we have used the method described in the Section of scalar perturbations and it seems

that there are no QNMs for tiny black holes. Thus it is plausible that only horizons around one may be

expected to yield QNMs.

C. Scalar modes

To calculate the scalar modes we start with the equation (III.14) when the horizon equals one

−4u1/2(u1/2(1− u)Ψ′)′ +

(
2− 6λ2

u
+ ξ2 +

1

4

)
Ψ =

ω̂2
n

1− u
Ψ . (III.34)

We employ the transformation (III.16)

Ψ(u) = u
1+
√

9−24λ2

4 (1− u)−
iωn
2 X(u) , (III.35)

and use the result (III.25)

ωn = ±ξ − i

(
2n+

2 +
√

9− 24λ2

2

)
. (III.36)
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The resulting equation reads

2(−1 + u)uX ′′ + [2 +
√

9− 24λ2 + u(−2 + 4n+ 2iξ)]X ′ + 2n(n+ iξ)X = 0 . (III.37)

Let us check the behaviour of the quantity

ρ̂ = Ψ∗(u)Ψ(u) , (III.38)

which contains the u-dependence of the charge density

ρ =
e

2m

[(
Ψe−iωt

)∗
∂t
(
Ψe−iωt

)
−
(
Ψe−iωt

)
∂t
(
Ψe−iωt

)∗]
t=0

. (III.39)

For n = 0 the equation simplifies to

2(−1 + u)uX ′′ + [2 +
√

9− 24λ2 + u(−2 + 2iξ)]X ′ = 0 . (III.40)

The solution reads

X = c1 + c2u
− 1

2

√
9−24λ2

2F1

(
−1

2

√
9− 24λ2, −1

2

√
9− 24λ2 − iξ, −1

2

√
9− 24λ2, u

)
. (III.41)

However the factor u−
1
2

√
9−24λ2

does not behave properly in the limit u → 0, if λ < λc, so, in this case, the

result is a constant function, that is, c2 must be set to zero. Thus the solution for λ < λc takes the form

Ψ<(u) = c1u
1+
√

9−24λ2

4 (1− u)−
iω
2 , ω = ±ξ − i2 +

√
9− 24λ2

2
. (III.42)

Its solution for λ > λc is the linear combination

Ψ>(u) = u
1
4u

i
√

24λ2−9
4 (1− u)−

iωn
2 (III.43)

×
[
c1 + c2u

− i
2

√
24λ2−9

2F1

(
− i

2

√
24λ2 − 9, − i

2

√
24λ2 − 9− iξ, − i

2

√
24λ2 − 9, u

)]
, (III.44)

ωn = ±

(
ξ +

√
24λ2 − 9

2

)
− i (2n+ 1) . (III.45)

We set λ = 0.5, which lies in the region of small λ values. We may check by inspection that there is no

dependence on ξ in this region of λ (and in this approximation). Fig. 2 displays the result.

In Fig. 3 one may observe the results for λ = 2.0, that is λ > λc, at ξ = 0 and ξ = 10. The most

striking characteristic is the qualitative difference between Fig. 2 and Fig. 3 (a), which may lend support to

the conjecture that, moving to large values of λ, may result in a phase transition. When one uses ξ = 10,

quantitative differences are evident, in contrast to the previous case, but these differences do not qualify for

a qualitative change.

IV. SCALAR PERTURBATIONS

In this Section we will consider scalar perturbation in ESTGB gravity theories in the case where the

background metric is the TBH. In the case of a trivial scalar field the equation which describes massive scalar

perturbations in this spacetime background reads(
2(0) −

m2

2
+

1

4
λ2R2

GB(0)

)
δφ = 0 , (IV.1)
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FIG. 2: X∗(u)X(u) for the scalar field versus u for λ = 0.5 and ξ = 0.
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FIG. 3: X∗(u)X(u) for the scalar field versus u for λ = 2.0 and either ξ = 0 (left plot) or ξ = 10 (right plot).

where 2(0) and R2
GB(0) are the D’Alembert operator and the Gauss-Bonnet invariant for the topological

geometry. So

R2
GB(0) =

4
(
(g(r) + 1)g′′(r) + g′(r)2

)
r2

=
24

L4
+

12M2

r6
. (IV.2)

This small perturbation has the same symmetries of the TBH, namely static and spherical symmetry. So the

variables can be decomposed by the standard way

δφ = u(r)e−iωtYξm(θ, ϕ) . (IV.3)

Note that the spherical harmonics Yξm(θ, ϕ) obey the equation

1

sinh θ
∂θ (sinh θ∂θYξm(θ, ϕ)) +

1

sinh2 θ
∂2
φYξm(θ, ϕ) = −

(
ξ2 +

1

4

)
Yξm(θ, ϕ) . (IV.4)

After substituting in Eq. (IV.1) and introducing the tortoise coordinate dr∗ =
1

g(r)
dr, we obtain the following

Schrödinger-like equation

u′′(r∗) +
(
ω2 − U(r)

)
u(r∗) = 0 , (IV.5)

where the effective potential U(r) reads

U(r) = g(r)

(
1

2
m2 +

1

r
g′(r)− λ2

4
R2
GB(0) +

ξ2 + 1
4

r2

)
, (IV.6)
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and using (IV.2) we have

U(r) =

(
−1− M

r
+
r2

L2

)(
1

2
m2 +

1

r

(
M

r2
+

2r

L2

)
−λ

2

4

(
24

L4
+

12M2

r6

)
+
ξ2 + 1

4

r2

)
. (IV.7)

In the case of a non-trivial scalar field (II.12) the wave equation reads

− 1√
−g

∂µ[
√
−ggµν∂νΨ] +

dU

dΨ
= 0 . (IV.8)

In the TBH background we have

1√
−g

∂µ[
√
−ggµν∂νΨ] = − 1

g(r)
∂ttΨ +

1

r2
∂r[r

2g(r)∂rΨ] +
1

r2

1

sinh θ
∂θ[sinh θ∂θΨ] +

1

r2 sinh2 θ
∂2
φΨ .

On the other hand for the spherical harmonics Y(k)
q we have

1

sinh θ
∂θ[sinh θ∂θY(k)

q ] +
1

sinh2 θ
∂2
φY(k)

q = −
(
ξ2 +

1

4

)
Y(k)
q , (IV.9)

while the potential reads

U =
1

2
m2Ψ2 − λ2

2
f(Ψ)R2

GB , (IV.10)

where

R2
GB = R2 − 4RµνR

µν +RµναβR
µναβ → 4

r2
[g′2(r) + (g(r) + 1)g′′(r)] , (IV.11)

so that, replacing Ψ(t, r, θ, φ) = Φ(t, r)Y(k)
q (θ, φ) one ends up with an equation for a field depending just on

t and r,

1

g(r)
∂ttΦ(t, r)− 1

r2
∂r[r

2g(r)∂rΦ(t, r)] +
ξ2 + 1

4

r2
Φ +m2Φ(t, r)− λ2R2

GB

dF

dΦ
= 0 . (IV.12)

If we fix the scalar function to F = 1
2Φ2, the scalar field equation becomes

1

g(r)
∂ttΦ(t, r)− 1

r2
∂r[r

2g(r)∂rΦ(t, r)] +
ξ2 + 1

4

r2
Φ +m2Φ(t, r)− λ2R2

GBΦ = 0 . (IV.13)

In this scalar field equation there is a direct coupling of the scalar field to the GB term and also an extra

parameter ξ appears because of the hyperbolic geometry.

Changing the variables to

Φ(t, r) =
χ(t, r)

r
⇒ r2∂rΦ = rχ′ − χ⇒ ∂r(r

2∂rΦ) = rχ′′ , (IV.14)

the scalar equation becomes

∂ttχ− g(r)
d

dr

(
g(r)

d

dr
χ

)
+
g(r)

r

df(r)

dr
χ+ g(r)

ξ2 + 1
4

r2
χ+m2g(r)χ− λ2g(r)R2

GBχ = 0 . (IV.15)

Introducing tortoise coordinates

dr∗ =
dr

g(r)
⇔ g(r)

d

dr
=

d

dr∗
, (IV.16)
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the equation takes the form

∂ttχ−
d2

dr2
∗
χ+ g(r)

[
1

r

dg(r)

dr
+
ξ2 + 1

4

r2
+m2 − λ2R2

GB

]
χ = 0 . (IV.17)

The time dependence of χ is e−iωt and the above equation takes the Schrödinger-like form

− d2

dr2
∗
χ+ g(r)V (r)χ = ω2χ , (IV.18)

where the potential is given by

V (r) ≡ 1

r

dg(r)

dr
+
ξ2 + 1

4

r2
+m2 − λ2R2

GB . (IV.19)

For the TBH the potential becomes

V (r) =
2

L2
+

2M

r3
+
ξ2 + 1

4

r2
+m2 − λ2R2

GB . (IV.20)

Setting

χ = ψωe
−iωr∗ ,

the scalar field equation becomes

g(r)
d2ψω
dr2

+

(
dg(r)

dr
− 2iω

)
dψω
dr

= V (r)ψω , (IV.21)

where V (r) is given by (IV.20). To investigate the properties of the scalar field it is useful to change variables

from r to x = 1
r . Then equation (IV.21) is transformed into

h(x)

[
x4 d

2ψω
dx2

+ 2x3 dψω
dx

]
+

(
−x2 dh(x)

dx
− 2iω

)[
−x2 dψω

dx

]
= V (x)ψω, h(x) =

1

L2x2
− 2Mx− 1 , (IV.22)

where

V (x) =
2

L2
+ 2Mx3 +

(
ξ2 +

1

4

)
x2 +m2 − 24λ2

[
1

L4
+ 2M2x6

]
. (IV.23)

The horizon variable x+ is determined through

h(x+) = 0⇒ 1

L2x2
+

− 2Mx+ − 1 = 0⇒ 2M =
1

L2x3
+

− 1

x+
. (IV.24)

This means that

h(x) =
1

L2x2
−
(

1

L2x3
+

− 1

x+

)
x− 1⇒ dh(x)

dx
= − 2

L2x3
+

1

x+
, (IV.25)

so that the metric function and the potential take the form

h(x) = (x− x+)
L2x2x2

+ − x2 − x2
+ − xx+

L2x3
+x

2
,

and

V (x) =
2

L2
+ 2Mx3 +

(
ξ2 +

1

4

)
x2 +m2 − 24λ2

[
1

L4
+

(1− x2
+)2

2x6
+

x6

]
. (IV.26)
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The introduction of the horizon radius in the scalar field equation will be helpful to study the behaviour of

the scalar field near and far away from the horizon of the black hole.

We expand ψω about x+

ψω(x) =
∑
k

an(ω)(x− x+)n , (IV.27)

and using the scalar field equation we find a recurrence formula of the form

an(ω) = − 1

Pn,0

n−1∑
m=n−7

Pm,n−mam(ω), Pm,n−m = m(m− 1)sn−m +mtn−m + un−m , (IV.28)

where

s(x) =
x4h(x)

x− x+
, u(x) = −(x− x+)V (x) .

For the consistency of our calculations we demand that the wave function vanishes at infinity (r →∞, x = 0),

which yields the equation

ψω(0) =
∑
k

an(ω)(−x+)n = 0 . (IV.29)

One has to solve the scalar field equation for ω, which are the quasi-normal frequencies. We solve the scalar

equation numerically and we plot the points of the complex ω plane, where ψω(0) vanishes. The method we

use is to make a contour plot for each of the real and the imaginary part of ψω(0), that is, find the points

where each of the above vanishes. The points that we are looking for are exactly the points of intersection

of the various curves. We have used between 500 and 1000 terms in the above sums, the criterion being the

stabilization of the results.

A. QNMs for λ = 0.5 and ξ = 0

As we saw in the analytic calculation, the system becomes unstable for large values of λ, larger that about

0.61. At first we will consider values safely below this value.

We will consider λ to take the value 0.5, where we do not expect instabilities. As can be seen in Fig. 4, left

panel, the intersections of the curves for r+ = 1.10 lie in the negative ωI half-plane, the line connecting them

has a negative slope and the consecutive imaginary parts differ by 2i. As one considers larger black holes,

that is, larger r+, the QNMs move towards less negative values: a relevant result is shown in Fig. 4, right

panel, where r+ = 0.95 and r+ = 1.60.; in addition the differences between consecutive QNMs increase in

magnitude, that is, the QNMs appear more sparse. At some value of r+ the intersections disappear completely,

in agreement with our previous result that no QNMs exist for large black holes.
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FIG. 4: λ = 0.5, ξ = 0, r+ = 1.10, r+ = 1.60.
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In Fig. 5, λ is set to the relatively large value λ = 1.5, ξ is set to 0 and r+ takes on the values 1.10 and

2.00. For r+ = 1.10 (left panel), apart from the QNMs with ωI < 0, there exist several QNMs with

ωI > 0, signalling instability. It is conceivable that this instability means that the metric used is no longer

operational and scalarization should be considered. We note that the QNMs with ωI > 0 have a positive

slope. The number of QNMs with ωI > 0 decreases as r+ increases, until at r+ = 2.00 (right panel) they

disappear completely. If we keep increasing r+, even the QNMs with ωI < 0 disappear, in agreement with

the analytical prediction that no QNMs exist for large black holes.
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FIG. 5: λ = 1.5, ξ = 0.0, and r+ = 1.10, 2.00.

B. QNMs for ξ = 0, r+ = 1.10 and large λ.

Fig. 6 refers to the dependence of the QNM’s on λ, when ξ = 0 and r+ = 1.10. For λ = 1.50 (left panel)

QNM’s exist with negative ωI . In addition QNM’s with positive values of ωI appear, whose existence gets

more pronounced as λ increases. For λ = 3.0, the QNM’s with negative ωI disappear. This picture persists

for even larger values of λ. This is consistent with the remark made earlier that the expression
√

9− 24λ2,

appearing in the analytical treatment, suggests that, for large values of λ, instabilities are expected to set in.
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FIG. 6: ξ = 0.0, r+ = 1.10 and λ = 1.5 (left), λ = 3.0 (right)
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C. QNMs for r+ = 1.10 and various values of ξ.

Fig. 7 contains the QNMs when λ = 0.5 is small, r+ = 1.10 and ξ is set either to 0.0 or to 5.0. The influence

of the value of ξ is apparent: the real parts of the QNMs move towards bigger positive values.
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FIG. 7: λ = 0.50, r+ = 1.10 and ξ = 0.0 (left), ξ = 5.0 (right).

On the other hand the influence of ξ is somewhat different when λ = 1.5, that is when it takes a moderately

large value. The situation for ξ = 0 is depicted in Fig. 5, left panel. In Fig. 8, left panel, one may see the

modifications brought about by the increasing values for ξ : when ξ = 5.0, a modest value, the QNM’s with

negative ωI are not modified very much; on the contrary the QNMs with positive ωI are influenced. The

nature of this change becomes clear for the value ξ = 30.0, shown in Fig. 8, right panel: the QNMs with

positive ωI disappear completely, while the QNMs with negative ωI move to less negative values. Once more,

the real part of the QNMs moves to values of the order of ξ. Thus the unstable system depicted in Fig. 5, left

panel is transformed through the situation in Fig. 8, left panel, to the stable system shown in Fig. 8, right

panel. Thus increasing the ξ value counterbalances the instability. In general it seems that the parameters λ

and ξ act competitively. Looking at this behaviour another way, we find out that there is a critical value of ξ

for each value of λ, such that below it the system is unstable.
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FIG. 8: λ = 1.50, r+ = 1.10 and ξ = 5.0 (left), ξ = 30.0 (right)
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V. CONCLUSIONS

In this work we studied the stability of a topological black hole in the presence of the coupling of a scalar

field to the GB term in the ESTGB gravity theories and we investigated the possibility of its scalarization

to an MTZ-like black hole. We considered a gravity theory in the presence of a cosmological constant and a

massive scalar field minimally coupled to gravity and also coupled to the GB term. The coupling of the scalar

field to the GB term is denoted by the parameter λ. We perturbed the scalar field coupled to the GB term in

the background of the topological black hole living in a hyperbolic space-time expressed by the parameter ξ.

We calculated both analytically and numerically the QNMs of scalar perturbations of topological-AdS

black holes with the purpose to study the behaviour of matter in this physical set up. For fixed cosmological

constant we have two competing effects. The first one is as λ is increasing we expect the matter to interact

more strongly with gravity while as ξ is getting larger the effects of the variations of the wave functions are

dominant. Our goal was to see what are the effects of the increase of the strength of the parameters λ and

ξ and their possible interplay on the stability of the topological black hole and if there are indications of a

phase transition to a new scalarized black hole.

We first calculated analytically the QNMs of scalar perturbations. For small topological black holes (we

had fixed the horizon radius to r+ = 1) we found a critical value of λ below which the topological black

hole is stable under scalar perturbations. When the coupling constant λ is getting larger than its critical

value, all of the QNMs develop a positive imaginary part signalling an instability of the background black

hole. Calculating the scalar modes of the perturbations we found that for large ξ the variations of the wave

functions influences most effectively the behaviour of the QNMs.

Calculating the QNMs of scalar perturbations numerically we get similar results for the instability of the

background topological black hole. However, we get a better insight of the role of the hyperbolic geometry.

For a fixed value of λ above its critical value, the increase of the ξ value counterbalances the instability which

leads to a very interesting behaviour, the parameters λ and ξ act competitively. Looking at a different way, we

found that there is a critical value of ξ for each value of λ, such that below this value the system is unstable.

To summarize our results we found that there are critical values of the parameter λ, which is the strength of

the coupling of matter to the GB term, and the parameter ξ which specifies the geometry of the background

metric, which controls the instability of the topological black hole. Therefore we expect that the interplay of

these parameters will lead to the scalarization of the topological black hole. To find the form of the scalarized

topological black hole we have to allow the back-reaction of the scalar field to the background topological

black hole. We leave this for future work.
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