
  Journal of Information Processing Systems, Vol.5, No.3, September 2009  145 

Topological Boundary Detection in Wireless Sensor Networks 
 
 

Thanh Le Dinh* 
 

Abstract: The awareness of boundaries in wireless sensor networks has many benefits. The 
identification of boundaries is especially challenging since typical wireless sensor networks consist of 
low-capability nodes that are unaware of their geographic location. 
In this paper, we propose a simple, efficient algorithm to detect nodes that are near the boundary of the 
sensor field as well as near the boundaries of holes. Our algorithm relies purely on the connectivity 
information of the underlying communication graph and does not require any information on the 
location of nodes. We introduce the 2-neighbor graph concept, and then make use of it to identify 
nodes near boundaries. The results of our experiment show that our algorithm carries out the task of 
topological boundary detection correctly and efficiently. 
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1. Introduction 
 
The task of boundary detection in wireless sensor networks 

is stated as follows: Given a wireless sensor network deployed 
in an area called the sensor field, each node must ascertain 
whether it is located near the boundary of the sensor field 
as well as the boundaries of holes. 

In this paper, we focus on boundary detection in wireless 
sensor networks without information on the location of 
nodes. The proposed solutions will rely purely on topological 
features, i.e. the connectivity information of the underlying 
communication graph. We emphasize the topological (topology- 
based) methods for the following reasons. First, it would be 
costly to equip each node with a positioning device such as 
a GPS unit to obtain location information at the nodes. 
With thousands of nodes deployed, we would have to spend 
a lot of money on positioning devices. In order to reduce 
the cost, we may equip only a few nodes, called anchors, 
with positioning devices and apply a localization algorithm 
to infer the locations of non-anchor nodes [11]. Unfortunately, 
to date no localization algorithm that can give derived 
locations that reflect the true locations of nodes has been 
developed. Second, positioning devices consume a lot of 
the energy of the nodes, which cannot be recharged, 
thereby reducing the lifetime of the nodes. In addition, we 
cannot always obtain exact location information since 
positioning devices cannot work entirely free from error. 
Thus, the requirement of location information available at 
the nodes will lead to expensive and short-lived sensors 
networks.  

Boundary detection has many applications. Hole formation 
is often caused by extreme events such as fire, earthquake, 
inundation, and so forth. As such, the identification of 
holes is very useful in wireless sensor network applications 
that monitor such events. For some sensor network 
applications such as data-centric storage, which does not 
require the true locations of sensor nodes, invented (virtual) 
locations can be used instead. Several methods for computing 
virtual locations have been proposed [11]. But, as already 
examined in [7], the resultant virtual coordinates are distorted 
in comparison to the true geometry of the communication 
graph. The authors of [7] showed that boundary awareness 
can be used to build less distorted virtual coordinates. In 
addition, boundary information is helpful to both topology-
based [2,7-9] and location-based routing [4]. From our 
viewpoint, we may use boundary information to build a 
routing protocol that can avoid holes and produce optimal 
paths. This will be a part of our future research. 

Up to now, and recently, only a few topological boundary 
detection algorithms have been proposed [5-7]. These algorithms 
are not competitors with our approach, with the exception 
of the one introduced in [7], since they seem feasible only 
for uniform and very high density node distributions. The 
algorithm in [7] uses beacon and isolevel concepts to 
identify nodes near boundaries. The issues posed in [7] 
concern beacon selections. As far as we know, beacon 
selection is as complex as leader election [13]. With four 
global beacons and many local beacons, the time required 
to select beacons incurs a considerable cost. In addition, it 
floods the network several times. This contributes to the 
convergence time remarkably. 

Our contributions: In this paper, we propose a simple, 
efficient algorithm for boundary detection. Our algorithm 
relies purely on the connectivity information of the underlying 
communication graph and does not require any information 
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on the location of nodes. We introduce the 2-neighbor graph 
concept, and then make use of it to identify nodes near 
boundaries. Computations are processed locally. Nodes need 
to communicate only with their 1-neighbor and 2-neighbor 
nodes. Each node can identify whether it is located near 
boundaries as soon as it knows all its 2-neighbor nodes. 

The rest of this paper is organized as follows. Section 2 
presents our boundary-locating algorithm. Section 3 shows 
how well our algorithm can deal with network dynamics. 
Section 4 examines the performance of our algorithm by 
simulation. Section 5 provides a brief comparison of our 
algorithm with previous algorithms. Finally, some final 
remarks on the proposed algorithm and our future works 
are presented in Section 6. 

 
 

2. Topological Boundary Finding 
 

2.1 Intuition and Heuristic 
 

Consider a region R ⊆ R2 with some holes in it. For each 
point p ∈ R, consider the circle c(p, r), called p’s circle, 
that centers at p and has radius r, where r is a real constant.  
If p is near boundaries, i.e. there are points in boundaries 
where the Euclidean distances from them to p are less than 
r, then c is cut into solid and dash arcs, which are interlaid. 
Solid and dash arcs are our concepts: solid arcs are arcs 
that contain points not in holes; dash arcs are arcs that 
contain points in holes or points outside the sensor field. 
This is shown in Fig. 1. 

Mimicking the continuous case, in wireless sensor 
networks, for each node p, consider the graph formed by 
nodes that are one-hop away from p and the connectivity 
between these nodes. We call this graph p’s 2-neighbor 
graph (2NG). Intuitively, if p is not located near boundaries, 
then p’s 2NG forms a “ring” (i.e. it has a ring-like shape); 
otherwise p’s 2NG consists of one or more segments of a 
“broken ring”. This is illustrated in Fig. 2. 

 

 
Fig. 1. A region with two holes and three examined points. 

The circles centering on points near to holes are cut 
into solid and dash arcs 

 
(a) 

 

 
(b) 

 

 
(c) 

Fig. 2. A node with its 2NG. The edges represent connectivity 
between nodes. The red nodes are nodes in the 2NG 
of the green node. (a) Nodes not near boundaries; (b) 
Nodes near only one boundary; (c) Nodes near two 
boundaries 

 
Based on this intuition, we have the following heuristic 

that mimics the continuous case: p is near boundaries if its 
2-neighbor graph does not form a ring. 

 

2.2 Algorithm 
 

The heuristic given above leads to a simple algorithm to 
detect nodes near boundaries, as shown in Fig. 3. 

. 

. 

. 
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Each node p: 
- Discovers all its neighbors in order to build a list of

neighbors. 
- Sends the list of neighbors to all nodes that are one-

hop away from p. 
- If all the lists of neighbors of the nodes that are one-

hop away from p have been received, it:  
o Constructs p’s 2-neighbor graph G2 based on the

lists of neighbors received 
o Examines if G2 forms a “ring” by calling IsRing

(G2). If G2 is a ring, i.e. IsRing(G2) returns true,
then it sets p.nearBoundaries = FALSE (p is not 
near any boundary), or it sets p.nearBoundaries
= TRUE (p is near boundaries).  

 
IsRing(G2) 

- Determines whether G2 is connected or not by simply
applying the coloring algorithm: selects an arbitrary
node k in G2, colors k and all nodes in G2 that are 
connected to k. If there are still uncolored nodes in G2
then G2 is not connected, otherwise G2 is connected. 
- If G2 is not connected, i.e. consisting of several
connected components, then returns false. 
- Or, G2 is a connected component,  

o Selects an arbitrary node t in G2 then divides G2
into sub-graphs g0, g1, g2,… where gi is formed 
by nodes at the distance i from t in G2 (suppose 
each edge has the weight of 1)  and the 
connectivity between them. g0 is a connected
graph while gi, i > 0 may consist of one or two 
connected components. 

o Examines if g2 consists of two connected components
by applying the coloring algorithm to g2, if so 

 Let G’2 be the graph resulting from G2 by the 
removal of nodes in g0 and g1 and the related 
links 
 Determines if G’2 is not connected by applying
the coloring algorithm to G’2, if so then returns
false. 
 Or, G2 is a “ring”, returns true. 

o Or, g2 is a connected component or contains no
nodes, returns false. 

 

Fig. 3. Our Boundary-Finding Algorithm 
 

In our algorithm, G2 is stored locally and IsRing(G2) is 
executed locally as well. After two rounds, each node p 
knows the topology of the local sub-graph that contains p 
and all nodes near (0- or 1-hop away from) p. G2 is extracted 
from this sub-graph. The function IsRing (G2) is then called 
to examine whether G2 is a “ring”. If G2 is a ring, then p is 
not near any boundary, so p sets its nearBoundaries 
variable as FALSE; or p is close to boundaries, so p sets its 
nearBoundaries variable as TRUE. Because G2 is constructed 
and IsRing(G2) is executed locally, every node in the network 

will complete the task after two (asynchronous) rounds. 
To examine whether the 2-neighbor graph G2 forms a 

ring, we first examine if it is a connected graph by simply 
applying the coloring algorithm: select an arbitrary node k 
in G2, color k and all nodes in G2 that are connected to k. 
If there are still uncolored nodes in G2, then G2 is not 
connected; otherwise, G2 is connected. Obviously, if G2 is 
not a connected graph then it cannot be a ring. In the case 
where G2 is a connected graph, G2 may be a ring or just a 
segment of a broken ring. To determine whether G2 is or is 
not a ring, we “cut” a segment of G2 that contains node t, 
t’s neighbors and t’s neighbors’ neighbors, and then examine 
the remaining segment(s). If we cannot cut a large enough 
segment (g2 is a connected graph or contains no nodes), 
then G2 is actually not a ring. Otherwise, if we have two 
remaining segments or have one exact remaining segment 
that does not “fit” with the removed segment (G’2 is not 
connected), then G2 is actually not a ring. G2 is a ring only 
when we have one remaining segment that fits with the 
removed segment. The intuition of cutting one segment of 
G2 and examining the remaining segment(s) is shown in 
Fig. 4. 

 

 
    (a)              (b)           (c)           (d) 

Fig. 4. A ring or a segment of a broken ring after cutting one 
segment. The removed segment is violet. The remaining 
segments are green. (a) The remaining segment fits 
with the removed segment. (b) The two remaining 
segments. (c), (d) A sufficiently large segment cannot 
be cut 

 
 

3. Dealing with Network Dynamics 
 

Network dynamics is caused by node failure and death, 
or, sometimes, by new node deployment or node mobility. 
To deal with network dynamics, we can modify our 
algorithm so that each node p resends its list of neighbors if 
there are sufficient changes in the list, and reconstructs and 
reexamines its 2NG whenever it receives new lists of 
neighbors. In this way, our algorithm can respond quickly 
to topological changes.  

 
 

4. Experimental Evaluation  
 
In order to evaluate the performance of our algorithm, 
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we built a simple simulator which generates random node 
distributions and provides a set of tools for us to view the 
network, to create holes, and to observe nodes near boundaries. 
Our algorithm has been evaluated on various network 
instances.  

To evaluate the effect of node density on our boundary 
detection algorithm, we performed experiments in which 
the node density and communication range were varied. 
Our observation was that for node distributions where the 
average degree in the communication graph was around 7 
or above, our algorithm seems to perform reasonably well. 
For comparison, the algorithm in [7] produces reasonable 
results only for graph densities with an average degree of 
around 18 or more. 

Also, in order to evaluate the robustness of our algorithm, 
we performed experiments involving both convex and 
concave holes which are close to each other. Our observation 
was that our algorithm performs well in the presence of 
arbitrary holes. 

Some experimental results of our algorithm are given in 
Fig. 5. 

5. Comparison with Previous Algorithms 
 
As mentioned in Section 1, to the best of our knowledge, 

up to now only the algorithms in [5-7] belong to the topological 
class. Those in [5,6] are applicable only to uniform and 
dense wireless sensor networks, while that in [7] is not 
efficient since it has to solve two complex sub-problems, 
namely that of beacon selection or leader election, and the 
flooding problem [13]. Another disadvantage of algorithm 
[7] is that it does not deal well with network dynamics. 
Also, the experimental results show that the algorithm in 
[7] does not perform well in network densities with an 
average degree of less than 18, while our algorithm does. 
Thus, we believe that our algorithm is the first efficient 
algorithm for topological boundary detection. 

 
 

6. Final Remarks 
 

Nodes near boundaries can be classified into two sub-
classes named SB and MB. The former consists of nodes 

 
(a) Network composed of 559 nodes with two holes, average degree 7. 

 

 
(b) Network composed of 836 nodes with one hole, average degree 10. 

 

 
(c) Network composed of 1203 nodes with three holes, average degree 13.

 

 
(d) Network composed of 1697 nodes with one hole, average degree 17. 

 

Fig. 5. Some experimental results of our boundary-finding algorithm. 
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near only one boundary, whereas the later consists of nodes 
near at least two boundaries.  

Recall that, in our algorithm, each node examines its 
2NG to determine whether it is near any boundaries: If its 
2NG consists of segment(s) of a “broken ring”, then it is 
near boundaries. Our further observation can be approximately 
stated as: a node belongs to SB if its 2NG consists of only a 
single segment of a “broken ring” (see Fig. 2-b), and 
belongs to MB if its 2NG consists of at least two segments 
of a “broken ring” (see Fig. 2-c). With this observation, we 
can make a bit of a change to our algorithm presented in 
Fig. 3 to determine whether the boundary nodes belong to 
SB or MB without any further cost. Also, we can further 
classify SB into two sub-classes named SB1 and SB2, where 
SB2 consists of nodes in SB that neighbor at least one node 
in MB. This is done simply by forcing each node in MB to 
broadcast a greeting message to all its neighbors. Fig. 6 
illustrates our concepts of MB, SB1 and SB2: The blue nodes 
belong to MB, the red nodes to SB1 and the green nodes to 
SB2.  

 

  

Fig. 6. Subsets of boundary nodes: MB consists of blue nodes, 
SB1 consists of red nodes, and SB2 consists of green 
nodes.  

 

The usefulness of this classification is discussed as follows. 
Boundary nodes, together with their connectivity, form a 
graph that is like a road map: Each connected component 
of nodes in SB1 serves as a road (in most cases) and each 
connected component of nodes in the union of MB and SB2 
serves as a crossroads or a bridge that links roads together.  

Recently, researchers have paid more attention to exploring 
the geometry information, which is useful in routing and 
localization [1-3,8,9,12], hidden in the network [4,7,11]. 
We hope that, with the aid of exploiting this unique map, 
we can expose more accurately the geometry information 
hidden in the network.  

As previously stated, a hole is formed when nodes in a 
large area are broken down. The formation of holes is often 

caused by extreme events such as fire, earthquake, inundation, 
and so forth. So, in habitat monitoring applications, we 
need to know if actual holes are formed in order to know 
whether such an event has happened. In surveillance 
applications, we may want to know whether an enemy, for 
example, has left the restricted area or is still in that area 
but “is hidden” in a hole of the sensor field. We believe that, 
as far as the development and application of sensor networks 
go, distinguishing the boundary of the sensor field with those 
of holes is more beneficial. So, one of our future works will 
be to distinguish nodes near the (outer) boundary of the 
sensor field from those near the (inner) boundaries of holes. 
We hope that this map will also be able to provide us with 
clues to solve this problem efficiently. 

In conclusion, we have proposed a simple, efficient, 
location-independent algorithm for boundary detection. 
Routing and localization that make use of the knowledge of 
boundaries is our future trend of research. 
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