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Abstract. In this paper we study a notion of topological complexity TC(X) for the
motion planning problem. TC(X) is a number which measures discontinuity of the process
of motion planning in the configuration space X . More precisely, TC(X) is the minimal
number k such that there are k different “motion planning rules,” each defined on an open
subset of X×X , so that each rule is continuous in the source and target configurations. We use
methods of algebraic topology (the Lusternik–Schnirelman theory) to study the topological
complexity TC(X). We give an upper bound for TC(X) (in terms of the dimension of the
configuration space X ) and also a lower bound (in terms of the structure of the cohomology
algebra of X ). We explicitly compute the topological complexity of motion planning for
a number of configuration spaces: spheres, two-dimensional surfaces, products of spheres.
In particular, we completely calculate the topological complexity of the problem of motion
planning for a robot arm in the absence of obstacles.

1. Definition of Topological Complexity

Let X be the space of all possible configurations of a mechanical system. In most
applications the configuration space X comes equipped with a structure of topological
space. The motion planning problem consists of constructing a program or a device,
which takes pairs of configurations (A, B) ∈ X × X as an input and produces as an
output a continuous path in X , which starts at A and ends at B, see [4], [6], and [7]. Here
A is the initial configuration, and B is the final (desired) configuration of the system.

We assume below that the configuration space X is path-connected, which means
that for any pair of points of X there exists a continuous path in X connecting them.
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Fig. 1. Continuity of motion planning: close initial-final pairs (A, B) and (A′, B ′) produce close movements
s(A, B) and s(A′, B ′).

Otherwise, the motion planner has first to decide whether the given points A and B
belong to the same path-connected component of X .

The motion planning problem can be formalized as follows. Let PX denote the space
of all continuous paths γ : [0, 1] → X in X . We denote by π : PX → X × X the
map associating to any path γ ∈ PX the pair of its initial and end points π(γ ) =
(γ (0), γ (1)). Equip the path space PX with compact-open topology. Rephrasing the
above definition we see that the problem of motion planning in X consists of finding a
function s: X × X → PX such that the composition π ◦ s = id is the identity map. In
other words, s must be a section of π .

Does there exist a continuous motion planning in X? Equivalently, we ask whether
it is possible to construct a motion planning in the configuration space X so that the
continuous path s(A, B) in X , which describes the movement of the system from the
initial configuration A to the final configuration B, depends continuously on the pair of
points (A, B)? (See Fig. 1.) In other words, does there exist a motion planning in X such
that the section s: X × X → PX is continuous?

Continuity of motion planning is an important natural requirement. Absence of con-
tinuity will result in the instability of behavior: there will exist arbitrarily close pairs
(A, B) and (A′, B ′) of initial-desired configurations such that the corresponding paths
s(A, B) and s(A′, B ′) are not close.

Unfortunately, as the following theorem states, a continuous motion planning exists
only in very simple situations.

Theorem 1. A continuous motion planning s: X × X → PX exists if and only if the
configuration space X is contractible.

Proof. Suppose that a continuous section s: X × X → PX exists. Fix a point A0 ∈ X
and consider the homotopy

ht : X → X, ht (B) = s(A0, B)(t),

where B ∈ X and t ∈ [0, 1]. We have h1(B) = B and h0(B) = A0. Thus ht gives a
contraction of the space X into the point A0 ∈ X .

Conversely, assume that there is a continuous homotopy ht : X → X such that
h0(A) = A and h1(A) = A0 for any A ∈ X . Given a pair (A, B) ∈ X × X , we may
compose the path t �→ ht (A) with the inverse of t �→ ht (B), which gives a continuous
motion planning in X .

Thus, we get a motion planning in a contractible space X by first moving A into the
base point A0 along the contraction, and then following the inverse of the path, which
brings B to A0.
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Fig. 2. Discontinuity of the motion planner corresponding to a covering {Ui }.

Definition 2. Given a path-connected topological space X , we define the topological
complexity of the motion planning in X as the minimal number TC(X) = k, such that
the Cartesian product X × X may be covered by k open subsets

X × X = U1 ∪ U2 ∪ · · · ∪ Uk (1)

such that for any i = 1, 2, . . . , k there exists a continuous motion planning si : Ui → PX,
π ◦ si = id over Ui . If no such k exists we will set TC(X) = ∞.

Intuitively, the topological complexity TC(X) is the measure of discontinuity of any
motion planner in X .

Given an open cover (1) and sections si as above, one may organize a motion planning
algorithm as follows. Given a pair of initial-desired configurations (A, B), we first find
the subset Ui with the smallest index i such that (A, B) ∈ Ui and then we give the path
si (A, B) as an output. Discontinuity of the output si (A, B) as a function of the input
(A, B) is obvious: suppose that (A, B) is close to the boundary of U1 (see Fig. 2) and to
a pair (A′, B ′) ∈ U2 − U1; then the output s1(A, B) compared with s2(A′, B ′) may be
completely different, since the sections s1|U1∩U2 and s2|U1∩U2 are in general distinct.

According to Theorem 1, we have TC(X) = 1 if and only if the space X is contractible.

Example. Suppose that X is a convex subset of a Euclidean space Rn . Given a pair
of initial-desired configurations (A, B), we may move with constant velocity along the
straight line segment connecting A and B. This clearly produces a continuous algorithm
for the motion planning problem in X . This is consistent with Theorem 1: we have
TC(X) = 1 since X is contractible.

Example. Consider the case when X = S1 is a circle. Since S1 is not contractible,
we know that TC(S1) > 1. Let us show that TC(S1) = 2. Define U1 ⊂ S1 × S1

as U1 = {(A, B); A �= −B}. A continuous motion planning over U1 is given by the
map s1: U1 → PS1 which moves A towards B with constant velocity along the unique
shortest arc connecting A to B. This map s1 cannot be extended to a continuous map on
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the pairs of antipodal points A = −B. Now define U2 = {(A, B); A �= B}. Fix an
orientation of the circle S1. A continuous motion planning over U2 is given by the map
s2: U2 → PS1 which moves A towards B with constant velocity in the positive direction
along the circle. Again, s2 cannot be extended to a continuous map on the whole S1 × S1.

Remark. Our definition of the topological complexity TC(X) is motivated by the
notion of a genus of a fiber space, introduced by Schwarz [5]. In fact TC(X) is the
Schwarz genus of the path space fibration PX → X × X .

The theory of Schwarz genus was used by Smale [8] and Vassiliev [10], [11] to define
the topological complexity of algorithms of finding roots of polynomial equations.

2. Homotopy Invariance

The following property of homotopy invariance often allows us to simplify the configu-
ration space X without changing the topological complexity TC(X).

Theorem 3. TC(X) depends only on the homotopy type of X .

Proof. Suppose that X dominates Y , i.e., there exist continuous maps f : X → Y
and g: Y → X such that f ◦ g � idY . We show that then TC(Y ) ≤ TC(X). Assume
that U ⊂ X × X is an open subset such that there exists a continuous motion planning
s: U → PX over U . Define V = (g × g)−1(U ) ⊂ Y × Y . We construct a continuous
motion planning σ : V → PY over V explicitly. Fix a homotopy ht : Y → Y with
h0 = idY and h1 = f ◦ g; here t ∈ [0, 1]. For (A, B) ∈ V and τ ∈ [0, 1] set

σ(A, B)(τ ) =




h3τ (A), for 0 ≤ τ ≤ 1
3 ,

f (s(gA, gB)(3τ − 1)), for 1
3 ≤ τ ≤ 2

3 ,

h3(1−τ)(B), for 2
3 ≤ τ ≤ 1.

Thus we obtain that for k = TC(X) any open cover U1 ∪ · · · ∪ Uk = X × X with a
continuous motion planning over each Ui defines an open cover V1 ∪ · · · ∪ Vk of Y × Y
with similar properties. This proves that TC(Y ) ≤ TC(X), and obviously implies the
statement of the theorem.

3. An Upper Bound for TC(X)

Theorem 4. For any path-connected paracompact locally contractible topological
space X , we have

TC(X) ≤ 2 · dim X + 1. (2)

In particular, if X is a connected polyhedral subset of Rn, then the topological complexity
TC(X) can be estimated from above as follows:

TC(X) ≤ 2n − 1. (3)
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Here dim(X)denotes the covering dimension of paracompact X . Recall that dim(X) ≤
n iff any open cover of X has a locally finite open refinement such that no point of X
belongs to more than n+1 open sets of the refinement. If X is a polyhedron, then dim(X)

coincides with the maximum of the dimensions of the simplices of X .
A topological space X is called locally contractible if any point of X has an open

neighborhood U ⊂ X such that the inclusion U → X is null-homotopic.
We use a relation between TC(X) and the Lusternik–Schnirelman category cat(X).

Recall that cat(X) is defined as the smallest integer k such that X may be covered by k
open subsets V1 ∪ · · · ∪ Vk = X with each inclusion Vi → X null-homotopic.

Theorem 5. If X is path-connected and paracompact, then

cat(X) ≤ TC(X) ≤ 2 · cat(X) − 1. (4)

Proof. Let U ⊂ X × X be an open subset such that there exists a continuous motion
planning s: U → PX over U . Let A0 ∈ X be a fixed point. Denote by V ⊂ X the set of
all points B ∈ X such that (A0, B) belongs to U . Then clearly the set V is open and is
contractible in X .

If TC(X) = k and U1 ∪ · · · ∪ Uk is a covering of X × X with a continuous motion
planning over each Ui , then the sets Vi , where A0×Vi = Ui ∩(A0×X) form a categorical
open cover of X . This shows that TC(X) ≥ cat(X).

The second inequality follows from the obvious inequality

TC(X) ≤ cat(X × X)

combined with cat(X × X) ≤ 2 · cat(X) − 1, see Proposition 2.3 of [3].

Proof of Theorem 4. It is well known that under the above assumptions cat(X) ≤
dim(X) + 1, see Proposition 2.1 of [3]. Together with the right-hand inequality in (4)
this gives (2).

If X ⊂ Rn is a connected polyhedral subset, then X has a homotopy type of an
(n −1)-dimensional polyhedron Y . Using the homotopy invariance (Theorem 3) we find
TC(X) = TC(Y ) ≤ 2(n − 1) + 1 = 2n − 1. ✷

Remark. Consider the following example. Let X ⊂ R2 be the union of circles Cn ,
where n = 1, 2, . . . and the center of Cn is at point (1/n, 0) and the radius of Cn equals
1/n. The point (0, 0) ∈ X has no neighborhoods which are contractbible in X . Hence
cat(X) = +∞ although dim X = 1. This example shows that Proposition 2.1 from [3]
is false without assuming local contractibility of X .

4. A Lower Bound for TC(X)

Let k be a field. The cohomology H∗(X; k) is a graded k-algebra with the multiplication

∪: H∗(X; k) ⊗ H∗(X; k) → H∗(X; k) (5)
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given by the cup-product, see [1] and [9]. The tensor product H∗(X; k) ⊗ H∗(X; k) is
also a graded k-algebra with the multiplication

(u1 ⊗ v1) · (u2 ⊗ v2) = (−1)|v1|·|u2| u1u2 ⊗ v1v2. (6)

Here |v1| and |u2| denote the degrees of cohomology classes v1 and u2 correspondingly.
The cup-product (5) is an algebra homomorphism.

Definition 6. The kernel of homomorphism (5) is called the ideal of the zero-divisors
of H∗(X; k). The zero-divisors-cup-length of H∗(X; k) is the length of the longest
nontrivial product in the ideal of the zero-divisors of H∗(X; k).

Example. Let X = Sn . Let u ∈ H n(Sn; k) be the fundamental class, and let 1 ∈
H 0(Sn; k) be the unit. Then a = 1 ⊗ u − u ⊗ 1 ∈ H∗(Sn; k) ⊗ H∗(Sn; k) is a zero-
divisor, since applying homomorphism (5) to a we obtain 1 · u − u · 1 = 0. Another
zero-divisor is b = u ⊗ u, since u2 = 0. Computing a2 = a · a by means of rule (6) we
find

a2 = ((−1)n−1 − 1) · u ⊗ u.

Hence a2 = −2b for n even and a2 = 0 for n odd; the product ab vanishes for any n.
We conclude that the zero-divisors-cup-length of H∗(Sn; Q) equals 1 for n odd and 2
for n even.

Theorem 7. The topological complexity of motion planning TC(X) is greater than the
zero-divisors-cup-length of H∗(X; k).

To illustrate this theorem, consider the special case X = Sn . Using the computation
of the zero-divisors-cup-length for Sn (see the example above) and applying Theorem 7
we find that TC(Sn) > 1 for n odd and TC(Sn) > 2 for n even. This means that any
motion planner on the sphere Sn must have at least two open sets Ui ; moreover, any
motion planner on the sphere Sn must have at least three open sets Ui if n is even.

Proof. Consider the following commutative diagram:

X
α ✲ PX

❅
❅
❅
❅
❅


❘

X × X

π

❄

Here α associates to any point x ∈ X the constant path [0, 1] → X at this point.
: X → X × X is the diagonal map (x) = (x, x). Note that α is a homotopy
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equivalence. The composition

H∗(X; k) ⊗ H∗(X; k) � H∗(X × X; k)
π∗→ H∗(PX; k)

α∗→� H∗(X; k) (7)

coincides with the cup-product homomorphism (5). Here the homomorphism on the left
is the Künneth isomorphism.

As we mentioned above, the topological complexity of motion planning TC(X) is
the Schwarz genus (see [5]) of the fibration π : PX → X × X . The statement of The-
orem 7 follows from our remarks above concerning homomorphism (7) and from the
cohomological lower bound for the Schwarz genus, see Theorem 4 of [5].

5. Motion Planning on Spheres

Theorem 8. The topological complexity of motion planning on the n-dimensional
sphere Sn is given by

TC(Sn) =
{

2, for n odd,

3, for n even.

Proof. First we show that TC(Sn) ≤ 2 for n odd. Let U1 ⊂ Sn × Sn be the set of
all pairs (A, B) where A �= −B. Then there is a unique shortest arc of Sn connecting
A and B and we construct a continuous motion planning s1: U1 → PSn by setting
s1(A, B) ∈ PSn to be this shortest arc passed with a constant velocity. The second open
set will be defined as U2 = {(A, B); A �= B} ⊂ Sn × Sn . A continuous motion planning
over U2 will be constructed in two steps. In the first step we move the initial point A to
the antipodal point −B along the shortest arc as above. In the second step we move the
antipodal point −B to B. For this purpose fix a continuous tangent vector field v on Sn ,
which is nonzero at every point; here we use the assumption that the dimension n is odd.
We may move −B to B along the spherical arc

− cos π t · B + sin π t · v(B)

|v(B)| , t ∈ [0, 1].

This proves that TC(Sn) ≤ 2 for n odd; hence by Theorem 1, TC(Sn) = 2 for n odd.
Assume now that n is even. Let us show that then TC(Sn) ≤ 3. We define a continuous

motion planning over the set U1 ⊂ Sn × Sn as above. For n even we may construct a
continuous tangent vector field v on Sn , which vanishes at a single point B0 ∈ Sn and
is nonzero for any B ∈ Sn , B �= B0. We define the second set U2 ⊂ Sn × Sn as
{(A, B); A �= B & B �= B0}. We may define s2: U2 → PSn as above. Now, U1 ∪ U2

covers everything except the pair of points (−B0, B0). Choose a point C ∈ Sn , distinct
from B0, −B0, and set Y = Sn − C . Note that Y is diffeomorphic to Rn and so there
exists a continuous motion planning over Y . This means that we may take U3 = Y × Y .
This proves that TC(Sn) ≤ 3. On the other hand, using Theorem 7 and the preceding
Example, we find TC(Sn) ≥ 3 for n even. This completes the proof.
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6. More Examples

Theorem 9. Let X = �g be a compact orientable two-dimensional surface of genus
g. Then

TC(X) =
{

3, if g ≤ 1,

5, if g > 1.

Consider first the case g ≥ 2. Then we may find cohomology classes u1, v1, u2, v2 ∈
H 1(X; Q) forming a symplectic system, i.e., u2

i = 0, v2
i = 0, and u1v1 = u2v2 = A �= 0,

where A ∈ H 2(�g; Q) is the fundamental class; moreover, vi u j = vivj = ui uj = 0 for
i �= j . Then it holds in the algebra H∗(X; Q) ⊗ H∗(X; Q) that

2∏
i=1

(1 ⊗ ui − ui ⊗ 1)(1 ⊗ vi − vi ⊗ 1) = 2A ⊗ A �= 0

and hence we obtain, using Theorem 7, that TC(X) ≥ 5. The opposite inequality follows
from Theorem 4.

The case g = 0 follows from Theorem 8 since then X = S2. The case g = 1, which
corresponds to the two-dimensional torus T 2, is considered later in Theorem 13.

Theorem 10. Let X = CPn be the n-dimensional complex projective space. Then
TC(X) ≥ 2n + 1.

Proof. If u ∈ H 2(X; Q) is a generator, then

(1 ⊗ u − u ⊗ 1)2n = (−1)n

(
2n

n

)
un ⊗ un �= 0.

Hence Theorem 7 gives TC(X) ≥ 2n + 1.

7. Product Inequality

Theorem 11. For any path-connected metric spaces X and Y ,

TC(X × Y ) ≤ TC(X) + TC(Y ) − 1. (8)

Proof. Denote TC(X) = n, TC(Y ) = m. Let U1, . . . , Un be an open cover of X × X
with a continuous motion planning si : Ui → PX for i = 1, . . . , n. Let fi : X × X → R,
where i = 1, . . . , n, be a partition of unity subordinate to the cover {Ui }. Similarly, let
V1, . . . , Vm be an open cover of Y × Y with a continuous motion planning σj : Vj → PY
for j = 1, . . . , m, and let gj : Y × Y → R, where j = 1, . . . , m, be a partition of unity
subordinate to the cover {Vj }.

For any pair of nonempty subsets S ⊂ {1, . . . , n} and T ⊂ {1, . . . , m}, let

W (S, T ) ⊂ (X × Y ) × (X × Y )
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denote the set of all 4-tuples (A, B, C, D) ∈ (X × Y ) × (X × Y ), such that for any
(i, j) ∈ S × T and for any (i ′, j ′) /∈ S × T it holds that

fi (A, C) · gj (B, D) > fi ′(A, C) · gj ′(B, D).

One easily checks that:

(a) each set W (S, T ) ⊂ (X × Y ) × (X × Y ) is open;
(b) W (S, T ) and W (S′, T ′) are disjoint if neither S×T ⊂ S′×T ′ nor S′×T ′ ⊂ S×T ;
(c) if (i, j) ∈ S × T , then W (S, T ) is contained in Ui × Vj ; therefore there exists a

continuous motion planning over each W (S, T ) (it can be described explicitly in
terms of si and σj );

(d) the sets W (S, T ) (with all possible nonempty S and T ) form a cover of
(X × Y ) × (X × Y ).

Let us prove (d). Suppose that (A, B, C, D) ∈ (X ×Y )× (X ×Y ). Let S be the set of
all indices i ∈ {1, . . . , n}, such that fi (A, C) equals the maximum of fk(A, C), where
k = 1, 2, . . . , n. Similarly, let T be the set of all j ∈ {1, . . . , m}, such that gj (B, D)

equals the maximum of g�(B, C), where � = 1, . . . , m. Then clearly (A, B, C, D)

belongs to W (S, T ).
Let Wk ⊂ (X × Y ) × (X × Y ) denote the union of all sets W (S, T ), where |S| +

|T | = k. Here k = 2, 3, . . . , n + m. The sets W2, . . . , Wn+m form an open cover of
(X × Y )× (X × Y ). If |S|+ |T | = |S′| + |T | = k, then the corresponding sets W (S, T )

and W (S′, T ′) either coincide (if S = S′ and T = T ′) or are disjoint. Hence we see
(using (c)) that there exists a continuous motion planning over each open set Wk .

This completes the proof.

Remark. The above proof represents a modification of the arguments of the proof of
the product inequality for the Lusternik–Schnirelman category, see page 333 of [3].

8. Motion Planning for a Robot Arm

Consider a robot arm consisting of n bars L1, . . . , Ln , such that Li and Li+1 are connected
by flexible joins. We assume that the initial point of L1 is fixed. In the planar case, a
configuration of the arm is determined by n angles α1, . . . , αn , where αi is the angle
between Li and the x-axis (Fig. 3). Thus, in the planar case, the configuration space of
the robot arm (when no obstacles are present) is the n-dimensional torus

T n = S1 × S1 × · · · × S1.

Similarly, the configuration space of a robot arm in the three-dimensional space R3 is
the Cartesian product of n copies of the two-dimensional sphere S2.

Theorem 12. The topological complexity of the motion planning problem of a plane
n-bar robot arm equals n+1. The topological complexity of the motion planning problem
of a spacial n-bar robot arm equals 2n + 1.



220 M. Farber

Fig. 3. Planar robot arm.

Remark. It is not difficult to construct motion planners explicitly for the planar and
spacial robot arms, which have the minimal possible topological complexity. Such al-
gorithms could be based on the ideas used in the proof of the product inequality (Theo-
rem 11).

Theorem 12 automatically follows from the next statement:

Theorem 13. Let X = Sm × Sm × · · · × Sm be a Cartesian product of n copies of the
m-dimensional sphere Sm . Then

TC(X) =
{

n + 1, if m is odd,

2n + 1, if m is even.
(9)

Proof. Using the product inequality (Theorem 11) and the calculation for spheres
(Theorem 8) we find that TC(X) is less than or equal to the right-hand side of (9).
To establish the inverse inequality we use Theorem 7. Let ai ∈ H m(X; Q) denote the
cohomology class which is the pull-back of the fundamental class of Sm under the
projection X → Sm onto the i th factor; here i = 1, 2, . . . , n. We see that

n∏
i=1

(1 ⊗ ai − ai ⊗ 1) �= 0 ∈ H∗(X × X; Q).

This shows that the zero-divisors-cup-length of X is at least n. If m is even, then

n∏
i=1

(1 ⊗ ai − ai ⊗ 1)2 �= 0 ∈ H∗(X × X; Q).

Hence for m even, the zero-divisors-cup-length of X is at least 2n. Application of The-
orem 7 completes the proof.

Further results developing the notion of topological complexity of configuration
spaces and applications to specific motion planning problems can be found in my
preprint [2].
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