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Topological charge and angular momentum of light beams carrying optical vortices

M. S. Soskin, V. N. Gorshkov, and M. V. Vasnetsov
Institute of Physics, National Academy of Sciences of the Ukraine, Kiev 252650, Ukraine

J. T. Malos and N. R. Heckenberg
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We analyze the properties of light beams carrying phase singularities, or optical vortices. The transforma-

tions of topological charge during free-space propagation of a light wave, which is a combination of a Gaussian

beam and a multiple charged optical vortex within a Gaussian envelope, are studied both in theory and

experiment. We revise the existing knowledge about topological charge conservation, and demonstrate possible

scenarios where additional vortices appear or annihilate during free propagation of such a combined beam.

Coaxial interference of optical vortices is also analyzed, and the general rule for angular-momentum density

distribution in a combined beam is established. We show that, in spite of any variation in the number of

vortices in a combined beam, the total angular momentum is constant during the propagation.

@S1050-2947~97!09910-1#

PACS number~s!: 42.65.Sf, 42.50.Vk

INTRODUCTION

Light beams possessing phase singularities, or wave-front

dislocations @1,2# have been studied intensively in linear and

nonlinear optics @3–21#, to reveal their basic properties, and

for the sake of possible applications. At the singularity the

phase becomes undetermined and the wave amplitude van-
ishes, resulting in a ‘‘dark beam’’ within a light wave. Phase
singularities appear on wave fronts in diffuse light scattering,
when a light wave has a form of speckle field, and each
speckle has one screw wave-front dislocation in the vicinity
@3#, also known as an optical vortex @4#. At present, several
different techniques are used to generate ‘‘singular beams:’’
synthesized holograms @5,6#, phase masks @7–9#, active laser
systems @10–13#, and low-mode optical fibers @14#. Recently
the generation of phase singularities was observed as a result
of light wave-front deformations caused by self-action in
nonlinear media @15,16#.

The general result of these investigations is the origin of a
new chapter of modern optics and laser physics—singular
optics, which operates with terminology and laws quite new
to traditional optics. Phase singularities are topological ob-
jects on wave-front surfaces, and possess topological charges
which can be attributed to the helicoidal spatial structure of
the wave front around a phase singularity. This structure is
similar to a crystal lattice defect, and therefore was at first
known as a wave-front screw dislocation @1,2#. The interfer-
ence of a wave possessing such wave-front screw dislocation
with an ordinary reference wave produces a spiral fringe pat-
tern @12,17,18#, or, in the case of equal wave-front curva-
tures, radial fringes @19#. The number of fringes radiating
from the center of the interference pattern equals the modu-
lus of the topological charge, and the direction of the spiral-
ing is determined by the sign of the charge and relative cur-
vature of the wave fronts.

Optical vortices embedded in a host light beam behave in
some degree as charged particles. They may rotate around
the beam axis, repel and attract each other, and annihilate in

collision @20,21#. Other types of wave-front defects also may
occur, such as edge or mixed screw-edge dislocations @22#.
The possible transformations between edge and screw dislo-
cations ~in laser mode terms, 01 and doughnut modes! may
be performed by modal converters @11,23,24#.

The light field of a singular beam carries angular momen-
tum @23# which may be transferred to a captured micropar-
ticle causing its rotation in a direction determined by the sign
of the topological charge @25#. In nonlinear optics, so-called
vortex solitons, which are singular beams in nonlinear me-
dium, are a subject of growing interest @26,27#.

However, singular beams demonstrate unusual properties
even in linear optics, in free-space propagation. Optical
phase singularities as morphological objects ~tears of wave
front! are robust with respect to perturbations. For instance,
addition of a small coherent background does not destroy a
vortex, but only shifts its position to another place where the
field amplitude has a zero value. For vortices with multiple
charge this operation will split an initially m-charged vortex
into umu single-charge vortices @21#. Intuition suggests that
the total topological charge would be conserved in a beam
propagating in free space @1,2#. Our goal is to analyze the
main properties of beams containing phase singularities in a
general way, and demonstrate the limitations on the topologi-
cal charge conservation principle for real beams, both theo-
retically and in experiment. On the basis of the present study,
we establish the rules of angular-momentum transformations
in light beams with phase singularities.

WAVE EQUATION SOLUTIONS POSSESSING PHASE

SINGULARITIES

In this section we demonstrate some particular solutions
possessing phase singularities of the scalar wave equation for
a uniform isotropic medium

¹2E5

1

c2

]2E

]t2 , ~1!
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where E is the wave amplitude, c is the speed of light, and t

is time. The existence of these solutions for a monochro-
matic light wave was first emphasized by Nye and Berry @1#.
The derived complex amplitude of a light wave with fre-
quency v, wavelength l, and wave vector k52p/l oriented
along z axis has the form

E~r ,w ,z ,t !} H r umu exp~ imw1ikz2ivt !,

r2umu exp~ imw1ikz2ivt !,

~2a!

~2b!

where r, w, and z are cylindrical coordinates. Both solutions
have a phase depending on the azimuth angle w multiplied
by an integer m ~positive or negative! called the topological
charge of the phase singularity ~optical vortex!. The wave-
front ~equal phase surface! forms in space part of a helicoidal
surface given by the equality mw1kz5const. After one
round trip of the wave front around the z axis there is a
continuous transition onto the next ~or preceding! wave-front
sheet separated by ml , which results in a continuous heli-
coidal wave-front surface. The topological charge attributed
to this wave-front structure is positive for a right-screw heli-
coid (m.0), and vice versa. In the case umu.1, the wave-
front structure is composed from umu identical helicoids
nested on the z axis and separated by the wavelength l.

The solutions in forms ~2a! and ~2b! cannot describe any
real wave because of the radial amplitude dependence which
grows proportionally to r for Eq. ~2a!, and tends to infinity
when r→0 for Eq. ~2b!. To avoid unwanted amplitude
growth, we may combine the solution in Eq. ~2a! with a
Gaussian beam. Using the paraxial approximation of the sca-
lar wave equation in the form

1

r

]

]r
S r

]E

]r
D1

1

r2

]2E

]w222ik
]E

]z
50, ~3!

we obtain the corresponding solution for a ‘‘singular’’ wave
in a Gaussian envelope carrying an optical vortex with
charge m @17#:

E~r ,w ,z !5Es

rs

ws
S r

ws
D umu

expS 2

r2

ws
2D exp@ iFs~r ,w ,z !# ,

~4!

where Es is the amplitude parameter, and rs is the beam
waist parameter. The phase Fs is

Fs~r ,w ,z !52~ umu11 !arctan
2z

krs
2 1

kr2

2Rs~z !
1mw1kz ,

~5!

the transversal beam dimension is

ws5Ars
2
1~2z/krs!

2, ~6!

and the radius of the wave front curvature is

Rs~z !5z1k2rs
4/4z . ~7!

The amplitude distribution in a transverse cross section of
the beam has a form of an annulus, and the waist parameter
rs is connected with the radius of maximum amplitude at z

50 by a relation

rmax5rsS umu

2
D 1/2

, ~8!

The maximum amplitude value of a singular wave at z50,
r5rmax, therefore amounts to

Esm5EsS umu

2e
D umu/2

. ~9!

The phase singularity disappears when m50, and solution
~4! becomes an ordinary Gaussian beam:

E~r ,z !5Eg

rg

wg

expS 2

r2

wg
2D exp@ iFg~r ,z !# , ~10!

where the propagating parameters for Gaussian beam corre-
spond to Eqs. ~5!–~7! with m50.

As an example we show that a solution in form ~2b! hav-
ing an amplitude singularity at r→0 may be used to create a
solution with only a phase singularity. For this reason we
take a similar solution with an amplitude singularity within
Gaussian envelope,

E~r ,w ,z !5Es

rs

r
expS 2

r2

ws
2D exp@ iFs~r ,w ,z !# , ~11!

where the phase Fs is

Fs~r ,w ,z !5

kr2

2Rs~z !
1w1kz . ~12!

The combination of solutions ~11! and ~2b! for m51 re-
moves the amplitude singularity and gives a wave which has
a phase singularity at r50:

E~r ,w ,z !5Es

rs

r
$12exp@2r2/ws

2
1ikr2/2Rs~z !#%

3exp~ iw1ikz !. ~13!

The amplitude of a wave created this way is zero at the
center (r50) and decreases on periphery }1/r . Other pos-
sible solutions of the scalar wave equation are Bessel beams
@28# and Bessel-Gauss beams @29# carrying optical vortices.

OPTICAL VORTICES IN COMBINED BEAMS

In any practical realization of singular beams by use of
synthesized holograms or special optical elements, a small
coherent background is always present in a singular beam.
The origin of this background may be a scattering in the
direction of the singular beam propagation or readout beam
diffraction by the fundamental spatial frequency of an imper-
fect hologram. This background causes splitting of an optical
vortex with charge umu.1 into umu single-charged vortices
@21#. Another case is the interference between a singular
wave and copropagating reference wave which is used in
analyzing the value and sign of the topological charge of the
phase singularity @18,21#. We shall now generalize the prob-
lem of coherent coaxial addition of singular beams carrying
optical vortices with different charges ~including the vortex-
free wave, m50!. Our goal is to establish principles of to-
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pological charge addition and subtraction, and revise the ex-
isting knowledge about topological charge conservation in a
light beam propagating in free space.

Without loss of generality, we shall take a coaxial Gauss-
ian wave as a coherent background for a singular wave. By
varying the amplitude Eg and waist parameter rg of the
Gaussian beam, we may examine its influence in near and far
zones, as plane or spherical waves in limiting cases. The sum
of the singular beam with the coaxial Gaussian beam ~or
another singular beam! we shall call a combined beam.

The presence of a coherent background changes the posi-
tion of a vortex which was initially localized at the center of
singular beam Eq. ~4!. To find the positions of the vortices in the
combined beam, we need to write two equations, one giving
the radius of the zero-amplitude point ~amplitudes of the
singular and Gaussian waves are equated!, and another giv-
ing the angular coordinate w, which corresponds to the de-
structive interference between the singular and Gaussian
waves:

Eg

rg

wg

expS 2

r2

wg
2D 5Es

rs

ws
S r

ws
D umu

expS 2

r2

ws
2D ,

Fg~r ,z !5Fs~r ,w ,z !6p . ~14!

Equations ~14! are the basis for analysis of vortex behavior
in a combined beam. The first equation is easy to analyze to
show the number of possible amplitude zeros in a combined
beam.

To simplify the calculations, we suppose both beams have
a waist at z50, and use a normalized transverse coordinate
r5r/rs and distance j5z/LR , where LR is the Rayleigh

length of the singular beam, LR5krs
2/2. The first equation of

system ~14! may be rewritten as

r umu
5

Eg

Es

C~j !exp~ar2!, ~15!

where

C~j !5~11j2! umu/2S 11j2

11j2/k4D 1/2

, ~16!

a5

1

11j22

1

k2
1j2/k2 , ~17!

and k is the ratio of waist parameters k5rg /rs .
If a<0, Eq. ~15! has only one root ~umu times degener-

ate!, as the left side is a function of r growing from zero to
infinity, and the right side is a function decreasing from
Eg /Es to zero. The condition a<0 corresponds to the fol-
lowing relations for k and j:

k>1,

j>k , ~18a!

k<1,

j<k , ~18b!

and

k51,

a50, 0,j,` . ~18c!

All zeros of amplitude in the combined beam are located at
the same distance from the center. The number of zeros, n , is
equal to umu and each amplitude zero is a center of a single
vortex. The total topological charge is conserved in the com-
bined beam when a<0.

Another situation occurs when a.0. The function of r in
right side of Eq. ~15! grows from Eg /Es to infinity. Analysis
shows three possibilities: no real roots of Eq. ~15!, two roots
~each umu times degenerate!, and one root ~2umu times de-
generate!. The case of one root corresponds to the touching
of lines representing the left and right sides of Eq. ~15!. This
condition is determined by taking derivatives on r , which in
combination with Eq. ~15! gives a solution

ar2
5

umu

2
, ~19!

which gives the critical ratio between the amplitude of the
Gaussian beam Eg and maximum amplitude of the singular
beam Esm , Eq. ~9!:

S Eg

Esm
D

cr

2

5hcr
2

5

11j2/k4

11j2 S 12

11j2

k2
1j2/k2D 2umu

. ~20!

When the amplitude ratio h5Eg /Esm is higher than hcr , no
vortices exist in the combined beam, as Eq. ~15! has no real
roots. The resulting topological charge is zero. If the ratio h
is smaller than hcr , additional umu single-charged vortices
appear with charge opposite to the original m-charged vor-
tex, and the resulting total charge is zero again.

As the parameter a changes its sign during propagation of
the combined beam both for cases k.1 and k,1, we may
expect a variation in the number of vortices n in a combined
beam propagating in free space, which means a change of the
topological charge of the beam. Only the case k51 will
conserve the initial topological charge unchanged from j
50 to infinity, independent of the beam amplitude ratio.

Figure 1 demonstrates the variation of the number of vor-
tices in a combined beam during propagation along the j
axis. The solid curve dividing the diagram is the dependence
of hcr vs j for a particular value of k, k50.5 @Fig. 1~a!# and
k52 @Fig. 1~b!#. The part of the diagram above the curve
corresponds to zero number of vortices in a combined beam.
In the case k,1 @Fig. 1~a!#, the combined beam conserves
topological charge until j5k (a<0). This area on the dia-
gram is separated by a vertical line. Outside this region the
number of vortices may vary between zero and 2umu, de-
pending on the ratio h, with total topological charge equal to
zero. A similar situation occurs for k.1, but now conserva-
tion of initial topological charge of singular beam will apply
at j.k (a<0).

Amplitude profiles of Gaussian and singular beams are
plotted in Fig. 2 for different distances j. The choice of pa-
rameters m51, k52, and h51.05 corresponds to the dia-
gram shown in Fig. 1~b!. Two points of intersection exist in
a region 0,j,0.655 ~two oppositely charged vortices in the
combined beam!, no intersections in the region 0.655,j
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,1.39 ~no vortices in the beam!, two intersections and two
oppositely charged vortices for 1.39,j,2, and finally one
intersection and thus a single vortex for j.2.

In a practical situation we may not have information
about the initial beam amplitude ratio and waist parameters
rg and rs , or the optical paths of beams from waist to ob-
servation plane may be different. The only experimental
measured values at the plane of observation are intensity

distributions of the Gaussian and singular beams. The ampli-
tudes Ag(r) and As(r) and transversal parameters wg and ws

may be calculated from energy distributions, and m is also
easy to determine. The amplitudes necessary for existence of
vortices in a combined beam may be written in this case as

AgexpS 2

r2

wg
2D 5AsS r

ws
D umu

expS 2

r2

ws
2D ~21a!

or

S r

ws
D umu

5

Ag

As

expS r2

ws
22

r2

wg
2D , ~21b!

where Ag is the amplitude of the Gaussian beam at maxi-
mum, and As is connected with the maximum amplitude of

FIG. 1. Diagrams ~a! and ~b! show the number of vortices in a

combined beam. ~a! The solid curve is the dependence of the criti-

cal amplitude ratio (Eg /Esm)cr on the normalized distance j plotted

for k50.5 and umu51. The area above the curve contains no vor-

tices. The region j,k separated by the vertical line contains umu
vortices, and the part below the curve corresponds to 2umu vortices

in a combined beam. The horizontal dashed line corresponds to a

particular value of the amplitude ratio, h54.05. This line crosses in

turn regions with umu, 2umu, 0, 2umu vortices. The total topological

charge is m , while j<k , and zero outside. ~b! The same as ~a!, but

for the case k.1. The solid curve is a plot of hcr for k52. The

horizontal dashed line corresponds to the amplitude ratio h51.05.

For higher m values, diagrams ~a! and ~b! are very similar: dotted

lines are plots of hcr for umu52.

FIG. 2. Amplitude profiles of Gaussian ~dashed line! and singu-

lar ~solid line, umu51! waves with amplitude ratio h51.05 and k
52, for different normalized distances j. ~a! j50.3, curves inter-

sect in two points shown by circles. ~b! j50.655, touching of the

curves. ~c! j51; no intersections. ~d! j51.39, once again touch-

ing. ~e! j51.5, two intersections. ~f! j52, only the one intersec-

tion. Horizontal axis: normalized transverse coordinate r; vertical

axis: wave amplitudes E(r),Esm51.
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the singular wave Asm by the same relation as Eq. ~9!. Tak-
ing into account the previous analysis, we may formulate the
following consequences important for experimental observa-
tion of vortex transformations in a combined beam: If the
singular beam is broader than the Gaussian beam at the ob-
servation plane, ws.wg , Eq. ~21b! has one umu-times de-
generate root, the total topological charge is conserved, and
the original m-charged vortex breaks into umu vortices. If the
Gaussian beam is broader than the singular, wg.ws , the
total topological charge of the combined beam is zero. The
number of vortices in a combined beam is determined by the
relation between amplitudes. If Ag /Asm.(Ag /Asm)cr , the
combined beams will contain no vortices. If Ag /Asm

,(Ag /Asm)cr , an additional umu vortices will appear in the
combined beam, as discussed above. The critical ratio
(Ag /Asm)cr is

S Ag

Asm
D

cr

5S wg
2

wg
2
2ws

2D umu/2

. ~22!

The number of vortices in the combined beam for this prac-
tical situation may be determined from the diagram shown as
Fig. 3. The hatched area corresponds to the case ws.wg

when the topological charge remains the same as in the sin-
gular beam. In the right part of the diagram a solid curve is
plotted according to Eq. ~22! for m51 and a dotted curve for
m53. The region under the curves corresponds to the ap-
pearance of umu additional vortices and zero total topological
charge. No vortices exist in the region above the correspond-
ing curves.

To determine the position of vortices on a plane r ,w we
need to use the second equation of system ~14!. Alterna-
tively, we may calculate directly the position of the vortices
as points of intersection of lines representing the zeros of the

real and imaginary parts of the complex amplitude E(r ,w ,j)
of the combined beam: Re(E)50 and Im(E)50 @3,15,30,31#.
Figure 4 shows these lines in x ,y coordinates ~normalized on
rs! at cross section j51.405 of a combined beam with pa-
rameters m51, k52, and Eg /Esm51.05. The positions of
vortices are shown by dots ~intersections of zero lines!. The
original vortex is shifted from the center and an additional
vortex with opposite charge is located at the second intersec-
tion point. Both lines Re(E)50 and Im(E)50 are closed.

Figure 5 exhibits transformations of zero-amplitude lines
and corresponding vortices map for a combined beam with
m53, k52, and h51.75. At near field (j50.5) all vortices
are suppressed by Gaussian wave with larger amplitude and
waist parameter. The faster transverse spread of singular
beam leads to the equalizing of amplitudes at combined
beam periphery and appearance of three pairs of opposite
charged vortices. Three vortices move away from the beam
and disappear when j52. Finally, when j.2, combined
beam contains three single vortices located symmetrically
with the conservation of the initial topological charge of the
singular beam.

The trajectories of vortices within the cross section of the
combined beam are shown in Fig. 6 for two main situations,
k.1 and k,1. The combined beam ~m51, k52, and h
50.5! starts with two vortices @Fig. 6~a!# which move on
their trajectories as shown in Fig. 6~a! in opposite directions,
and the negative vortex leaves the beam at j52. For another
initial amplitude ratio h51.05, the behavior of the vortices
is somewhat different. Two vortices annihilate in collision at
j'0.655 @Fig. 6~b!#, and then the beam does not contain any
singularity until j'1.39. Born as a pair, two new vortices
with opposite charges repel each other and finally one ~nega-
tively charged! disappears at infinity (r→`) at j52, and the
remaining one carries the initial charge of the singular beam.
In the case k,1 the combined beam ~m51, k50.5, and h
54.05! starts with only the primary vortex ~shifted from the
center!, and an additional negative vortex enters the beam at

FIG. 3. Diagram showing the number of vortices in a beam

combined from arbitrary Gaussian and coaxial singular beams. The

horizontal coordinate is the transverse size ratio, the vertical coor-

dinate is the amplitude ratio. The dashed area corresponds to the

case of conservation of the total topological charge in the combined

beam ~the singular beam is wider than the Gaussian!. The solid

curve at the right side is the critical amplitude ratio for umu51, and

the dotted curve is for umu53. The area under the curves corre-

sponds to 2umu vortices in the combined beam. No vortices are in

the combined beam with parameters in the area above the curves.

FIG. 4. Phase map shows the lines Re(E)50 ~thick line! and

Im(E)50 ~thin line! in (x ,y) coordinates normalized on rs at a

cross section j51.405 of a combined beam with parameters m

51, k52, and h51.05. Positions of vortices are shown by dots

~intersections of zero lines!. The original vortex is shifted from the

center, and an additional vortex with opposite charge is located at

the second intersection point.
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j50.5 coming from infinity @Fig. 6~c!#. After several round
trips it meets the prime vortex, and both annihilate in colli-
sion at j'0.81. A new vortices pair originates at j'1.16,
and exists within the beam up to infinity.

The analysis of vortex behavior in a beam combined from
two coaxial singular beams may be performed in a similar
manner. However, the combined beam may possess some
new features in this case. First, both beams have zero ampli-
tude at the center. If um1uÞum2u, the combined beam will
have at the center a vortex with the smaller absolute value of
the charge. On the beam periphery, depending on the ratios
of amplitudes and sizes, the number of vortices may vary
between zero, um12m2u, and 2 um12m2u. In the particular
case when um1u5um2u, there are two situations: m15m2 and
m152m2 . When charges have the same sign, waves add
coherently producing circular interference fringes @32#, and
the only m-charged vortex is located at the beam center.
When vortices have opposite charges, they compete with
each other for the central position. For small r, we may
neglect the Gaussian envelope of the beams, and write the
amplitude at the core as

E~r ,w !}r umu@As1e imw
1As2e2imw# , ~23!

which determines the phase near the core as arctan@(As1

2As2)/(As11As2)tan(mw)#. This means that the vortex with
larger host wave amplitude will win, but becomes aniso-
tropic @30#. Finally, if As15As2 , vortices annihilate each
other. The interference pattern displays 2umu fringes radiat-
ing from the center.

EXPERIMENTAL OBSERVATION OF VORTICES IN

COMBINED BEAM

The setup for our experiment is shown in Fig. 7. The
linearly polarized output beam of a 10-mW He-Ne laser op-
erating on the TEM00 mode is split first at beamsplitter BS1.
The directly transmitted beam is diffracted at the holographic
grating, and the first diffracted order ~singular beam! is se-
lected with the iris aperture. The holographic gratings are
phase holograms restoring charge 21 and 3 singular beams,
both blazed for greatest efficiency into first order @25#. The
reflected beam from beamsplitter BS1 is further split at BS2
into the ‘‘background’’ Gaussian beam ~reflected beam! and
reference wave ~transmitted beam!. Lenses L1 – L4 are used
to control the sizes and radii of curvature of the Gaussian and
reference wave. Lens L2 is finely controlled with a transla-
tion stage to allow fine adjustments of the wave-front curva-
ture. Polarizing beamsplitters ~PBS’s! are used to control the
relative intensities of the singular and Gaussian beams. BS3
recombines the singular and Gaussian beams, and BS4 inter-
feres with the combined beam and the reference wave.
~Double reflection of the singular beam from BS3 and mirror
M does not change the sign of its topological charge.! Fi-
nally, lens L5 creates a magnified image of the beam on the
screen, recorded with a charge-coupled device ~CCD! cam-
era.

The experimental technique consisted, first, of an align-
ment of the singular and Gaussian beams to make them co-
axial. The resulting interference pattern, observed in the far
field, was then used to determine the relative difference in
curvature of wave fronts between the two beams. This was

FIG. 5. Phase maps for different distances j of a combined

beam propagation with parameters m53, k52, and h51.75. ~a!

j50.5, lines Re(E)50 and Im(E)50 do not intersect, and no vor-

tices exist in the combined beam. ~b! j51.25, lines Re(E)50 and

Im(E)50 intersect in points shown by dots, and six single-charged

vortices ~three pairs! exist in the beam. ~c! j52.5, three intersec-

tion points are shown by dots, and three vortices are located sym-

metrically around the beam center.
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adjusted using the position of lens L2, so that there was at
most one round of dark fringe in the pattern. At this point,
the wavefronts of two beams were effectively matched at the
observation screen.

The profiles of energy distribution in the Gaussian and
singular beams were obtained from separate CCD images,
and the relative adjustment in beam intensities using PBS’s
could then be carried out to obtain the necessary number of
amplitude graph intersection points. The corresponding in-
tensity distributions are shown in Figs. 8 and 9 for Gaussian
and singular beams ~charges 21 and 3!. Once the two beams
were roughly the required relative intensity and size for ad-
ditional vortices to be observable, the reference wave was
used to interfere the intensity pattern to observe the presence
of fringe dislocations, and hence the vortices in the original
pattern.

FIG. 6. Vortex trajectories in a combined beam cross section.

~a! For m51, k52, and h50.5. The combined beam starts with

two oppositely charged vortices shown by dots. The negative vortex

leaves the beam at j52. ~b! Two vortices in a beam with h
51.05 annihilate in collision at j'0.655. A pair of two new vor-

tices with opposite charges appear at j'1.39. They repel each other

and finally one ~negatively charged, dashed line! disappears at in-

finity (r→`) at j52. ~c! Combined beam ~m51, k50.5, h
54.05! starts with only the primary vortex ~shifted from the cen-

ter!, and an additional negative vortex enters the beam at j50.5

~dashed line! coming from infinity. After several round trips it

meets the prime vortex, and both annihilate in collision at j
'0.81. New vortices’ pair originates at j'1.16 ~dotted lines!.

FIG. 7. Sketch of the experimental setup. The He-Ne laser beam

splits into three channels. In the first channel a singular beam is

created by the hologram, the second channel carries the Gaussian

wave, and the reference wave is formed in the third channel. The

interference patterns are observed on a screen.

FIG. 8. Experimental intensity distributions for Gaussian ~m

50, open circles! and singular ~m521, closed circles! beams at

the observation plane. Solid lines are numerical fits according to

formulas ~24!.
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The reference beam was simply adjusted through the
choice of lenses L3 and L4 to be of much larger size than
the combined beam cross section. The interference picture
produced by the superposition of the reference beam and the
combined beam at BS4 could be roughly controlled to give a
reasonable number of fringes for sufficient resolution of any
fringe dislocations present. To avoid reduction of fringe vis-
ibility due to a loss of coherence through multilongitudinal
mode operation of the laser, all path differences were made
integer multiples of the laser cavity length.

The parameters obtained from a numerical fit of the data
were used for a comparison of the experimental results with
theoretical predictions. The following functions were used to
generate the intensity profiles of Gaussian and singular
beams numerically:

Pg~x !5H Ag expF2

~x2x0!2

wg
2 G J 2

,

P21~x !5H A21

w21
@~x2x0!2

1y0
2#1/2expF2

~x2x0!2
1y0

2

w
21
2 G J 2

,

P3~x !5H A3

w3
3 @~x2x0!2

1y0
2#3/2expF2

~x2x0!2
1y0

2

w3
2 G J 2

,

~24!

where Ag , A21 , and A3 are the amplitudes of the respective
waves ~Gaussian, singular charges 21 and 3! and wg , w21 ,
and w3 are the beam sizes. The function Pg(x) is the inten-
sity profile of a Gaussian beam defined in the x ,y plane,
where the profile is taken along the x direction with y50.
P21,3 are the intensity profiles along x axis of singular
beams, charges 21 and 3, at y5y0 , in order to take into
account a small misalignment of the beam centers, which
prevents the central minimum of the singular beam from
going to zero. Parameters x0 and y0 determine the beam
center. The data obtained from the CCD ~in relative units!
were fitted to functions ~24! with fitting parameters: Ag

58.86, wg585.22, and x0565.76 for the Gaussian beam,
and A21519.23, (A21m58.25), w21545.81, x0562.25,
and y0516.73 for the singular ~charge 21! beam. The cal-
culated curves are shown in Fig. 8 ~solid lines!. The ratio of
the beam sizes is wg /ws51.86, i.e., the Gaussian beam is
wider than the singular. The amplitude ratio is Ag /A21m

51.07, and according to the theoretical predictions ~see the
diagram in Fig. 3! an additional vortex should appear in the
combined beam with a sign opposite to the original vortex.
The presence of intersection points of the curves also indi-
cates two vortices existence in the combined beam.

For the profiles of the Gaussian and charge 3 singular
beam, the fitting parameters were Ag56.29, wg5115.92,
and x0566.30 for the Gaussian beam, and A3515.82 (A3m

56.49), w3541.23, x0566.05, and y0533.91 for the sin-
gular beam ~Fig. 9!. The Gaussian beam is again wider than
the singular, and the amplitude ratio corresponds to the case
of three additional vortices appearing, with the total topo-
logical charge of the combined beam being zero.

For the two superpositions investigated, namely, Gaussian
beam with charge 21 singular and Gaussian with charge 3
singular, the intensity patterns were calculated in gray scale
and are shown in Figs. 10 and 11. To generate the two-
dimensional intensity distribution I(x ,y) in a beam com-
bined from Gaussian and charge 21 singular beams numeri-
cally, the expression for I(x ,y) is represented as follows:

I~x ,y !5Pg~x ,y !1P21~x ,y !12APg~x ,y !P21~x ,y !

3cosS x2
1y2

R2 2arctan
y

x
1d D , ~25!

where R is the radius of relative curvature of the Gaussian
wave front with respect to the singular wave, d is an adjust-
able phase factor, and arctan(y/x) is the azimuth angle. The
intensity distribution for the combined beam with Gaussian
and charge 3 singular wave has the same form as Eq. ~25!,
only the azimuth factor becomes 3 arctan(y/x). Figures 10
and 11 also show the experimental patterns of combined
beam intensity in the far field and calculated intensity distri-
butions with lines of zeros for the functions Re@E(x,y)#50
~solid line! and Im@E(x,y)#50 ~dashed line!. The points of
intersection of the zero lines correspond to the positions of
vortices. For the case of the combination of a Gaussian and a

FIG. 9. The same distributions as in Fig. 8, for Gaussian and

charge 3 singular beams.

FIG. 10. Experimental ~a! and numerically generated ~b! inten-

sity distributions in a combined ~Gaussian plus m521 singular!

beam cross section. Zero-amplitude lines are shown in ~b!, when the

solid line represents the real part of the complex amplitude, and the

dashed line the imaginary part.
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charge 21 singular beam, a single dark spiral fringe is seen
@Fig. 10~a!#. The curved shape of the fringe is due to slight
difference in wave-front curvature. The zero-amplitude lines
have two points of intersection, corresponding to two vorti-
ces existing within the dark fringe @Fig. 10~b!#. For the
Gaussian and charge 3 singular beam, three dark fringes ra-
diating from the center of the pattern are present @Fig. 11~a!#.
There are six intersection points of the zero lines in Fig.
11~b!, indicating two vortices with opposite charges located
in each dark fringe.

To demonstrate the existence of vortices in the combined
beams clearly, the interference patterns of the combined
beam with the reference wave are shown in Figs. 12 and 13.
The results of experimental observations are compared with
calculated intensity distributions. For the Gaussian and
charge 21 combined beam, both theory and experiment
show a dark spiral fringe which begins at the center of the
pattern and ends after nearly two turns @Figs. 12~a! and 12
~b!#. Thereafter, the interference fringes form rings corre-
sponding well with the theory: the phase has no rotating
component at this area. Thus two oppositely charged vortices
make the total topological charge zero.

For the Gaussian and charge 3 combined beam, there are
three inner interference ‘‘forks,’’ equally separated by 120°
and directed clockwise, and three outer ‘‘forks’’ directed an-
ticlockwise ~Fig. 13!. Hence there are six single vortices al-
together, or three pairs of oppositely charged vortices. At the
area outside, the fringes again form rings.

The experimental observations clearly demonstrate the
appearance of additional vortices in combined beams, chang-
ing the total topological charge of a beam. We have thus
shown in both theory and experiment that the topological
charge of a beam containing phase singularities is not a con-
stant while propagating in free space.

ANGULAR MOMENTUM OF LIGHT BEAM CARRYING

OPTICAL VORTICES

The rotation of phase around the vortex axis causes a
nonzero value of angular momentum of a beam @23,33#. The
origin of the angular momentum may be easy explained from
simple evaluations. As the wave front of a singular beam has
a helicoidal shape, the Poynting vector P(r ,w ,z) which is
perpendicular to the wave front surface has at each point a
nonzero tangential component. In the paraxial approximation
this component equals P'(r ,w ,z)52mP/kr , and the
angular-momentum density in the z-axis direction is
M z(r ,w ,z)5(r/c2)P'(r ,w ,z). As the Poynting vector is
proportional to a light wave intensity, P}uEs(r ,w ,z)u2, we
may obtain the expression for angular-momentum density of
a singular beam:

M z~r ,w ,z !}2muEs~r ,w ,z !u2. ~26!

The time-averaged density of angular momentum directed
along the z axis in a combined beam cross section may be
calculated in a general form @23,33# as

M z5

i

2
ve0FxS E*

]E

]y
2E

]E*

]y
D2y S E*

]E

]x
2E

]E*

]x
D G ,

~27!

where e0 is the permittivity of free space. The total angular
momentum Lz of the beam is an integral over the beam cross
section

Lz5E
2`

` E
2`

`

M zdx dy . ~28!

The simplest combined beam is a sum of singular @Eq. ~4!#
and Gaussian @Eq. ~10!# beams, and its angular momentum
calculated according to Eq. ~27! is

M z~r ,w ,z !52ve0m$uEs~r ,w ,z !u2

1uEs~r ,w ,z !Eg~r ,z !ucos@Fs~r ,w ,z !

2Fg~r ,z !#%, ~29!

which attains a simple form for a pure singular beam (Eg

50):

M z~r ,w ,z !52ve0muEs~r ,w ,z !u2, ~30!

FIG. 11. The same intensity distributions as in Fig. 10, but for

Gaussian plus m53 singular combined beam.

FIG. 12. The interference pattern of the combined beam ~Gauss-

ian plus m521 singular! and reference wave. The primary vortex

is located near the center, and an additional vortex is seen with

positive charge: ~a! experimental picture; ~b! numerical simulation.

FIG. 13. The interference pattern of the combined beam ~Gauss-

ian plus m53 singular! and reference wave. The primary vortex is

split into three vortices, and an additional three vortices with nega-

tive charge produce, with them, three pairs: ~a! experimental pic-

ture; ~b! numerical simulation.
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coinciding with Eq. ~26!, and

Lz522pve0mEs
2S rs

ws
D 2E

0

`

rdrS r

ws
D 2umu

expS 2

2r2

ws
2 D

52

pmumu!

2 umu11 ve0rs
2Es

2. ~31!

The density of the angular momentum of a singular beam M z

is therefore proportional to the beam intensity, and the total
angular momentum Lz to the beam energy. In a medium
without losses, the total momentum Lz is conserved, as well
as the beam energy.

The relation obtained for the angular momentum of a
combined beam ~29! may be generalized as a law of coaxial
addition of N beams carrying optical vortices with topologi-
cal charges m i :

M z~r ,w ,z !52

ve0

2 (
i , j

N

~m i1m j!uE i~r ,w ,z !E j~r ,w ,z !u

3cos@F i~r ,w ,z !2F j~r ,w ,z !# . ~32!

This law is valid not only for singular waves with a Gaussian
envelope, but for all kinds of waves with axially symmetric
amplitude distributions.

An interesting consequence following from Eq. ~29! is
that even a small amount of a singular wave combined with
a strong Gaussian wave produces a substantial modulation of

the angular-momentum density. Figure 14 represents the cal-
culation of angular-momentum density of combined beams
with parameters m51, k52, and h51.05 ~a! and m53, k
52, and h52.5 ~b!.

For a combined beam with a density of angular-
momentum distribution given by Eq. ~29!, the total angular
momentum is equal to that of the singular beam alone, be-
cause an interference term gives a zero amount in integral
~28!. This demonstrates that coherent addition of a wave
with zero angular momentum does not affect the resulting
angular momentum of the combined beam. Using the general
form of the angular-momentum distribution in a combined
beam ~32!, we are able now to calculate the result of coaxial
interference of N arbitrary singular beams,

Lz5(
i

N

Lzi , ~33!

which establishes a rule: In a beam combined from N coaxial
beams, the angular momenta Lzi add arithmetically.

This rule gives interesting consequences for the addition
of singular beams with equal and opposite topological
charges. Two identical singular beams with equal energy but
opposite charges form a vortex-free beam with zero angular
momentum, independent of the phase relation between them.
Identical beams with equal topological charges of vortices do
not obey the general rule ~33!, because the interference term
is a constant in this case, and the energy of the summed

FIG. 14. ~Color! Distribution of energy and angular momentum in a combined beam. ~a! and ~b! m51, Eg /Esm51.05, k52, and j
50.3. Green is for energy distribution, red for positive angular momentum density M z.0, and blue for negative angular-momentum density

M z,0. The positions of two oppositely charged vortices are shown by white crosses. ~c! and ~d! The same distributions for m53,

Eg /Esm52.5, and k52. No vortices exist in the combined beam with this amplitude ratio, but a modulation of the angular-momentum

density is clearly seen. The transverse coordinates are x and y , normalized on rs .
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beam is strongly dependent on relative phases of compo-
nents. Further, adding a vortex-free wave with zero angular
momentum cannot change the total angular momentum Lz of
a beam, even though it may suppress all the vortices in the
combined beam.

To understand the transformations of angular momentum
associated with an m-charged vortex in a combined beam
where the number of vortices may change and even become
zero, we need to imagine the wave front of a combined beam
which is not a symmetrical m-pitched helicoid as for a pure
singular beam. When all the vortices are suppressed by the
strong background wave, the wave front of the combined
beam still has folds, but is a smooth surface without defects.
The inclination of local ‘‘rays’’ which are perpendicular to
the surface produces both positive and negative components
of the angular momentum. With an increase of Gaussian
background wave amplitude, the folds become smaller, but
the beam amplitude grows proportionally, and resulting
negative and positive parts of angular momentum have
nearly the same value. The difference between the negative
and positive components of the angular momentum remains
exactly equal to the initial angular momentum of the singular
beam, but is now due to small residual amplitude modulation
over the combined beam cross section. In the case of mul-
tiple vortices localized within a combined beam, the distri-
bution of the angular momentum becomes more compli-
cated, but the resulting total angular momentum remains
constant.

CONCLUSIONS

Our analysis of coherent coaxial addition of optical waves
carrying ~at least one! optical vortices has revealed the gen-
eral properties of combined beams. We have studied in detail
the behavior of vortices in a beam combined from singular

and ‘‘background’’ Gaussian waves in order to check the
principle of topological charge conservation. In brief, we ob-
tained the following results.

~1! Addition of a coherent coaxial vortex-free wave to a
singular wave with a m-charged vortex may change the num-
ber of vortices and the total topological charge in the com-
bined beam. Depending on background wave parameters, the
number of vortices in the combined beam may vary between
zero, umu, and 2umu. The total topological charge is m or
zero.

~2! In free-space propagation from z50 to infinity, the
total topological charge and number of vortices in a com-
bined beam do change for any choice of background wave
parameters, except the case k51 ~equal transverse sizes!.

~3! We demonstrate for the first time to our knowledge,
the possibility, in free-space propagation, of additional vor-
tices appearing from the far periphery of a beam ~from in-
finity!, and their disappearance at a beam periphery.

~4! The obtained results are also applicable to the case of
combinations of singular beams.

~5! We show that the total angular momentum of a beam
is conserved in all cases in free-space propagation, in con-
trast with the total topological charge. We establish the main
rules for addition and subtraction of angular momenta of
light beams.

~6! We analyzed the transverse distribution of the angular
momentum in a combined beam cross section, and found a
strong spatial modulation of the angular-momentum density
even in the case of absence of vortices in a combined beam.
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edited by R. Balian, M. Klaéman, and J.-P. Poirier ~North-

Holland, Amsterdam, 1981!, p. 453.

@3# N. B. Baranova, A. V. Mamaev, N. F. Pilipetskii, V. V.

Shkunov, and B. Ya. Zel’dovich, J. Opt. Soc. Am. 73, 525

~1983!.

@4# P. Coullet, L. Gil, and F. Rocca, Opt. Commun. 73, 403

~1989!.

@5# V. Yu. Bazhenov, M. V. Vasnetsov, and M. S. Soskin, Pis’ma

Zh. Eksp. Teor. Fiz. 52, 1037 ~1990! @JETP Lett. 52, 429

~1990!#.

@6# N. R. Heckenberg, R. McDuff, C. P. Smith, H. Rubinsztein-

Dunlop, and M. J. Wegener, Opt. Quantum Electron. 24, S951

~1992!.

@7# S. N. Khonina, V. V. Kotlyar, M. V. Shinkarev, V. A. Soifer,

and G. V. Uspleniev, J. Mod. Opt. 39, 1147 ~1992!.

@8# S. Tidwell, G. Kim, and W. Kimura, Appl. Opt. 32, 5222

~1993!.

@9# M. W. Beijersbergen, R. P. C. Coerwinkel, M. Kristiensen, and

J. P. Woerdman, Opt. Commun. 112, 321 ~1994!.

@10# J. M. Vaughan and D. V. Willetts, J. Opt. Soc. Am. 73, 1018

~1983!.

@11# C. Tamm and C. O. Weiss, J. Opt. Soc. Am. B 7, 1034 ~1990!.

@12# F. T. Arecchi, G. Giacomelli, P. L. Ramazza, and S. Residori,

Phys. Rev. Lett. 67, 3749 ~1991!.

@13# S. R. Liu and G. Indebetouw, J. Opt. Soc. Am. B 9, 1507

~1992!.

@14# M. Ya. Darsht, I. V. Kataevskaya, N. D. Kundikova, and B.

Ya. Zel’dovich, Zh. Eksp. Teor. Fiz. 107, 1 ~1995! @Sov. Phys.

JETP 80, 817 ~1995!#.

@15# A. V. Ilyenkov, A. I. Khizniak, L. V. Kreminskaya, M. S.

Soskin, and M. V. Vasnetsov, Appl. Phys. B 62, 465 ~1996!.

@16# T. Ackemann, E. Kriege, and W. Lange, Opt. Commun. 115,

339 ~1995!.

@17# V. Yu. Bazhenov, M. S. Soskin, and M. V. Vasnetsov, J. Mod.

Opt. 39, 985 ~1992!.

@18# A. G. White, C. P. Smith, N. R. Heckenberg, H. Rubinsztein-

Dunlop, R. McDuff, C. O. Weiss, and Chr. Tamm, J. Mod.

Opt. 38, 2531 ~1991!.

@19# O. Bryngdahl, J. Opt. Soc. Am. 63, 1098 ~1973!.

@20# G. Indebetouw, J. Mod. Opt. 40, 73 ~1993!.

@21# I. V. Basistiy, V. Yu. Bazhenov, M. S. Soskin, and M. V.

4074 56M. S. SOSKIN et al.



Vasnetsov, Opt. Commun. 103, 422 ~1993!.

@22# I. V. Basistiy, M. S. Soskin, and M. V. Vasnetsov, Opt. Com-

mun. 119, 604 ~1995!.

@23# M. W. Beijersbergen, L. Allen, H. E. L. O. van der Ween, and

J. P. Woerdman, Opt. Commun. 96, 122 ~1993!.

@24# E. Abramochkin and V. Volostnikov, Opt. Commun. 83, 123

~1991!.

@25# H. He, N. R. Heckenberg, and H. Rubinsztein-Dunlop, J. Mod.

Opt. 42, 217 ~1995!.

@26# G. Swartzlander, Jr. and C. Law, Phys. Rev. Lett. 69, 2503

~1992!.

@27# B. Luther-Davies, R. Powles, and V. Tikhonenko, Opt. Lett.

19, 1816 ~1994!.

@28# J. Durnin, J. Opt. Soc. Am. A 4, 651 ~1987!.

@29# F. Gori, G. Guatari, and C. Padovani, Opt. Commun. 64, 491

~1987!.

@30# I. Freund, N. Shvartsman, and V. Freilikher, Opt. Commun.

101, 247 ~1993!.

@31# N. R. Heckenberg, M. Vaupel, J. T. Malos, and C. O. Weiss,

Phys. Rev. A 54, 2369 ~1996!.

@32# M. Harris, C. A. Hill, and J. M. Vaughan, Opt. Commun. 106,

161 ~1994!.

@33# L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P.

Woerdman, Phys. Rev. A 45, 8185 ~1992!.

56 4075TOPOLOGICAL CHARGE AND ANGULAR MOMENTUM OF . . .




