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Active nematics are out-of-equilibrium fluids composed of rod-like subunits, which can gener-
ate large-scale, self-driven flows. We examine a microtubule-kinesin-based active nematic confined
to two-dimensions, exhibiting chaotic flows with moving topological defects. Applying tools from
chaos theory, we investigate self-driven advection and mixing on different length scales. Local fluid
stretching is quantified by the Lyapunov exponent. Global mixing is quantified by the topological
entropy, calculated from both defect braiding and curve extension rates. We find excellent agree-
ment between these independent measures of chaos, demonstrating that the extensile stretching
between microtubules directly translates into macroscopic braiding of positive defects. Remarkably,
increasing extensile activity (via ATP concentration) does not increase the dimensionless topolog-
ical entropy. This study represents the first application of chaotic advection to the emerging field
of active nematics and the first time that the collective motion of an ensemble of defects has been
quantified (via topological entropy) in a liquid crystal.

Nature provides many examples of active matter, rang-
ing from flocks of birds [1], fish [2], and insects [3]
to sheets of cells [4–6] and swarms of bacteria [7–9].
In the lab, various attempts have been made to de-
velop biomimetic and synthetic active materials, from
self-propelled colloids [10, 11] and mechanically agitated
flocks [12], to dense phases of biopolymers driven by
molecular motors [13–23]. This is a rich field of research,
and to date, much theoretical work has been dedicated
to understanding the fundamental physics of these fas-
cinating and diverse systems [24, 25]. Active materials
are non-equilibrium systems, and thus they cannot be
described in the framework of conventional thermody-
namics. The unifying theme of active matter is that
collections of subunits consume energy locally, trans-
late that energy into movement, and ultimately produce
large-scale flows. This large-scale motion can produce
rich emergent structures, including phase boundaries and
topological defects, where local order breaks down.

The central theme of this work is the introduction of
concepts from chaotic advection [26, 27] to the physics of
biologically active fluids. These concepts include topo-
logical entropy and Lyapunov exponents, which are well
known measures of chaos in the theory of chaotic advec-
tion but have been thus far largely overlooked in studies
of active matter. Roughly speaking, the Lyapunov ex-
ponent measures the rate at which nearby fluid parcels
separate from one another. The topological entropy, on
the other hand, measures the asymptotic (in time) expo-
nential growth rate in the length of a material curve as it
is stretched within the fluid. We use spatially (and tem-
porally) averaged local measurements in the fluid to esti-
mate the Lyapunov exponent. To estimate the topologi-
cal entropy, we use larger-scale measurements, including
the global braiding motion of topological defects about
one another.

In experimental studies of chaotic advection in pas-

sive fluids at low Reynolds number, fluid motion is of-
ten driven at the boundary, either by tangentially slid-
ing the boundary, e.g. rotating a cylindrical boundary
wall [29–31], or by directly stirring the fluid with inserted
rods [28, 32–34]. The resulting chaotic flow produces
exponentially stretching material curves. In stirring ex-
periments, chaos is observed when three or more rods are
inserted into the fluid and moved around one another in a
braiding motion [28, 32–34]. The mathematical braid can
be visualized by interpreting time as the vertical dimen-
sion. Figure 1a shows an example braid, with the initial
effect of this braid on a line of dye shown schematically
in Fig. 1b. Repeated applications of this stirring pat-
tern generate an experimental image like Fig. 1c, taken
from Boyland et al. [28]. The overall mixing efficiency
depends on the stirring pattern, particularly on the topo-
logical braid-type of the motion, and can be quantified
by the topological entropy, i.e. the growth rate of ma-
terial lines as fluid elements are stretched apart from
each other. One remarkable mathematical fact is that
a given braid-type of the rod motion guarantees a spe-
cific minimal amount of topological entropy in the dy-
namics, e.g. the Fig. 1a braid generates an entropy of
log[(1 +

√
5)/2] = 0.4812 per swap of two strands. In

fact, any collection of passively advected orbits in the
fluid, not just those next to the stirring rods, generates
a braid type, with an associated minimal topological en-
tropy; such trajectories have been described as “ghost
rods” in the literature [33, 34]. Though the mathematics
is more rigorous when such trajectories are periodic in
time, recent work has generalized the analysis to open,
aperiodic trajectories [35–38].

Our experiments use an extensile-active-nematic fluid
confined to a quasi-two-dimensional layer [15, 16, 18],
Fig. 1d. The fluid consists of purified microtubules and
kinesin-1 molecular motor proteins, Fig. 2a and Meth-
ods: Preparation of the 2D active nematic. In biological
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cells, these molecules exist in the cytoskeleton, where the
microtubules form highways for the motors. The motor
proteins step stochastically along a microtubule in a net
direction defined by the microtubule’s structural polarity,
a process that consumes energy from the hydrolization of
adenosine-5′-triphosphate (ATP). This force-generating
action is essential for a variety of cell functions, includ-
ing organelle transport [39], cell division, and cytoplasmic
streaming [40].
In our laboratory setup, microtubules condense into

bundles, crosslinked by clusters of streptavidin-bound ki-
nesin motors (Fig. 2a and Methods). If two motors in a
cluster bind to adjacent microtubules of opposite polar-
ity, the opposing forces produce a sliding motion between
those microtubules. Thus neighboring bundles of oppos-

FIG. 1. Topological stirring of fluids. a) Braid diagram rep-
resenting three rods as they stir a 2D fluid in a pattern known
as the golden braid. Time moves up in the vertical direction.
Each strand represents the world line of one rod. The time
points denoted i-v correspond to the schematic in (b). b,i-v)
The impact of passive stirring generated by the braid in (a)
on an initial line of dye. As the rods sequentially exchange
positions, the dye stretches. c) Experimental image of stirring
lines of dye by three rods (adapted from Boyland et al. [28])
after several iterations of rod exchanges according to the stir-
ring protocol shown in (a). The rod positions are highlighted
in white. d) Fluorescence microscope image of the active ne-
matic fluid with topological defects marked. White circles
denote +1/2 defects; a yellow triangle denotes a -1/2 defect.

ing polarity extend away from each other to generate lo-
cal fluid stretching. Under the dense confinement of a 2D
oil-water interface, the bundles enter the nematic phase,
with a well-defined director field recording the local bun-
dle orientation (Fig. 1d and Fig. 2b.) In the presence of
ATP, the bundles continually move, extend, bend, buckle
and break [15, 16, 18]. This continual motion advects
individual tubulin monomers throughout the fluid in a
chaotic fashion. (Supplementary Movie 1.) As a result,
pairs of +1/2 and -1/2 topological defects (Fig. 1d) in
the director field are continuously created and annihi-
lated. Between their birth and death, topological defects
move around one another in a complicated braiding pat-
tern, as shown later in Fig. 3. (See also Supplementary
Movie 2.)

The pattern of microtubule bundles surrounding the
+1/2 defects (Fig. 1d) strongly resembles the pattern
of dye surrounding stirring rods (Fig. 1c) in passive ad-
vection. The active nematic fluid described here differs
crucially from a conventional passive fluid in that inter-
nal flows and chaotic advection in a passive fluid must
be driven externally. In this report, we show that braid-
ing by topological defects in the active fluid produces
macroscopic chaotic advection, and thus the defects act
as virtual stirring rods. In addition, we demonstrate that
mixing on the macroscale by virtual rods arises sponta-
neously as a consequence of the molecular-level sliding
action. This relationship is quantified by the topological
entropy and Lyapunov exponent.

One consequence of topological mixing theory is that
exponential stretching cannot exist within the fluid with-
out some nontrivial braiding of defects, as quantified by
the topological entropy. It is particularly interesting that
this self-driven fluid spontaneously creates a set of defects
which then must move in a particular way to produce
exactly the topological entropy needed to accommodate
the local stretching. This observation sheds new light on
prior studies of defect dynamics. For example, in the nu-
merical work of Shendruk et al [22], they demonstrated a
particular braiding pattern resembling a Ceilidh dance, in
which defects braid around one another in two counter
propagating lines in a channel. In fact, this particular
braid has been studied in the chaotic advection literature,
where it is known as the “silver braid” [34]; interestingly,
it has been proved to be optimal, in that it provides the
largest amount of topological entropy per time step for
any linear arrangement of defects. Thus, if one were to
compute the stretching rate for this flow a priori, one
could reasonably conjecture that the Ceilidh dance pat-
tern was topologically mandated to accommodate all the
topological entropy.

We measure both the topological entropy and the
Lyapunov exponent of the active flow; we measure
the topological entropy using three distinct methods,
designed to probe the system across different length
scales. The Lyapunov exponent is obtained from the
velocity-gradient tensor field, itself computed from
particle-image velocimetry (PIV) using fluorescence
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FIG. 2. Measurement of separation rates in the active fluid. (a) Schematic showing elements of the microtubule network,
consisting of microtubules crosslinked by kinesin clusters. The microtubule bundles of opposite polarity extend away from each
other as the kinesin motors walk. Biotin coated silica beads are used to bind onto free streptavidin binding sites in kinesin
clusters to attach onto the microtubule network. (b) Fluorescence image of microtubule network in 2D at an oil-water interface
with marked topological defects. White circles are +1/2 defects and yellow triangles are -1/2 defects. Scale bar, 100um. (c)
Bright field image of beads attached to the microtubule network. Beads are numbered automatically for tracking. Scale bar,
25 µm. (d, i-iv) Bright field microscopy time lapse showing contour length growth between two beads moving away from each
other at 50 µM ATP concentration. Scale bar, 30 µm. (e) Semi-log plot of contour length, d (microns), as a function of time
for the bead pair shown in (d) with time points (i-iv) marked by arrows. We make a linear fit with slope r, inset. (f, i-iv)
Time-lapse fluorescence images tracking the separation of a +1/2 defect (white) and -1/2 defect (yellow), shown by the cyan
curve. Scale bar, 100 µm. (g) Semi-log plot of defect separation distance d (microns) as a function of time for a defect pair. A
linear fit with slope r (inset) was made after the transient rise. The marked time points (i-iv) correspond to the images in (f).

images of the microtubule bundles. The topological
entropy is measured directly using beads attached to
the microtubules. As two beads pass and separate
after a close approach, the exponential growth rate
of the nematic contour connecting them is measured.
Alternatively, the same measurement is made using the
separation of neighboring topological defects. The third
independent measurement of the topological entropy de-

rives from the braiding motion of the topological defects
about one another. We find that the positive topological
defects act as virtual stirring rods, generating all of the
topological entropy from their braiding motion; negative
topological defects add very little, if any, additional
entropy. The three measures of topological entropy are
consistent with one another, which is remarkable given
that braiding is a manifestly global and topological
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technique, independent of geometric details, whereas
the stretching techniques depend inherently on length
measurements. Furthermore, the topological entropy is
slightly larger than the Lyapunov exponent, reflecting
a fundamental theorem in 2D chaotic dynamics [41].
Measurements are repeated at progressively higher
ATP concentrations. Increasing the ATP concentration
raises the system activity, increasing the overall fluid
speed. The Lyapunov exponent and topological entropy
generally also increase with increasing fluid speed.
We nondimensionalize these quantities to isolate the
purely topological effects on mixing efficiency when we
increase system activity. Across all methods we obtain a
fascinating result: the dimensionless Lyapunov exponent
and dimensionless topological entropy are constant with
ATP concentration. This result suggests that these
dimensionless quantities may be universal features of the
fully developed “turbulent” state of the active nematic.

Topological entropy from bead and defect separa-

tions. We first describe the measurement of separation
rate in the nematic contour joining two beads. Biotin-
coated silica beads of 2µm-diameter were bound to the
microtubule bundles via free binding sites on the strep-
tavidin molecules that form the kinesin clusters. (See
Fig. 2a and Methods.) This approach differs fundamen-
tally from recent work on a similar system in which beads
were passivated to avoid microtubule attachment, thus
acting as passive tracers for the surrounding aqueous
flow [15, 16]. In contrast, bound beads track the mi-
crotubule network itself. The beads move within the ne-
matic plane, where they are imaged with bright-field op-
tical microscopy (Fig. 2c and Supplementary Movie 3).
Bead trajectories directly map the motion of microtubule
segments throughout the system, including via bundle
fracture and annealing.

After bead trajectories were extracted from a bright-
field movie, they were searched for close approaches of
bead pairs (within 2-10µm of each other). Following a
close approach, the pair of beads moves apart, with a
nematic contour, i.e. an integral curve of the nematic
director field, stretching between them. Physically, the
nematic contour represents the microtubule bundles con-
necting the beads; it grows and bends with the fluid as
the bundles extend. For each image frame, the nematic
contour was manually traced. (Fig. 2d and Supplemen-
tary Movie 4.) The slope of the natural log of the separa-
tion contour length versus time yields the separation rate
r (Fig. 2e). The result shows clear exponential growth
over nearly an order of magnitude in contour length.
A total of nine pairs of beads were analyzed (Supple-
mentary Fig. 1). The separation rate r is remarkably
similar across bead pairs, with mean 〈r〉 = 0.0143 s−1

and standard deviation σ = 0.0016 s−1. (Supplementary
Fig. 2.) To estimate the topological entropy, we per-
form a weighted average as discussed in Supplementary
Section S1, resulting in hbead = 0.0145(±0.0001)s−1.

In a second approach, we measured the separation

rate between topological defects, instead of beads.
Pairs of nearby +1/2 and −1/2 defects were identi-
fied in fluorescence movies. Fluorescence microscopy
enhances the microtubule structure while eliminating
the nonfluorescent beads. (Supplementary Movie 1.)
We then identified the nematic contour between the
defects as a function of time, Fig. 2f. (Supplementary
Section S2.) This contour length increased exponentially
(Fig. 2g), yielding the exponential separation rate r.
A total of 10 defect pairs were analyzed resulting in
hdefect = 0.0142(±0.0002) s−1 (Supplementary Fig. 3.)
Results from defect and bead separations are remarkably
consistent implying that the separation rate between
defects is a good proxy for the growth of material curves
anywhere in the fluid.

Topological entropy from defect braiding. Whereas
the first two computations of topological entropy used the
growth in euclidean contour length, our third approach is
purely topological and independent of the first two. This
approach views the topological defects as stirring rods,
and computes the topological entropy by the braiding
pattern of these rods around one another. (Fig. 3a.) As
such, the method is insensitive to the exact positions of
defects. However, the original defect trajectories must
be extended to exist for all times, as described in Sup-
plementary Section S3.

We use the recently developed E-tec algorithm [38]
to extract topological entropy from defect trajectories.
This algorithm uses a computational geometry approach
to propagate an initial piecewise linear elastic mesh
(Fig. 3b) forward in time. As trajectories evolve, the
mesh is stretched and folded over itself, creating an ex-
ponentially growing number of line segments. Figure 3c
shows the final stretched mesh and Fig. 3d shows the
growth in the number of segments as the fluid is “stirred”
by the defects. The exponential growth rate is the topo-
logical entropy generated by the stirring rods, which in
general is only a lower bound to the true topological en-
tropy of the fluid. In Navier-Stokes simulations of stirring
a two-dimensional fluid, there can be significantly more
entropy than that predicted by the motion of the rods.

In principle, any ensemble of trajectories passively ad-
vected in the fluid can be viewed as virtual stirring rods,
and the corresponding topological entropy computed us-
ing E-tec. Again, such ensembles typically provide only
a lower bound on the true entropy of the flow—the more
trajectories included, the greater the lower bound. In
some special cases, a small number of specifically chosen
trajectories generate all of the topological entropy [38].

Figure 3d shows three results, corresponding to stir-
ring by just the +1/2 defects, by just the -1/2 defects,
and by both +1/2 and -1/2 defects. The entropy from
the +1/2 defects, 0.01043(±0.00080) s−1, is significantly
larger than that of the -1/2 defects, 0.00626(±0.00032)
s−1. Most remarkable, however, is that the entropy from
all the defects, 0.01045(±0.00053) s−1, is essentially the
same as from just the positive defects. The negative de-
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FIG. 3. E-tec computation of topological entropy. a) A sampling of positive defect trajectories braiding around one another.
b) Initial mesh between defects inside the black bounding box. Filled circles are actual defects. Open circles are “extinct”
defect trajectories, as discussed in the Supplementary Material. c) Final stretched mesh and defect positions. The intensity
of the red segments indicates their weight. d) Plot showing topological entropy, h, calculated using the E-tec algorithm for
positive defects only, 0.01043(±0.00080) s−1, negative defects only, 0.00626(±0.00032) s−1, and all defects, 0.01045(±0.00053)
s−1. Errors on the E-tec growth rates were computed as the difference in the slopes fitted over two distinct time intervals;
interval 215s – 537s and interval 322s – 537s.

fects introduce no additional stretching. This is a surpris-
ingly strong result, and shows that the positive defects
are the special points for generating topological mixing
and that they alone can account for all the topological
entropy in the fluid.

Finally, the E-tec computation must be corrected for
the finite size of the image domain. This correction is
estimated by the escape rate of trajectories (Supplemen-
tary Section S4), which is computed from the bead data
to be 0.00291(±0.00003) s−1. Adding this to the E-tec
result yields a final entropy hbraid = 0.0133(±0.0008)
s−1.

The fact that the separation-rate and braiding meth-
ods agree so well is by no means trivial or expected.
Several assumptions are needed to justify that either
of these methods should yield the true topological
entropy. (See Supplementary Sections S1 and S4.) Such
assumptions are only verified through an analysis of
the experimental data. Thus, the agreement of these
two measures is a significant experimental finding.
For example, solid-state topologically ordered systems
may have defect translation without any stretching or
motion of the underlying material. In the microtubule
active nematic system, the strong coupling between
motion of the microtubules themselves and motion of
the defects is necessary to see the agreement reported

FIG. 4. Comparison of the four measures of chaos at 50µM
ATP concentration. The error bars for hbead and hdefect are
the standard error of the mean, when averaging over the set
of separation rates. The error on hbraid is essentially just that
of the fit described in Fig. 3. The error on λ∇v is based on
the error of the PIV analysis, estimated at 5%. See Supple-
mentary Section S5.

here. (This coupling only breaks down near the creation
and annihilation of defect pairs. Supplementary Figs. 1e
and 1f.)

Finally, we computed the Lyapunov exponent
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directly from the microtubule velocity field as
λ∇v = 0.0120(±0.0006) s−1. (Methods: Lyapunov
exponent from velocity field.) Figure 4 shows all four
measures of chaos at 50µM ATP concentration. The
Lyapunov exponent is slightly less than the three mea-
surements of topological entropy. This is consistent with
a general result from dynamical systems theory, which
states that the topological entropy is always greater
than or equal to the metric entropy (also known as the
measure-theoretic or Kolomogorov-Sinai entropy) [41].
In two-dimensional area-preserving flows, the metric
entropy equals the positive Lyapunov exponent, imply-
ing the relative ordering seen in Fig. 4. The fact that
the Lyapunov exponent is only slightly less than the
topological entropy reflects the statistical homogeneity
of the active nematic flow. If the local Lyapunov
exponent were constant in space and time, the topolog-
ical entropy would exactly equal the Lyapunov exponent.

Variation of ATP concentration. To investigate the
effects of increasing activity on chaotic advection, we ran
a series of experiments at different ATP concentrations
(50-1000 µM). Because ATP concentration controls the
kinesin step-rate at the molecular level, we expect the
topological entropy and Lyapunov exponent to increase
with increasing ATP concentration.

When single microtubules glide on a kinesin-decorated
glass surface, their gliding velocity as a function of ATP
concentration is generally well described on a local level
by Michaelis-Menten kinetics [42–44]. Similarly, we ob-
served that the average vrms (Methods: PIV velocity
analysis) for our attached beads also follows Michaelis-
Menten kinetics under ATP variation, Fig. 5a.

Henkin et al. used passive unattached tracers to mea-
sure the average bead speed in a similar, 3D micro-
tubule network as a function of ATP concentration (0.5-
3mM) [16]; they observed a monotonic increase up to
2µm/s at saturation. Our attached-bead method, how-
ever, contains richer and more direct information on the
motion of the microtubules themselves.

We calculated topological entropy hbead for bead pairs
at different ATP concentrations (50–1000 µM), Fig. 5b.
Separation rates were measured for ∼ 10 bead pairs at
each concentration. (See raw data in Supplementary
Fig. 2.) Though Fig. 5b shows a general upward trend,
it is not strictly monotonic. For context, we consider
the relevant physical scales. An inverse-time scale τ−1

for hbead can be obtained by combining the characteris-
tic velocity vrms with a characteristic length ℓ. Follow-
ing Refs. [23, 45], we chose ℓ to be the length at which
the velocity-velocity correlation function, computed from
PIV velocities, decays to half its maximum value, Fig. 5c.
(Methods: PIV velocity analysis.) ℓ varies only mod-
estly with ATP concentration, consistent with Lemma
et al [23] for ATP concentrations larger than 10µM.
Refs. [23, 45] establish that the correlation length ℓ arises
from balancing the elastic bend energy of the microtubule
bundles with motor activity. Thus, if only the activity

FIG. 5. Nondimensionalized topological entropy and Lya-
punov exponent are insensitive to motor activity. a) Aver-
age vrms of beads as a function of ATP concentration. This
relationship follows Michaelis-Menten kinetics (solid curve)
v = (vmax × [ATP ])/([ATP ] + Km) with fit parameters
Km = 120(±20) µM and vmax = 3.57(±0.19)µm/s. b) Topo-
logical entropy computed from bead separation as a function
of ATP concentration. c) Velocity correlation length ℓ, as a
function of ATP concentration. d) Dimensionless topologi-
cal entropy h′

bead versus ATP concentration. This was ob-
tained by multiplying the original entropy h′

bead in (b) by
the characteristic time derived from plots (a) and (c). e)
All four dimensionless measures of chaos as a function of
ATP concentration. Error bars on the dimensionless mea-
sures include the errors on the characteristic length and ve-
locity, which combine to give an error on the time scale ∆τ =
τ [(∆ℓ/ℓ)2 +(∆vrms/vrms)

2]1/2. The error on h′

bead, for exam-

ple, is then ∆h′

bead = h′

bead[(∆hbead/hbead)
2 + (∆τ/τ)2]1/2.

were increased, ℓ should decrease, and indeed, except for
the 250 µM data, our results are consistent with a small
downward trend. The outlier at 250 µM ATP concen-
tration could be understood by a slight change in the
microtubule lengths, which would affect the correlation
length. Microtubule bundle length is very sensitive to
sample preparation, such as pipette shearing.

We obtain the dimensionless topological entropy
h′

bead = τhbead by rescaling by the characteristic time
τ = ℓ/vrms, Fig. 5d. This scales out any fluctuations in
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either ℓ or vrms due to experimental factors, resulting in
a measure of topological entropy that depends only on
the flow geometry. Surprisingly, the dimensionless en-
tropy h′

bead is nearly constant with ATP concentration;
although the system moves faster with increased ATP,
the underlying geometric complexity of the mixing re-
mains constant. This suggests that the dimensionless
topological entropy may be a universal quantity for the
fully “turbulent” state of active nematics.
For each ATP concentration, we also computed the

other measures of chaos. The two separation-based
entropies are in close agreement. (Supplementary
Fig. 5.) Figure 5e thus shows just the bead-separation
entropy compared to the other two measures. Again,
each dimensionless measure varies little with ATP. The
average of the bead entropy is 〈h′

bead〉 = 0.684, with
braiding entropy somewhat lower at 〈h′

braid〉 = 0.614.
As expected, the Lyapunov exponent, 〈λ ′

∇v〉 = 0.526,
is below all measures of topological entropy. There
are two main reasons why 〈h′

braid〉 may be lower than
〈h′

bead〉. First, the estimate of the finite-size effect of the
image domain may fail to account for the full complexity
of braiding near the boundary. Second, the “extinct”
defects that exist before and after defect creation and
annihilation events are passively advected by the PIV
velocity field, which has some error in the velocity
component along the director.

Active fluids have emerged as an exciting frontier in
soft matter physics, but until now, their flows have not
been examined in detailed experiments from the perspec-
tive of chaotic dynamics. Using this approach, we have
investigated the spontaneous “self-mixing” of an exten-
sile active nematic.
It is well-appreciated that energy injected by molec-

ular motors into active nematics at the molecular scale
produces large-scale flows. Our results support the com-
plementary view that fluid stretching is also injected into
the flow of an active nematic at the molecular scale.
This stretching can be quantified by the Lyapunov ex-
ponent. The fluid flow must respond on the macroscale
in a manner consistent with this local stretching. Consis-
tency requires that the +1/2 defects, which drive the stir-
ring, braid around one another in a manner sufficiently
complex to produce topological entropy greater than the
Lyapunov exponent. The number, density, and speed
of the defects are not sufficient, in themselves, to pro-

duce topological entropy. The braiding pattern is critical.
Our data demonstrate that the topological entropy of the
moving defects is greater than the stretching injected via
kinesin-motor-driven filament sliding; the excess entropy,
i.e. the difference between topological entropy and the
Lyapunov exponent, is shown to be quite small, reflect-
ing the homogeneity of the fluid motion.
In total, four different chaotic mixing measurements

are taken across a range of activity levels (tuned via ATP
concentration) to calculate the topological entropy and
Lyapunov exponents. The results are consistent across all
four techniques. Remarkably, when non-dimensionalized,
these quantities do not depend significantly on ATP con-
centration. This suggests that the dimensionless topo-
logical entropy and/or Lyapunov exponent of this sys-
tem may be a universal feature of the “turbulent” state
of such systems. It would be interesting to probe this
hypothesis by varying other parameters, such as kinesin
density or oil viscosity. It would also be interesting
to probe the topological entropy as the system evolves
across the transition from the non-turbulent to the fully
“turbulent” state. For example, is the rise in topological
entropy sharp or gradual?
Finally, we propose that this microtubule/kinesin

system can be considered as a chemically-driven self-
mixing fluid, opening the door for a potential new class
of non-equilibrium energy-dissipative solvents.
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Methods. Flow cell preparation. Flow cells for the
experiments are constructed from a hydrophilic cover
slip and a hydrophobic glass microscope slide as de-
scribed by Sanchez et al. [15]. This treatment facil-
itates formation of the oil and water layers necessary
for sample preparation. The two surfaces are treated
differently so that we can flow oil and water into the
flow cell (Supplementary Figure 6). First, the cover-
slips are treated with a polyacrylamide brush that al-
lows the surface to be hydrophilic and prevent non-
specific binding of proteins [15]. The coverslips are
washed with soap and hot water, then rinsed with
water three times. The coverslips are submerged in
ethanol, rinsed with water, and submerged in 0.1M
NaOH and rinsed with water. Once the coverslips are
cleaned, they are placed in a solution containing 98.5%
ethanol, 1% acetic acid and 0.5% silane-bonding agent
3-(trimethoxysilyl)propylmethacrylate (Arcos Organics)
for 15 minutes. The coverslips are rinsed with water be-
fore immersion in an acrylamide solution containing 2%
(w/v%) acrylamide, 35 µl per 100 ml of TEMED (Bio-
Rad) and 70mg per 100ml of ammonium persulfate. This
helps polymerization of the polyacrylamide brush on the
surface of the coverslips. The coverslips are stored in
this acrylamide gel. Before immediate use, the coverslips
are rinsed with water and air-dried. The glass slides are
washed with acetone, methanol and ethanol. The slides
are then treated with Aquapel to create a hydropho-
bic surface. About 50µl of Aquapel glass treatment is
dropped onto a glass slide. A second glass slide is placed
on top perpendicular to the first slide to spread the so-
lution evenly onto both surfaces and left to sit for one
minute. The slides are then dried with compressed air,
rinsed with water, and air-dried before use.

Preparation of the 2D active nematic. Microtubule
polymerization was carried out and kinesin-streptavidin
clusters prepared as previously reported by the Dogic
Lab [15]. Biotin-coated 2µm-diameter silica beads
(Nanocs) are diluted to 5000 beads/µl in M2B buffer
(80mM PIPES pH 6.8, 2mM MgCl2, 1mM EGTA) and
bath sonicated for 30 minutes to one hour to break up
bead aggregates. An active premixture containing biotin-
kinesin, streptavidin, PEG (poly(ethylene glycol)), and
PKLDH (an ATP regenerating system) is prepared as
previously described in Sanchez et al. [15]. Two antioxi-
dant mixtures are used along with Trolox to avoid photo-
bleaching during the imaging. Antioxidant solution AO1
contains 150 mg ml−1 glucose and 250 mM DTT. Antiox-
idant solution AO2 contains 10 mg ml−1 glucose oxidase
and 1.75 mg ml−1 catalase. The kinesin-streptavidin mo-
tor clusters (KSA) are made by combining 0.31 mg ml−1

K401 kinesin motors, 0.18 mg ml−1 streptavidin, and 2.2
µg ml−1 DTT and incubated on ice for 30 min. This mix-
ture is diluted with M2B in the ratio 1:8.6. A high-salt
buffer (MIX) is prepared containing 69mM MgCl2 di-
luted in M2B. The ATP-regenerating system is prepared
with 917 units/ml pyruvate kinase and 913 units/ml lac-
tate dehydrogenase in aqueous buffered glycerol solution

(PKLDH). The final premixture is combined by adding
1.33 µl AO1, 1.33 µl of AO2, 1.7 µl PKLDH, 2.9 µl MIX,
4 µl KSA, 6 µl 20mM Trolox, 8 µl 200mM phospho-
enolpyruvate, 8 µl 6% (w/v %) 20kD PEG. The pre-
mixture is separated into 6.64 µl aliquots. To form the
active network, we take one aliquot of the premixture
and add ATP (50-1000µM) and fill to 10 µl with M2B.
Then 2 µl of 6 mg ml−1 of Alexa-647 labeled GMPCPP
microtubules (∼ 3% labeling) is added to the 10µl of pre-
mixture. The mixture is incubated for 5-30 minutes at
room temperature to allow the network to form. The
network takes longer to form for lower ATP concentra-
tions. Finally, 0.5µl of the silica bead solution is added
to the microtubule network and gently tapped to mix. A
6 µl volume flow cell is created by first placing strips of
double-sided tape about 3 mm apart on a hydrophobic
Aquapel treated glass slide. Then, an acrylamide coated
coverslip is placed on top to create a channel open at both
ends (Supplementary Figure 6). To create the active mi-
crotubule layer, we first flow an oil/surfactant mixture
(HFE7500 with 1.8% (v/v %) PFPE-PEG-PFPE surfac-
tant) into the channel. Then we immediately exchange
the oil/surfactant mixture by flowing in the aqueous com-
ponent containing the active microtubule network includ-
ing the biotin beads. The flow cell is sealed with UV-
curable glue (RapidFix). To confine the active network
into a quasi-2D layer, we place the filled flow cell into a
swinging bucket rotor (Sorvall Legend RT+ centrifuge,
four place swinging bucket rotor), and spin the material
down for 42 min at 350 rpm. This step allows the active
fluid to assemble at the oil/water interface inside the flow
cell.

PIV velocity analysis. Particle image velocimetry
(PIV) analysis was carried out with the Matlab PIVlab
1.43 package [46], using the default GUI settings.
PIVLab uses sequential images to calculate a velocity
vector field for each frame. We analyzed both bright-field
and fluorescence movies at every ATP concentration. For
each experimental run, vrms was computed in the center
of velocity frame. We calculated the average velocity vec-
tor in each frame and subtracted it from every velocity
vector in the frame to obtain the velocity field in the cen-
ter of velocity frame. We then calculated the resulting
root-mean-squared velocity for each frame, and averaged
over all frames for the final vrms value.

We also used the PIV velocities to compute the
velocity-velocity correlation length for each data run, as
in Ref. [23, 45]. The velocity autocorrelation function
was computed as C(r) =

∑

ij v̂i · v̂jδ(r− rij), where the
indices i and j range over all frames and all grid points
within a frame, v̂i = vi/|vi| is the unit velocity vector,
and rij = |ri−rj |, for grid points ri and rj . Numerically,
the delta function is approximated as a rectangle. The
correlation length was taken to be the distance at which
the correlation function C(r) decayed to half its value at
r = 0.

Imaging and analysis. The active nematic is imaged
using a (Leica DMP) fluorescence microscope and a Qim-
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age Retiga Exi camera. Fluorescence movies are recorded
with a 500ms exposure time per frame and a 100ms time
interval between frames. The bright field movies of the
beads are recorded using a 10ms exposure per frame
with 100ms intervals between frames. We used a Mat-
Lab adapted tracking algorithm to track bead trajecto-
ries [47]. The bead attachment was very stable over the
timescale of a typical experiment. Any unbound beads
were easy to distinguish and eliminate from the analy-
sis due to their characteristic Brownian motion and ten-
dency to sediment to the glass surface when centrifuged.
Any bead clusters were also eliminated from the analysis.
To measure the separation distance between beads with
diverging trajectories, we used the segmented line tool in
ImageJ to measure the nematic contour length between
beads for each successive frame throughout the movie.

Computation of director field and topological defect lo-
cations. We wrote Matlab code to compute the director
at each grid point using a windowed Fourier transform.
A Gaussian filter was first applied to the image, cen-
tered on the selected grid point. The Fourier transform
of the filtered image was then applied, followed by a sec-
ond Gaussian filter on the radius in Fourier space. The
covariance matrix of the resulting distribution in Fourier
space was then computed, and the director was taken to
point along the largest eigenvector.

Topological defects were identified by regions of rapid
rotation of the director field. Specifically, we identified
isolated patches of grid points in the image domain in
which the change in the director was large (δθ ≥ π/4) be-
tween neighboring grid points. The topological charge for
each such patch was computed from ∆θ/(2π), summed
along the loop surrounding, but just outside, the patch,
thereby guaranteeing that δθ < π/4 between successive
grid points.

Lyapunov exponent from velocity field. We computed
the Lyapunov exponent directly from the microtubule ve-
locity field. We used particle image velocimetry (specifi-
cally the MATLAB PIVLab package [46]) to compute the
velocity as a function of position and time from the flu-
orescence movie. A local Lyapunov exponent can then
be computed at each point in space and time as the
parallel derivative of the parallel component of veloc-
ity, where parallel is with respect to the nematic direc-
tor. (Supplementary Section S5.) Averaging over space
and time yields the Lyapunov exponent λ∇v. (Recent
work [17, 21, 23] has also used the PIV velocity gradi-
ent as a system diagnostic to detect vortices using the
Okubo-Weiss field− det(∇v).) In practice, the PIV anal-
ysis produces a more reliable component of velocity in
the direction perpendicular to the nematic director than
parallel to it. We thus compute the Lyapunov exponent
λ∇v = 0.0120(±0.0006) s−1 as the average of (minus) the
perpendicular derivative of the perpendicular component
of velocity v. These two averages are equal so long as
the system is area-preserving (on average.)

Code availability statement. The Matlab code for com-
puting nematic director fields and topological defects is

available upon request from KAM. The E-tec code is
available in python from SAS upon request.
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Supplementary Material

S1. COMPUTATION OF TOPOLOGICAL ENTROPY FROM SEPARATION DATA

For two-dimensional fluid flows, topological entropy is the exponential growth rate of a material curve embedded in
the fluid, in the limit that time goes to infinity, at which point the nematic contour connecting the beads would fill in
the entire fluid domain. Due to the open boundary of the present experimental system, we can not track a material
curve indefinitely, because some piece of it will eventually leave the field of view. There are other complications as
well. When tracking a curve between bead pairs, beads may fail to be identified or properly classified in the tracking
data, for one or more frames; when tracking a curve between defects, the defects may annihilate.

We address these obstacles by measuring the expansion rate for a sampling of multiple shorter segments, and then
averaging. Assume that a single long curve is broken into n pieces of length Lk so that the total length is L =

∑n

k=1 Lk.
For each individual piece, we fit an exponential so that lnLk(t) ≈ rkt + lnLk(0), where the rk’s are the separation
rates between the initial and final points of each piece. Supplementary Fig. 1 shows examples of this fitting for both
bead and defect separations. A summary of the measured separation rates are shown in Supplementary Fig. 2 for all
bead pairs and Supplementary Fig. 3 for all defect pairs. Then, the full topological entropy can be approximated as

h ≈ dL(t)/dt

L(t)
=

∑

k dLk(t)/dt
∑

k Lk(t)
≈

∑

k Lk(t)rk
∑

k Lk(t)
≈

∑

k Lkfrk
∑

k Lkf

=
∑

k

wkrk, (1)

where Lkf is the length of the segment Lk at the final time of the fit interval and wk = Lkf/
∑

k Lkf . That is, we
choose the largest time for each individual segment, so that h is just the mean of the individual rk’s, weighted by the
final lengths Lkf of the measured curves. This averaging approach assumes that a sufficient number of short curves
n has been selected to sufficiently sample their spatial variation. It also assumes that the separation-rate statistics
are uniform in time. We compute the error on the topological entropy h as ∆h = σ/

√
n, where σ is the weighted

standard deviation
√

∑

k wkr2k − h2.

FIG. S1. (a-d) Semi-log plots of contour length, d, as a function of time for four separating bead pairs at 50 µM ATP
concentration. Slopes for each plot are inset. (e-h) Semi-log plots of defect separation contour lengths as a function
of time for four defect pairs at 50 µM ATP concentration, with slopes r inset. Panels (e) and (f) show an initial
rapid rise immediately after pair creation, in which defects move apart before the onset of exponential stretching.
The linear fit is made after this transient behavior.
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FIG. S2. The spread of the separation rate measured for each bead pair for all ATP concentrations (50-
1000µM). The dotted line indicates the average separation rate for each corresponding ATP concentration
and the shaded grey region indicates the standard deviation.
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FIG. S3. The spread of the separation rate measured for each defect pair for all ATP concentrations (50-1000
µM). The dotted line indicates the average separation rate for each corresponding ATP concentration and
the shaded grey region indicates the standard deviation.



4

S2. MEASUREMENT OF DEFECT SEPARATION RATES.

We recorded the fluorescence movie (Supplementary Movie 1) immediately after the bright-field movie of the same
experimental sample. Fluorescence microscopy enhances the microtubule structure while eliminating the nonfluo-
rescent beads. We then processed the fluorescence images to automatically extract the nematic director field and
associated topological defects. (See Methods: Computation of director field and topological defect locations; also
Fig. 2b and Supplementary Movie 2). Defects were tracked using the same software used for beads [47]. Pairs of
nearby +1/2 and −1/2 defects were then selected, and the nematic contour joining them was integrated from the
director field as the defects separated. (Fig. 2f and Supplementary Movie 5.) Figure 2g shows the natural log of the
contour length versus time. One difference between defect and bead separation data is that the defect separation
often exhibits a slow transient immediately following creation of the defect pair. The linear fit is made after this
transient dies out. Supplementary Fig. 1e-1h shows four examples, which exhibit clear exponential growth with sim-
ilar separation rates r. A total of 10 defect pairs were analyzed with mean 〈r〉 = 0.0145 s−1 and standard deviation
σ = 0.0027 s−1. (See Supplementary Fig. 2.) The topological entropy is estimated by weighting the separation rates
as discussed above. The result from defect separation is remarkably consistent with that of bead separation. This
implies that the separation rate between defects is a good proxy for the growth of material curves anywhere in the
fluid, which means the separation rate could be extracted from other experimental runs in which only fluorescence
images were available.

S3. EXTENSION OF DEFECT TRAJECTORIES.

When a positive and negative defect annihilate, we insert two “extinct” defects that are passively advected in the
fluid using the PIV velocity field. The same applies going backward in time when two defects are born. Furthermore,
when a defect (or extinct defect) strikes the boundary of the image domain, the trajectory is fixed to the boundary
and slides along the boundary according to the projection of the velocity normal to the director. This applies when
going back in time as well, when a trajectory first enters the domain. In this manner, every defect trajectory exists
from the first frame to the final frame.

S4. FINITE-SIZE CORRECTION TO BRAIDING ENTROPY.

The E-tec topological entropy computation must be corrected for the finite size of the image domain D. This is
because the trajectories that exit D are artificially fixed to the boundary, whereas the physical trajectories would
engage in more braiding at the boundary of D, increasing the entropy. We estimate this extra entropy as follows.
First, we distinguish between two formal dynamical systems: the full unrestricted dynamical system of the active
nematic and the system restricted to the image domain D. We denote by λf and Hf the Lyapunov exponent and
metric entropy of the full dynamical system, respectively; λr and Hr are the same quantities for the restricted system.
We assume both systems can be modelled as uniformly hyperbolic systems. For such systems, it is known that
λ = H + r, where λ and H are the Lyapunov exponent and metric entropy and r is the escape rate [48]. The full
system has no escape, so λf = Hf . For the restricted system, we have λr = Hr+r. Because the Lyapunov exponent is
computed as a space and time average (see Supplementary Section S5), and because the image domain D is assumed
to adequately sample the statistics of the full system, we find λr = λf . Thus, Hf = Hr + r. Since the topological
entropy is approximately equal to the metric entropy, we take r to be a correction to the topological entropy as well,
so hbraid = hEtec+r, where hbraid = hf and hEtec = hr are the topological entropies for the full and restricted systems,
respectively.

S5. COMPUTATION OF LYAPUNOV EXPONENTS.

The standard definition of the Lyapunov exponent is based on the separation rate of nearby trajectories evaluated
over long time intervals. The behavior of nearby trajectories can be evaluated by the derivative of the flow map F t

t0
,

which maps an initial point r0 in the fluid at time t0 to the point r(t) = F t
t0
(r0) at time t. Since we are interested

here in (approximately) area-preserving 2D flows, we focus on the single positive Lyapunov exponent. A finite-time
approximation to the Lyapunov exponent can be computed as (ln(µ(r0, t)))/t where µ(r0, t) is the maximum of
||m̂ · ∇F t

t0
||, maximized over all unit vectors m̂. The quantity µ(r0, t) is also equal to the largest singular value of

∇F t
t0

or one-half the largest eigenvalue of (∇F t
t0
)T∇F t

t0
. Here we define (∇F t

t0
)m̂ = m̂ ·∇F t

t0
. One special property of
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the nematic system is that its extensile nature dictates that the direction of largest stretching m̂ is along the nematic
director n̂, which is known from the images of the microtubules. So, we do not have to search for the maximizing
vector, which significantly simplifies the Lyapunov exponent computation. Furthermore, the direction of maximum
stretching n̂ does not depend on the final time, a fact that is not true for a general flow. Thus,

µ(r0, t) = |n̂(t0) · ∇F t
t0
· n̂(t)|

= |[(∇F t
t0
)n̂(t0)] · n̂(t)|. (2)

Here n̂(t) = n̂(r(t), t) is the nematic director at position r(t) and time t. Now, the finite-time Lyapunov exponent
(ln(µ(r0, t)))/t generally depends on the initial position and on the final time. The (infinite-time) Lyapunov exponent
is obtained as the limit

λ (r0) = lim
t→∞

1

t
ln(µ(r0, t)) (3)

= lim
t→∞

1

t
ln ||n̂(t0) · ∇F t

t0
|| (4)

= lim
t→∞

1

t
ln |n̂(t0) · ∇F t

t0
· n̂(t)|. (5)

The fact that this limit exists is guaranteed by Oseledec’s Multiplicative Ergodic Theorem [49]. Furthermore, this
theorem guarantees that, assuming the fluid is sufficiently well mixed (ergodic), the position dependence drops out of
the Lyapunov exponent, λ (r0) = λ . We adopt this assumption here.
Next, the map gradient satisfies the differential equation

d

dt
∇F t

t0

∣

∣

∣

r0

= ∇v
∣

∣

∣

(t,r(t))
∇F t

t0

∣

∣

∣

r0

. (6)

The solution to this equation can be written formally with the time-ordered integral

∇F
tf
t0

∣

∣

∣

r0

= T exp

[
∫ tf

t0

∇v
∣

∣

∣

(t,r(t))
dt

]

, (7)

which yields the following expression for the Lyapunov exponent

λ (r0) = lim
tf→∞

1

tf
×

ln

∣

∣

∣

∣

n̂(t0) · T exp

[
∫ tf

t0

∇v
∣

∣

∣

(t,r(t))
dt

]

· n̂(tf )
∣

∣

∣

∣

. (8)

We would like to use ergodicity to replace the time integral with a spatial integral. In general, this is not possible
due to the noncommuting nature of the ∇v terms. However, for this system we know that the direction of maximal
expansion is n̂. Let us thus consider the following differential equation for µ instead

d

dt
µ(r0, t) =

[(

d

dt
∇F t

t0

)

n̂(t0)

]

· n̂(t)+

[(∇F t
t0
)n̂(t0)] ·

d

dt
n̂(t). (9)

The second term vanishes because (∇F t
t0
)n̂(t0) points in the direction n̂(t) and because dn̂(t)/dt points perpendicular

to n̂(t), since n̂(t) has unit norm. Substituting Eq. (6) into Eq. (9) yields

d

dt
µ(r0, t) =

[(

∇v
∣

∣

∣

(t,r(t))
∇F t

t0

∣

∣

∣

r0

)

n̂(t0)

]

· n̂(t)

= n̂(t0) · ∇F t
t0

∣

∣

∣

r0

· ∇v
∣

∣

∣

(t,r(t))
· n̂(t)

=

(

n̂(t0) · ∇F t
t0

∣

∣

∣

r0

· n̂(t)
)(

n̂(t) · ∇v
∣

∣

∣

(t,r(t))
· n̂(t)

)

= µ(r0, t)

(

n̂(t) · ∇v
∣

∣

∣

(t,r(t))
· n̂(t)

)

. (10)
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The solution to this equation is

µ(r0, tf ) = exp

(
∫ tf

t0

n̂(t) · ∇v
∣

∣

∣

(t,r(t))
· n̂(t) dt

)

. (11)

From Eq. (3), we thus have

λ = lim
tf→∞

1

tf

∫ tf

t0

n̂(t) · ∇v
∣

∣

∣

(t,r(t))
· n̂(t) dt

= 〈n̂ · ∇v · n̂〉 , (12)

where the angled brackets represent the average over space and time. The last step follows from Birkhoff’s ergodic
theorem. (Actually, Birkhoff’s result applies to autonomous flows and only uses the spatial average. We are making
the assumption that our nonautonomous system is sufficiently statistically stationary in time that we can perform a
time average.) The spatial average should be made with respect to an invariant density. We assume density variations
are small enough to use the uniform density.
Our knowledge of the velocity field comes from PIV analysis of experimental movies of the microtubules. We are

confident in the PIV velocity perpendicular to the director field, but not parallel to it. Thus, we are not confident in
the direct computation of Eq. (12) from the tangential component of velocity. However, we can use area-preservation
to recast this in terms of the perpendicular component of velocity. Local area-preservation means that the divergence
of the velocity field vanishes, and thus

n̂ · ∇v · n̂ = −n̂⊥ · ∇v · n̂⊥, (13)

where n̂⊥ is the unit vector perpendicular to n̂. We actually don’t need this result to hold locally. We only need that
divergence is zero on average, so that

〈n̂ · ∇v · n̂〉 = −〈n̂⊥ · ∇v · n̂⊥〉, (14)

where the average is over all of space and time. In summary then, we have

λ = −
〈

n̂⊥ · ∇v · n̂⊥
〉

. (15)

This formula for λ has a simple geometric interpretation. The quantity −n̂⊥ ·∇v · n̂⊥ is the rate at which neighboring
nematic contours approach one another. In general this rate varies somewhat in space and time, and hence one must
average to get the overall Lyapunov exponent.

Supplementary Fig. 3 is a histogram of −n̂⊥ · ∇v · n̂⊥ for all PIV gridpoints and all frames. The black vertical line
is the mean −〈n̂⊥ · ∇v · n̂⊥〉 = 0.0120 s−1, which we take to be the Lyapunov exponent. We checked the robustness
of the mean with respect to different settings for the PIV analysis in PIVlab. These gave a variation of about 5% of
the mean. We use this percentage as the standard error for the value of the Lyapunov exponent computed from the
PIV data.

Recent work [17, 21, 23] has also employed the PIV velocity gradient, using the Okubo-Weiss parameter − det(∇v).
However, there are important differences between the Okubo-Weiss parameter and our computation of the Lyapunov
exponent. Specifically, the Okubo-Weiss parameter is used to distinguish predominantly rotational motion in the
lab frame (negative parameter values) from predominantly stretching behavior (positive parameter values). In
contrast, when computing the Lyapunov exponent, we use only one component of the velocity gradient, the diagonal
component in the direction perpendicular to the nematic director. This provides solely a measure of local stretching,
and is independent of the local rotation. In our approach, a positive value of this diagonal component indicates
that neighboring side-by-side microtubules are separating from each other, whereas a negative value indicates that
they are being compressed together. Finally, we note that the Lyapunov exponent is fundamentally a Lagrangian
concept, being computed along an advected fluid parcel, whereas the Okubo-Weiss field is fundamentally Eulerian,
being referenced to the lab frame.

[48] Lai, Y.-C. & Tél, T. Transient Chaos (Springer, New York, NY, 2010).
[49] Young, L.-S. Mathematical theory of lyapunov exponents. Journal of Physics A: Mathematical and Theoretical
46, 254001 (2013).
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FIG. S4. The distribution of local Lyapunov exponents computed from the PIV velocity field of the fluorescence data
at 50 µM ATP concentration. The vertical line is the mean 0.0120 s−1 of the distribution.

FIG. S5. Comparison of the nondimensionalized topological entropy computed from the stretching rate of nematic
contours between beads (h′

bead) and between topological defects (h′

defect). Entropies are plotted as a function of
varying the ATP concentration. Over the entire range of ATP concentrations, the two techniques agree within error
bars.
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FIG. S6. Experimental setup schematics. (a) The flow cell is constructed using two strips of double-sided tape
to create a channel on a hydrophobic glass slide. A pre-treated hydrophilic cover-slip is placed on top to seal
the flow-cell. The aqueous protein solution sits on top of a layer of oil inside the flow cell. (b) To sediment the
microtubule/kinesin bundles to the 2D oil-water interface, the flow cell is placed at the bottom of a swinging bucket
rotor and centrifuged at 350 rpm for 42 min.

List of Supplementary Movies

1. Fluorescence microscope movie of the microtubule/kinesin active nematic at 50 µM ATP concentration.

2. Fluorescence microscope movie of the active nematic with topological defects tracked at 50 µM ATP concentra-
tion. +1/2 defects are shown by white circles and -1/2 defects are shown by yellow triangles.

3. Optical microscope bright field movie of the active nematic with tracked beads marked in blue and numbered.
50 µM ATP concentration.

4. Optical microscope bright field movie of the active nematic at 50 µM ATP concentration with tracked beads
marked and numbered. A nematic contour growing between a pair of tracked beads is shown in blue.

5. Fluorescence microscope movie of the active nematic at 50 µM ATP concentration with topological defects
marked and tracked. +1/2 defects are shown by white circles and -1/2 defects are shown by yellow triangles. A
nematic contour growing between a pair of tracked defects is shown in blue.

6. Braiding motion of the tracked +1/2 defects with E-tec triangulation showing the growth of the stretched mesh
(red lines). 50 µM ATP concentration.


