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TOPOLOGICAL CLASSIFICATION

OF GENERALIZED BOTT TOWERS

SUYOUNG CHOI, MIKIYA MASUDA, AND DONG YOUP SUH

Abstract. If B is a toric manifold and E is a Whitney sum of complex
line bundles over B, then the projectivization P (E) of E is again a toric
manifold. Starting with B as a point and repeating this construction, we
obtain a sequence of complex projective bundles which we call a generalized
Bott tower. We prove that if the top manifold in the tower has the same
cohomology ring as a product of complex projective spaces, then every fibration
in the tower is trivial so that the top manifold is diffeomorphic to the product
of complex projective spaces. This gives supporting evidence to what we call
the cohomological rigidity problem for toric manifolds, “Are toric manifolds
diffeomorphic (or homeomorphic) if their cohomology rings are isomorphic?”
We provide two more results which support the cohomological rigidity problem.

1. Introduction

A toric varietyX of dimension n is a normal complex algebraic variety with an ac-
tion of an n-dimensional algebraic torus (C∗)n having a dense orbit. A fundamental
result in the theory of toric varieties says that there is a one-to-one correspondence
between toric varieties and fans. It follows that the classification of toric varieties
is equivalent to the classification of fans up to isomorphism.

Among toric varieties, compact smooth toric varieties, which we call toric man-
ifolds, are well studied. Recently the second author has shown in [7] that toric
manifolds as varieties can be distinguished by their equivariant cohomology. So
we are led to ask how much information ordinary cohomology contains for toric
manifolds and we posed the following problem in [9]. Throughout this paper, an
isomorphism of cohomology rings is as graded rings unless otherwise stated.

Cohomological rigidity problem for toric manifolds. Are toric manifolds
diffeomorphic (or homeomorphic) if their cohomology rings are isomorphic?

If B is a toric manifold and E is a Whitney sum of complex line bundles over
B, then the projectivization P (E) of E is again a toric manifold. Starting with B
as a point and repeating this construction, say m times, we obtain a sequence of
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toric manifolds:

(1.1) Bm
πm−→ Bm−1

πm−1−→ · · · π2−→ B1
π1−→ B0 = {a point},

where the fiber of πi : Bi → Bi−1 for i = 1, . . . ,m is a complex projective space
CPni . We call the above sequence a generalized Bott tower of height m and omit
“generalized” when ni = 1 for every i ([4]). We also call Bk in the tower a k-stage
generalized Bott manifold and omit “generalized” as well when ni = 1 for every i.

We note that H∗(Bm) is isomorphic to H∗(
∏m

i=1 CP
ni) as a group but not

necessarily as a graded ring. If every fibration in the tower (1.1) is trivial, then Bm

is diffeomorphic to
∏m

i=1 CP
ni and H∗(Bm) is isomorphic to H∗(

∏m
i=1 CP

ni) as a
graded ring. The following theorem shows that the converse is true and generalizes
Theorem 5.1 in [8] treating Bott towers. It also gives supporting evidence to the
cohomological rigidity problem above.

Theorem 1.1. If H∗(Bm) is isomorphic to H∗(
∏m

i=1 CP
ni) as rings, then every

fibration in the tower (1.1) is topologically trivial; in particular, Bm is diffeomorphic
to

∏m
i=1 CP

ni .

Remark 1.2. It is shown in [2] that a toric manifold X whose cohomology ring is
isomorphic to that of a generalized Bott manifold is a generalized Bott manifold.
So we can conclude that if H∗(X) is isomorphic to H∗(

∏m
i=1 CP

ni), then X is
diffeomorphic to

∏m
i=1 CP

ni .

2-stage Bott manifolds are famous Hirzebruch surfaces and their diffeomorphism
types can also be distinguished by their cohomology rings. The following theorem
generalizes this fact and gives a partial affirmative solution to the cohomological
rigidity problem.

Theorem 1.3 (Corollary 6.3). 2-stage generalized Bott manifolds are diffeomorphic
if and only if their cohomology rings are isomorphic.

Actually we obtain a diffeomorphism classification result for those manifolds (see
Theorem 6.1) and it would be interesting to compare it with the variety classification
result in [6].

We also prove the following, which gives another partial affirmative solution to
the cohomological rigidity problem.

Theorem 1.4 (Theorem 7.1). 3-stage Bott manifolds are diffeomorphic if and only
if their cohomology rings are isomorphic.

This paper is organized as follows. In Section 2 we recall well-known facts on
projective bundles and discuss their Pontrjagin classes. We prepare two lemmas
on cohomology of generalized Bott manifolds in Section 3. Section 4 is devoted to
the proof of Theorem 1.1. For the proof we need to show that a Whitney sum of
complex line bundles over a product of complex projective spaces is trivial if its
total Chern class is trivial. This result is of independent interest and is proved
in Section 5. We will discuss 2-stage generalized Bott manifolds in Section 6 and
3-stage Bott manifolds in Section 7. In Section 8, which is an appendix, we give a
sufficient condition for an isomorphism of cohomology rings with Z/2 coefficients
to preserve Stiefel-Whitney classes.
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2. Projective bundles

Let B be a smooth manifold and let E be a complex vector bundle over B. We
denote by P (E) the projectivization of E.

Lemma 2.1. Let B and E be as above and let L be a complex line bundle over B.
We denote by E∗ the complex vector bundle dual to E. Then P (E ⊗L), P (E) and
P (E∗) are isomorphic as fiber bundles over B; in particular, they are diffeomorphic.

Proof. For each x ∈ B, we choose a non-zero vector vx from the fiber of L over x
and define a map Ψ: E → E⊗L by Ψ(ux) := ux⊗vx where ux is an element of the
fiber of E over x. The map Ψ depends on the choice of vx’s but the induced map
from P (E) to P (E ⊗ L) does not because L is a line bundle. It is easy to check
that the induced map gives an isomorphism of P (E) and P (E⊗L) as fiber bundles
over B.

Choose a Hermitian metric 〈 , 〉 on E, which is anti-C-linear on the first entry
and C-linear on the second entry, and define a map Φ: E → E∗ by Φ(u) := 〈u, 〉.
This map is not C-linear but anti-C-linear, so it induces a map from P (E) to P (E∗),
which gives an isomorphism as fiber bundles. �

Let y ∈ H2(P (E)) be minus∗ the first Chern class of the tautological line bundle
over P (E) where vectors in a line � of E form the fiber over � ∈ P (E). H∗(P (E)) can
be viewed as an algebra over H∗(B) via π∗ : H∗(B) → H∗(P (E)) where π : P (E) →
B denotes the projection. When H∗(B) is finitely generated and torsion free (this
is the case when B is a toric manifold), π∗ is injective and H∗(P (E)) as an algebra
over H∗(B) is known to be described as

(2.1) H∗(P (E)) = H∗(B)[y]/
( n∑
q=0

cq(E)yn−q
)
,

where n denotes the complex fiber dimension of E. If we formally express

(2.2) c(E) =
n∏

i=0

(1 + ui),

then the relation in (2.1) is written as

(2.3)
n∑

q=0

cq(E)yn−q =
n∏

i=0

(y + ui),

and the total Chern class of the tangent bundle along the fibers Tf (P (E)) of P (E)
is given by

c(TfP (E)) =
n∑

q=0

(1 + y)n−qcq(E) =
n∏

i=0

(1 + y + ui);

see [1, (2) on p.515]. It follows that the total Pontrjagin class of Tf (P (E)) is given
by

(2.4) p(TfP (E)) =
n∏

i=0

(1 + (y + ui)
2).

∗Our y corresponds to -γ1 in [1, (2) on p.515].
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Proposition 2.2. Let E′ → B′ be another complex vector bundle over a smooth
manifold B′ with the same fiber dimension as E. Suppose that ϕ : H∗(P (E′)) →
H∗(P (E)) is an isomorphism such that ϕ(H∗(B′)) = H∗(B). Then ϕ(p(TfP (E′)))
= p(TfP (E)). If ϕ satisfies ϕ(p(B′)) = p(B) in addition, then ϕ(p(P (E′))) =
p(P (E)).

Proof. Let y′ be an element of H2(P (E′)) defined similarly to y. Since ϕ is an
isomorphism and ϕ(H∗(B′)) = H∗(B), we have

(2.5) ϕ(y′) = εy + w with ε = ±1 and some w ∈ H2(B).

As in (2.2) we formally express c(E′) =
∏n

i=0(1 + u′
i). Then we have the relation

(2.3) and the formula (2.4) for E′ → B′ with prime.
Since ϕ(

∏n
i=0(y

′+u′
i)) =

∏n
i=0(εy+w+ϕ(u′

i)) is zero in H∗(P (E)), we have an
identity

n∏
i=0

(εy + w + ϕ(u′
i)) = εn

n∏
i=0

(y + ui)

in a polynomial ring H∗(B)[y] in y with H∗(B) as the coefficient ring. Replace y
with

√
−1 + y and −

√
−1 + y in the identity above and multiply the resulting two

identities at each side. Then we obtain an identity

(2.6)

n∏
i=0

(
1 + (εy + w + ϕ(u′

i))
2
)
=

n∏
i=0

(
1 + (y + ui)

2
)

in the ring H∗(B)[y], in particular, in H∗(P (E)). It follows from (2.4), (2.5) and
(2.6) that

ϕ(p(TfP (E′))) = ϕ
( n∏
i=0

(1 + (y′ + u′
i)

2)
)

=

n∏
i=0

(
1 + (εy + w + ϕ(u′

i))
2
)

=

n∏
i=0

(
1 + (y + ui)

2
)

= p(TfP (E)).

This proves the first part of the proposition.
Since the tangent bundle TP (E) of P (E) decomposes into a Whitney sum of

π∗(TB) and Tf (P (E)), we obtain the latter part of the proposition. �

We conclude this section with an observation on Pontrjagin classes of generalized
Bott manifolds in (1.1). Since π∗

j : H
∗(Bj−1) → H∗(Bj) is injective, we regard

H∗(Bj−1) as a subring of H∗(Bj) for each j so that we have a filtration

H∗(Bm) ⊃ H∗(Bm−1) ⊃ · · · ⊃ H∗(B1).

Theorem 2.3. Let (1.1) be one generalized Bott tower and let

B′
m → B′

m−1 → · · · → B′
1 → B′

0 = {a point}
be another generalized Bott tower. If ϕ : H∗(B′

m) → H∗(Bm) is an isomorphism
which maps H∗(B′

j) onto H∗(Bj) for each j = 1, . . . ,m, then ϕ(p(B′
j)) = p(Bj)

for any j.
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Proof. It follows from the assumption that the fiber dimensions of Bj → Bj−1 and
B′

j → B′
j−1 must agree for each j. If ϕ(p(B′

j−1)) = p(Bj−1), then Proposition 2.2

implies that ϕ(p(B′
j)) = p(Bj). Therefore, the theorem follows by induction on

j. �

3. Cohomology of generalized Bott manifolds

Complex vector bundles involved in a generalized Bott tower (1.1) are Whitney
sums of complex line bundles. Since P (E ⊗ L) and P (E) are isomorphic as fiber
bundles by Lemma 2.1, we may assume that at least one of the complex line bundles
is trivial at each stage of the tower, that is,

Bi = P (C⊕ ξi) for i = 1, . . . ,m,

where C denotes the trivial complex line bundle and ξi a Whitney sum of complex
line bundles over Bi−1. We set ni = dim ξi.

Let yi ∈ H2(Bi) denote minus the first Chern class of the tautological line bundle
over Bi = P (C⊕ ξi). We may think of yi as an element of H2(Bk) whenever i ≤ k.
Then the repeated use of (2.1) shows that the ring structure of H∗(Bm) can be
described as

(3.1) H∗(Bk) = Z[y1, . . . , yk]/(fi(y1, . . . , yi) : i = 1, . . . , k)

for k = 1, . . . ,m, where

(3.2) fi(y1, . . . , yi) = yni+1
i + c1(ξi)y

ni
i + · · ·+ cni

(ξi)yi.

We prepare two lemmas to be used later.

Lemma 3.1. The set

{bym + w ∈ H2(Bm) | 0 
= b ∈ Z, w ∈ H2(Bm−1), (bym + w)nm+1 = 0}

lies in a one dimensional subspace of H2(Bm) if it is non-empty.

Proof. We have

(bym+w)nm+1 = (bym)nm+1 + (nm + 1)(bym)nmw + · · ·

= −bnm+1
nm∑
q=1

cq(ξm)ynm+1−q
m + (nm + 1)(bym)nmw + · · · ,

where (3.2) is used at the second identity. If b 
= 0 and (bym + w)nm+1 = 0, then
we see bc1(ξm) = (nm + 1)w by looking at the coefficients of ynm

m at the identity
above and hence b and w must be proportional, proving the lemma. �

Lemma 3.2. Let x =
∑m

j=1 bjyj be an element of H∗(Bm) such that bj 
= 0 for

some j. Then xnj 
= 0 in H∗(Bm).

Proof. Suppose xnj = 0 on the contrary. Then (
∑m

j=1 bjyj)
nj must be in the ideal

generated by the polynomials in (3.2) while a non-zero scalar multiple of y
nj

j appears

in (
∑m

j=1 bjyj)
nj when we expand it because bj 
= 0. However, it follows from (3.2)

that if a non-zero scalar multiple of a power of yj appears in the ideal, then the
exponent must be at least nj + 1, which is a contradiction. �
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4. Cohomologically product generalized Bott manifolds

The purpose of this section is to prove Theorem 1.1 in the Introduction.
We continue to use the notation of the previous section and from now until this

section ends, we assume that H∗(Bm) is isomorphic to H∗(
∏m

i=1 CP
ni). Then,

there is another set of generators {x1, . . . , xm} in H2(Bm) such that

(4.1) H∗(Bm) = Z[x1, . . . , xm]/(xn1+1
1 , . . . , xnm+1

m ),

and one has an expression

(4.2) yi =

m∑
j=1

cijxj for i = 1, . . . ,m and cij ∈ Z,

and

xi =
m∑
j=1

dijyj for i = 1, . . . ,m and dij ∈ Z,

where both C = (cij) and D = (dij) are unimodular and C = D−1.

Lemma 4.1. By an appropriate change of indices of xi’s with ni = nm, we may
assume that cmm = dmm = ±1.

Proof. Case 1. The case where all the ni’s are the same. In this case, xnm+1
i = 0

for any i. Since xi = dimym +
∑

j �=m dijyj , where the sum lies in H∗(Bm−1) by

(3.1) and the xi’s are linearly independent, it follows from Lemma 3.1 that there is
a unique r such that drm 
= 0, and drm is actually ±1 because detD = ±1. Since all
the ni’s are the same, we may assume r = m if necessary by changing the indices of
the xi’s, so dmm = ±1 and dim = 0 for i 
= m. This implies that cmm = dmm = ±1
and cim = 0 for i 
= m as well because C = D−1.

Case 2. The general case. Let S = {N1, . . . , Nk} be the set of all distinct
elements of n1, . . . , nm such that N1 > . . . > Nk. We can view {n1, . . . , nm} as a
function µ : {1, . . . ,m} → N such that µ(i) = ni. Then S is the image of µ. Let
J� = µ−1(N�) for � = 1, . . . , k and let CJ�

and DJ�
be the matrices formed from cij

and dij with i, j ∈ J�, respectively.

Since xni+1
i = 0, dij must be 0 if ni < nj by Lemma 3.2. This shows that

D = (dij) is a block upper triangular matrix⎛
⎜⎜⎜⎝

DJ1
∗

DJ2

. . .

0 DJk

⎞
⎟⎟⎟⎠

if n1 ≥ n2 ≥ · · · ≥ nm, and in general is conjugate to the above by a permutation
matrix.

Since C = D−1, C is also conjugate to a block upper triangular matrix⎛
⎜⎜⎜⎝

CJ1
∗

CJ2

. . .

0 CJk

⎞
⎟⎟⎟⎠

by a permutation matrix. Then a similar argument to Case 1 above can be applied
to CJ�

andDJ�
(for J� containingm) instead of C andD, and the lemma follows. �
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We may further assume that cmm = dmm = 1 if necessary by taking −xm instead
of xm, so that we may assume

(4.3) ym = xm +

m−1∑
j=1

cmjxj and xm = ym +

m−1∑
j=1

dmjyj .

Lemma 4.2. If H∗(Bm) is isomorphic to H∗(
∏m

i=1 CP
ni), then H∗(Bm−1) is

isomorphic to H∗(
∏m−1

i=1 CPni).

Proof. By (3.1), H∗(Bm−1) agrees with H∗(Bm) with ym = 0 plugged. On the
other hand, H∗(Bm) has an expression (4.1) by assumption. It follows from (4.3)
that H∗(Bm−1) agrees with the right hand side of (4.1) with the relation xm +∑m−1

j=1 cmjxj = 0 added. Therefore, we can eliminate xm using the added relation,
so that we obtain a surjective homomorphism

Z[x1, . . . , xm−1]/(x
n1+1
1 , . . . , x

nm−1+1
m−1 ) → H∗(Bm−1).

But both sides above are torsion free and have the same rank, so the homomorphism
above is an isomorphism, proving the lemma. �

We need one more result for the proof of Theorem 1.1.

Theorem 4.3. A Whitney sum of complex line bundles over a product of complex
projective spaces is trivial if and only if its total Chern class is trivial.

The proof of Theorem 4.3 is rather long and of independent interest, so we shall
give it in the next section and complete the proof of Theorem 1.1.

Proof of Theorem 1.1. We prove the theorem by induction on m. When m = 1,
the theorem is obvious. Assume the theorem is true for the m − 1 case. Suppose
H∗(Bm) ∼= H∗(Πm

j=1CP
nj ). Then H∗(Bm−1) ∼= H∗(

∏m−1
j=1 CPnj ) by Lemma 4.2.

By the induction hypothesis, the generalized Bott tower (1.1) is trivial up to Bm−1;

in particular, Bm−1 is diffeomorphic to
∏m−1

j=1 CPnj .

Remember that Bm = P (C ⊕ ξm) and express ξm =
⊕nm

i=1 ηi where ηi is a
complex line bundle over Bm−1. Let γj be the complex line bundle over Bm−1

whose first Chern class is yj . One can write

(4.4) c1(ηi) =

m−1∑
j=1

aijyj with aij ∈ Z.

Then ηi =
⊗m−1

j=1 γ
aij

j .

The fibration Bm = P (C ⊕ ξm) → Bm−1 is isomorphic to a fibration
P ((C ⊕ ξm) ⊗ L) → Bm−1 for any complex line bundle L over Bm−1. There-
fore, it suffices to find a complex line bundle L such that the total Chern class of
(C⊕ξm)⊗L is trivial because the triviality of the bundle follows from the triviality
of the Chern class by Theorem 4.3.

We take L =
⊗m−1

j=1 γ
−dmj

j with dmj in (4.3). Then

(4.5) c((C⊕ ξm)⊗ L) =

nm∏
i=0

⎛
⎝1 +

m−1∑
j=1

(aij − dmj)yj

⎞
⎠ in H∗(Bm−1),
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where a0j = 0. On the other hand, it follows from (3.1) and (4.4) that

fm(y1, . . . , ym) = ynm+1
m + c1(ξm)ynm

m + · · ·+ cnm
(ξm)ym

= ym

nm∏
i=1

(ym + c1(ηi))

=

nm∏
i=0

(ym +
m−1∑
j=1

aijyj)(4.6)

= 0

in H∗(Bm). We plug ym = xm −
∑m−1

j=1 dmjyj from (4.3) into (4.6) to get

(4.7) 0 =

nm∏
i=0

(xm +
m−1∑
j=1

(aij − dmj)yj)

in H∗(Bm). Here we note that

H∗(Bm) = Z[y1, . . . , ym−1, xm]/(f1(y1), . . . , fm−1(y1, . . . , ym−1), x
nm+1
m )

because a natural homomorphism from the right hand side above to H∗(Bm) is
surjective by (3.1) and (4.3), and hence isomorphic since both are torsion free and
have the same rank. Therefore, when we expand the right hand side of (4.7), the
coefficient of xk

m must be zero for any k = 1, . . . , nm. This implies that the right
hand side of (4.5) is equal to 1, proving the theorem. �

Combining Theorem 1.1 with Theorem 8.1 in [3], we obtain the following corol-
lary, which generalizes Theorem 5.1 in [8] treating the case where ni = 1 for any
i.

Corollary 4.4. If the cohomology ring of a quasitoric manifold over a product
of simplices is isomorphic to that of

∏m
i=1 CP

ni , then it is homeomorphic to∏m
i=1 CP

ni .

Remark 4.5. Similarly to Remark 1.2 the assumption “over a product of simplices”
in the corollary above can be dropped by a result in [2].

5. Proof of Theorem 4.3

This section is devoted to the proof of Theorem 4.3. We recall a general fact. A
more refined result can be found in [11].

Lemma 5.1. Let X be a finite CW-complex such that Hodd(X) = 0 and H∗(X) has
no torsion. Then complex n-dimensional vector bundles over X with 2n ≥ dimX
are isomorphic if and only if their total Chern classes are the same.

Proof. The assumption on H∗(X) implies that K(X) is torsion free, so the Chern
character gives a monomorphism from K(X) to H∗(X;Q). On the other hand, if
dimX ≤ 2n, then the homotopy set [X,BU(n)], where BU(n) denotes the classify-
ing space of a unitary group U(n), agrees with K(X). This implies the lemma. �

Let B =
∏k

j=1 CP
nj be a product of complex projective spaces and let E =⊕n

i=1 ηi be a Whitney sum of complex line bundles ηi over B. Suppose that c(E) =

1. Then since Hodd(B) = 0 and H∗(B) has no torsion, E is trivial by Lemma 5.1

when n ≥
∑k

j=1 nj . So we assume that n <
∑k

j=1 nj in the following.
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By assumption

H∗(B) = Z[x1, . . . , xk]/(x
n1+1
1 , . . . , xnk+1

k ),

where we can take xj as the first Chern class of the pullback γj of the tautological

line bundle over CPnj via the projection
∏k

j=1 CP
nj → CPnj . Then we may

assume that ηi =
⊗k

j=1 γ
aij

j with aij ∈ Z and

(5.1) 1 = c(E) =
n∏

i=1

(1 +
k∑

j=1

aijxj).

It follows that

0 = c1(E) =
n∑

i=1

(
k∑

j=1

aijxj) =
k∑

j=1

(
n∑

i=1

aij

)
xj .

Since the xj ’s are linearly independent, the identity above implies that

(5.2)

n∑
i=1

aij = 0 for each j = 1, . . . , k.

Moreover it follows from (5.1) that

(5.3) 0 = c2(E) =
n∑

i′>i=1

⎡
⎣
⎛
⎝ k∑

j=1

aijxj

⎞
⎠

⎛
⎝ k∑

j=1

ai′jxj

⎞
⎠
⎤
⎦ .

We need to consider two cases.

Case I. nj ≥ 2 for some j = 1, . . . , k. Since x2
j 
= 0 in H∗(B) in this case, the

coefficient of the x2
j -term in (5.3) must vanish. Thus

∑n
i′>i=1 aijai′j = 0. Therefore

from (5.2) we have

0 =

(
n∑

i=1

aij

)2

=

n∑
i=1

a2ij + 2

n∑
i′>i=1

aijai′j .

Hence
∑n

i=1 a
2
ij = 0, which implies that

a1j = · · · = anj = 0.

Case II. nj = 1 for all j = 1, . . . , k. In this case, n < k as n <
∑k

j=1 nj . Set vj =

(a1j , . . . , anj) ∈ Zn for j = 1, . . . , k. We claim that vj = 0 for some j = 1, . . . , k.
Since xjxj′ 
= 0 in H∗(B) for j 
= j′, the coefficient of the xjxj′-term in (5.3) must
vanish. Namely,

0 =
n∑

i=1

aij

(
n∑

i′=1

ai′j′ − aij′

)

=

(
n∑

i=1

aij

)(
n∑

i′=1

ai′j′

)
−

n∑
i=1

aijaij′ .

By (5.2) we have

n∑
i=1

aijaij′ = 0 for all 1 ≤ j, j′ ≤ k, j 
= j′.
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This means that k vectors v1, . . . ,vk in Zn ⊂ Rn are mutually orthogonal. But
since k > n, vj = 0 for some j = 1, . . . , k.

We have shown that in either case there exists some j such that (a1j , . . . , anj) =

0. For simplicity, assume j = k. Then ηi is of the form
⊗k−1

j=1 γ
aij

j . Let γj be
the pull-back bundle of the tautological line bundle of CPnj via the projection∏k−1

j=1 CP
nj → CPnj . Then E =

(⊕n
i=1

⊗k−1
j=1 γ

aij

j

)
× CPnk . Hence the problem

reduces to the bundle on
∏k−1

j=1 CP
nj .

The argument above shows that the proof of the theorem reduces to the case
k = 1, so the theorem follows from the following lemma.

Lemma 5.2. Let E and E′ be Whitney sums of complex line bundles over CPn of
the same dimension. If c(E) = c(E′), then E and E′ are isomorphic.

Proof. Let γu denote a complex line bundle over CPn whose first Chern class is
u ∈ H2(CPn). Then E =

⊕m
i=0 γ

ui and E′ =
⊕m

i=0 γ
u′
i with ui, u

′
i ∈ H2(CPn).

In case m ≥ n, the lemma follows from Lemma 5.1. In case m < n, c(E) = c(E′)
implies that {u0, . . . , um} = {u′

0, . . . , u
′
m} and hence E and E′ are isomorphic. �

6. 2-stage generalized Bott manifolds

A 2-stage Bott manifold is a Hirzebruch surface Ha = P (C⊕ γa), where a ∈ Z

and γ denotes the tautological line bundle over CP 1, and it is well known that Ha

and Hb are isomorphic as varieties if and only if |a| = |b| and diffeomorphic if and
only if a ≡ b (mod 2).

2-stage generalized Bott manifolds can be thought of as a higher dimensional
generalization of Hirzebruch surfaces, and their classification as varieties is com-
pleted in [6]. In this section we complete the diffeomorphism classification of those
manifolds.

Let B1 = CPn1 and

B2 = P (

n2⊕
i=0

γui),

where u0 = 0 and γui denotes the complex line bundle over B1 whose first Chern
class is ui ∈ H2(B1) as before. Similarly let

B′
2 = P (

n2⊕
i=0

γu′
i)

be another 2-stage generalized Bott manifold with B1 = CPn1 as 1-stage, where
u′
0 = 0.

Theorem 6.1. Let B2 and B′
2 be as above. Then the following are equivalent.

(1) There exist ε = ±1 and w ∈ H2(B1) such that

n2∏
i=0

(1 + ε(u′
i + w)) =

n2∏
i=0

(1 + ui) in H∗(B1).

(2) B2 and B′
2 are diffeomorphic.

(3) H∗(B2) and H∗(B′
2) are isomorphic.
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Proof. Condition (1) means that (
⊕n2

i=0 γ
u′
i) ⊗ γw or its dual has the same to-

tal Chern class as
⊕n2

i=0 γ
ui , so that they are isomorphic as vector bundles by

Lemma 5.2. This together with Lemma 2.1 implies (2). The implication (2)⇒(3)
is obvious, so it suffices to prove the implication (3)⇒(1).

Suppose H∗(B2) and H∗(B′
2) are isomorphic. Then there is an isomorphism

ϕ : H∗(B′
2) = Z[x, y′]/(xn1+1,

n2∏
i=0

(y′ + u′
i))

→H∗(B2) = Z[x, y]/(xn1+1,

n2∏
i=0

(y + ui)).

Express

(6.1) ϕ(x) = px+ qy and ϕ(y′) = rx+ sy

with p, q, r, s ∈ Z. Since ϕ is an isomorphism, we have

(6.2) ps− qr = ±1.

We distinguish three cases.

Case 1. The case where n1 ≥ 2 and n2 = 1. We write u1 = ax and u′
1 = a′x. Since

ϕ(y′(y′ + a′x)) = 0 and y(y + ax) = 0 in H∗(B2), we have

0 = (rx+ sy)((rx+ sy) + a′(px+ qy))

= r(r + a′p)x2 +
(
r(s+ a′q) + s(r + a′p)

)
xy + s(s+ a′q)y2

= r(r + a′p)x2 +
(
r(s+ a′q) + s(r + a′p)− s(s+ a′q)a

)
xy.

Therefore,

(6.3) r(s+ a′q) + s(r + a′p) = s(s+ a′q)a

and moreover since n1 ≥ 2, we have r(r + a′p) = 0 and hence r = 0 or r = −a′p.
If r = 0, then p = ±1 and s = ±1 from (6.2) and hence ±a′ = (s + a′q)a from

(6.3), which implies that a|a′. If r = −a′p, then from (6.2) we have ±1 = ps− qr =
ps + a′pq = p(s + a′q). Thus p = ±1 and s + a′q = ±1. From (6.3) we have
±a′ = sa and hence a|a′. In any case we have shown that a′ is divisible by a. By
the symmetry, a is divisible by a′. Thus a = ±a′, and hence the identity in (1) is
satisfied with w = 0.

Case 2. The case where n1 = n2 = 1. We write u1 = ax and u′
1 = a′x as in Case

1 above. The identity in (1) is equivalent to

a ≡ a′ mod 2.

In the following all congruence relations are taken modulo 2 unless stated otherwise.
It follows from (6.3) and (6.2) that

(6.4) a′ ≡ s(s+ a′q)a.

On the other hand, since x2 = 0, the identity ϕ(x)2 = 0 implies that

0 = (px+ qy)2 ≡ q2y2 ≡ q2axy,

so that

(6.5) q2a ≡ 0.

If a ≡ 0, then so is a′ from (6.4). If a ≡ 1, then q ≡ 0 from (6.5), so that a′ ≡ s2a
from (6.4) and ps ≡ 1 (and hence s ≡ 1) from (6.2). Therefore, a ≡ a′ in any case.
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Case 3. The case where n2 ≥ 2. If ui = u′
i = 0 for all i’s, then the identity in

(1) holds with w = 0, so we may assume either ui or u
′
i is non-zero for some i and

moreover ui 
= 0 for some i without loss of generality. Then, since 0 = ϕ(xn1+1) =
(px+qy)n1+1, q = 0 by Lemma 6.2 below. This means that ϕ preserves the subring
H∗(B1), so that we have

ϕ(y′) = εy + w for some w ∈ H2(B1),

where ε = ±1. Therefore ϕ(
∏n2

i=0(y
′ + u′

i)) =
∏n2

i=0(εy + w + ϕ(u′
i)). Since this

element vanishes in H∗(B2) and is a polynomial of degree n2 + 1 in y, we have an
identity

n2∏
i=0

(y + ε(w + ϕ(u′
i))) =

n2∏
i=0

(y + ui)

as polynomials in y. Then, plugging y = 1, we obtain the identity in (1) in the
theorem. �

Here is the lemma used above. We shall use the same notation as above.

Lemma 6.2. Assume that n2 ≥ 2, u0 = 0 and ui 
= 0 for some 1 ≤ i ≤ n2. If
(αx+βy)n1+1 = 0 in the ring Z[x, y]/(xn1+1,

∏n2

i=0(y+ui)) for some integers α, β,
then β = 0.

Proof. Since (αx+βy)n1+1 = 0 in the ring Z[x, y]/(xn1+1,
∏n2

i=0(y+ui)), there are
a homogeneous polynomial g(x, y) in x, y of total degree n1 − n2 and an integer c
such that

(6.6) (αx+ βy)n1+1 − cxn1+1 = g(x, y)

n2∏
i=0

(y + ui)

as polynomials in x and y. In fact, c = αn1+1 as u0 = 0.
Suppose g(x, y) 
= 0 (so that n1 ≥ n2). When we split the left hand side into a

product of linear polynomials in x and y, it has at most two linear polynomials over
Z as factors while the right hand side has at least three linear polynomials over Z
as n2 ≥ 2 by assumption. This is a contradiction. Therefore g(x, y) = 0. But then
β must be zero, proving the lemma. �

Corollary 6.3. 2-stage generalized Bott manifolds are diffeomorphic if and only if
their cohomology rings are isomorphic.

Proof. Let B2 → B1 = CPn1 be a generalized Bott tower of height 2 where the
fiber is CPn2 , and let B′

2 → B′
1 = CPn′

1 be another generalized Bott tower of height

2 where the fiber is CPn′
2 . Suppose that H∗(B2) is isomorphic to H∗(B′

2). Then
{n1, n2} = {n′

1, n
′
2}, which we can see from their Betti numbers. If ni = n′

i for
i = 1, 2, then the corollary follows from Theorem 6.1. Therefore, we may assume
that n1 = n′

2, n2 = n′
1 and they are different. If both B2 and B′

2 are cohomological
products, then they are diffeomorphic to CPn1 × CPn2 by Theorem 1.1.

In the sequel it suffices to prove that H∗(B2) and H∗(B′
2) are not isomorphic

when they are not cohomological products and n1 = n′
2 
= n2 = n′

1. We may assume
n1 > n2 without loss of generality. Since B′

2 is a CPn1-bundle over CPn2 , there
is a non-zero element in H2(B′

2) whose n1-th power vanishes; in fact, a non-zero
element in H2(B′

2) coming from the base space CPn2 is such an element because
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n1 > n2. On the other hand, it is not difficult to see that there is no such non-zero
element in H2(B2) since

H∗(B2) = Z[x, y]/(xn1+1,

n2∏
i=0

(y + ui)),

where u0 = 0 and ui 
= 0 for some 1 ≤ i ≤ n2. (It also follows from Lemma 6.2
when n2 ≥ 2.) �

7. 3-stage Bott manifolds

This section is devoted to the proof of Theorem 1.4 in the Introduction, that is,

Theorem 7.1. 3-stage Bott manifolds are diffeomorphic if and only if their coho-
mology rings are isomorphic.

Remember a Bott tower of height 3:

B3
π3−→ B2

π2−→ B1
π1−→ B0 = {a point},

where Bi = P (C⊕ ξi) for i = 1, 2, 3 and ξi is a complex line bundle over Bi−1. Let
γi be the dual of the tautological line bundle over Bi and let yi be the first Chern
class of γi. Then

ξ1 = C, ξ2 = γa
1 , ξ3 = π∗

2(γ1)
b ⊗ γc

2

with integers a, b, c, and it follows from (2.1) that

(7.1) H∗(B3) = Z[y1, y2, y3]/
(
y21 , y2(ay1 + y2), y3(by1 + cy2 + y3)

)
,

where y1 and y2 are regarded as elements of H∗(B3) as before.
We note that H∗(B2;Q), which is a subring of H∗(B3;Q) with y3 = 0 in (7.1),

is isomorphic to H∗((CP 1)2;Q) because y21 = 0 and (ay1 + 2y2)
2 = 0. However

H∗(B3;Q) is not necessarily isomorphic to H∗((CP 1)3;Q) as is shown in the fol-
lowing lemma.

Lemma 7.2. The following are equivalent.

(1) H∗(B3;Q) ∼= H∗((CP 1)3;Q).

(2) (
∑3

i=1 aiyi)
2 = 0 in H∗(B3;Q) for some integers (or rational numbers) ai

with a3 
= 0.
(3) c(2b− ac) = 0.

Proof. (1) ⇔ (2). This equivalence follows from the observation made in the para-
graph just before the lemma.

(2) ⇒ (3). Since y22 = −ay1y2 and y23 = −by1y3 − cy2y3 by (7.1), we have

(

3∑
i=1

aiyi)
2 =

3∑
i=1

a2i y
2
i + 2

∑
i<j

aiajyiyj

= (2a1a2 − a22a)y1y2 + (2a2a3 − a23c)y2y3 + (2a3a1 − a23b)y3y1,

so that

2a1a2 = a22a, 2a2a3 = a23c, 2a3a1 = a23b.

An elementary computation shows that these imply c(2b− ac) = 0.
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(3) ⇒ (2). If c(2b − ac) = 0, then an elementary computation shows that
(by1 + cy2 + 2y3)

2 = 0. �

Lemma 7.3. The first Pontrjagin class of B3 is given by

p1(B3) = c(2b− ac)y1y2.

Therefore, p1(B3) = 0 if and only if H∗(B3;Q) ∼= H∗((CP 1)3;Q).

Proof. Since p(B1) = 1, it follows from (2.4) that

p(B2) = (1 + y22)(1 + (y2 + ay1)
2),

which is equal to 1 because y22 = −ay1y2. Therefore, it follows from (2.4) again
that

p(B3) = (1 + y23)(1 + (y3 + by1 + cy2)
2)

= 1 + y23 + (y3 + by1 + cy2)
2

= 1 + c(2b− ac)y1y2,

where we used y3(y3 + by1 + cy2) = 0 and y22 = −ay1y2. This proves the first part
of the lemma. The latter part follows from the first part and Lemma 7.2. �

We shall complete the proof of Theorem 7.1. Let B′
3 → B′

2 → B′
1 be another

Bott tower of height 3 and denote the elements corresponding to a, b, c and yi by
a′, b′, c′ and y′i. The results in [12] and [5] tell us that if there is an isomorphism
ϕ : H∗(B′

3) → H∗(B3) such that ϕ(p1(B
′
3)) = p1(B3) and ϕ(w2(B

′
3)) = w2(B3),

then B3 and B′
3 are diffeomorphic, where w2 denotes the second Stiefel-Whitney

class.
Suppose H∗(B′

3)
∼= H∗(B3) and let ϕ : H∗(B′

3) → H∗(B3) be an isomorphism.
Since ϕ(w2(B

′
3)) = w2(B3) by Lemma 8.1 in the appendix, it suffices to check that

ϕ(p1(B
′
3)) = p1(B3).

If H∗(B′
3;Q) ∼= H∗(B3;Q) is isomorphic to H∗((CP 1)3;Q), then p1(B

′
3) =

p1(B3) = 0 by Lemma 7.3; in particular, ϕ(p1(B
′
3)) = p1(B3). Suppose that

H∗(B′
3;Q) ∼= H∗(B3;Q) is not isomorphic to H∗((CP 1)3;Q). Then Lemma 7.2

says that there is no element
∑3

i=1 aiyi for rational numbers ai with a3 
= 0 such

that (
∑3

i=1 aiyi)
2 = 0. On the other hand, y21 = (a/2y1 + y2)

2 = 0 and y1 and
a/2y1 + y2 generate the subring H∗(B2;Q). The same holds for B′

3. It follows that
the images of y′1 and a′/2y′1 + y′2 by ϕ generate the subring H∗(B2;Q), and hence
ϕ(H∗(B′

2)) ⊂ H∗(B2). Therefore Proposition 2.2 can be applied and we conclude
that ϕ(p1(B

′
3)) = p1(B3) because p(B′

2) = p(B2) = 1.

8. Appendix

In this appendix, we prove a general fact used in the previous section on Stiefel-
Whitney classes. In the following, cohomology will be taken with Z/2 coefficients
unless otherwise stated. Let M be a connected closed manifold of dimension n and
let

Sq(x) = x+ Sq1(x) + Sq2(x) + · · ·+ Sqn(x) for x ∈ H∗(M)

denote the total squaring operation, where Sqk : Hq(M) → Hq+k(M) is an additive
homomorphism. The k-th Wu class vk(M) ∈ Hk(M) of M is characterized by

(8.1) vk(M) ∪ x = Sqk(x) for any x ∈ Hn−k(M)
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and

(8.2) Sq(v(M)) = w(M),

where v(M) = 1 + v1(M) + v2(M) + · · · + vn(M) and w(M) denotes the total
Stiefel-Whitney class of M ; see [10, p.132].

Lemma 8.1. Suppose that H∗(M) is generated by Hr(M) for some r as a ring and
let M ′ be another connected closed manifold of dimension n such that H∗(M ′) is
isomorphic to H∗(M) as a ring. Then φ(w(M ′)) = w(M) for any ring isomorphism
φ : H∗(M ′) → H∗(M).

Proof. We first show that φ commutes with Sq. Since H∗(M ′) ∼= H∗(M) are
generated by elements of degree r, Sq(y) = y + y2 and Sq(φ(y)) = φ(y) + φ(y)2 for
y ∈ Hr(M ′); so φ(Sq(y)) = Sq(φ(y)). This implies that φ(Sq(y)) = Sq(φ(y)) for
any y ∈ H∗(M ′) because both φ and Sq are ring homomorphisms and H∗(M ′) ∼=
H∗(M) are generated by elements of degree r as rings.

It follows from (8.1) and the commutativity of φ and Sq that

φ(vk(M
′)) ∪ φ(y) = φ(Sqk(y)) = Sqk(φ(y))

for any y ∈ Hn−k(M ′). Since φ(Hn−k(M ′)) = Hn−k(M), the above identity
together with (8.1) implies

(8.3) φ(vk(M
′)) = vk(M).

It follows from (8.2), (8.3) and the commutativity of φ and Sq that

φ(w(M ′)) = φ(Sq(v(M ′))) = Sq(φ(v(M ′))) = Sq(v(M)) = w(M),

proving the lemma. �
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