
 Journal of Information Processing Systems, Vol.5, No.3, September 2009 145

Topological Boundary Detection in Wireless Sensor Networks

Thanh Le Dinh*

Abstract: The awareness of boundaries in wireless sensor networks has many benefits. The
identification of boundaries is especially challenging since typical wireless sensor networks consist of
low-capability nodes that are unaware of their geographic location.
In this paper, we propose a simple, efficient algorithm to detect nodes that are near the boundary of the
sensor field as well as near the boundaries of holes. Our algorithm relies purely on the connectivity
information of the underlying communication graph and does not require any information on the
location of nodes. We introduce the 2-neighbor graph concept, and then make use of it to identify
nodes near boundaries. The results of our experiment show that our algorithm carries out the task of
topological boundary detection correctly and efficiently.

Keywords: Wireless sensor network, Hole, Boundary detection, 2-neighbor graph

1. Introduction

The task of boundary detection in wireless sensor networks

is stated as follows: Given a wireless sensor network deployed
in an area called the sensor field, each node must ascertain
whether it is located near the boundary of the sensor field
as well as the boundaries of holes.

In this paper, we focus on boundary detection in wireless
sensor networks without information on the location of
nodes. The proposed solutions will rely purely on topological
features, i.e. the connectivity information of the underlying
communication graph. We emphasize the topological (topology-
based) methods for the following reasons. First, it would be
costly to equip each node with a positioning device such as
a GPS unit to obtain location information at the nodes.
With thousands of nodes deployed, we would have to spend
a lot of money on positioning devices. In order to reduce
the cost, we may equip only a few nodes, called anchors,
with positioning devices and apply a localization algorithm
to infer the locations of non-anchor nodes [11]. Unfortunately,
to date no localization algorithm that can give derived
locations that reflect the true locations of nodes has been
developed. Second, positioning devices consume a lot of
the energy of the nodes, which cannot be recharged,
thereby reducing the lifetime of the nodes. In addition, we
cannot always obtain exact location information since
positioning devices cannot work entirely free from error.
Thus, the requirement of location information available at
the nodes will lead to expensive and short-lived sensors
networks.

Boundary detection has many applications. Hole formation
is often caused by extreme events such as fire, earthquake,
inundation, and so forth. As such, the identification of
holes is very useful in wireless sensor network applications
that monitor such events. For some sensor network
applications such as data-centric storage, which does not
require the true locations of sensor nodes, invented (virtual)
locations can be used instead. Several methods for computing
virtual locations have been proposed [11]. But, as already
examined in [7], the resultant virtual coordinates are distorted
in comparison to the true geometry of the communication
graph. The authors of [7] showed that boundary awareness
can be used to build less distorted virtual coordinates. In
addition, boundary information is helpful to both topology-
based [2,7-9] and location-based routing [4]. From our
viewpoint, we may use boundary information to build a
routing protocol that can avoid holes and produce optimal
paths. This will be a part of our future research.

Up to now, and recently, only a few topological boundary
detection algorithms have been proposed [5-7]. These algorithms
are not competitors with our approach, with the exception
of the one introduced in [7], since they seem feasible only
for uniform and very high density node distributions. The
algorithm in [7] uses beacon and isolevel concepts to
identify nodes near boundaries. The issues posed in [7]
concern beacon selections. As far as we know, beacon
selection is as complex as leader election [13]. With four
global beacons and many local beacons, the time required
to select beacons incurs a considerable cost. In addition, it
floods the network several times. This contributes to the
convergence time remarkably.

Our contributions: In this paper, we propose a simple,
efficient algorithm for boundary detection. Our algorithm
relies purely on the connectivity information of the underlying
communication graph and does not require any information

DOI : 10.3745/JIPS.2009.5.3.145

Copyright ⓒ 2009 KIPS (ISSN 1976-913X)

Manuscript received March 9, 2009; revised May 18, 2009; accepted
June 18, 2009.
Corresponding Author: Thanh Le Dinh
* College of Technology, Vietnam National University, Hanoi, Vietnam

(thanhld.hdu@gmail.com)

146 Topological Boundary Detection in Wireless Sensor Networks

on the location of nodes. We introduce the 2-neighbor graph
concept, and then make use of it to identify nodes near
boundaries. Computations are processed locally. Nodes need
to communicate only with their 1-neighbor and 2-neighbor
nodes. Each node can identify whether it is located near
boundaries as soon as it knows all its 2-neighbor nodes.

The rest of this paper is organized as follows. Section 2
presents our boundary-locating algorithm. Section 3 shows
how well our algorithm can deal with network dynamics.
Section 4 examines the performance of our algorithm by
simulation. Section 5 provides a brief comparison of our
algorithm with previous algorithms. Finally, some final
remarks on the proposed algorithm and our future works
are presented in Section 6.

2. Topological Boundary Finding

2.1 Intuition and Heuristic

Consider a region R ⊆ R2 with some holes in it. For each
point p ∈ R, consider the circle c(p, r), called p’s circle,
that centers at p and has radius r, where r is a real constant.
If p is near boundaries, i.e. there are points in boundaries
where the Euclidean distances from them to p are less than
r, then c is cut into solid and dash arcs, which are interlaid.
Solid and dash arcs are our concepts: solid arcs are arcs
that contain points not in holes; dash arcs are arcs that
contain points in holes or points outside the sensor field.
This is shown in Fig. 1.

Mimicking the continuous case, in wireless sensor
networks, for each node p, consider the graph formed by
nodes that are one-hop away from p and the connectivity
between these nodes. We call this graph p’s 2-neighbor
graph (2NG). Intuitively, if p is not located near boundaries,
then p’s 2NG forms a “ring” (i.e. it has a ring-like shape);
otherwise p’s 2NG consists of one or more segments of a
“broken ring”. This is illustrated in Fig. 2.

Fig. 1. A region with two holes and three examined points.

The circles centering on points near to holes are cut
into solid and dash arcs

(a)

(b)

(c)

Fig. 2. A node with its 2NG. The edges represent connectivity
between nodes. The red nodes are nodes in the 2NG
of the green node. (a) Nodes not near boundaries; (b)
Nodes near only one boundary; (c) Nodes near two
boundaries

Based on this intuition, we have the following heuristic

that mimics the continuous case: p is near boundaries if its
2-neighbor graph does not form a ring.

2.2 Algorithm

The heuristic given above leads to a simple algorithm to
detect nodes near boundaries, as shown in Fig. 3.

.

.

.

Thanh Le Dinh 147

Each node p:
- Discovers all its neighbors in order to build a list of

neighbors.
- Sends the list of neighbors to all nodes that are one-

hop away from p.
- If all the lists of neighbors of the nodes that are one-

hop away from p have been received, it:
o Constructs p’s 2-neighbor graph G2 based on the

lists of neighbors received
o Examines if G2 forms a “ring” by calling IsRing

(G2). If G2 is a ring, i.e. IsRing(G2) returns true,
then it sets p.nearBoundaries = FALSE (p is not
near any boundary), or it sets p.nearBoundaries
= TRUE (p is near boundaries).

IsRing(G2)

- Determines whether G2 is connected or not by simply
applying the coloring algorithm: selects an arbitrary
node k in G2, colors k and all nodes in G2 that are
connected to k. If there are still uncolored nodes in G2
then G2 is not connected, otherwise G2 is connected.
- If G2 is not connected, i.e. consisting of several
connected components, then returns false.
- Or, G2 is a connected component,

o Selects an arbitrary node t in G2 then divides G2
into sub-graphs g0, g1, g2,… where gi is formed
by nodes at the distance i from t in G2 (suppose
each edge has the weight of 1) and the
connectivity between them. g0 is a connected
graph while gi, i > 0 may consist of one or two
connected components.

o Examines if g2 consists of two connected components
by applying the coloring algorithm to g2, if so

 Let G’2 be the graph resulting from G2 by the
removal of nodes in g0 and g1 and the related
links
 Determines if G’2 is not connected by applying
the coloring algorithm to G’2, if so then returns
false.
 Or, G2 is a “ring”, returns true.

o Or, g2 is a connected component or contains no
nodes, returns false.

Fig. 3. Our Boundary-Finding Algorithm

In our algorithm, G2 is stored locally and IsRing(G2) is
executed locally as well. After two rounds, each node p
knows the topology of the local sub-graph that contains p
and all nodes near (0- or 1-hop away from) p. G2 is extracted
from this sub-graph. The function IsRing (G2) is then called
to examine whether G2 is a “ring”. If G2 is a ring, then p is
not near any boundary, so p sets its nearBoundaries
variable as FALSE; or p is close to boundaries, so p sets its
nearBoundaries variable as TRUE. Because G2 is constructed
and IsRing(G2) is executed locally, every node in the network

will complete the task after two (asynchronous) rounds.
To examine whether the 2-neighbor graph G2 forms a

ring, we first examine if it is a connected graph by simply
applying the coloring algorithm: select an arbitrary node k
in G2, color k and all nodes in G2 that are connected to k.
If there are still uncolored nodes in G2, then G2 is not
connected; otherwise, G2 is connected. Obviously, if G2 is
not a connected graph then it cannot be a ring. In the case
where G2 is a connected graph, G2 may be a ring or just a
segment of a broken ring. To determine whether G2 is or is
not a ring, we “cut” a segment of G2 that contains node t,
t’s neighbors and t’s neighbors’ neighbors, and then examine
the remaining segment(s). If we cannot cut a large enough
segment (g2 is a connected graph or contains no nodes),
then G2 is actually not a ring. Otherwise, if we have two
remaining segments or have one exact remaining segment
that does not “fit” with the removed segment (G’2 is not
connected), then G2 is actually not a ring. G2 is a ring only
when we have one remaining segment that fits with the
removed segment. The intuition of cutting one segment of
G2 and examining the remaining segment(s) is shown in
Fig. 4.

 (a) (b) (c) (d)

Fig. 4. A ring or a segment of a broken ring after cutting one
segment. The removed segment is violet. The remaining
segments are green. (a) The remaining segment fits
with the removed segment. (b) The two remaining
segments. (c), (d) A sufficiently large segment cannot
be cut

3. Dealing with Network Dynamics

Network dynamics is caused by node failure and death,
or, sometimes, by new node deployment or node mobility.
To deal with network dynamics, we can modify our
algorithm so that each node p resends its list of neighbors if
there are sufficient changes in the list, and reconstructs and
reexamines its 2NG whenever it receives new lists of
neighbors. In this way, our algorithm can respond quickly
to topological changes.

4. Experimental Evaluation

In order to evaluate the performance of our algorithm,

148 Topological Boundary Detection in Wireless Sensor Networks

we built a simple simulator which generates random node
distributions and provides a set of tools for us to view the
network, to create holes, and to observe nodes near boundaries.
Our algorithm has been evaluated on various network
instances.

To evaluate the effect of node density on our boundary
detection algorithm, we performed experiments in which
the node density and communication range were varied.
Our observation was that for node distributions where the
average degree in the communication graph was around 7
or above, our algorithm seems to perform reasonably well.
For comparison, the algorithm in [7] produces reasonable
results only for graph densities with an average degree of
around 18 or more.

Also, in order to evaluate the robustness of our algorithm,
we performed experiments involving both convex and
concave holes which are close to each other. Our observation
was that our algorithm performs well in the presence of
arbitrary holes.

Some experimental results of our algorithm are given in
Fig. 5.

5. Comparison with Previous Algorithms

As mentioned in Section 1, to the best of our knowledge,

up to now only the algorithms in [5-7] belong to the topological
class. Those in [5,6] are applicable only to uniform and
dense wireless sensor networks, while that in [7] is not
efficient since it has to solve two complex sub-problems,
namely that of beacon selection or leader election, and the
flooding problem [13]. Another disadvantage of algorithm
[7] is that it does not deal well with network dynamics.
Also, the experimental results show that the algorithm in
[7] does not perform well in network densities with an
average degree of less than 18, while our algorithm does.
Thus, we believe that our algorithm is the first efficient
algorithm for topological boundary detection.

6. Final Remarks

Nodes near boundaries can be classified into two sub-
classes named SB and MB. The former consists of nodes

(a) Network composed of 559 nodes with two holes, average degree 7.

(b) Network composed of 836 nodes with one hole, average degree 10.

(c) Network composed of 1203 nodes with three holes, average degree 13.

(d) Network composed of 1697 nodes with one hole, average degree 17.

Fig. 5. Some experimental results of our boundary-finding algorithm.

Thanh Le Dinh 149

near only one boundary, whereas the later consists of nodes
near at least two boundaries.

Recall that, in our algorithm, each node examines its
2NG to determine whether it is near any boundaries: If its
2NG consists of segment(s) of a “broken ring”, then it is
near boundaries. Our further observation can be approximately
stated as: a node belongs to SB if its 2NG consists of only a
single segment of a “broken ring” (see Fig. 2-b), and
belongs to MB if its 2NG consists of at least two segments
of a “broken ring” (see Fig. 2-c). With this observation, we
can make a bit of a change to our algorithm presented in
Fig. 3 to determine whether the boundary nodes belong to
SB or MB without any further cost. Also, we can further
classify SB into two sub-classes named SB1 and SB2, where
SB2 consists of nodes in SB that neighbor at least one node
in MB. This is done simply by forcing each node in MB to
broadcast a greeting message to all its neighbors. Fig. 6
illustrates our concepts of MB, SB1 and SB2: The blue nodes
belong to MB, the red nodes to SB1 and the green nodes to
SB2.

Fig. 6. Subsets of boundary nodes: MB consists of blue nodes,
SB1 consists of red nodes, and SB2 consists of green
nodes.

The usefulness of this classification is discussed as follows.
Boundary nodes, together with their connectivity, form a
graph that is like a road map: Each connected component
of nodes in SB1 serves as a road (in most cases) and each
connected component of nodes in the union of MB and SB2
serves as a crossroads or a bridge that links roads together.

Recently, researchers have paid more attention to exploring
the geometry information, which is useful in routing and
localization [1-3,8,9,12], hidden in the network [4,7,11].
We hope that, with the aid of exploiting this unique map,
we can expose more accurately the geometry information
hidden in the network.

As previously stated, a hole is formed when nodes in a
large area are broken down. The formation of holes is often

caused by extreme events such as fire, earthquake, inundation,
and so forth. So, in habitat monitoring applications, we
need to know if actual holes are formed in order to know
whether such an event has happened. In surveillance
applications, we may want to know whether an enemy, for
example, has left the restricted area or is still in that area
but “is hidden” in a hole of the sensor field. We believe that,
as far as the development and application of sensor networks
go, distinguishing the boundary of the sensor field with those
of holes is more beneficial. So, one of our future works will
be to distinguish nodes near the (outer) boundary of the
sensor field from those near the (inner) boundaries of holes.
We hope that this map will also be able to provide us with
clues to solve this problem efficiently.

In conclusion, we have proposed a simple, efficient,
location-independent algorithm for boundary detection.
Routing and localization that make use of the knowledge of
boundaries is our future trend of research.

References

[1] P. Bose, P. Morin, I. Stojmenovic, and J. Urrutia,

“Routing with Guaranteed Delivery in Ad-hoc Wireless
Networks”, Wireless Networks, 2001, 7 (6): 609-616.

[2] J. Bruck, J. Gao, and A. Jiang, “Map: Medial-Axis-
Based Geometric Routing in Sensor Networks”, Proc.
MobiCom, 2005.

[3] D. De Couto and R. Morris, “Location Proxies and
Intermediate Node Forwarding for Practical Geographic
Forwarding”, MIT-LCS-TR824, 2001.

[4] Q. Fang, J. Gao, and L. Guibas, “Locating and Bypassing
Routing Holes in Sensor Networks”, In 23rd Conf. of
the IEEE Communications Society (INFOCOM), 2004.

[5] S.P. Fekete, Michael Kaufmann, A.Kröller, Katharina
Lehmann, “A New Approach for Boundary Recognition
in Geometric Sensor Networks”, Proceedings of the
17th Canadian Conference on Computational Geometry,
2005, pp. 82-85.

[6] S. P. Fekete, A. KrÄoller, D. P. Sterer, S. Fischer,
and C. Buschmann, “Neighborhood-Based Topology
Recognition in Sensor Networks”, In ALGOSENSORS,
2004.

[7] Stefan Funke, “Topological Hole Detection in Wireless
Sensor Networks and its Applications”, DIALM, 2005.

[8] Stefan Funke, Nikola Milosavljevi´c, “Guaranteed-
Delivery Geographic Routing under Uncertain Node
Locations”, In INFOCOM, 2007.

[9] L. Guibas Q. Fang, J. Gao, V. de Silva, and L. Zhang,
“Glider: Gradient Landmark-Based Distributed Routing
for Sensor Networks”, In INFOCOM, 2005.

[10] T. Moscibroda and R. Wattenhofer, “Maximal
Independent Sets in Radio Networks”, The 24th
ACM Symp. on the Principles of Distributed Computing

150 Topological Boundary Detection in Wireless Sensor Networks

(PODC), 2005.
[11] A. Rao, S. Ratnasamy, C. Papadimitriou, S. Shenker,

and I. Stoica, “Geographic Routing without Location
Information”, In Proc. MobiCom, 2003.

[12] E. Royer and C. Toh, “A Review of Current Routing
Protocols for Ad-hoc Mobile Wireless Networks”, In
IEEE Personal Communications, 1999.

[13] H. Attiya, J. Welch, “Distributed Computing: Fundamentals,
Simulations and Advanced Topics, Second Edition”,
John Wiley & Sons, 2004.

Thanh Le Dinh
He received his BS and MS degrees in
Computer Science from Hongduc Univ.
in 2004 and the College of Technology,
Vietnam National Univ., Hanoi in 2006,
respectively. During 2006~2007, he
was a lecturer at Hongduc Univ. Since
2008, he has been an active researcher

at the College of Technology, Vietnam National University,
Hanoi. His research interests include Distributed Systems,
Wireless Networks, P2P Networks and Self-stabilization.

