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Topological characterizations of an extended

Su–Schrieffer–Heeger model
Dizhou Xie1, Wei Gou1, Teng Xiao1, Bryce Gadway2 and Bo Yan1,3

The Su–Schrieffer–Heeger (SSH) model perhaps is the easiest and the most basic model for topological excitations. Many variations
and extensions of the SSH model have been proposed and explored to better understand both fundamental and novel aspects of
topological physics. The SSH4 model has been proposed theoretically as an extended SSH model with higher dimension (the
internal dimension changes from two to four). It has been proposed that the winding number in this system can be determined
through a higher-dimensional extension of the mean chiral displacement measurement, however, this has not yet been verified in
experiment. Here, we report the realization of this model with ultracold atoms in a momentum lattice. We verify the winding
number through measurement of the mean chiral displacement in a system with higher internal dimension, we map out the
topological phase transition in this system, and we confirm the topological edge state by observation of the quench dynamics
when atoms are initially prepared at the system boundary.
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INTRODUCTION

Topological phases represent an exotic form of matter with
geometrical origins. These phases can emerge without any
symmetry breaking, which conflicts with the traditional
Ginzburg–Landau paradigm. The topological phase is character-
ized by global properties rather than a local order, making it very
robust to certain local perturbations; this topological robustness
makes emergent topological excitations a promising candidate for
quantum computing. Since the discovery of topological phases in
the 1980s, comprehensive studies both in theory and experiment
have been carried out to create, classify, and comprehend these
exotic phases. Various systems across a range of platforms have
been engineered to show topological properties, such as the
solid,1,2 photonic,3,4 atomic,5–9 acoustic,10,11 and electronic12,13

systems.
The ultracold atom system provides a powerful tool to study the

exotic topological phases, because all the degrees of freedom are
precisely controlled. Using optical lattices formed by laser
interference, some topological models that are hard to study in
other quantum systems can be realized in ultracold atom
experiments, such as the famous Haldane model.14 The band
structure of the lattice can be engineered by choosing different
lattice geometries (such as triangular,15 kagome16) or different
energy bands,17,18 and this approach of band structure engineer-
ing has been essential for introducing topological properties in a
cold atom setting. Spin–orbit coupling (SOC) and artificial gauge
fields can also be synthesized using light-atom coupling,19–21 and
they have been very important for studying the topological
insulators. One important advantage of ultracold atom systems is
the natural ability to study dynamical processes,22,23 which is
nearly impossible for other systems such as electronic materials.
By suddenly quenching a system into the topological phase of a

Hamiltonian, the resulting dynamical processes provide rich
information, and can reveal the underlying topology of the
system.
Among the wide variety of topological models, the

Su–Schrieffer–Heeger (SSH) model is the most basic and one of
the most important models in describing band topology in
condensed matter physics.24–28 In order to study additional
topological physics, various extended models have been pro-
posed. By adding a periodic modulation to the tunneling or the
on-site energy, one can study the driven SSH model.11,29,30 By
adding long-range tunnelings between different sites, such as the
next nearest-neighbor tunneling, one can study the long-range
hopping SSH model.31,32 By extending the one-dimensional model
to two chains, one can study the Creutz ladder model.33,34

One direct extension of the SSH model is the so-called SSH4
model.35 By changing the site period of the unit cell from two to
four, one can transform the standard SSH model into the
considerably richer SSH4 model. As shown in Fig. 1a, the tunneling
rates between pairs of sites repeat every four lattice sites, and we
label the fundamental tunneling terms as {ta, tb, tc, td}. We
additionally label the sublattice site positions within each unit cell
as {A1, B1, A2, B2}. In the situation where ta= tc and tb= td, the
SSH4 model reduces to the common SSH model. For a SSH4
model with infinite sites, the topological phase is determined by
the tunneling ratio γ= bd/ac. If γ > 1, it is topologically nontrivial
and can hold topological, zero-energy edge states. If γ < 1, it is
topologically trivial and no edge state exists. In Fig. 1b, we plot the
eigenenergy of the SSH4 system with six unit cells versus 1/γ with
six unit cells. Here, we choose tb= tc= td= 2π × 1 kHz and vary ta.
There exist states at zero energy when 1/γ < 1, and these states,
the topological edge states, can be shown to exist at the boundary
of the system. Figure 1c shows one typical population distribution
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for the edge state when 1/γ= 1/2. The population is mainly
distributed within the first unit cell.
One of the interesting features of the SSH4 model lies in the

much wider parameter space. The larger parameter space of the
SSH4 model with an enhanced unit cell is useful for studying
topological properties with higher dimensions5,36,37 and poten-
tially also a higher winding number.38 When periodical driving is
applied to the SSH4 system, an effectively higher-dimensional
quantum model can be realized. Reference35 proposed an
example of forming a discrete-time quantum walk with effectively
four dimensions by driving the SSH4 model. An interesting feature
of the SSH4 model relates to the methods for detecting the
winding number in such systems. The mean chiral displacement
has been proposed and experimentally verified as an observable
that reveals the winding number in the standard SSH model.8,39

Reference35 provides a generalized description of how this
observable can be extended to higher-dimensional systems,
however, it has yet to be verified in experiment. In this paper,
we have realized the higher-dimensional (in the internal dimen-
sion of the unit cell) SSH4 model with ultracold atoms in
momentum space, which would be quite difficult to engineer in
real space. We have verified the utility of the mean chiral
displacement measurement in this higher-dimensional model,
using it to map out the topological phases of the SSH4 system.

RESULTS

In experiment, we use ultracold atoms in a momentum lattice to
realize the SSH4 model. Such quantum simulator is a versatile
platform for studying topological models.40 We first produce a
87Rb Bose–Einstein condensate (BEC) in a crossed dipole trap.41

The BEC contains about 6 × 104 atoms, and the trap frequencies
are ~2π × (90, 90, 90) Hz. We use an additional 1064-nm beam to
Raman couple the different momentum states. As shown in Fig.
2a, the incoming beam (ω+) passes through the atomic BEC and is
then reflected back upon itself, in the antiparallel direction. It goes
through two AOMs before again passing through the cloud of
atoms. One AOM is driven by f0= 100-MHz radio frequency (RF)
and the +1 order is chosen, while for the second one, f= f0+ Σfn
and the −1 order is chosen. Atoms can absorb a photon from one
direction (ω+) and undergo stimulated emission of a photon into

the opposite direction (ω
−
). Thus, a total two-photon recoil

momentum p0= 2ℏk is transferred to the atom. As shown in Fig.
2b, each pair of the Raman beams fωþ � ωn

�g couple the
momentum states from {np0} to {(n + 1)p0}. Hereafter, we label
the momentum state with momentum np0 as |n〉. The momentum
states {...,−2, −1, 0, 1, 2, ...} form an effective lattice structure in the
momentum space. fn is set to be (2n+ 1) × 4Er (Er= h × 2.03 kHz) to
resonantly couple different momentum states from |n〉 to |n+ 1〉.
In our experiment, we detect the atomic distribution by suddenly
turning off all of the laser beams and allowing atoms to fall in free
space for 20 ms, such that atoms in different momentum states
evolve to different positions. Then we take an absorption image
and count the number of atoms in the different momentum
states.
This Raman coupled momentum lattice structure can be

described by a simple tight-binding model. With the rotating-
wave approximation, the Hamiltonian is42

H ¼
X

n

tn½e
iϕnðjψ̂nþ1ihψ̂nj þ H:c:Þ�; (1)

where ϕn are the relative phases for different tunnelings, which
are determined by the relative phases between lasers with
different frequencies. In our case, all these phases are set to be
zero. tn are the tunneling rates, determined by the Raman
coupling strength of each Raman beam pair, tn=Ω+Ωn/4Δ. They
can be adjusted by changing the laser intensity of each discrete
frequency component. If the tn are set to take different values for
the alternating tunneling links, the Hamiltonian can be mapped to
the standard SSH model. If tn are set to be periodic over every four
sites, this system realizes the SSH4 model.
For one-dimensional chiral models, the winding number υ is an

important topological invariant used to characterize the
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Fig. 1 a The diagrammatic sketch of the SSH4 model. Tunneling
terms are periodic with a unit cell of four sites. b The eigenenergy of
each eigenstate for different γ with the SSH4 model for N= 6. tb= tc
= td= 2π × 1 kHz, and ta varies. The red lines show that there are
eigenstates with zero energy when 1/γ < 1, which correspond to the
existence of topological edge states. When 1/γ > 1, there are no
zero-energy eigenstates. For a large system (large N number), a
sharp phase transition happens at γ= 1. c The probability amplitude
and the population distribution for an edge state when 1/γ= 0.5, as
circled in b

Fig. 2 a The experimental setup for multifrequency Raman
coupling. The incoming Raman beam passes the BEC, then passes
two AOMs, and finally propagates back to the BEC. One AOM is
modulated with a frequency f0, and the other one is modulated with
the multifrequency signal f0 þ

P
fn . One AOM is operated in the

positive first order. while the other is operated in the negative first
order. So the two Raman beams on BEC differ in frequency by

P
fn. b

An illustration of the Raman processes driven by a pair of
Raman beams
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topological phase. The number of edge states on each edge is |υ|.
It can be measured by detecting the phase of a particle across the
Brillouin zone,24 and can also be measured with a quench
dynamics.35 The mean chiral displacement was recently intro-
duced to measure the winding number and has been conducted
in the photonic system39 and cold atom system8 for the SSH
model, and it is quite insensitive to disorder. The mean chiral
displacement is defined as

CðtÞ ¼ hΓmi; (2)

which quantifies the relative shift between the projections of the
state onto the eigenstates of the chiral operator Γ. Here m̂ is the
unit cell operator. The dynamics of C(t) converge to the winding
number υ for the long-time dynamics for initial states beginning
within one unit cell following8,39

υ ¼ TrðcΓmÞ; (3)

For the SSH4 model, we can choose the unit cell basis {A1, B1, A2,
B2}, so that the total mean chiral displacement operator takes the
form cΓm ¼ diagð:::; 1;�1; 1;�1; 2;�2; 2;�2; :::Þ. At higher dimen-
sion, in order to use the mean chiral displacement to measure the
winding number, we need to choose an orthogonal and complete
basis of a given sublattice.35 In our case, we prepare the initial
state at two orthogonal states (1,0,0,0) and (0,0,1,0), and measure
the mean chiral displacement C1(t) and C3(t), respectively. Then we
sum these two measures Ctotal(t)= C1(t)+ C3(t) to get the total
mean chiral displacement, which converges to the winding
number υ at long evolution times.
Figure 3 shows the experimental results of the mean chiral

displacement measurement. The RF driver of the AOM includes 24
discrete frequency teeth, so the unit cell number of this SSH4
model is N= 6. The initial state is prepared within the central unit
cell. By suddenly turning on the Raman couplings, the dynamics of
the evolution is recorded and the Ctotal(t)= C1(t)+ C3(t) is
extracted. To enter the different topological phases, we choose
the tunneling about ta= tc= td= 2π × 1 kHz, and vary the ratio
tb/ta. The left inset shows Ctotal(t) when γ < 1, it oscillates around
zero. The right inset shows Ctotal(t) when γ > 1, which rises up and
then oscillates around one. The dynamics of Ctotal(t) show
completely different behaviors in these two regimes. The blue
curves are the ideal numerical simulations according to Eq. (1),
which capture the main features of the experimental data. We

extract the averaged value and then plot it versus different γ, as
shown in Fig. 3. The error bars of the data points mainly stem from
uncertainty, due to the presence of a thermal fraction (about 10%
of the total population in our experiments). The red curve is the
theory prediction for an infinite number of unit cell N → ∞. When
N is a large number, the topological phase transition is sharp in
the thermodynamic sense. The blue dashed curve is a numerical
simulation with our experimental parameters for N= 6, in which
case, one finds a smooth transition between topologically trivial
and topologically nontrivial phases. Our data agree with the
theory quite well.
In addition to measuring the bulk topology through the mean

chiral displacement, we also directly detect the boundary
signatures of the topology through quench dynamics at the edge
of our SSH4 model. Figure 4 shows the typical experimental results
of edge quench dynamics. The BEC is prepared at the |0〉 state,
and then we turn on the Raman coupling and let the BEC evolve
under the SSH4 Hamiltonian. The parameters are chosen as ta= tc
= td= 2π × 0.5 kHz and tb= 2π × 1 kHz. Because γ > 1, the edge
states should exist under these conditions. For Fig. 4a, b, the
Raman beams are designed to couple the momentum states of
n= {0, 1, 2, ..., 19}. So, the initial state is prepared at the edge,
which is not exactly the eigenstate of the edge state, but has a big
overlap with its wavefunction. In this case, we will expect the
population to continuously remain at the |0〉 position. Figure 4a
displays the experimental data. The different positions along the x
direction relate to the different discrete momentum states, which
are labeled at the top of the picture. The time step of our
measurements is 50 μs. We see that the population in the |0〉 state
remains dominate over time, as expected. Figure 4b is the
theoretical simulation with ta= tc= td= 2π × 0.5 kHz and
tb= 2π × 1 kHz. The experimental and theoretically simulated
dynamics display good agreement. For initial preparations of a
bulk state, the system shows distinct dynamical behavior. For Fig.
4c, d, the Raman coupling is designed to couple n= {−11, ..., −1,
0, 1, ..., 12} states, such that the initial BEC state is in the bulk. The
population in |0〉 can be seen to nearly vanish, even at these
relatively short times. Figure 4c is the experimental data and Fig.
4d is the theoretical simulation with ta= tc= td= 2π × 0.5 kHz and
tb= 2π × 1 kHz. Again, we find generally good qualitative agree-
ment between theory and experiment in this case of bulk
injection. For both the edge and bulk injection cases, we observe
that the experiment and theory are in good agreement at short
time, but begin to deviate at longer times. Some possible sources
of this deviation, deserving future investigation, include Raman
laser-phase noise, the expansion and separation of the momen-
tum states, and atomic interactions.

DISCUSSION

To conclude, we have experimentally realized a new kind of
extended SSH model, the SSH4 model, in a momentum lattice
with ultracold atoms. We have measured the bulk topological
properties of this system through quench dynamics. We have
measured the winding number by means of the mean chiral
displacement, and the phase transition is mapped out. We have
found quite excellent agreement between the experimental data
and the mean chiral displacement theory, which shows a
robustness of this dynamical topological observable, even in the
presence of effects limiting the long-time dynamics. We attribute
this to the insensitivity of the mean chiral displacement to
disorders as confirmed in refs. 8,39 Our result is the first
experimental demonstration of the mean chiral displacement
predicted at higher dimension. In addition to our measurements
of the bulk topology, we confirm these results by directly
observing evidence for topological boundary states at the edge
of our SSH4 lattice.

Fig. 3 The measured total mean chiral displacement versus the
tunneling ratio γ. The black dots are experimental data. The blue
dashed line is the theoretical simulation with N= 6 unit cells. The
red dashed line is the theoretical simulation with N→∞, where a
sharp phase transition occurs at γ= 1. The insets show the two data
sets for γ < 1 and γ > 1, respectively. For these insets, the dots are the
experimental data and blue lines are the simulations. Error bars are
defined as the standard deviation
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METHODS

The experimental setup is shown in Fig. 5. Two dipole trap (DT) beams are
used as the final trap for our BEC. The waist size of the two DT beams is
about 70 μm. The trap frequencies of our DT are roughly ω= 2π × (90, 90,
90) Hz. There are roughly 6 × 104 atoms in our BEC. The Raman beams
make roughly a 7° angle with the DT2 beam, and have a size of roughly
230 μm at the position of the BEC. After the chamber, the Raman beam
passes through two AOMs and returns to the BEC position.
In order to reduce the momentum spread along Raman direction, we

reduce the power of the DT1 laser and increase the Raman beam incoming
powers at the same time. The trap frequency along Raman direction
becomes about 2π × 40 Hz. The ramp time is 0.4 s and an additional 0.1 s
allows for rethermalization of the atoms to avoid breathing or sloshing.
The incoming Raman beam is kept on and the intensity is stabilized. The
Raman coupling is pulsed on by turning on the two AOMs following the

BEC and allowing for the retroreflected beam to be turned on, as shown in
the left side of Fig. 5.
After the Raman pulse, all the dipole trap beams and the Raman beams

are turned off. Atoms fall freely in space. We take an absorption image
after 20ms. At this time, atoms with different momentums will occupy
different positions, as shown in Fig. 6a. In order to count the number of
atoms in different momentum states, we sum the image along the
top–down direction, and then fit it with a multi-Gaussian function. The size
of each Gaussian peak is set to be the same, and the distance between the
nearest peaks is set to be equal. In such constrained fits, the peak value of
each Gaussian function is proportional to the atom number at the different
momentum states.

DATA AVAILABILITY

The data sets generated and/or analyzed during this study are available from the

corresponding author on reasonable request.
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Fig. 4 Quench dynamics of the SSH4 model. a The initial state is prepared at the edge. b The theoretical simulations for the edge dynamics. c
The initial state is prepared within the bulk. d The theoretical simulations for the bulk state. When the initial state is prepared at the edge, the
population at the zero site is always dominant, while for the case of bulk injection, the zero-site population vanishes even for short quench
durations. These quench dynamics confirm the boundary correspondence of the bulk topology observed in Fig. 3

Fig. 5 a The experimental setup. Our BEC is created in an octagonal
chamber. Two dipole trap beams (DT1 and DT2) form the crossed
dipole trap. The Raman incoming beam is about 7° off-axis from the
beam DT2. The incoming Raman beam and the reflected Raman
beam are combined with a polarization beam splitter, they are σ+

and σ− at the chamber center. The probe direction is about 45° with
respect to the Raman direction
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Fig. 6 Detection method. a shows the absorption image of atoms
with 20-ms free expansion. Atoms in different momentum states
occupy different positions after this time-of-flight expansion. These
components are very well separated. b shows the multi-Gaussian
fitting. Each column of the image shown in a is summed, and the
size of each Gaussian function is set to be equal. As such, the peak
values for each column of the fit orders are proportional to the atom
numbers belonging to the different momentum orders
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