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Abstract. We present a novel computational framework for character-
izing signal in brain images via nonlinear pairing of critical values of the
signal. Among the astronomically large number of different pairings pos-
sible, we show that representations derived from specific pairing schemes
provide concise representations of the image. This procedure yields a
“min-max diagram” of the image data. The representation turns out to
be especially powerful in discriminating image scans obtained from dif-
ferent clinical populations, and directly opens the door to applications in
a variety of learning and inference problems in biomedical imaging. It is
noticed that this strategy significantly departs from the standard image
analysis paradigm — where the ‘mean’ signal is used to characterize an
ensemble of images. This offers robustness to noise in subsequent statisti-
cal analyses, for example; however, the attenuation of the signal content
due to averaging makes it rather difficult to identify subtle variations.
The proposed topologically oriented method seeks to address these limi-
tations by characterizing and encoding topological features or attributes
of the image. As an application, we have used this method to character-
ize cortical thickness measures along brain surfaces in classifying autistic
subjects. Our promising experimental results provide evidence of the
power of this representation.

1 Introduction

The use of critical values of measurements within classical image analysis and
computer vision has been relatively limited so far, and typically appear as part
of simple preprocessing tasks such as feature extraction and identification of
“edge pixels” in an image. For example, first or second order image derivatives
may be used to identify the edges of objects (e.g., LoG mask) to serve as the
contour of an anatomical shape, possibly using priors to provide additional shape
context. Specific properties of critical values as a topic on its own, however, has
received less attention. Part of the reason is that it is difficult to construct a
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streamlined linear analysis framework using critical points, or values of images.
Also, the computation of critical values is a nonlinear process and almost always
requires the numerical estimation of derivatives. In some applications where this
is necessary the discretization scheme must be chosen carefully, and remains
an active area of research. It is noticed that in most of these applications, the
interest is only in the stable estimation of these points rather than (1) their
properties, and (2) how these properties vary as a function of images. We note
that in brain imaging, on the other hand, the use of extreme values has been
quite popular in other types of problems. For example, these ideas are employed
in the context of multiple comparison correction using random field theory [9].
Recall that in random field theory, the extreme of a statistic is obtained from
an ensemble of images, and is used to compute the p-value for correcting for
correlated noise across neighboring voxels. Our interest in this paper is to take
a topologically oriented view of the image data. We seek to interpret the critical
values in this context and assess their response as a function of brain image
data. In particular, we explore specific representation schemes and evaluate the
benefits they afford with respect to different applications.

The calculation of the critical values of a certain function of images (e.g.,
image intensities, cortical thickness, curvature maps etc.) is the first step of our
procedure. This is performed after heat kernel smoothing [3]. It is the second step
which is more interesting, and a central focus of the paper. The obtained critical
values are paired in a nonlinear fashion following a specific pairing rule to produce
so-called min-max diagrams. These are similar to the theoretical construct of
persistence diagrams [0] in algebraic topology and computational geometry, but
have notable differences (discussed in §2.2)). Min-max diagrams resemble scatter
plots, and lead to a powerful representation of the key characteristics of their
corresponding images. We discuss these issues in detail, and provide a number
of examples and experiments to highlight their key advantages, limitations, and
possible applications to a wide variety of medical imaging problems.

This paper makes the following contributions: (1) We propose a new topo-
logically oriented data representation framework using the min-max diagrams;
(2) We present a new O(nlogn) algorithm for generating such diagrams with-
out having to modify or adapt the complicated machinery used for constructing
persistence diagrams [2] [6]; (3) Using brain MRI, we demonstrate that using
the min-max diagram representation, upon choice of a suitable kernel function,
the subsequent classification task (e.g., using support vector machines) becomes
very simple. In other words, because this representation captures the relevant
features of the image nicely, it induces separability in the distribution of clini-
cally different populations (e.g., autism vs. controls). We show that significant
improvements can be obtained over existing techniques.

2 Main Ideas

Consider measurements f from images given as

F(t) = ult) + €(t), t € M C RY, (1)
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where p is the unknown mean signal (to be estimated) and e is noise. The
unknown mean signal is estimated via image smoothing over M, and denoted
as p. Traditionally, the estimate for the residual f — f is used to construct a
test statistic corresponding to a hypothesis about the signal. The mean signal
may not be able to fully characterize complex imaging data, and as a result,
may have limitations in the context of inference. Hence, we propose to use a
new topologically motivated framework called the min-max diagram, which is
the scatter plot of specific pairing of critical values. Intuitively, the collection of
critical values of pu can approximately characterize the shape of the continuous
signal p. By pairing critical values in a nonlinear fashion and plotting them, we
construct the min-max diagram. We will provide additional details shortly.

2.1 Heat Kernel Smoothing

In order to generate the min-max diagram, we need to find the critical values of
w. It requires estimating the unknown signal smoothly so that derivatives can be
computed. We avoid the diffusion equation based implicit smoothing techniques
[1] since the approach tend to result in unstable derivative estimation. Instead,
we present a more flexible spectral approach called heat kernel smoothing that
explicitly represents the solution to the diffusion equation analytically [3]. Heat
kernel smoothing analytically solves the following equation

oF
e = AF. Flt,0 =0) = (1),

The solution is given in terms of eigenfunctions 1, (and the corresponding eigen-
values A\ ) of the Laplace-Beltrami operator, i.e., Af + Af = 0. Define the heat
kernel K, as

Z e M7y () ().

k=0
The heat kernel smoothing estimate of p is then given by

e’}

/K (t,s)f(s) dn(s) = Ze_)‘kgfkl/}k(t)- (2)

Examples. For Ml = [0,1], with the additional constraints f(¢t + 2) = f(t)
and f(t) = f(—t), the eigenfunctions are 1(t) = 1,95(t) = V2 cos(kwt) with
the corresponding eigenvalues A\, = k2?x2. For simulation in Fig. [ we used
o = 0.0001 and truncated the series at the 100-th degree.

For M = S2, the eigenfunctions are the spherical harmonics Yy, (6, ) and
the corresponding eigenvalues are A; = [(Il + 1). The bandwidth ¢ = 0.001 and
degree k = 42 was used for cortical thickness example in Fig. 2l We found that
bandwidths larger than 0.001 smooth out relevant anatomical detail.

The explicit analytic derivative of the expansion (2) is simply given by

=Y e N LiDYi(t)

1=0
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Fig. 1. The birth and death process of sublevel sets. Here a < b < ¢ < f are minimums
and d < e < g are maximums. At y = b, we add a new component to the sublevel
set. When we increase the level to y = d, we have the death of the component so we
pair them. In this simulation, we pair (f,g), (c,e) and (b,d) in the order of parings
generated in Algorithm 1.

where D is 2 for [0,1] and (5, aézo) for S2. For the unit interval, the derivatives
are Dy (t) = —v/2lwsin(int). For S2, the partial derivatives with respect to 6
can be given in slow iterative formulas. To speed up the computation through
the paper, the convexity of the first order neighbor of a vertex in a cortical mesh
is used in determining a critical point. Fig. 2 shows the result of minimum and

maximum detection after heat kernel smoothing.

2.2 Min-Max Diagram

A function is called a Morse function if all critical values are distinct and non-
degenerate, i.e., the Hessian does not vanish. For images (where intensities are
given as integers), critical values of intensity may not all be distinct; however,
the underlying continuous signal x in ([IJ) can be assumed to be a Morse function.
For a Morse function fi, define a sublevel set as R(y) = fi~!(—00, y]. The sublevel
set is the subset of M satisfying ji(t) < y. As we increase y from —oo, the number
of connected components of R(y) changes as we pass through critical values.

Let us denote the local minimums as g1, - - - , g, and the local maximums as
hi,--- ,hy. Since the critical values of a Morse function are all distinct, we can
strictly order the local minimums from the smallest to the largest as g(1) < g(2) <
+++ < g(m) and similarly for the local maximums as h(;) < by < -+ < h(y) by
sorting them. At each minimum, the sublevel set adds a new component while
at a local maximum, two components merge into one. By keeping track of the
birth and death of components, it is possible to compute topological invariants
of sublevel sets such as Euler characteristics and Betti numbers (see [0]).

Simulation. The birth and death processes are illustrated in Fig. [Il where the
gray dots are simulated with Gaussian noise with mean 0 and variance 0.22 as

f(t) =t +7(t —1/2)* + cos(87t)/2 + N(0,0.2%).
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Fig. 2. Heat kernel smoothing of cortical thickness and surface coordinates with o =
0.001 and degree k = 42. For better visualization, it has been flattened onto the unit
sphere. The white (black) crosses are local minimums (maximums). They will be paired
in a specific manner to obtain the min-max diagram. The min-max diagram is invariant
to whether it is constructed from the cortical surface or from the unit sphere.

The signal is estimated and plotted as the red line using the 1D heat kernel
smoothing in 211 Let us increase y from —oo to oco. At y = b, we add a new
component to the sublevel set R(y). When we increase the level to y = d, we
have the death of the component so we pair b and d. In this simulation, we need
to pair (b,d), (c,e) and (f,g).

Pairing Rule. When we pass a maximum and merge two components, we pair
the mazimum with the higher of the minimums of the two components [6]. Doing
so we are pairing the birth of a component to its death. Note that the paired
critical values may not be adjacent to each other. The min-max diagram is then
defined as the scatter plot of these pairings.

For higher dimensional Morse functions, saddle points can also create or merge
sublevel sets so we also have to be concerned with them. If we include saddle
points in the pairing rule, we obtain persistence diagrams [2] [6] instead of min-
max diagrams. In one dimension, the two diagrams are identical since there
are no saddle points in 1D Morse functions. For higher dimensions, persistence
diagrams will have more pairs than min-max diagrams. The addition of the
saddle points makes the construction of the persistence diagrams much more
complex. We note that [I0] presents an algorithm for generating persistence
diagrams based on filteration of Morse complexes.

Algorithm. We have developed a new simpler algorithm for pairing critical val-
ues. Our algorithm generates min-max diagrams as well as persistence diagrams
for 1D Morse functions. At first glance, the nonlinear nature of pairing does
not seem to yield a straightforward algorithm. The trick is to start with the
maximum of minimums and go down to the next largest minimum in an itera-
tive fashion. The algorithm starts with g(,,) (step 3). We only need to consider
maximums above g,y for pairing. We check if maximums h; are in a neighbor-
hood of g(;), i.e. hj ~ g(m). The only possible scenario of not having any larger
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Fig.3. Min-max diagram for 11 control (blue) and 16 autistic (red) subjects. The
pairings for autism often occurs closer to y = x line indicating there is greater high
frequency noise in autism. This observation is consistent with the autism literature
where it has been found that there is greater anatomical variability in autism subjects
than the controls subjects. This figure suggests that the min-max diagram may indeed
be useful for discriminating populations.

maximum is when the function is unimodal and obtains the global minimum
g(m)- In this situation we have to pair (g(,), o0). Since oo falls outside our ‘plot’,
we leave out g(,,) without pairing. Other than this special case, there exists at
least one smallest maximum A, in a neighborhood of g, (intuitively, if there
is a valley, there must be mountains nearby). Once we paired them (step 4), we
delete the pair from the set of extreme values (step 5) and go to the next max-
imum of minimums g(,,—1) and proceed until we exhaust the set of all critical
values (step 6). Due to the sorting of minimums and maximums, the running
time is O(nlogn). This may also be implemented using a plane-sweep approach
[4] which also gives a running time of O(nlogn). In this case, pairing will be
based on how points enter or leave the queue of “events” as the plane (or line)
sweeps in the vertical direction.

Algorithm 1 . Iterative Pairing and Deletion
H —{hy, - ,hp}.

14— m.

]’L;k = argminhjeH{hj|hj > g(i),hj ~ g(z)}
If hi # 0, pair (g, hy)

H—H-h}.

Ifi>1,i—i—1 and go to Step 3.

S G Lo o =

Higher dimensional implementation is identical to the 1D version except how
we define neighbors of a critical point. The neighborhood relationship ~ is es-
tablished by constructing the Delaunay triangulation on all critical points.

3 Experimental Results

We used an MRI dataset of 16 highly functional autistic subjects and 11 nor-
mal control subjects (aged-matched right-handed males). These images were
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Fig. 4. (a) Min-max diagram of an autistic subject from Fig.[2l (b) The concentration
map of the min-max diagram is constructed by discretizing the square [1, 7] into 50°
uniform pixels and evaluating the number of pairs within a circle (r = 0.2) centered on
the pixel. (c¢) The t-test statistic (autism - control) shows significant group differences
in red regions (¢ > 3.61) vs blue (¢ < —4.05) regions at level 0.05 (corrected). (d) PDF
of the concentration map.

obtained from a 3-Tesla GE SIGNA scanner, and went through intensity nonuni-
formity correction, spatially normalized into the MNI stereotaxic space, and tis-
sue segmentation. A deformable surface algorithm [7] was used to obtain the
inner cortical surface by deforming from a spherical mesh (see Fig.2l). The outer
surface M was obtained by deforming the inner surface further. The cortical
thickness f is then defined as the distance between the two surfaces, this mea-
sure is known to be relevant for autism. Since the critical values do not change
even if we geometrically change the underlying manifold from M to S2, the min-
max diagram must be topologically invariant as well. Therefore, the min-max
diagram is constructed on the unit sphere by projecting the cortical data on
to the sphere. Fig. [3] shows the superimposed min-max diagram for 11 control
(blue) and 16 autistic (red) subjects. A single subject example is shown in Fig.
[ Pairings for autistic subjects are more clustered near y = z indicating higher
frequency noise in autism. More pairing occurs at high and low thickness values
in the controls showing additional topological structures not present in autism.

Statistical Inference. We have formally tested our hypothesis of different topo-
logical structures between the groups. Given a min-max diagram in the square
[1,7]2, we have discretized the square with the uniform grid such that there are
a total of 502 pixels (see Fig. @b). A concentration map of the pairings was
obtained by counting the number of pairs in a circle of radius 0.2 centered at
each pixel. The inference at 0.05 level (corrected for multiple comparison) was
done by performing 5000 random permutations on the maximum of ¢-statistic
of concentration maps (Fig. @tc).

If data is white noise, pairings occur close to y = x line. The deviation from
y = z indicates signal. In the t-test result, we detected two main clusters of pair-
ing difference. High number of pairings occurs around (2,6) for controls and (4,4)
for autism. This is only possible if surfaces have more geometric features/signal
in the controls. On the other hand, the autism shows noisier characteristic.
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SVM Based Classification. Our final set of experiments were performed to
evaluate the usefulness of min-max diagrams for classification at the level of in-
dividual subjects. We view the concentration map of each min-max diagram as
a PDF (Fig. ), which allows easy construction of appropriate kernels and mak-
ing use of Support Vector Machines (SVM). We evaluated linear and Gaussian
weighted kernels (using Bhattacharya distance between the two PDFs [5]) and
found that the accuracy results were quite similar. To perform our evaluations
relative to existing techniques, we used data shared with us by the authors in
[8]. We summarize our results next.

For k-fold cross-validation, by varying & € {9,---,2}, and performing 30
random runs for each k value (calculating the mean accuracy), we consistently
achieved near perfect accuracy. The algorithm performs exceedingly well for 2-
fold cross-validation as well — when only one half of the data is used as the
training set. We incrementally decreased the size of the training set (up to 35%)
and found that the algorithm still gives more than 96% accuracy. A simple com-
parison with 90% accuracy reported in [8] that uses the same data suggests that
the improvements in accuracy comes primarily from our min-max representation.

4 Conclusions

We have presented a unified framework of the min-max diagram based signal
characterization in images. While unconventional, we believe that this represen-
tation is very powerful and holds considerable promise for a variety of learning
and inference problems in neuroimaging. To demonstrate these ideas, we applied
the methods to characterize cortical thickness data in a dataset of autistic and
control subjects, via the use of a new Iterative Pairing and Deletion algorithm
(to generate the min-max diagram). Our results indicate that significant im-
provements in classification accuracy are possible (relative to existing methods)
merely by representing the input data as a set of min-max diagrams. Finally, we
note that this paper only scratches the surface, and future research will clearly
bring up other applications where these ideas might be useful.
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