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We study the class G(Mn) of orientation-preserving Morse–Smale diffeomorfisms on a

connected closed smooth manifold Mn of dimension n � 4 which is defined by the fol-

lowing condition: for any f ∈ G(Mn) the invariant manifolds of saddle periodic points

have dimension 1 and (n − 1) and contain no heteroclinic intersections. For diffeo-

morfisms in G(Mn) we establish the topoligical type of the supporting manifold which

is determined by the relation between the numbers of saddle and node periodic orbits

and obtain necessary and sufficient conditions for topological conjugacy. Bibliography:

14 titles.

1 Introduction and Formulation of the Results

This paper is a continuation of [1, 2] and is based on the approach developed by the authors in

the works (cf., for example, [3]) on the topological classification of Morse–Smale diffeomorfisms

on three-dimensional manifolds.

We consider the class G(Mn) of orientation-preserving Morse–Smale diffeomorfisms on a con-

nected closed smooth orientable manifold Mn of dimension n � 4 such that invariant manifolds

of any saddle point of a cascade f ∈ G(Mn) have dimension 1 and n − 1; moreover, invariant

manifolds of distinct saddle points do not intersect. We introduce the notation: Ωf is the non-
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wandering set of diffeomorphism f ∈ G(Mn), Ωi
f = {p ∈ Ωf |dim W u

p = i}, i ∈ {0, 1, n − 1, n},
and |P | is the cardinality of a set P .

Theorem 1.1. Let f ∈ G(Mn). Then g
f
=

[|Ω1 ∪ Ωn−1| − |Ω0 ∪ Ωn|+ 2
]
/2 is a nonnega-

tive integer and the following assertions hold.

1. If g
f
= 0, then Mn is a sphere Sn.

2. If g
f
> 0, then Mn is homeomorphic to the connected sum of g

f
copies of the manifold

S
n−1 × S

1.

For understanding the dynamics of a diffeomorphism f ∈ G(Mn) we represent the manifold

Mn as the union of the connected attractor

Af =
( ⋃

σ∈Ω1
f

W u
σ

)
∪
( ⋃

ω∈Ω0
f

ω
)
,

repeller

Rf =
( ⋃

σ∈Ωn−1
f

W s
σ

)
∪
( ⋃

α∈Ωn
f

α
)
,

and the set Vf = Mn \ (Af ∪Rf ) of wandering orbits of the diffeomorphism f going from Af to

Rf . We denote by V̂f = Vf/f the space of orbits of the action of f on Vf , by p
f
: Vf → V̂f the

natural projection, and by η
f
: π1(V̂f ) → Z the epimorphism induced by the map p

f
(necessary

definitions are given in Subsection 2.1). We set

L̂s
f =

⋃

σ∈Ω1
f

p
f
(W s(σ) \ σ), L̂u

f =
⋃

σ∈Ωn−1
f

p
f
(W u(σ) \ σ).

Definition 1.1. Sf = (V̂f , ηf
, L̂s

f , L̂
u
f ) is called the scheme of a diffeomorphism f ∈ G(Mn).

Definition 1.2. The schemes Sf and Sf ′ of diffeomorphisms f, f ′ ∈ G(Mn) are equivalent

if there exists a homeomorphism ϕ̂ : V̂f → V̂f ′ such that

1) η
f
= η

f ′ ϕ̂∗,

2) ϕ̂(L̂s
f ) = L̂s

f ′ and ϕ̂(L̂u
f ) = L̂u

f ′ .

Theorem 1.2. A necessary and sufficient condition of the topological conjugacy of diffeo-

morphisms f, f ′ ∈ G(Mn) is the equivalence of their schemes Sf and Sf ′.

It is known (cf., for example, [4, Theorem 2.2.2]) that the space V̂f is a smooth connected

n-manifold. If the ambient manifold Mn is a sphere, then the dynamics of a diffeomorphism

f ∈ G(Sn) and the topology of V̂f can be specified as follows.

Theorem 1.3. The class G(Sn) exhausts the set of Morse–Smale diffeomorfisms without

heteroclinic intersections on Sn and for any diffeomorphism f ∈ G(Sn) the manifold V̂f is

homeomorphic to Sn−1 × S1.

The last assertion of Theorem 1.3 is a consequence of the fact that the attractor Af and

the repeller Rf of any diffeomorphism f ∈ G(Sn) are separated by a sphere Sn−1 for n > 3.

Generally speaking, this is not so in the case n = 3. A diffeomorphism f ∈ G(S3) such that Af

and Rf are not separated by the sphere S2 and the space of orbits V̂f is not homeomorphic to

S
2 × S

1 was described in [5].
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2 Canonical Manifolds and Maps

2.1. Discontinuous actions of transformation groups. We recall some properties of

a transformation group {gn, n ∈ Z} that is an infinite cyclic group discontinuously acting on

some smooth (in general, not compact) manifold X and is generated by the diffeomorphism

g : X → X. Such transformation groups naturally appear in the study of restrictions of the

original Morse–Smale diffeomorfism to some subset of wandering points and generate topological

invariants used for solving problems of topological classification.

Remark 2.1. A group G acts on a manifold X if there is a map ζ : G ×X → X possessing

the following properties:

1) ζ(e, x) = x for all x ∈ X, where e is a neutral (identity) element of the group G ,

2) ζ(g, ζ(h, x)) = ζ(gh, x) for all x ∈ X and g, h ∈ G .

A group G discontinuously acts on a manifold X if for every compact subset K ⊂ X the set

of elements g ∈ G such that ζ(g,K) ∩K �= ∅ is finite.

We denote by X/g the space of orbits of the action of the group {gn, n ∈ Z} and by p
X/g

:

X → X/g the natural projection. By [6, Theorem 3.5.7]), the natural projection p
X/g

: X →
X/g is a covering map and the space X/g is a manifold. We introduce a homomorphism

η
X/g

: π1(X/g) → Z as follows. Let ĉ ⊂ X/g be a loop that is not homotopic to zero in X/g, and

let [ĉ] ∈ π1(X/g) be the homotopic equivalence class of the loop c. We choose an arbitrary point

x̂ ∈ c, denote by p−1
X/g

(x̂) the complete preimage of x̂, and fix the point x̃ ∈ p−1
X/g

(x̂). Since p
X/g

is a covering, there exists a unique path c̃(t) started at the point x̃ (i.e., c̃(0) = x̃) that covers

the loop c (i.e., p
X/g

(c̃(t)) = ĉ). Therefore, there exists n ∈ Z such that c̃(1) = fn(x̃). We set

η
X/g

([ĉ]) = n. From [7, Chapter 18] it follows that the homomorphism η
X/g

is an epimorphism.

The following assertion is proved in [8].

Proposition 2.1. Let X and Y be connected smooth manifolds, and let g : X → X and

h : Y → Y be diffeomorphisms such that the groups {gn, n ∈ Z} and {hn, n ∈ Z} discontinuously

act on X and Y respectively. Then the following assertions hold.

1. If ϕ : X → Y is a homeomorphism (diffeomorphism) conjugating the diffeomorphisms

f and g, then the map ϕ̂ : X/g → Y/h given by ϕ̂ = p
Y/h

ϕp−1
X/g

is a homeomorphism (diffeo-

morphism). Moreover, η
X/g

= η
Y/h

ϕ∗, where ϕ∗ : π1(X/g) → π1(Y/h) is the homomorphism

induced by the map ϕ.

2. If ϕ̂ : X/g → Y/h is a homeomorphism (diffeomorphism) such that η
X/g

= η
Y/h

ϕ∗,
x̂ ∈ X/g, x̃ ∈ p−1

X/g
(x), and y = ϕ̂(x), ỹ ∈ p−1

Y/h(y), then there exists a unique homeomorphism

(diffeomorphism) ϕ : X → Y conjugating the diffeomorphisms g and h and such that ϕ(x̃) = ỹ.

2.2. Canonical manifolds connected with hyperbolic periodic points. By an n-ball

(n-disk) we mean a manifold homeomorphic to the standard ball Bn = {(x1, . . . , xn) ∈ R
n |

x21 + . . . + x2n � 1}. By an open n-ball ((n − 1)-sphere) we mean a manifold homeomorphic to

the interior int Bn (the boundary ∂Bn = S
n−1) of the ball Bn. We recall that a locally trivial

bundle is a quadruple ξ = {E,B, Y, π} where E, B, Y are topological spaces, π : E → B

is a continuous map such that the manifold B admits an open covering {U} such that for

every U ∈ {U} there exists a homeomorphism ϕ : π−1(U) → U × Y possessing the following

property: if p1 : U × Y → U is the projection onto the first factor (i.e., p1(x, y) = x), then
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π|
π−1(U)

= p1ϕ|π−1(U)
. The spaces E, B, and Y are called the space, base, and fibre of the locally

trivial bundle respectively. The pair (U,ϕ : π−1(U) → U×Y ) is called a chart, {(U,ϕ)} is referred
to as the atlas of the locally trivial bundle, and the maximal atlas is called the structure. With

each closed path λ ⊂ B started and ended at a point x it is associated the homotopic class of

homeomorphisms Tλ : ξx → ξx induced by the coordinate transformation while moving along

the loop, called the monodromy transformation. The vector bundle of dimension n is a locally

trivial bundle ξ = {E,B,Rn, π} such that for any two charts (U,ϕ) and (V, ψ) with U and V

intersecting at the point x the following condition holds: if ϕx = p2ϕ|π−1(x) and ψx = p2ψ|π−1(x),

then the map ψ−1
x ϕx : Rn → R

n is linear (here, p2 : U × R
n → R

n is the projection onto the

second factor). The fibre ξx = π−1(x) over a point x ∈ B is equipped with the structure of

vector space relative to which the map ψx : ξx → R
n is an isomorphism of vector spaces. The

zero section of a vector bundle is the image ζ(B) ⊂ E under the map ζ : B → E associating

with a point x ∈ B the zero of the space ξx.

Let aν : Rn → R
n, ν ∈ {−1,+1} be a linear map of Euclidean spaces given by

aν(x1, . . . , xn) =
(
ν
1

2
x1,

1

2
x2, . . . ,

1

2
xn

)
.

For each hyperbolic periodic point p of the Morse–Smale diffeomorfism f : Mn → Mn we denote

by Op its orbit, by mp the period, by qp the dimension of the unstable manifold, and by νp the

orientation type, i.e., the number equal to +1 if fmp |Wu
p
preserves orientation or −1 otherwise.

Proposition 2.2 (cf. [4, Proposition 2.1.1]). Let f : Mn → Mn be a Morse–Smale diffeo-

morfism with a periodic hyperbolic point p. Then there exists a homeomorphism Ψ : W s
p \ p →

R
n−qp \ {O} such that fmp |

Ws
p\p = Ψ−1aνpΨ|

Ws
p\p.

We set R
n
0 = R

n \ {O}. The quotient space K
n
+1 = R

n
0/a+1 is diffeomorphic to the direct

product Sn−1×S
1. We identify S

n−1×S
1 with K

n
+1. The quotient space K

n−1 = R
n
0/a−1 is called

the standard generalized n-dimensional Klein bottle, and a manifold homeomorphic to K
n−1 is

referred to as the generalized Klein bottle. The canonical projection pa−1 : Rn
0 → K

n−1 induces on

K
n−1 the structure of locally trivial bundle over S1 with fibre S

n−1. This bundle is nonorientable

since the monodromy transformation corresponding to the loop paν (lν), where lν is the segment

of the 0xn-axis joining the points (0, . . . , 0, 1) and (0, . . . , 1/2), changes orientation. Hence Kn−1

is a nonorientable mandifold.

Since R
n
0 is a universal covering of Kn

ν , the fundamental group π1(K
n
ν ) is isomorphic to the

group Z (cf. [7, Corollary 19.4]).

We set V s
p = W s

p \ p and V̂ s
p = V s

p /f . From Propositions 2.1 and 2.2 we obtain the following

assertion.

Corollary 2.1. The quotient space V̂ s
p is homeomorphic to K

n−qp
νp .

Let bν : Rn → R
n, ν ∈ {+1,−1}, be the linear automorphism of Euclidean spaces defined by

bν(x1, x2, . . . , xn) =
(
ν
1

2
x1,

1

2
x2, . . . ,

1

2
xn−1, 2νxn

)
.

We set Uτ = {(x1, . . . , xn) ∈ R
n | x2n(x

2
1 + . . . + x2n−1) � τ2}, τ ∈ (0, 1], U = U1, U0 =

{(x1, . . . , xn)| xn = 0}, and Uu = U \U0, U
s = U \Oxn. The origin O is a unique fixed point of

the automorphism bν ; moreover, O is a hyperbolic saddle fixed point such that its stable manifold

W s
O

coincides with the hyperplane xn = 0, whereas the unstable manifold W u
O

coincides with

the Oxn-axis.
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Proposition 2.3 (cf. [4, Corollary 4.3.2]). Let θ : Uτ \Oxn → U s be a topological embedding

that is identical on U0 and satisfies the condition θbν |Uτ
= bνθ|Uτ

, ν ∈ {+1,−1}. Let 0 <

τ1 < τ2 < τ be chosen in such a way that Uτ2 ⊂ θ(Uτ ), θ(Uτ1) ⊂ int Uτ2 . Then there exists

a homeomorphism Θ : U → U such that Θbν |U = bνΘ|U and Θ|Uτ1
= θ|Uτ1

, Θ|U\int Uτ2
=

id |U\int Uτ2
.

On Uτ , we introduce two bν-invariant foliations T
s and T u as follows: each fibre T s(xn) of T

s

is the intersection of the hyperplane parallel to the coordinate plane xn = 0 and passing through

the point (0, . . . , 0, xn) with the set Uτ , whereas each fibre T u(x1, . . . , xn−1) of T
u is the intersec-

tion of the line parallel to the Oxn-axis and passing through the point (x1, . . . , xn−1, 0) with Uτ .

We denote by πu : Uτ → W s
O
and πs : Uτ → W u

O
the projections along fibres of the foliations T u

and T s respectively (πu(x1, x2, . . . , xn−1, xn) = (0, 0, . . . , 0, xn) and πs(x1, x2, . . . , xn−1, xn) =

(x1, x2, . . . , xn−1, 0)).

Proposition 2.4 (cf. [4, Theorem 2.1.2]). Suppose that f ∈ G and σ ∈ Ωi(f), i ∈ {1, n−1}.
Then there exists a neighborhood vσ of σ and a homeomorphism χσ : vσ → U1 such that

1) χσf
mσ |vσ = aνσχσ|vσ if i = 1,

2) χσf
mσ |vσ = a−1

νσ χσ|vσ if i = n− 1.

We set vτσ = χ−1
σ (U τ ), T s

σ = χ−1
σ (T s), and T u

σ = χ−1
σ (T u). Let N̂ν = U s/bν . The space

N̂ν is called the canonical neighborhood of the manifold K
n−1
ν . From definitions we obtain the

following assertion.

Proposition 2.5. 1. N̂+1 is diffeomorphic to the direct product Kn−1
+1 × [−1, 1].

2. N̂− is a tubular neighborhood of the zero section of a nonorientable one-dimensional vector

bundle over K
n−1
− ; the boundary ∂N̂− is diffeomorphic to K

n−1
+ ; and η

b−1
(i∗(π1(∂N̂−))) = 2Z,

where i∗ : π1(∂N̂−) → π1(N̂−) is the homomorphism induced by inclusion.

3 Dynamics of a Morse–Smale Diffeomorfism f : Mn → Mn

and Topology of Manifold Mn

In this section, we prove Theorems 1.1 and 1.3.

3.1. Dynamics of diffeomorphisms of class G(Mn). If σ is a saddle periodic point of a

diffeomorphism f ∈ G(Mn) of index 1 ((n− 1)), then we denote by lsσ (luσ) the stable (unstable)

separatrice of the point σ, i.e., the connection component of the set W s
σ \ σ (W u

σ \ σ).
The following assertion directly follows from the results of [9] (cf. also [4] for more details).

Proposition 3.1. The set luσ \ (luσ ∪ σ) consists of a periodic sink point. The set lsσ \ (lsσ ∪ σ)

consists of a periodic source point.

Corollary 3.1. For any saddle point σ the closure of its one-dimensional separatrice is a

compact arc and the closure of its j-dimensional separatrice, j > 1, is a j-sphere.

We recall that a sphere Sn−1 ⊂ Mn is said to be bicollared to Mn if there exists a topological

embedding h : Sn−1 × [−1;+1] → Mn such that h(Sn−1 × {0}) = Sn−1.

The following important assertion follows from the results of [10, 11]. For a detailed proof

we refer to [1, Lemma 3.2].
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Proposition 3.2. Suppose that σ ∈ Ω1
f (σ ∈ Ωn−1

f ) and n � 4. Then the sphere lsσ (luσ) is

bicollared.

3.2. Proof of Theorem 1.1. Note that the idea of the proof of Theorem 1.1 is similar to

that of Theorem 1 in [12].

Up to a consideration of power, we can assume that Ωf consists only of fixed points and all

the separatrices of saddle points are invariant under the diffeomorphism f . We prove the lemma

by induction on the number r = |Ω1
f ∪ Ωn−1

f | of saddle points of the diffeomorphism f . We set

l = |Ω0
f ∪ Ωn

f |.
Let r = 0. Then Ωf consists of exactly two points, source and sink, and the manifold Mn

is homeomorphic to the sphere S
n (cf., for example, [4, Theorem 2.2.1]), so that the required

assertion is valid.

Let r > 0. We assume that the required assertion is proved for r′ < r. For the sake of

definiteness, we assume that the set Ωn−1
f is nonempty (otherwise, we can proceed with the

diffeomorphism f−1). Let σ ∈ Ωn−1
f . By Corollary 3.1 and Proposition 3.2, the manifold l

u
σ is a

cylndrically embedded sphere. Consequently, there exists a closed neighborhood Wσ ⊂ Mn of

the sphere l
u
σ homeomorphic to the direct product Sn−1× [−1, 1] by means of a homeomorphism

ξ such that ξ(l
u
σ) = S

n−1 × {0}. Let S1 ⊂ ξ−1(Sn−1 × (−1, 0)) (S2 ⊂ ξ−1(Sn−1 × (0, 1))) be

an (n − 1)-sphere that is a smooth submanifold of Mn and such that ξ−1(Sn−1 × (−1, 0)) \ S1

(ξ−1(Sn−1 × (0, 1)) \ S2) is the union of two disjoint open annuli. We denote by K a closed

neighborhood of the sphere l
u
σ bounded by the spheres S1 and S2. Since l

u
σ is an attractor,

without loss of generality we can assume that f(K) ⊂ int K (otherwise, it is possible to pass to

a suitable power of the diffeomorphism f). Removing the domain int K from Mn we obtain a

compact manifold with two boundary components S1 and S2. We denote by M1 the compact

manifold without boundary obtained from Mn \ int K by gluing two closed 3-balls B1 and B2

together along the boundary components S1 and S2 and introduce a Morse–Smale diffeomorfism

f1 : M1 → M1 such that f1 coincides with f on Mn \K, has two attracting fixed points ω1 ∈ B1,

ω2 ∈ B2 and no other periodic points in B1 ∪B2. Then f1 has the same number of fixed points

as f and the number of its fixed saddle points is equal to r − 1, whereas the number of sinks

and sources is equal to l + 1. We consider two cases.

Case (a). Mn\K is not connected. In this case, M1 is the disjoint union of two manifolds M̃1

and M̌1 and Mn is the connected sum M̃1#M̌1. Denote by f̃1 and f̌1 the restrictions of f1 to the

manifolds M̃1 and M̌1 respectively, by r1 = r̃1 + ř1 = r − 1 the number of saddle points and by

l1 = l̃1+ ľ1 = l+1 the number of sinks and sources of the diffeomorphism f1. Since r̃1 and ř1 are

strictly less than r, from the induction assumption it follows that the manifolds M̃1 and M̌1 are

the connected of m̃1 = (r̃1 − l̃1)/2+ 1 and m̌1 = (ǩ1 − l̂1)/2+ 1 copies of Sn−1 × S
1 respectively

(by a manifold of 0 copies of Sn−1 × S
1 we understand the manifold S

n). Consequently, Mn is

the connected sum of

r̃1 − l̃1
2

+ 1 +
r̂1 − l̂1

2
+ 1 =

r1 − l1
2

+ 2 =
r − l

2
+ 1

copies of Sn−1 × S
1. Thus, the theorem is valid in case (a).

Case (b). Mn \ K is connected. In this case, M1 is connected and Mn = M1#M∗, where
M∗ is diffeomorphic to S

n−1 × S
1 (cf., for example, [13, Lemma 7]). We again denote by r1 the

number of saddles and by l1 the number of sinks and sources of f1. Since r1 = r − 1, from the

induction assumption it follows that M1 is the sphere Sn if r1−l1
2 + 1 = 0 or the connected sum
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of r1−l1
2 + 1 copies of Sn−1 × S

1. Since (r − l)/2 + 1 = ((r1 − l1)/2 + 1) + 1, we find that Mn is

the connected sum of (r − l)/2 + 1 copies of Sn−1 × S
1. Thus, the theorem holds in case (b).

3.3. Proof of Theorem 1.3 consists of three lemmas.

Lemma 3.1. Let f : Sn → Sn be a orientation-preserving Morse–Smale diffeomorfism

without heteroclinic intersections, and let n > 3. Then f ∈ G(Sn).

Proof. It suffices to prove that for a diffeomorphism f the set Ωj
f = {p ∈ Ωf | dim W u

p = j}
is empty if 1 < j < n− 1. Assume the contrary. Let 1 < j < (n− 1), Ωj

f �= ∅, and let σ ∈ Ωj
f .

By Corollary 3.1, the closures W u
σ and W s

σ of the stable and unstable manifolds of the point

σ are spheres of dimension j and n − j respectively. We set Sj = W u
σ , S

n−j = W s
σ . By the

conditions defining the class G, the spheres Sj , Sn−j transversally intersect at a single point

σ. Hence the index of the intersection of Sj , Sn−j is equal to ±1 (the sign depends on the

choice of orientation of the spheres Sj , Sn−j , and Sn). From [14] it follows that the index of the

intersection of any closed submanifolds of the sphere Sn vanishes. The obtained contradiction

proves that Ωj
f = ∅.

Proposition 3.3 proved in [1, Lemma 4.1] plays a key role in the proof of Lemma 3.2.

Proposition 3.3. Suppose that ω is a sink periodic point of a diffeomorphism f with period

mω and γ1ω, . . . , γ
k
ω are all the one-dimensional separatrices of the saddle points σ1, . . . , σkω lying

in W s
ω. Then there exists a bicollared (n−1)-sphere Sω ⊂ W s

ω bounding an open n-ball Bω ⊂ W s
ω,

Bω ⊃ ω and such that

1) fmω(Sω) ⊂ Bω,

2) for any i ∈ {1, . . . , k} the intersection γiω ∩ Sω consists of the single point ziω,

3) the sphere Sω is smooth in some neighborhood Vziω
of the point ziω.

Lemma 3.2. For any diffeomorphism f ∈ G(Sn) there exists a bicollared sphere Sn−1 ⊂ Vf

bounding an open ball Bn, Af ⊂ Bn ⊂ Sn \Rf , and such that f(Sn−1) ⊂ Bn.

Proof. Let Bω,0, Bω,1, . . . , Bω,mω−1 be a sequence of balls that are bounded by pairwise dis-

joint spheres Sω,0, Sω,1, . . . , Sω,mω−1 respectively, possess the properties described in Proposition

3.3, and Bω,0 ⊂ Bω,1 ⊂ . . . ⊂ Bω,mω−1 ⊂ f−mω(Bω,0). We choose exactly one point in each sink

periodic orbit and denote by Ω̃0
f the obtained set. For each point ω ∈ Ω̃0

f we set

Bω =

mω−1⋃

j=0

f j(Bω,j).

One can directly verify that f(Bω) ⊂ int Bω. We set B =
⋃

ω∈˜Ω0
f

Bω.

Let Oσ be a saddle periodic orbit of period mσ and index 1. By the hyperbolicity of a point

σ ∈ Oσ, there exists a neighborhood Uσ of the orbit Oσ where the so-called local Morse–Lyapunov

function is defined, i.e., a smooth function ψσ : Uσ → R such that

1) ψσ(f(x)) < ψσ(x) for any x ∈ f−1(Uσ) \ Oσ and ψσ(f(σ)) = ψσ(σ) = 0 for any σ ∈ Oσ,

2) the set of critical points of ψσ coincides with Oσ and every critical point has index 1,
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3) for any point σ ∈ Oσ there exist local coordinates (x1, . . . , xn) such that W u
σ ∩Uσ ⊂ Oxn,

W s
σ ∩Uσ ⊂ Ox1 . . . xn−1 and the function ψσ has the form ψσ(x1, . . . , xn) = x21+ . . .+x2n−1−x2n.

The construction of such a function can be found in [4, Lemma 2.2.1].

We choose exactly one saddle periodic point in each saddle orbit of index 1 and denote by

Ω̃1
f the obtained set. We choose smooth (n − 1)-disks D+, D− ⊂ ∂B containing the points

z+ = ∂B ∩W u
σ and z− = ∂B ∩W u

σ respectively. By the λ-lemma (cf., for example, [4, Lemma

1.2.1]), for any ε > 0 there exists a natural number kσ such that the connected component K+

(K−) of the set f−kmσ(D+)∩Uσ (f−kmσ(D−)∩Uσ) containing the point f−kmσ(z+) (f
−kmσ(z−))

and the set W s
σ ∩Uσ are ε-C1-close for any k > kσ. Consequently, there exists cσ > 0 such that

the set Hσ,c = {(x1, . . . , xn) ∈ Uσ : x21 + . . .+ x2n−1 − x2n � c} transversally intersects K+ (K−)
along the (n− 1)-disk for all c < cσ.

We set k = max
σ∈˜Ω1

f

kσ, c = min
σ∈˜Ω1

f

cσ, and Hσ =
mσ−1⋃

i=0
f i(Hσ,c). By the definition of the Morse–

Lyapunov function, f(Hσ) ⊂ int Hσ. We set H =
⋃

σ∈˜Ω1
f

Hσ.

Since the supporting manifold is the sphere Sn and the closures of stable manifolds of saddle

periodic points in Ω1
f are the spheres Sn−1, it follows that the spheres Sn−1 divide Sn into

|Ω1
f |+ 1 open balls that are the sink basins. Then Ωn

f = |Ω1
f |+ 1 and the attractor Af does not

contain subsets homeomorphic to a circle. Then f−k(B) ∪H is the ball Bn and its boundary

∂Bn is the sought sphere.

Lemma 3.3. Let f ∈ G(Sn), n > 3. Then V̂f is homeomorphic to S
n−1 × S

1.

Proof. By the annulus theorem, the set Bn \ int f(Bn) is homeomorphic to the annulus

S
n−1 × [0, 1]. By the definition of the ball Bn, the space of orbits V̂f is homeomorphic to the

manifold obtained from Bn \ int f(Bn) by gluing together the connected components of its

boundary by the diffeomorphism f . Thus, V̂f is homeomorphic to S
n−1 × S

1.

4 Necessary and Sufficient Conditions
for Topological Conjugacy of G(Mn)

In Section 1, we defined the scheme Sf = (V̂f , ηf
, L̂s

f , L̂
u
f ) of a diffeomorphism f ∈ G(Mn),

where V̂f is the space of orbits of the action of the diffeomorphism f on the manifold Vf ,

η
f
: π1(V̂f ) → Z is an epimorphism, L̂s

f , L̂u
f are the projections of the (n − 1)-dimensional

separatrices of saddle periodic points of f onto the manifold V̂f . We denote by γsσ(γ
u
σ) the

connected component of L̂s
f (L̂u

f ).

From Subsection 2.1 it follows that the scheme Sf possesses the following properties.

Proposition 4.1. Let f ∈ G(Mn). Then the following assertions hold.

1. The space V̂f is a smooth connected n-manifold.

2. γδσ, δ ∈ {s, u} is a smooth submanifold of V̂f diffeomorphic to K
n−1
νσ and η

f
(i∗(π1(γδσ))) =

mσZ, where i : γδσ → V̂f is the inclusion map.

Proof of Theorem 1.2. Necessity follows from Proposition 2.1.
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Sufficiency. Assume that the schemes Sf and Sf ′ are equivalent via the homeomorphism

ϕ̂ : V̂f → V̂f ′ . We construct step by step a homeomorphism h : Mn → Mn conjugating the

diffeomorphisms f and f ′.
Step 1. By Proposition 2.1, there exists a lifting ϕ : Vf → Vf ′ of the homeomorphism ϕ̂ that

is a homeomorphism conjugating the diffeomorphisms f |Vf and f ′|V
f ′

such that for any saddle

point σ ∈ Ω1
f (σ ∈ Ωn−1

f ) there is a point σ′ ∈ Ω1
f ′ (σ′ ∈ Ωn−1

f ′ ) such that ϕ(W s
σ \ σ) = W s

σ′ \ σ′

(ϕ(W u
σ \ σ) = W u

σ′ \ σ′). Thus, the homeomorphism ϕ is uniquely extended to saddle points.

Step 2. We choose exactly one point in each saddle orbit of index 1 and denote by Ω̃1
f the

obtained set. Proposition 2.4 and the absence of heteroclinic intersections imply the existence

of a family of pairwise disjoint neighborhoods {vσ}({v′σ}) of saddle points in Ω̃1
f (Ω̃1

f ′) and maps

χσ : vσ → U1 (χσ′ : vσ′ → U1) conjugating the restriction of the diffeomorphism fmσ (f ′mσ′ ) on

vσ (vσ′) and the diffeomorphism aν |U1 . We set ϕu
σ = χ−1

σ′ χσ|Wu
σ
. We choose τ ∈ (0, 1] such that

the topological embedding ψ : vτσ → vσ′ is well defined on the set vτσ by the formula

ψ(x) = T s
σ′(ϕ(πs

σ(x))) ∩ T u
σ′(ϕu

σ(π
u
σ(x)))

and ψ(vτσ \ W u
σ ) ⊂ ϕ(vτσ \ W u

σ ). We define the topological embedding θσ : vτσ → vσ by the

equality θ = ϕ−1ψ. By Proposition 2.3, there exists a number 0 < τ1 < τ and a homeomorphism

Θ : vσ → vσ coinciding with θ on vτ1σ and identical on ∂vσ. We define homeomorphisms

hσ,σ′ : vσ → v′σ, hO(σ),O(σ′) :

mσ−1⋃

i=0

Vf i(σ) →
mσ−1⋃

i=0

Vf ′i(σ′)

by the equalities

hσ,σ′ = ϕΘ, hO(σ),O(σ′) = f ′ihσ,σ′f−i(x), x ∈ Vf i(σ)

and denote by

H1 :
⋃

σ∈Ω1
f

vσ →
⋃

σ′∈Ω1
f ′

vσ′

a homeomorphism coinciding with hO(σ),O(σ′) at each point σ ∈ Ω1
f .

Step 3. For points of Ωn−1
f we repeat the constructions of Step 2 with s and aν replaced by

u a−1
ν . The obtained homeomorphism is denoted by

Hn−1 :
⋃

σ∈Ωn−1
f

vσ →
⋃

σ′∈Ωn−1
f ′

vσ′ .

Step 4. We define the homeomorphism H : Mn \ (Ω0
f ∪ Ωn−1

f ) → Mn \ (Ω0
f ′ ∪ Ωn−1

f ′ ) by

H(x) =

⎧
⎪⎨

⎪⎩

ϕ(x), x ∈ Mn \
⋃

σ∈Ω1
f∪Ωn−1

f

vσ,

Hδ(x), x ∈ vσ,

where σ ∈ Ωδ
f , δ ∈ {1, n− 1}, and extend the homeomorphism H to the set Ω0

f ,Ω
n−1
f in such a

way that the obtained homeomorphism H : Mn → Mn satisfies the condition f ′ = H−1fH.

89



Acknowledgment

The work is supported by the Russian Foundation for Basic Research (projects No. 13-01-

12452-ofi-m and 15-01-03687-a) and the Russian Scientific Foundation (grant No. 14-41-00044).

References

1. V. Z. Grines, E. Ya. Gurevich, and V. S. Medvedev, “Peixoto graph of Morse–Smale dif-
feomorphisms on manifolds of dimension greater than three” [in Russian], Tr. Mat. Inst.
Steklova 261, 61–86 (2008); English transl.: Proc. Steklov Inst. Math. 261, 59–83 (2008).

2. V. Z. Grines, E. Ya. Gurevich, and V. S. Medvedev, “Classification of Morse–Smale diffeo-
morphisms with one-dimensional set of unstable separatrices” [in Russian], Tr. Mat. Inst.
Steklova 270, 62–86 (2010); English transl.: Proc. Steklov Inst. Math. 270, 57–79 (2010).

3. V. Z. Grines and O. V. Pochinka, “Morse–Smale cascades on 3-manifolds” [in Russian], Usp.
Mat. Nauk 68, No. 1, 129–188 (2013); English transl: Russ. Math. Surv 68, No. 1, 117–173
(2013).

4. V. Z. Grines and O. V. Pochinka, Introduction to Topological Classification of Cascades on
Manifolds of Dimension Two and Three [in Russian], Izhevsk (2011).

5. V. Z. Grines and O. V. Pochinka, “On the simple isotopy class of a source-sink diffeo-
morphism on the 3-sphere” [in Russian], Mat. Zametki 94, No. 6, 828–845 (2013); English
transl.: Math. Notes 94, No. 6, 862–875 (2013).

6. W. P. Thurston, Three-Dimensional Geometry and Topology. Vol. 1, Princeton Univ. Press,
Princeton, NJ (1997).

7. C. Kosniowski, A First Course in Algebraic Topology, Cambridge Univ. Press, Cambridge
etc. (1980).

8. C. Bonatti, V. Z. Grines, and O. V. Pochinka, “Classification of Morse–Smale diffeomor-
phisms with a finite set of heteroclinic orbits on 3-manifolds” [in Russian], Tr. Mat. Inst.
Steklova 250, 5–53 (2005); English transl.: Proc. Steklov Inst. Math. 250, 1–46 (2005).

9. S. Smale, “Morse inequalities for a dynamical systems,” Bull. Am. Math. Soc. 66, 43–49
(1960).

10. J. C. Cantrell, “Almost locally flat sphere Sn−1 in Sn,” Proc. Am. Math. Soc. 15, No. 4,
574–578 (1964).

11. M. Brown, “Locally flat imbeddings of topological manifolds,” Ann. Math. 75, No. 2, 331–
341 (1962).

12. Ch. Bonatti, V. Grines, V. Medvedev, E. Pecou, “Three-manifolds admitting Morse–Smale
diffeomorfisms without heteroclinic curves,” Topology Appl. 111, 335–344 (2002).

13. V. S. Medvedev and Ya. L. Umanskii, “Decomposition of n-manifolds into simple manifolds”
[in Russian], Izv. Vyssh. Uchebn. Zaved., Mat. No. 1, 46–50 (1979); English transl.: Sov.
Math. 23, No. 1, 36–39 (1979).

14. B. A. Dubrovin, S. P. Novikov, and A. T. Fomenko, Modern Geometry. Methods and Appli-
cations [in Russian]m Nauka, Moscow (1986).

Submitted on August 29, 2014

90


	Abstract
	1 Introduction and Formulation of the Results
	2 Canonical Manifolds and Maps
	3 Dynamics of a Morse–Smale Diffeomorfism f : Mn → Mnand Topology of Manifold Mn
	4 Necessary and Sufficient Conditionsfor Topological Conjugacy of G(Mn)
	Acknowledgment
	References

