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The equivalence of cooling to the gradient flow when the cooling step nc and the continuous flow step of

gradient flow τ are matched is generalized to gauge actions that include rectangular terms. By expanding

the link variables up to subleading terms in perturbation theory, we relate nc and τ and show that the results

for the topological charge become equivalent when rescaling τ≃ nc=ð3 − 15c1Þ, where c1 is the Symanzik

coefficient multiplying the rectangular term. We, subsequently, apply cooling and the gradient flow using

the Wilson, the Symanzik tree-level improved, and the Iwasaki gauge actions to configurations produced

with Nf ¼ 2þ 1þ 1 twisted mass fermions. We compute the topological charge, its distribution, and the

correlators between cooling and gradient flow at three values of the lattice spacing demonstrating that the

perturbative rescaling τ≃ nc=ð3 − 15c1Þ leads to equivalent results.
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I. INTRODUCTION

Besides the interest in it for its own sake, the calculation

of the topological properties of gauge field configurations

is needed for several investigations in lattice QCD. These

may involve a direct use of the topological charge in

observables or its use as a measure of autocorrelations. The

former, for example, includes the computation of the CP-
odd form factor F3 and, subsequently, the neutron electric

dipole moment (nEDM) [1]. This would shed light on the

question of whether the value of the nEDM is zero and

could, therefore, give hints of possible beyond the standard

model physics. There are a number of smoothing tech-

niques that could be applied to extract the topological

charge Q, each one accompanied by advantages and

disadvantages [2,3]. The gluonic definition of the topo-

logical charge density in Euclidean spacetime is given by

qðxÞ ¼ 1

32π2
ϵμνρσTrfGμνGρσg; ð1Þ

with Gμν the gluonic field strength tensor and ϵμνρσ the

totally antisymmetric tensor. The introduction of the

gradient flow [4–6] with its perturbatively proven renor-

malizability properties provides an attractive field-theoretic

smoothing technique as compared to other techniques such

as cooling and smearing, for which one can argue about the

arbitrariness of their smoothing scale. The differential

character of gradient flow, however, makes it slower in

comparison to other field-theoretic smoothers, such as

cooling [7].

Recently it was demonstrated in Ref. [7] that using the

Wilson action, gradient flow and cooling are equivalent if

the gradient flow time τ and the number of cooling steps nc
are appropriately matched. By expanding the link matrices

perturbatively in the lattice spacing a it was shown that at

subleading order the two methods exhibit equivalence if

one sets τ ¼ nc=3. This analytic result was verified by a

numerical investigation of a number of observables such as

the average action and the topological susceptibility con-

firming that the two procedures indeed produce equivalent

results. This suggests that in cases where high statistics are

needed such as, for example, for the evaluation of higher

moments of the topological charge [8], instead of using the

more expensive gradient flow, one can opt to employing

cooling to evaluate quantities of interest. Of course in some

applications, such as the scale setting through t0, where
only a few hundreds of configurations are needed the

computational cost is negligible and whether cooling or the

gradient flow is used is not an important issue.

Studies that utilize dynamical quark simulations such as

those pursued by the European Twisted Mass Collaboration

(ETMC) [9–11] make use of configurations produced with

Symanzik improved gauge actions, such as the Iwasaki and

the Symanzik tree-level improved actions [12–14]. It is

interesting to extend the study of Ref. [7] to explore the use

of Symanzik improved actions in the smoothing procedure.

This choice will alter the relation between the scales τ≃

nc=3 since this depends on the choice of the smoothing

action. We deliver the relation between gradient flow and

cooling, by expanding the basic smoothing steps at sub-

leading order in a for Symanzik improved actions.

Subsequently we test the validity of the formula
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numerically using ETMC configurations produced with

Nf ¼ 2þ 1þ 1 twisted mass fermions and the Iwasaki

gauge action. In addition to the Wilson action, we employ

as smoothing actions the Symanzik tree-level improved and

the Iwasaki actions enabling us to generalize the corre-

spondence. We test the equivalence on the topological

charge itself as well as on the average action and the

susceptibility. We also examine the degree of correlation

among the results obtained with cooling and the gradient

flow through the correlation coefficient. All observables

suggest that the two smoothers become equivalent after a

few transient cooling steps.

This article is organized as follows: In Sec. II, we provide

the relevant details regarding the production of the Nf ¼
2þ 1þ 1 configurations, in Sec. III, we explain the

different definitions of the topological charge density

operators used for the calculation of the topological charge

and in Sec. IV, we provide a short description of the cooling

and gradient flow techniques for smoothing a gauge

configuration in order to set the ground for their analytical

comparison. We then compare the two smoothers by

expanding the link variables perturbatively in a. In

Sec. V we provide numerical evidence of this equivalence

by evaluating a number of relevant observables. Finally, in

Sec. VI, we summarize and conclude.

II. CONFIGURATIONS

The gauge configurations are produced by the ETMC [9]

using the Iwasaki improved action [13,14] for the

gluonic part

SG ¼ β

N

X

x

0

B

@
c0

X

4

μ;ν¼1

1≤μ<ν

f1 − ReTrðU1×1
x;μ;νÞg þ c1

X

4

μ;ν¼1

μ≠ν

f1 − ReTrðU1×2
x;μ;νÞg

1

C

A
; ð2Þ

with β ¼ 2N=g2
0
, N ¼ 3 andU1×1

x;μ;ν the plaquette andU
1×2
x;μ;ν rectangular ð1 × 2ÞWilson loops. The Symanzik coefficients are

set c0 ¼ 3.648 and c1 ¼ −0.331 and obey the relation c0 þ 8c1 ¼ 1. The twisted mass fermion action at maximal twist is

employed. The formulation provides automaticOðaÞ improvement [15,16], infrared regularization of small eigenvalues and

fast simulations with dynamical fermions. For the doublet of light quarks the action is

S
ðlÞ
F ½ χðlÞ; χ̄ðlÞ; U� ¼ a4

X

x

χ̄ðlÞðxÞðDW ½U� þm0;l þ iμlγ5τ
3ÞχðlÞðxÞ; ð3Þ

where τ3 is the third Pauli matrix acting in the flavour

space, m0;l the bare untwisted light quark mass and μl the

bare twisted light quark mass. The massless Wilson-Dirac

operator is given by

DW ½U� ¼ 1

2
γμð∇μ þ∇�

μÞ −
ar

2
∇μ∇

�
μ; ð4Þ

with the forward and backward covariant derivatives

given by

∇μψðxÞ ¼
1

a
½UμðxÞψðxþ aμ̂Þ − ψðxÞ� and

∇�
μψðxÞ ¼ −

1

a
½U†

μðx − aμ̂Þψðx − aμ̂Þ − ψðxÞ�: ð5Þ

The fields χðlÞðxÞ are in the “twisted basis” and are related

to the fields in the physical basis ψ ðlÞ through the trans-

formations

ψ ðlÞðxÞ ¼ 1
ffiffiffi

2
p ð1þ iτ3γ5ÞχðlÞðxÞ and

ψ̄ ðlÞðxÞ ¼ χ̄ðlÞðxÞ 1
ffiffiffi

2
p ð1þ iτ3γ5Þ: ð6Þ

Apart from the doublet of light quarks, we also include a

twisted heavy mass-split doublet χðhÞ ¼ ðχc; χsÞ for the

strange and charm quarks. The associated action is ex-

pressed as

S
ðhÞ
F ½χðhÞ; χ̄ðhÞ; U� ¼ a4

X

x

χ̄ðhÞðxÞðDW ½U� þm0;h

þ iμσγ5τ
1 þ τ3μδÞχðhÞðxÞ; ð7Þ

with m0;h the bare untwisted quark mass for the heavy

doublet, μσ the bare twisted mass along the τ1 direction and

μδ the mass splitting in the τ3 direction. The heavy quark

fields in the twisted basis are related to those in the physical

basis through
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ψ ðhÞðxÞ ¼ 1
ffiffiffi

2
p ð1þ iτ1γ5ÞχðhÞðxÞ;

ψ̄ ðhÞðxÞ ¼ χ̄ðhÞðxÞ 1
ffiffiffi

2
p ð1þ iτ1γ5Þ: ð8Þ

Unless stated otherwise, the quark fields will be understood

as “physical fields.” The fermionic action in Eq. (3) breaks

parity and isospin at nonvanishing lattice spacing with the

latter inducing a cutoff effect of Oða2Þ [16]. For more

details on the twisted mass fermions see Ref. [9].

In order to test the equivalence between the two

smoothing procedures we only need a single ensemble

and a large number of configurations with a fine enough

lattice spacing and relatively small pion mass. However, in

order to investigate the behavior of observables as a

function of the lattice spacing we include two additional

ensembles, the pion mass of which is approximately the

same as the one used for the more high statistics study. To

this end, we selected the ensembles A60.24, B55.32, and

D45.32sc in the notation of Ref. [17] at three different

lattice spacings so the continuum limit can be taken. The

details of the ensembles can be found in Table I.

III. TOPOLOGICAL CHARGE

A. Definition of the topological charge on the lattice

The topological charge of a gauge field is formally

defined as the four-dimensional Euclidean integral over

spacetime,

Q ¼
Z

d4xqðxÞ; ð9Þ

where the topological charge density qðxÞ is defined

in Eq. (1).

In practice, any valid lattice discretization of qðxÞ →
qLðxÞ leading to the right continuum expression of Eq. (1)

can be used for the evaluation of the lattice equivalence of

Eq. (9), given by

Q ¼ a4
X

x

qLðxÞ: ð10Þ

However, depending on the discretization of the operator

qLðxÞ lattice artifacts affecting the total topological charge

Q vary. Hence, we do not expect to obtain an exact integer
1

value for the topological charge. Nevertheless, we expect

that the total topological charge, for some definitions for

the topological charge density, converge faster and are

closer to an integer than that obtained by other definitions.

To investigate the different definitions we use a number of

lattice discretizations. The simplest lattice discretization,

which can be constructed is based on the simple plaquette,

depicted pictorially in Fig. 1,

G
plaq
μν ðxÞ ¼ Im½UμðxÞUνðxþ aμ̂ÞU†

μðxþ aν̂ÞU†
νðxÞ�; ð11Þ

with

q
plaq
L ðxÞ ¼ 1

32π2
ϵμνρσTrfGplaq

μν G
plaq
ρσ g: ð12Þ

This is a computationally cheap definition which, however,

leads to lattice artifacts of orderOða2Þ. Nevertheless, this is
still an adequate definition having been used in several

determinations of the topological susceptibility in the

past [21,22].

Without doubt, the most common definition of the

topological charge density is the clover definition given by

qclovL ðxÞ ¼ 1

32π2
ϵμνρσTrfGclov

μν Gclov
ρσ g; ð13Þ

withGclov
μν ðxÞ the usual clover leaf (second picture in Fig. 1)

defined as

TABLE I. Input parameters (β, L, aμ) of our lattice calculation
for the ensembles A60.24, B55.32, and D45.32sc with the

corresponding lattice spacing a, determined from the nucleon

mass, and pion mass amπ in lattice units.

A60.24, β ¼ 1.90, a ¼ 0.094ð1Þ fm, r0=a ¼ 5.231ð38Þ
243 × 48, L ¼ 2.1 fm aμ 0.0060

No. of confs 1160

amπ 0.17275(45)(23)

Lmπ 4.15

mπ 0.362 GeV

B55.32, β ¼ 1.95, a ¼ 0.082ð1Þ fm, r0=a ¼ 5.710ð41Þ
323 × 64, L ¼ 2.6 fm aμ 0.0055

No. of confs 4650

amπ 0.15518(21)(33)

Lmπ 4.97

mπ 0.372 GeV

D45.32sc, β ¼ 2.10, a ¼ 0.064ð1Þ fm, r0=a ¼ 7.538ð58Þ
323 × 64, L ¼ 2.0 fm aμ 0.0045

No. of confs 949

amπ 0.12087(40)

Lmπ 3.89

mπ 0.368 GeV

1
Of course one can obtain an exact integer when applying the

Atiyah-Singer index theorem [18,19] Q ¼ n− − nþ and employ-
ing the number of Dirac zero modes n� with positive (þ)
and negative (−) chiralities obtained with the overlap-Dirac
operator [20].
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Gclov
μν ðxÞ ¼ Im

4
½UμðxÞUνðxþ aμ̂ÞU†

μðxþ aν̂ÞU†
νðxÞ

þ UνðxÞU†
μðx − aμ̂þ aν̂ÞU†

νðx − aμ̂ÞUμðx − aμ̂Þ
þ U†

μðx − aμ̂ÞU†
νðx − aμ̂ − aν̂ÞUμðx − aμ̂ − aν̂ÞUνðx − aν̂Þ

þ U†
νðx − aν̂ÞUμðx − aν̂ÞUνðxþ aμ̂ − aν̂ÞU†

μðxÞ�: ð14Þ

However, this definition still carries a leading correction

term of Oða2Þ. Hence, an improved definition of the

topological charge density, which removes tree-level dis-

cretization errors and converges as Oða4Þ in the continuum
limit is also considered. Such a definition, given in

Refs. [1,23,24], is

q
imp
L ðxÞ ¼ c0q

clov
L ðxÞ þ c1q

rect
L ðxÞ; ð15Þ

where qclovL ðxÞ is the ordinary clover topological charge

density in Eq. (13) and qrectL ðxÞ is the clover-like operators
where instead of squares we make use of horizontally—and

vertically—oriented rectangular Wilson loops of size 2 × 1

and 1 × 2, respectively,

qrectL ðxÞ ¼ 2

32π2
ϵμνρσTrfGrect

μν G
rect
ρσ g; ð16Þ

with

Grect
μν ðxÞ ¼

Im

8
½UμðxÞUνðxþ aμ̂ÞUνðxþ aμ̂þ aν̂ÞU†

μðxþ 2aν̂ÞU†
νðxþ aν̂ÞU†

νðxÞ

þUνðxÞUνðxþ aν̂ÞU†
μðx − aμ̂þ 2aν̂ÞU†

νðx − aμ̂þ aν̂ÞU†
νðx − aμ̂ÞUμðx − aμ̂Þ

þU†
μðx − aμ̂ÞU†

νðx − aμ̂ − aν̂ÞU†
νðx − aμ̂ − 2aν̂ÞUμðx − aμ̂ − 2aν̂ÞUνðx − 2aν̂ÞUνðx − aν̂Þ

þU†
νðx − aν̂ÞU†

νðx − 2aν̂ÞUμðx − 2aν̂ÞUνðxþ aμ̂ − 2aν̂ÞUνðxþ aμ̂ − aν̂ÞU†
μðxÞ

þUμðxÞUμðxþ aμ̂ÞUνðxþ 2aμ̂ÞU†
μðxþ aν̂þ aμ̂ÞU†

μðxþ aν̂ÞU†
νðxÞ

þUνðxÞU†
μðx − aμ̂þ aν̂ÞU†

μðx − 2aμ̂þ aν̂ÞU†
νðx − 2aμ̂ÞUμðx − 2aμ̂ÞUμðx − aμ̂Þ

þU†
μðx − aμ̂ÞU†

μðx − 2aμ̂ÞU†
νðx − 2aμ̂ − aν̂ÞUμðx − 2aμ̂ − aν̂ÞUμðx − aμ̂ − aν̂ÞUνðx − aν̂Þ

þU†
νðx − aν̂ÞUμðx − aν̂ÞUμðx − aν̂þ aμ̂ÞUνðxþ 2aμ̂ − aν̂ÞU†

μðxþ aμ̂ÞU†
μðxÞ�: ð17Þ

FIG. 1. From left to right, we represent pictorially the plaquette operator used for the definition of the G
plaq
μν , the ordinary clover Gclov

μν

and the rectangle clovers Grect 1
μν , Grect 2

μν such that Grect
μν ¼ Grect 1

μν þGrect 2
μν .
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In order to remove the discretization error at tree level one

should use the Symanzik tree-level coefficients c1 ¼
−1=12 and c0 ¼ 5=3. A diagrammatic representation of

the three definitions of Gr
μνðxÞ (r≡ plaq, clov, rect) used in

our investigation is provided in Fig. 1.

Ultraviolet fluctuations of the gauge fields entering in the

definition of e.g. the topological charge lead to noninteger

values. Thus, methods to suppress these ultraviolet fluc-

tuations are employed. Such techniques include cooling

and the more recently introduced gradient flow. We

examine both these techniques using, beyond the

Wilson, the Symanzik tree-level improved and Iwasaki

actions.

IV. EQUIVALENCE OF COOLING WITH

GRADIENT FLOW

We smooth out the ultraviolet fluctuations using the action

in Eq. (2). The Symanzik coefficients must satisfy c0 þ
8c1 ¼ 1 and aside from this requirement, the value of c1 can
be chosen arbitrarily. The case of c1 ¼ 0 corresponds to the

ordinary Wilson action. In addition to the Iwasaki action we

also consider the Symanzik tree-level improved action with

c1 ¼ −1=12. Any discrepancies resulting from different

smoothing actions are interpreted as lattice artifacts and

are expected to vanish in the continuum limit.

Smoothing a gauge link UμðxÞ can be accomplished by

its replacement by some other link that minimizes the local

action. To this purpose it makes more sense to rewrite the

gauge action of Eq. (2) as

SG ¼ β

N
ReTrfX†

μðxÞUμðxÞg

þ fterms independent of UμðxÞg; ð18Þ

where XμðxÞ is the sum of all the path ordered products of

link matrices, called the “staples”, which interact with the

link UμðxÞ. The main components in the Wilson action are

the plaquettes and thus the staples resulting from the square

component of the action extend over 1 × 1 squares (in

lattice units). For the rectangular part of the action the

staples extend over rectangles of sizes 1 × 2 and 2 × 1. We

can, therefore, write XμðxÞ as

XμðxÞ ¼ c0X
plaq
μ ðxÞ þ c1X

rect
μ ðxÞ; ð19Þ

with

X
plaq
μ ðxÞ ¼

X

ν≥0;ν≠μ

½UνðxÞUμðxþ aν̂ÞU†
νðxþ aμ̂Þ

þU†
νðx − aν̂ÞUμðx − aν̂ÞUνðx − aν̂þ aμ̂Þ�;

ð20Þ

and

Xrect
μ ðxÞ ¼

X

ν≥0;ν≠μ

½UνðxÞUνðxþ aν̂ÞUμðxþ 2aν̂ÞU†
νðxþ aν̂þ aμ̂ÞU†

νðxþ aμ̂Þ

þU†
νðx − aν̂ÞU†

νðx − 2aν̂ÞUμðx − 2aν̂ÞUνðx − 2aν̂þ aμ̂ÞUνðx − aν̂þ aμ̂Þ�
þ

X

ν≥0;ν≠μ

½UνðxÞUμðxþ aν̂ÞUμðxþ aν̂þ aμ̂ÞU†
νðxþ 2aμ̂ÞU†

μðxþ aμ̂Þ

þU†
νðx − aν̂ÞUμðx − aν̂ÞUμðx − aν̂þ aμ̂ÞUνðx − aν̂þ 2aμ̂ÞU†

μðxþ aμ̂Þ�
þ

X

ν≥0;ν≠μ

½U†
μðx − aμ̂ÞUνðx − aμ̂ÞUμðx − aμ̂þ aν̂ÞUμðxþ aν̂ÞU†

νðxþ aμ̂Þ

þU†
μðx − aμ̂ÞU†

νðx − aν̂ − aμ̂ÞUμðx − aν̂ − aμ̂ÞUμðx − aν̂ÞUνðx − aν̂þ aμ̂Þ�: ð21Þ

According to the above two equations, for a given link

UμðxÞ, the total number of plaquette and rectangular staples

interacting with it is 6 and 18, respectively.

A. Cooling

Cooling is applied to a link variable UμðxÞ ∈ SUðNÞ by
updating it, from an old value Uold

μ ðxÞ to Unew
μ ðxÞ, accord-

ing to the probability density,

PðUÞ ∝ exp

�

lim
β→∞

β
1

N
ReTrXμ

†ðxÞUμðxÞ
�

: ð22Þ

The basic step of the cooling algorithm is to replace the

given link Uold
μ ðxÞ by an SUðNÞ group element, which

minimizes locally the action, while all the other links

remain unaltered. This is done by choosing a matrix

Unew
μ ðxÞ ∈ SUðNÞ that maximizes

ReTrfUnew
μ ðxÞX†

μðxÞg: ð23Þ

In the case of an SUð2Þ gauge theory, the maximization is

achieved by
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Unew
μ ðxÞ ¼ XμðxÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

detXμðxÞ
p : ð24Þ

For SUðNÞ the maximization can be implemented by using

the Cabibbo-Marinari algorithm [25]; one has to iterate the

maximization over all the SUð2Þ subgroups embedded

into SUðNÞ.
We iterate this procedure so that all the links on all sites

are updated. Such a sweep over the whole lattice is called a

cooling step and will denote by nc the number of cooling

steps performed. During the sweep the link variables,

which have already been updated, are subsequently used

for the update of the links still retaining their old value.

B. Gradient flow

The gradient flow is defined as the solution of the

evolution equations [4–6],

_Vμðx; τÞ ¼ −g2
0
½∂x;μSGðVðτÞÞ�Vμðx; τÞ

Vμðx; 0Þ ¼ UμðxÞ; ð25Þ

where τ is the total gradient flow time. In the above

equation the link derivative is defined as

∂x;μSGðUÞ ¼ i
X

a

Ta
d

ds
SGðeisY

a

UÞ
�

�

�

s¼0

≡ i
X

a

Ta∂
ðaÞ
x;μSGðUÞ; ð26Þ

with

Yaðy; νÞ ¼
�

Ta if ðy; νÞ ¼ ðx; μÞ
0 if ðy; νÞ ≠ ðx; μÞ;

ð27Þ

and Ta (a ¼ 1;…; N2 − 1) the Hermitian generators of the

SUðNÞ group. If we now set Ωμ ¼ UμðxÞX†
μðxÞ we obtain

g2
0
∂x;μSGðUÞ ¼ 1

2
ðΩμ −Ω

†
μÞ −

1

2N
TrðΩμ −Ω

†
μÞ: ð28Þ

The last equation provides all we need in order to smooth

the gauge fields according to the Eqs. (25). Evolving the

gauge fields via gradient flow requires the numerical

integration of Eqs. (25). This is performed using the

third-order Runge-Kutta scheme as explained in Ref. [6].

For the exponentiation of the Lie-algebra fields required for

the integration, we apply the algorithm described in

Ref. [26]. We investigate how the elementary integration

step ϵ affects our results and find that ϵ ¼ 0.02 is a safe

option as this was also pointed out in Ref. [7]; we observe

that smaller elementary integration steps give the same

results. We therefore set ϵ ¼ 0.02 for the integration step.

C. Perturbative relation between cooling

and the gradient flow

Both cooling and gradient flow can be used to remove

the ultraviolet fluctuations. Both should lead to the same

topological properties provided that we are close enough to

the continuum limit. Assuming that we are in the pertur-

bative regime we can carry out a perturbative comparison in

order to obtain an analytic relation between the scales

involved in the two procedures following Ref. [7] where the

relation,

τ≃ nc=3; ð29Þ

was derived for the Wilson action. In this work we derive a

more general expression of the form τ ¼ nc × fðc1Þ for

smoothing actions that, in addition to the plaquette, also

include a rectangular term.

In the perturbative regime the link variables can be

expanded as

UμðxÞ≃ 1þ i
X

a

uaμðxÞTa; ð30Þ

with uaμðxÞ ∈ R is assumed to be infinitesimal.

Using Eqs. (20) and (21) the plaquette and rectangular

staples are written as

X
plaq
μ ðxÞ≃ 6þ i

X

a

wa
μðxÞTa and

Xrect
μ ðxÞ≃ 18þ i

X

a

vaμðxÞTa; ð31Þ

where wa
μðxÞ and vaμðxÞ are infinitesimal quantities. The

leading coefficients with values 6 and 18 appearing in the

above equations are just the number of plaquettes and

rectangles interacting with the link on which the gradient

flow evolution is applied. We can, therefore, write the sum

of staples [Eq. (19)] as

XμðxÞ≃ 6c0 þ 18c1 þ ic0
X

a

wa
μðxÞTa þ ic1

X

a

vaμðxÞTa;

ð32Þ

and, subsequently, ΩμðxÞ as

ΩμðxÞ≃ 6c0 þ 18c1 þ i
X

a

½ð6c0 þ 18c1ÞuaμðxÞ − ðc0wa
μðxÞ þ c1v

a
μðxÞÞ�Ta: ð33Þ

Hence, Eq. (28) becomes
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g2
0
∂x;μSGðUÞ ¼ i

X

a

½ð6c0 þ 18c1ÞuaμðxÞ − ðc0wa
μðxÞ þ c1v

a
μðxÞÞ�Ta: ð34Þ

Using the above expression, the evolution of the gradient flow can be approximated as

uaμðx; τ þ ϵÞ≃ uaμðx; τÞ − ϵ½ð6c0 þ 18c1Þuaμðx; τÞ − ðc0wa
μðx; τÞ þ c1v

a
μðx; τÞÞ�: ð35Þ

For the cooling procedure, one needs to consider that the

link UμðxÞ is substituted with the projection of Xμ over the

gauge group. Namely, for the case of an SUð2Þ gauge

theory this projection is manifested by Eq. (24) where we

substitute XμðxÞ by Eq. (32). In the perturbative approxi-

mation this leads to
2

Unew
μ ðxÞ≃ 1þ i

X

a

ðc0wa
μðxÞ þ c1v

a
μðxÞÞ

6c0 þ 18c1
Ta: ð38Þ

The above update corresponds to the substitution

uaμðxÞ→
ðc0wa

μðxÞ þ c1v
a
μðxÞÞ

6c0 þ 18c1
: ð39Þ

Comparing Eqs. (35) and (39) we observe that the gradient

flow would evolve the same as cooling if one chooses a step

of ϵ ¼ 1=ð6c0 þ 18c1Þ. In addition, during a whole cooling
step the link variables, which have already been updated are

subsequently used for the update of the remaining links that

await update; this corresponds to a speed-up of a factor of

two. Therefore, the predicted perturbative relation between

the flow time τ and the number of cooling steps nc so

that both smoothers have the same effect on the gauge

field is

τ≃
nc

3c0 þ 9c1
¼ nc

3 − 15c1
: ð40Þ

The cooling/gradient flow rescaling factors for our choice of

actions are given in Table II. An important question, which

needs to be answered is how one tunes the smoothing

parameters as the continuum limit is approached; this has

been extensively discussed in Ref. [7] and we will briefly

comment on how this is modified here. In practice, by

applying the smoothing procedure on some configurations

the ultraviolet (UV) properties of the theory up to some

length scale λS are modified by suppressing the UV fluctua-

tions at smaller length scales. For this to be aviable procedure

we need to show that by altering the UVpart of the theory the

continuum results remain unchangeable and, thus, the under-

lying physics does not depend on λS. Thus, one needs to

choose the length scale λS, which for procedures like cooling

often was taken arbitrarily; in other words the choice of the

smoothing parameters such as nc in the case of cooling but

also for other smearing techniques such as Array Processor

Experiment (APE) [27,28], Hyperqubic (HYP) [29,30] and

Stout [26,31] is not entirely clear. The gradient flow, on the

other hand, provides a smoothing procedure where this

length scale is quantified as discussed below. Namely, it

has been shown that one can simply renormalize composite

operators at fixed physical flow time with

λS ≃
ffiffiffiffi

8t
p

; ð41Þ

with t ¼ a2τ being the gradient flow time in physical units.

Wecan, therefore, translate the length scale λS as a functionof

the cooling step nc according to the formula

λS ≃ a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

8nc

3 − 15c1

s

: ð42Þ

Given that the validity of Eq. (40) is confirmed numerically,

we end up with an expression for an associate length scale λS
for the case of cooling as well. One can also generalize this

TABLE II. Leading order perturbative rescaling between the

number of cooling steps and gradient flow time such that the two

smoothing techniques are equivalent. These numbers are accord-

ing to Eq. (40).

Smoothing action c0 c1 nc=τ

Wilson 1 0 3

Symanzik tree-level 5

3
− 1

12
4.25

Iwasaki 3.648 −0.331 7.965

2
This can be derived easily for SUð2Þ where one can explicitly

expand Eq. (24). Making use of the Mercator series expansion of
the logarithm, we write

detXμðxÞ¼ð6c0þ18c1Þ2det
�

1þ i
X

a

ðc0wa
μðxÞþc1v

a
μðxÞÞ

6c0þ18c1
Ta

�

¼ð6c0þ18c1Þ2ð1þOðTrfTagÞþOða2ÞÞ: ð36Þ

Thus, the expansion of Eq. (24) gives

Xμ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

detXμðxÞ
p ¼ 1

ð6c0þ18c1Þ

×

�

6c0þ18c1þ ic0
X

a

wa
μðxÞTaþ ic1

X

a

vaμðxÞTa

�

¼1þ i
X

a

ðc0wa
μðxÞþc1v

a
μðxÞÞ

6c0þ18c1
Ta: ð37Þ
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correspondence for the cases of other smoothers, such as the

APE and stout smearing [32].

As an example we consider the continuum limit of the

topological susceptibility which is used in this work.

According to Refs. [4,6] one reads the topological suscep-

tibility at a fixed value (in physical units) of λS ¼
ffiffiffiffi

8t
p

¼
Oð0.1 fmÞ such that λS is not too small so that discretiza-

tion effects are suppressed, as well as not too large so that

the topological content of the gauge field is preserved.

Practically, λS should correspond to a plateau for the

topological susceptibility which should be scale invariant.

Hence, we extract the value of the topological susceptibility

at fixed λS for a sequence of lattice spacings and then

extrapolate it in the continuum limit.

V. NUMERICAL RESULTS

A. Topological charge

We apply cooling and gradient flow on Nf ¼ 2þ 1þ 1

twisted mass fermions gauge configurations with β ¼ 1.90,

β ¼ 1.95 and β ¼ 2.10 using the Wilson (Eq. (2) with

c1 ¼ 0), Symanzik tree-level improved (Eq. (2) with

c1 ¼ −1=12) and Iwasaki (Eq. (2) with c1 ¼ −0.331)

actions. We measure the average action, as well as the

plaquette [Eq. (12)], clover [Eq. (13)] and improved

[Eq. (15)] definitions of the topological charge for every

cooling step nc. Gradient flow is costlier and, thus, we take

measurements for every Δτ ¼ 0.1 in units of gradient flow

time (which corresponds to five integration steps for

ϵ ¼ 0.02) instead of every integration step. We cover in

total 60–100 cooling steps while for the gradient flow we

fix the maximum gradient flow time according to the

perturbative expression of Eq. (40) and the maximum

number of cooling steps. The cooling/gradient flow rescal-

ing factors used are taken from Table II. The behavior of the

topological chargeQ for single configurations as a function

of nc and τ is investigated for cooling and gradient flow,

respectively, for a given smoothing action and lattice

spacing. In Fig. 2 we present the improved definition of

the topological charge as a function of nc and τ for four

randomly chosen configurations. We show results for β ¼
1.90 and β ¼ 2.10. For β ¼ 1.90 we observe that the

topological charge for a given configuration within the

whole range of nc=ð3 − 15c1Þ × τ yield different values for

cooling and gradient flow. The difference in the value of the

topological charge is not surprising since the different

FIG. 2 (color online). The improved definition of the topological charge as a function of nc for cooling and τ rescaled by a factor of 3,
4.25 and 7.965 for gradient flow extracted with Wilson (left), Symanzik tree-level improved (middle) and Iwasaki (right) smoothing

actions, respectively. The different colors correspond to the four different configurations chosen randomly while filled and open symbols

correspond to cooling and gradient flow, respectively. Upper panel is for β ¼ 1.90 and lower panel for β ¼ 2.10.
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smoothers have different lattice artifacts and do not need to

agree at nonzero values of the lattice spacing. For β ¼ 2.10

the values become closer as expected. Thus, as one

approaches the continuum limit the two different proce-

dures converge. We note that the topological charge itself is

not the main quantity of interest. It provides only a measure

on the fluctuations and an input for the topological

susceptibility, which is the physically relevant quantity.

In the next section we will thus focus on the relevant

physical observables. In this section, we restrict the

presentation to the topological charge. Another observation

from the results shown in Fig. 2 is that for the Wilson and

Symanzik tree-level improved actions the topological

charge Q as a function of nc or τ is not really constant.

As can be seen in the left and middle panels of Fig. 2, the

topological charge obtains different values with increasing

nc and τ. This behavior, although still present, appears to be
supressed for our finest lattices with β ¼ 2.10. Using the

Iwasaki action, we observe that the topological charge

fluctuates for nc ∈ ½0; 20 − 30� and then becomes com-

pletely stable no matter what the lattice spacing is. These

results have been observed when applying cooling in

previous studies and they comply with theoretical

FIG. 3 (color online). An example of the behavior of the

topological charge for a single configuration as a function of nc
and τ rescaled by 7.965 for cooling (open symbols) and gradient

flow (filled symbols) for two different configurations. With the

red circles we present the improved, with green diamonds

the clover and with blue squares the plaquette definition of the

topological charge. The smoothing has been performed with the

Iwasaki action.

FIG. 4 (color online). The time history of the topological charge which has been extracted by cooling (blue dashed line) and gradient

flow (red solid line) at nc ¼ 50 and the corresponding flow time for each different choice of smoothing action. In the upper row we

present results for β ¼ 1.95 and in the lower results for β ¼ 2.10.
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expectations from an, admittedly, semi-classical picture.

Namely, at finite lattice spacing the lattice action deviates

from its continuum limit with deviations that increase as

the gauge fields become larger. Instantons have a scale

parameter λ, which enters nontrivially the action. As one

decreases λ, the gauge fields are expected to become larger

modifying the gauge action as well. The lattice action can

be written [23,33] (on dimensional grounds) as

SLatða; λÞ ¼ Scontf1þ ða=λÞ2a2 þ ða=λÞ4a4 þOða=λÞ6g;
ð43Þ

with a2 ¼ −1=5 for Wilson, a2 ¼ 0, a4 ¼ −17=210 for

Symanzik and a2 ¼ þ2.972=5 for Iwasaki. Stable instan-

ton solutions require a lattice action which increases by

decreasing the scale parameter λ. This requirement is

fullfield only for the Iwasaki action and that is the

reason why one observes stable topological charge. On

the contrary, for the Wilson and Symanzik tree-level

improved actions, the solutions are not stable; this is

reflected in the fact that the values of the topological

charge jump to different values. Nevertheless, stability sets

in as a → 0; this is visible for the case of β ¼ 2.10 in Fig. 2

where we observe less changes in the value of Q.

Comparing results for the three different definitions of

the topological charge density, we observe that for the

improved case the topological charge converges closer and

faster to a near integer value compared to the other two

definitions. All three definitions for the three ensembles

give topological charges, which converge to the same near

integer as a function of the relevant smoothing scale. These

two observations suggest that indeed the three topological

charge definitions differ only due to lattice artifacts. Such a

comparison is meaningful only if the topological charge

acquires stability and hence, we consider the Iwasaki

action. In Fig. 3, we observe that for the clover as well

as for the improved definition, the topological charge

converges faster than when the plaquette definition is used

in particular in the case when cooling is performed.

In Fig. 4 we present an example of the time history (first

900 configurations) of the topological charge Q for gauge

configurations that have been cooled using nc ¼ 50. We

also include the time history when using the gradient flow

for a step of τ ¼ nc=ð3 − 15c1Þ. Results are shown for β ¼
1.95 and β ¼ 2.10 for the three gauge actions. As can be

seen, the topological charge does not suffer from large

FIG. 5 (color online). The distribution (first row) of the topological charge for β ¼ 1.95 and the associated Gaussian fit (second row).

In blue we present the distribution obtained via cooling at nc ¼ 50 and in red the distribution obtained via gradient flow at τ ¼ 16.7,

τ ¼ 11.8 and τ ¼ 6.3 for Wilson, Symanzik tree-level improved and Iwasaki actions, respectively.
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autocorrelations and the time histories between cooling and

the gradient flow are very similar. This similarity can be

quantified by the calculation of the linear correlation

coefficient, which is the topic of Sec. V D.

Additionally, in Fig. 5, we provide the histogram of the

topological charge for both cooling and gradient flow for

the three actions. We observe that the histograms exhibit

nearly Gaussian distributions in particular for the β ¼ 1.95

ensemble where a large number of configurations is

analyzed. As expected, the distributions using cooling or

the gradient flow look very similar for all three actions and

the associated Gaussian fits fall on top of each other. This

already points to the equivalence anticipated for the

topological susceptibility.

B. Average action density

As a common scale for the two smoothing techniques

we can use the action, the minimization of which defines

both smoothers. Instead of looking at the action we

consider the dimensionless average action density hS̄Gi ∈
½0; 1Þ defined as

hS̄Gi ¼ 1 −

*

c0
P

x

P

4
μ;ν¼1

1≤μ<ν

ReTrU1×1
x;μ;ν þ c1

P

x

P

4
μ;ν¼1

μ≠ν

ReTrU1×2
x;μ;ν

ð6c0 þ 12c1ÞVa−4N

+

: ð44Þ

In Fig. 6 we present the average action density for β ¼ 1.95

as a function of nc and the perturbatively determined values

of the gradient flow time, namely 3×, 4.25×, and 7.965 × τ

for the Wilson, the Symanzik tree-level improved and the

Iwasaki actions, respectively. As expected from the find-

ings of Ref. [7], for theWilson action, the rescaling nc ¼ 3τ

leads to equivalent results for this quantity between

gradient flow and cooling for small values of nc and τ.

For instance for β ¼ 1.95 where our results are more

accurate we find that for nc ≥ 20 the average action for

both procedures becomes the same. Our results show that a

similar behavior is observed also for the other two actions.

Namely, the average action density deviates for small

values of the smoothing scales but for nc ∼ 30, for the

Symanzik tree-level improved, and nc ∼ 50, for the

Iwasaki action, they become equal. Similar behavior is

also observed for β ¼ 1.90 and β ¼ 2.10 showing the

equivalence of the two procedures in evaluating the average

action density. Following Ref. [7] we define τðncÞ as the
gradient flow time τ for which the average action density

changes by the same amount as when nc cooling steps are

performed. This function is evaluated by interpolating

between the discrete gradient flow time steps with cubic

splines. In Fig. 7 we report the function τðncÞ for the three
different actions, for our three different ensembles. We

observe that for each action used the results are in agree-

ment for the three ensembles giving the first indication that

the equivalence between the gradient flow and cooling has

a well-defined continuum limit. In addition to the functions

τðncÞ we also plot the lines τ ¼ nc=3, τ ¼ nc=4.25 and

τ ¼ nc=7.965 for the Wilson, Symanzik tree-level and

Iwasaki actions, respectively. Obviously these linear func-

tions provide good approximations of τðncÞ for each choice
of action even for the ranges of nc where equivalence in

Fig. 6 does not hold. Since the average action plays the role

of a common scale between the two procedures and τðncÞ

FIG. 6 (color online). The average action density hSGi as a function of the cooling step nc and the corresponding gradient flow time

nc=ð3 − 15c1Þ for β ¼ 1.95 and the three smoothing actions Wilson, Symanzik tree-level (tr.l) and Iwasaki.
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has such a good agreement with the perturbative lines, there

is little doubt that the approximation τðncÞ¼nc=ð3−15c1Þ
provides an adequate rescaling between nc and τ with finite
lattice spacing corrections playing an insignificant role.

C. Topological susceptibility

In this section we examine results on the topological

susceptibility defined as

χ ¼ hQ2i
a4V

: ð45Þ

The topological susceptibility has been investigated exten-

sively using several techniques such as smearing and

cooling [24,30,34] and recently determinations of χ make

use of the gradient flow [35] as well as the spectral

projectors method [36,37]. The question we would like

to address here is not the detailed determination of the

topological susceptibility, which will be the subject of

another followup paper, but rather its use as a comparison

between cooling and gradient flow for the three actions

considered in the previous sections. In Fig. 8 we show

r0χ
1=4 as a function of the number of cooling steps and the

gradient flow time rescaled by the corresponding pertur-

bative factor for β ¼ 1.95. We do so for the three different

actions used in the cooling and gradient flow procedure,

namely the Wilson, the Symanzik tree-level improved and

the Iwasaki actions, for the three lattice definitions of the

topological charge density; to reveal the associated corre-

spondence we collect the results for both procedures in the

FIG. 8 (color online). The topological susceptibility r0χ
4 units of r0 computed using the three different definitions of the topological

charge density, namely the plaquette, the clover and the improved definition, as a function of the cooling step and the associated gradient

flow time. From left to right we show results for the Wilson, Symanzik tree-level improved and Iwasaki actions. The results when using

the plaquette definition coincide with those obtained using the clover definition.

FIG. 7 (color online). The behavior of τðncÞ as a function of nc for Wilson, Symanzik tree-level improved and Iwasaki smoothing

actions. The lines corresponds to τ ¼ nc=3, τ ¼ nc=4.25 and τ ¼ nc=7.965 for Wilson, Symanzik tree-level improved and Iwasaki

actions, respectively.
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same plot. We observe that for a given action after a few

cooling steps nc ≤ 10 or the equivalent gradient flow time

τ ¼ nc=ð3 − 15c1Þ the susceptibilities computed using the

plaquette or the clover definition of the topological charge

density are almost indistinguishable. In general, such an

agreement is not expected at finite lattice spacings and one

might see deviations for very large statistics. However, for

our current statistical accuracy both definitions give the

same results and we thus only considered the susceptibility

based on the clover definition of the topological charge.

The results in Fig. 8 also show the very good agreement

between cooling and the gradient flow for the topological

susceptibilities obtained using the same definition for the

topological charge density and the same action. As a matter

of fact for even a very small number of cooling steps i.e.

nc ∼ 5 and the corresponding gradient flow time τ ∼

5=ð3–15c1Þ the two values of the topological susceptibil-

ities become the same. For a larger number of cooling steps

and the associated gradient flow times, the two topological

susceptibilities become almost indistinguishable. Thus, the

perturbative matching between the two smoothers τ≃

nc=ð3 − 15c1Þ is confirmed as far as results on the

topological susceptibility are concerned.

In Fig. 9 we present the topological susceptibility r0χ
1=4

as a function of the average action density defined as the

common scale for cooling and the gradient flow. The

susceptibility χ has been extracted for the clover and

improved definitions of the topological charge density

and computed using the ensembles with β ¼ 1.95 and β ¼
2.10 for our three actions. We observe that for all three

actions and for both definitions of the topological charge

density as well as for nc ≥ 2 we obtain very good agree-

ment. For our most accurate calculation using the β ¼ 1.95

ensemble, results on χ obtained using cooling and gradient

flow are in excellent agreement, but differ for the clover and

improved definitions of χ. Complementarily, for our finest

lattice spacing ensemble with β ¼ 2.10, we observe that the

topological susceptibilities for the clover and improved

definitions of the topological charge density become

closer for nc ≃ 6, 10, 20 for Wilson, Symanzik tree-level

improved and Iwasaki smoothing actions, respectively.

This is in accordance with the fact that the topological

susceptibility based on the two different definitions of the

topological charge density is expected to become the same

towards the continuum limit.

Returning to Fig. 8 one can see that there is a plateau for

the topological susceptibility as a function of the smoothing

FIG. 9 (color online). The susceptibility as a function of the average action density hS̄Gi for β ¼ 1.95 (top) and β ¼ 2.10 (bottom)

ensembles and the three actions.
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scale when the clover/plaquette definitions are used for the

topological charge density which sets in when the Wilson

action is used for nc ∼ 40. A plateau is also observed for the

improved definition if the Symanzik tree-level improved

action is used for nc ∼ 40. On the contrary, when using the

Iwasaki action, the susceptibility increases with nc (or

equivalently with τ). This means that nc is not large enough
for the Iwasaki action.

3

D. Correlation coefficient

In the previous sections we showed that cooling and

gradient flow provide results, which are equivalent for the

average action density and the topological susceptibility

under the perturbative rescaling of Eq. (40). In this section,

we examine the linear correlation coefficient for these two

procedures, defined as

cQ1ðncÞ;Q2ðτÞ ¼
hðQ1 − Q̄1ÞðQ2 − Q̄2Þi
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hðQ1 − Q̄1Þ2ihðQ2 − Q̄2Þ2i
q ; ð46Þ

where fQ1ðncÞg and fQ2ðncÞg are the two sets of values of
the topological charge obtained using cooling at nc and

gradient flow at τ, respectively, on the same gauge

configurations. This implies that cQ1ðncÞ;Q2ðτÞ is a matrix

of size nc × τ. The question we would like to answer in this

section is the level of correlation between sets of topo-

logical charges extracted via cooling and gradient flow

using the same action. For this discussion we employ the

topological charge using the improved definition. The

results for the other two definitions are similar. In

Fig. 10 we represent results for the correlation coefficient

using the three actions for our three ensembles.

We show the diagonal elements (for nc ¼ ð3–15c1Þτ) of
the correlation coefficient matrix cQ1ðncÞ;Q2ðτÞ when nc and τ
are matched with the perturbative expression Eq. (40).

When the Wilson action is used, we observe that for nc > 1

and as we increase nc the coefficient drops till it reaches a
nearly stable value (nc > 10 − 20). This value is approx-

imately ∼93.5% for β ¼ 1.90, ∼95% for β ¼ 1.95 and

∼98% for β ¼ 2.10. Clearly, as a→ 0 the correlation

coeffient approaches unity. This indicates that the corre-

spondence between cooling and gradient flow has a well-

defined continuum limit. A similar behavior is observed

when the Symanzik tree-level improved action is used

obtaining ∼93% for β ¼ 1.90, ∼95% for β ¼ 1.95 and

∼97.5% for β ¼ 2.10. Finally and likewise when the

Iwasaki smoothing action is used the level of correlation

is ∼92.5% for β ¼ 1.90, ∼94% for β ¼ 1.95 and ∼96.5%

for β ¼ 2.10. In Fig. 11 we provide density plots for the full

correlation coefficient matrix cQ1ðncÞQ2ðτÞ for theWilson and

Symanzik tree-level improved actions obtained when the

FIG. 10 (color online). The diagonal elements of the correlation coefficient cQ1ðncÞ;Q2ðτÞ defined in Eq. (46) for the Wilson, Symanzik

tree-level improved and Iwasaki actions, respectively, for β ¼ 1.90, β ¼ 1.95 and β ¼ 2.10. We consider the topological charge

extracted using the improved definition.

3
From a semiclassical point of view [33], smoothing with the

Iwasaki action prevents large instantons from shrinking to the UV
scale, but it also forces small instantons (dislocations) with size
relevant to the UV scale to expand and, thus, χ increases with the
smoothing scale. According to Eq. (43) this process is suppressed
as a → 0. Same behaviour has also been reported in Fig. 2 of
Ref. [24] where the topological susceptibility obtained via
Iwasaki action increases with nc but flattens by decreasing the
lattice spacing. As a matter of fact, for the finest lattice the
topological susceptibility becomes completely flat for nc ≥ 3.
Similar ambiguities in reading the topological susceptibility for a
given value of the lattice spacing appear when measuring the
topological charge using the overlap-Dirac operator. The value of
the topological charge depends on the mass which appears in the
overlap-Dirac operator [38]. In this case we fix the value of the
mass, for instance we pick the one which optimizes locality, and
extract the topological susceptibility for a sequence of lattice
spacings. Then we extrapolate and obtain the correct topological
susceptibility in the continuum limit.
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improved topological charge is employed for β ¼ 1.95.

When excluding the very first cooling steps (e.g. nc ≲ 10),

the matrix cQ1Q2
appears to be nearly diagonal with the

diagonal line denoting the equation nc ¼ ð3–15c1Þτ. This
behavior is more pronounced for the case of the Wilson and

Symanzik tree-level improved actions. Thus these results

corroborate the fact that cooling the gauge configurations

with nc steps has almost the same effect as evolving these

configurations via gradient flow for τ ¼ nc=ð3 − 15c1Þ. We

expect that at the continuum limit the corresponding

distributions become perfectly diagonal with the maximum

along the diagonal and corresponding to a correlation

coefficient of 100%.

VI. CONCLUSIONS

In this article we provide a comparison of the results on

observables such as the topological charge and the sus-

ceptibility obtained using gradient flow or cooling. It

extends the analysis of Ref. [7] to include gauge actions

with rectangular terms. The comparison is realized both

analytically in perturbation theory and numerically. For our

analytic analysis we follow the perturbative treatment of

Ref. [7], which was performed for theWilson action and we

show how to generalize it to Symanzik improved actions

with rectangular parts. More specifically, we derive the

corresponding relation between the continuous gradient

flow time τ and the number of the discrete cooling steps nc
by expanding the flow steps perturbatively including terms

up to OðaÞ. The relation we obtain is τ≃ nc=ð3 − 15c1Þ
where c1 is the coefficient which multiplies the rectangular

term in the gauge action. This becomes exact as a→ 0 and

does not depend on the details of the gauge group; although

this is derived for SUð2Þ the generalization to SUð3Þ is

straight forward. For the numerical results we use

configurations produced with Nf ¼ 2þ 1þ 1 twisted

mass fermions and the Iwasaki gauge action. Although

strictly speaking the relation we derived is valid only as

a→ 0, we confirm numerically that the action density, used

as a common scale, coincides for both procedures.

By investigating the time histories of the topological

charge we observe that these behave in the same manner for

both smoothing procedures indicating equivalence between

them. The histograms of the topological charge distribu-

tions for fixed nc and τ ∼ nc=ð3–15ncÞ are almost the same

for both smoothers and approximately Gaussian having the

same width. This already suggests an equivalence for the

topological susceptibility, which is confirmed by calculat-

ing the topological susceptibility χ for all three lattice

definitions of the topological charge density as a function

of the smoothing scale and the average action for both

smoothers. This enables us to demonstrate that after a very

few cooling steps nc ∼ 2 the topological susceptibility for

gradient flow and cooling become equivalent; this holds for

all tested smoothing actions and all lattice definitions of the

topological charge.

Finally we look at the correlation coefficient, which can

be used to reveal similarities between the different defi-

nitions of the topological charge. We observe maximum

correlation for gauge configurations that have been

smoothed via gradient flow or cooling according to the

relation τ≃ nc=ð3 − 15c1Þ. In addition, we observe that

after a few cooling steps the correlation coefficient becomes

stable with increasing value towards the unity as we

approach the continuum limit (decreasing the lattice spac-

ing). For instance already for our finest lattice with β ¼
2.10 the correlation coefficient is ∼98%, ∼97.5% and

∼96.5% when smoothing with Wilson, Symanzik tree-

level improved and Iwasaki action, respectively.

FIG. 11 (color online). The correlation coefficient matrices cQ1ðncÞQ2ðτÞ for the Wilson and Symanzik tree-level improved action. We

consider topological charge extracted for β ¼ 1.95 and the improved definition of the topological charge density.
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The main conclusion of this study is that one can use

cooling or the gradient flow in order to extract the

topological properties of configurations smoothed with

gauge actions, which include square and rectangular

terms. This equivalence is manifested by using the relation

τ ¼ nc=ð3–15c1Þ derived in perturbation theory. In practice,
this means that one may opt to use cooling to extract the

topological chargeQ. An approximate comparison between

the gradient flow time τ with integration step
4
ϵ ¼ 0.01 and

cooling step nc for an action, which includes rectangular

terms gives cpu timeðτ ¼ 1Þ=cpu timeðnc ¼ 1Þ≃ 160.

Hence, for the Symanzik tree-level improved action, gra-

dient flow is slower than cooling by a factor of∼38while for

the Iwasaki action by ∼20. These estimates depend on the

integrator used for the gradient flow and the integration step

ϵ. The speed-up cooling gives in comparison to gradient

flow isOð10Þ and this could decrease the computational cost

by the same factor in investigations where one is mainly

interested in the topological susceptibility and where a large

number of configurations is required.
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