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We analyze the band topology of acoustic phonons in 2D materials by considering the interplay
of spatial and internal symmetries with additional constraints that arise from the physical context.
These supplemental constraints trace back to the Nambu-Goldstone theorem and the requirements
of structural stability. We show that this interplay can give rise to previously unaddressed non-
trivial nodal charges that are associated with the crossing of the acoustic phonon branches at the
center (Γ-point) of the phononic Brillouin zone. We moreover apply our perspective to the concrete
context of graphene, where we demonstrate that the phonon spectrum harbors these kinds of non-
trivial nodal charges. Apart from its fundamental appeal, this analysis is physically consequential
and dictates how the phonon dispersion is affected when graphene is grown on a substrate. Given
the generality of our framework, we anticipate that our strategy that thrives on combining physical
context with insights from topology should be widely applicable in characterizing systems beyond
electronic band theory.

I. INTRODUCTION

The interplay between symmetry and topology has
been well studied in electronic band structures for a long
time, culminating in classification schemes that predict
topology based only on the space group and the internal
symmetries of the system [1–20]. The same machinery
has also recently been applied to phononic systems [21–
24], where the Bloch Hamiltonian of electrons is replaced
with the dynamical matrix of phonons. The band topol-
ogy of phononic systems is then described using the spin-
less space groups, that is, the phonons are modelled using
the symmetries of spinless electrons. As the dynamical
matrix naturally includes time-reversal symmetry (TRS),
this corresponds to the Altland-Zirnbauer (AZ) [25–27]
class AI.

However, phonons are not just spinless electrons.
Whilst AZ class AI (possibly augmented by spatial sym-
metries) correctly captures the symmetry content of
phonons, there are additional physical properties that set
phonons apart from electrons. The most relevant of these
[28–30] are:

• Phonon frequencies of stable structures are non-
negative, so that the dynamical matrix is positive
semidefinite

• Phonons (being bosons) do not couple directly to
magnetic fields, so TRS is not easily broken (see,
however, Appendix A 2)
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• Phonons satisfy the acoustic sum rule, e.g. they
support long-wavelength excitations with vanish-
ing frequency. These arise as a consequence of the
Nambu-Goldstone (NG) theorem [31–35].

We will refer to these as additional physical constraints.
Earlier work on phononic topology [28–30, 36–50] usu-
ally incorporates these constraints by moving away from
a direct dynamical matrix formulation. One strategy,
introduced in Ref. [28], is to map the bosonic phonon
problem to a fermionic problem [29] by considering the
square root of the dynamical matrix. This replaces the
positive definiteness condition with a particle-hole sym-
metry, leading to AZ class BDI, and also gives a natural
way to include TRS breaking [30, 50].

Here, by contrast, we deal directly with the dynami-
cal matrix, and discuss how the additional physical con-
straints interplay with the conventional symmetry anal-
ysis. Concretely, we study the nodal charge of acoustic
phonons in a 2D material at the Γ point [q = (0, 0)] of
the Brillouin zone. Allowing the material to flex out-of-
plane, the NG theorem [31–35] predicts that three acous-
tic bands will be degenerate at Γ, forming a triple point.
We assume the presence of spinless TRS T throughout
(this is discussed in Appendix A 2), e.g. T 2 = +1 so that
we are in AZ class AI. As a result, the spatial symmetries
of our system are described by the 80 layer groups with
spinless TRS [51].

However, none of these layer groups have a three-
dimensional irreducible representation (IRREP) [52, 53],
so that triply degenerate points are not stabilized by in-
ternal or spatial symmetries in AZ class AI in 2D. Such
triple points are therefore not anticipated from a pure
symmetry analysis, and arise from the NG theorem. Im-
posing such a triple point, we can then use the machin-
ery of homotopy theory to compute the nodal charge of
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the triple point. This is computation is simplified if the
system has a unitary symmetry P taking q → −q and
satisfying (PT )2 = +1, because this allows us to restrict
to real topology [2, 11, 54–60], as discussed in Sec. II B.
We will refer to P as a generalized inversion symmetry.
Such a symmetry does not necessarily exist globally in
phononic systems, but we show in Appendix A that the
physical constraints above force such a symmetry to ex-
ist close to the Γ-point. In 2D, P is given by a twofold
rotation.

We find that, with this additional symmetry, there is a
nodal charge associated with the acoustic phonons in 2D.
However, this charge is only associated with two of the
bands, the third band being degenerate only by virtue
of the NG theorem. This explains why, in 2D materials,
one of the acoustic bands can gap out when the material
is grown on a substrate, as confirmed experimentally for
graphene [61, 62]. The substrate allows for a violation of
the NG theorem, splitting off one of the bands, whereas
the other two bands are stabilized by the nodal charge.
This is discussed in detail in Sec. V. Due the generality of
our approach, we emphasize that graphene is nonetheless
just a specific example of this universal perspective. We
note that a similar analysis was recently carried out in
3D in Ref. [63], and we comment on the connection of
their results to ours throughout.

This paper is structured as follows: In Sec. II we in-
troduce the model for 2D acoustic phonons, and discuss
some general symmetry considerations. In Sec. III, we
discuss the possible topology, and apply it to the 2D sys-
tem in Sec. IV. We then exemplify these concepts by ap-
plying the machinery to graphene in Sec. V, discussing
how a substrate modifies the phonon dispersion. We con-
clude in Sec. VI.

II. CONTINUUM MODELS FROM
ELASTICITY THEORY

A. Flexural phonons in 2D

We begin by introducing a continuum model for acous-
tic phonons based on classical elasticity theory in 2D [64].
The analogous model in 3D was studied in [63], and we
include it for completeness in Appendix B 1 where we
also discuss the model in 1D and show that it is trivial.

Classical continuum theory describes a 2D material
as an elastic membrane in the xy-plane which can
flex in the z-plane, giving rise to flexural modes [65].
The Lagrangian density for such a system is written
in terms of the in-plane displacement field u(x, y) =
(u1(x, y), u2(x, y)) and the out-of plane displacement
field h(x, y). These fields are defined respectively as the
in-plane and out of plane deviations of the atoms from
their equilibrium position. Explicitly, the Lagrangian
density for a flexible membrane is given by [64, 66, 67]:

L =
ρ0

2
(u̇2 + ḣ2)− 1

2
κ0(∇2h)2 − µ↔u

2

ij −
1

2
λ
↔
u

2

kk, (1)

Where µ and λ are Lamé parameters and ρ0 and κ0 are
the stiffness in- and out-of plane, respectively. The strain

tensor
↔
u ij is defined as:

↔
u ij =

1

2
(∂iuj + ∂jui + ∂ih∂jh) (2)

Expanding Eq. (1) to quadratic order in the displace-
ments defines what we will refer to as the harmonic ap-
proximation. This is valid whenever phonon-phonon in-
teractions are negligible, which we assume throughout
(for a discussion of such terms, see Ref. [67]). Note
that we do not restrict our model to be quadratic in
the wavevectors q. Looking for plane-wave solutions to
the equations of motion gives the classical wave-equation
with general form:

D(q)v(q) = ω2(q)v(q), (3)

Where q = (qx, qy) is the wavevector of the plane-wave,
D(q) is the dynamical matrix, whose topology we inves-
tigate, ω2(q) are the eigenfrequencies and v(q) = (u, h).
Note that a continuum model can never capture optical
branches in the phonon spectrum, as they depend on the
internal motion of atoms which we neglect. As we are
only interested in the topology of the acoustic phonons
close to Γ [e.g. q = (0, 0)], the optical branches will have
no impact on our analysis. A more realistic model de-
scribing the phonons of graphene is analyzed in Sec. V.
For now, we think of D(q) as k · p expansion, describ-
ing the acoustic bands around Γ, of the (many-band) full
phonon-band structure.

For stable structures, D(q) is positive semidefinite, so
that ω is real. A more careful analysis of the constraints
on D(q) is performed in Appendix A. For the Lagrangian
in Eq. (1) we find

D(q)=

 v2
l q

2
x+v2

t q
2
y (v2

l −v2
t )qxqy 0

(v2
l −v2

t )qxqy v2
l q

2
y+v2

t q
2
x 0

0 0 v2
h(q4

x+2q2
xq

2
y+q4

y)

 .

(4)

Solving the eigenvalue problem in Eq. (3) gives explicitly

ω2
1 = v2

hq
4, ω2

2 = v2
l q

2, ω2
3 = v2

t q
2. (5)

The associated eigenvectors then read

v1 =

0
0
1

 , v2 =
1

|q|

qxqy
0

 v3 =
1

|q|

−qyqx
0,

 (6)

where vl =
√

(2µ+ λ)/ρ0, vt =
√
µ/ρ0, and vh =√

κ0/ρ0 are the longitudinal, transverse and out-of plane
velocities respectively. We therefore get a triple degener-
acy at q = (0, 0) with ω = 0, and with two linear bands
and one quadratic band crossing as shown in Fig.1. The
quadratic band corresponds to the out-of plane flexural
mode, and it is well-known [65, 68, 69] that such bands
are generically present in 2D materials. This quadratic
band distinguishes the 2D case from the 3D case studied
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FIG. 1. Summary of the dynamical matrix specified in
Eq. (4). a) Band structure in 3D with vt = vh = 1 and vl = 2,
b) Same as a) but along the line qx = qy, where the lowest
band (blue) is the flexural band, c) vector field corresponding
to the eigenvector v2 = |q|−1(qx, qy, 0), see Eq. (4), d) vector
field corresponding to the eigenvector v3 = |q|−1(−qy, qx, 0)

.

in Ref. [63]. We note that the flexural band is completely
decoupled from the in-plane modes. This is not just a
feature of our simplified model: the bands remain decou-
pled as long as the harmonic approximation remains valid
(e.g. we can ignore phonon-phonon couplings). This is
also the case with the models for graphene considered in
Sec. V, which have a similar decoupling. In graphene,
this can also be understood as arising from the fact that
the flexural and in-plane bands have opposite eigenvalues
under the horizontal mirror operation [21]. We will argue
below that this decoupling, a feature of the 2D case, is
intimately tied to the nodal charge of the triple point.

We finally note that the bands v2 and v3 respec-
tively correspond to a curl-free radial vector field and
a divergence-free angular vector field, as illustrated in
Fig. 1c) and d). This simplifies computation, but is not
a generic feature of flexural phonons.

B. Symmetry considerations in 2D

As mentioned in the introduction, we assume through-
out that our models are non-magnetic (have spinless
time-reversal symmetry T ) and have a generalized in-
version symmetry P, which satisfy (PT )2 = +1. The
physical constrains make these assumptions valid close
to Γ quite generally, as discussed in Appendix A. We
represent the antiunitary symmetry as T = UK, where
U is the (unitary) orbital action and K is complex con-

jugation. Then P and T act on D(q) as:

UD∗(−q)U−1 = D(q), PD(−q)P−1 = D(q). (7)

This, together with the assumption that (PT )2 = +1,
implies that there exists a basis in which PT = K, so
that D(q) can be chosen to be a real symmetric matrix
[54]. In the language of Ref. [70], we are in AZ+I class
AI. For the model in Eq. (4), U = P = 1.

As remarked in the introduction, there are no 3D irre-
ducible representations (IRREPs) in 2D layer groups in
AZ class AI. Therefore, the triple point at Γ must consist
of at least two IRREPs, which are glued together by the
NG theorem. This gluing of IRREPs is not protected
by symmetry in 2D. This can also be seen from a codi-
mension argument [70]: PT symmetry forces D(q) to be
an element of SO(3), which is generated by the three ro-
tation matrices Li=x,y,z, The triple band touching then
requires tuning three independent parameters, but there
are only two momentum components available to tune.
Therefore, this triple crossing is cannot be stable in gen-
eral, and only arise due to the NG theorem. We confirm
this in Sec. V by showing that when the NG theorem
is modified by adding a substrate, the triple degeneracy
is lifted to a double degeneracy. This agrees with our
analysis in Sec. IV, where we show that this double de-
generacy has an associated non-trivial nodal charge. This
illustrates that the NG theorem can impose constraints
on the band structure beyond any symmetry formulation.

III. TOPOLOGICAL ANALYSIS FROM
HOMOTOPY PERSPECTIVE

In this section, we investigate the topology associ-
ated with the nodal point between the acoustic bands
at q = 0. Topological charges of nodal points can gener-
ally be diagnosed by considering the homotopy group of
the classifying space [71].

To find the classifying space of our model, we note that
the first Lamé parameter in Eq. (1) satisfies µ > 0 [64].
The second Lamé parameter λ can be negative, but is
positive for most materials [72, 73]. We therefore gener-
ically expect vl > vt. As we are working with an elas-
tic continuum model, our model is only valid when the
wavelengths we are considering are much larger than the
inter-atomic spacing, which corresponds to small q. In
this limit, we expect ω1 < ω2 < ω3 away from q = 0, so
that we are considering three separate phonon branches
(a 1⊕1⊕1 split). This should be contrasted with the con-
tinuum model in 3D (see [63] and Appendix B 1), where
there are three linear bands, two of which are degener-
ate (a 2 ⊕ 1 split). In 2D, additional symmetries may
force the two linear bands to become degenerate along
high-symmetry lines, resulting in a 2⊕ 1 split.

Because of our assumed PT symmetry, we can always
choose D(q) to be a real symmetric matrix (see Sec. II B
and Appendix A), such that its eigenvectors (v1,v2,v3)
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are real and their collection, i.e. the frame of eigenvec-
tors, forms an element of O(3). Under the reality condi-
tion, each eigenvector has a ±1 sign as a gauge freedom.
We can thus always locally choose a gauge where the
frame has positive determinant, i.e. it is an element of
SO(3). Dividing out by the group of gauge transforma-
tions that preserve the energy ordering of the bands, as
well as the handedness of the frame, we obtain the clas-
sifying space FlR1,1,1 = SO(3)/S[O(1)×O(1)×O(1)] for
the 1 ⊕ 1 ⊕ 1 split [11]. This is the (unoriented) real
complete Flag variety. It is also convenient to consider
the group of gauge transformations as the sign-exchange
of each pair of eigenvectors, i.e. the group of π-rotations
along each of the three eigenvectors, that is the point
group D2 = {E,C2,v1

, C2,v2
, C2,v3

}, and the classify-

ing space takes the compact form FlR1,1,1 = SO(3)/D2

[59]. For the 2 ⊕ 1 split, the classifying space re-

duces to the real (unoriented) Grassmannian GrR
2,3 =

SO(3)/S[O(2)×O(1)], which is isomorphic to the real

projective plane, i.e. GrR
2,3 ' RP2.

The topological charge of a nodal point in D dimen-
sions for a system with classifying space M is generically
captured by the homotopy group πD−1(M) [70]. These
groups can be computed using long exact sequences, as
described in [74]. The results given in Ref. [59, 70] are
summarized in Tab. I. As we are only interested in the
local topology of the node, we only need to consider base
loops and base spheres, such that the homotopy groups
are sufficient to classify the topological nodal phases.
Indeed, global topologies, i.e. over the whole Brillouin
zone TD, requires the consideration of homotopy equiv-
alence classes [TD,M ] which can have more structure,
such as nontrivial lower dimensional topologies over the
non-contractible cycles of the Brillouin zone torus, as
e.g. the first Stiefel-Whitney class [75], computed along
a full lattice vector, and the action of the generators
of π1[M ] on the second homotopy group [11, 56, 76].
It follows that the question of orientability for d > 1-
dimensional topologies is not relevant for us since the
continuous maps Sd>1 → M always induce an orienta-
tion, e.g. any mapping S2 → RP2 can be decomposed
into a winding component S2 → S2 and an orientable
double cover S2 → RP2 [11].

We note that some entries in Tab. I capture fragile
topology, in the sense that adding additional trivial bands
can change their value. The Z2 charge (corresponding to
the first Stiefel-Whitney class [75, 77]) is stable under the
addition of trivial bands. The quaternion charge Q turns
into the Nth Salingaros group under addition of further
bands [54, 59]. Finally, the 2Z charge (corresponding to
the Euler class [11, 54, 75, 78], see below) turns into a
Z2 charge, the second Stiefel-Whitney class, under the
addition of additional bands [75, 77]. As we are only
concerned with the acoustic bands, this low-band limit is
justified.

We finally note that the 3D topology of a nodal point,
characterized by the topology over a sphere wrapping the
node, was considered in Ref. [63] for the 2 ⊕ 1 split, in

which case it classified by the Euler class. Note that, as
discussed there, the presence of this split requires that the
condition vl > vt be satisfied along the high-symmetry
lines emanating from Γ. Otherwise, the three bands can-
not be split on any sphere surrounding Γ, so that there
is no nodal charge (since then SO(3) gauge transforma-
tions are allowed, thus trivializing the classifying space
SO(3)/SO(3) = 1 [79]). In contrast, for 2D phonons, the
topology is always well defined. Sufficiently close to Γ,
the flexural mode will always be at lower frequency than
the in-plane modes, owing to the quadratic dispersion.
Thus, violating the condition that vl > vt along high-
symmetry lines can only change the split from 1⊕ 1⊕ 1
to 2 ⊕ 1 in 2D. As can be seen in Tab. I, this results
in a reduction of the nodal charge from Q to Z2, but it
does not a priori completely remove the topology (see,
however, Sec. IV B for a caveat to this). Therefore, the
nodal charge in 2D is actually more stable than its 3D
counterpart as it can be defined in all 2D systems with
PT symmetry. In 1D (discussed briefly in Appendix B 2)
there is no stable nodal charge.

Name M π0(M) π1(M) π2(M)

FlR1,1,1 SO(3)/D2 0 Q 0

GrR
2,3 RP2 0 Z2 2Z

TABLE I. Possible charge of triple point for acoustic phonons
of various dimensions. Q denotes the quaternion group. The
Z2 charge corresponds to the first Stiefel-Whitney class on
a loop around the nodal point [77] and the 2Z charge corre-
sponds to the Euler class on a sphere surrounding the nodal
point (discussed in Ref. [63]).

IV. TOPOLOGY OF 2D ACOUSTIC PHONONS

We now consider the topology of the 2D case in further
detail. In 2D, the only possible homotopy classifications
are πp(X) for p ∈ {0, 1, 2} [57]. π2 charges correspond
to considering monopoles encapsulated by a surface, e.g.
the Brillouin zone (BZ) or patches thereof. These are
therefore irrelevant to the nodal charges as they are clas-
sified by loops around nodes. Furthermore, as can be seen
in Tab. I, the π0 charge is zero in all symmetry settings.
Thus, the only relevant invariant is the π1 charge, which
corresponds to taking a circle around the triple point at
Γ. Depending on whether the bands split as 2 ⊕ 1 or
1 ⊕ 1 ⊕ 1 over this circle, the relevant groups are either
Z2 or the quaternion group Q (see Tab. I). We investigate
both charges in this section. We assume throughout that
the three acoustic bands are separated in energy from all
other bands on a circle around the triple point at Γ, and
on the entire disc enclosed by this circle.
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A. Quaternion charge of the complete Flag variety

When the bands split as 1 ⊕ 1 ⊕ 1, the relevant π1

charge is the quaternion group Q. We are therefore a pri-
ori dealing with non-abelian nodal charges. Non-abelian
charges in band structures is a novel but quickly grow-
ing field [11, 54–57, 59, 60, 80–82]. For the quaternion
group, there are five conjugacy classes of stable nodal
charges: {1,−1,±i,±j,±k}, which correspond to com-
binations of nodes in various gaps [56, 80]. Here i, j, k
satisfy i2 = j2 = k2 = ijk = −1. In general, the
charges i, j, k are only defined up to equivalence because
their sign is gauge dependent [80], as discussed further in
Sec. IV A 2.

Such charges are usually encountered in the context of
multi-gap systems, where they are computed using the
Euler class [71], discussed in Sec. IV A 2. The Euler class
can be used to assign a charge to any two-band systems
and the non-abelian topology then leads to non-trivial
braiding statistics for nodes in various band gaps. We
note that this is not the case in our system: the triple
point is pinned by the NG theorem, and this non-abelian
charge is therefore associated only with the triple point.
The Euler classification of triple points was briefly dis-
cussed in Ref. [80], where the resultant charge of the
triple point is determined by knowing which (two-band)
nodal points come together to form the triple point. This
requires splitting the triple degeneracy into two-band
nodal points, which is not generically possible for the
acoustic phonon case due to the NG theorem.

There are two ways around this. One possibility is to
consider the frame-rotation charge discussed in [54, 83].
This construction can distinguish between the quaternion
charges +1, −1 and {±i,±j,±k}, but cannot distinguish
between ±i,±j and ±k. Physically, this corresponds to
knowing whether there are no protected nodes (+1), pro-
tected single nodes between any of the bands (±i,±j,±k)
or a protected double node (−1) [56, 80]. However, this
charge gives no information about which bands are in-
volved in the nodal structure. We discuss the frame ro-
tation charge in Sec. IV A 1.

Alternatively, we can introduce terms in the Hamil-
tonian which artificially break the triple point, compute
the charge of the resulting nodes, and then construct a
continuous path back to the triple point. In this case,
the charge of the triple point can be determined from
the combination of charges of the two-band nodal points.
This can distinguish between ±i, ±j and ±k, but re-
quires constructing such a splitting. This is introduced
in Sec. IV A 2. In that section, we also show that the
frame rotation charge suffices for systems with T (and
PT ) symmetry. Such a splitting procedure may, how-
ever, have physical relevance for 2D systems on a sub-
strate, as we discuss in Sec. V. A final alternative to
characterize this charge has recently been introduced in
Ref. [59], using a lifting of the frame charge calculation
from the orthogonal group to the spin group. This lifting
map is discussed in Appendix C.

Finally, we also relate to the more familiar notion of
Berry phase in Sec. IV A 3, and show that it is insufficient
to capture the topology.

1. Frame rotation charge

The frame rotation charge can in general distinguish
between the conjugacy classes {1,−1, {±i,±j,±k}}, but
cannot distinguish between the (gap-dependent) charges
{±i,±j,±k}. We briefly introduce this method here, and
refer to [54, 83] for further discussion.

The frame rotation charge measures the ability of
nodes within a simply connected surface to annihilate.
It derives from π1[SO(N)] = Z2 for N ≥ 2. For the
specific case of N = 3 (the case of general N is dis-
cussed in Refs. [54, 59]), consider a matrix of three
ordered orthonormal vectors (usually called a frame)
F = (v1,v2,v3). In our case, these vectors correspond
to the eigenstates of the acoustic bands. Moving along
a closed trajectory ∆ in the BZ, we induce a mapping
R(q) = F (q)TF (q0), with q0 a fixed reference point, and
q traversing ∆. By deforming ∆ to a loop, this becomes a
map from S1 to the space of frames, paramterized by an
angle θ ∈ [0, 2π]. This mapping can be decomposed into
the basis elements {Li}i=x,y,z of the Lie algebra so(3), as
R(θ) = exp(

∑
i=x,y,z ϕi(θ)Li). The accumulated frame

rotation charge is then:

ϕ(θ) =

√ ∑
i=x,y,z

ϕi(θ)2 (8)

If we require the frames to be completely equivalent af-
ter traversing ∆, then the entire trajectory R(θ) lies in
SO(3) and ϕ(2π) = 2πn for n ∈ Z. By using the con-
nection to the spin group, one can show [54] that ϕ is
periodic modulo 4π, in analogy to the Dirac belt trick.
This agrees with π1[SO(3)] = Z2, and shows that there
are two possible charges ϕ(2π) = {0, 2π} mod 4π. If,
however, we allow the final frame to differ from the ini-
tial frame by a sign change of two eigenvectors, then
R(∆) ∈ SO(3)/Z2, and ϕ(2π) = π mod 4π becomes a
possible solution (ϕ(2π) = 3π only differs from ϕ(2π) = π
by a gauge transformation).

To discuss the physical interpretations of ϕ, we intro-
duce some standard terminology for three-band systems
[54, 59]. We refer to the gap between the lowest-energy
band and the middle band as the principal gap, and a
node in this gap is therefore a principal node. Similarly,
the gap between the middle band and the highest-energy
band is referred to as the adjacent gap, and nodes in this
gap are adjacent nodes. Note that these concepts are ill-
defined for the triple degeneracy, but become well-defined
once we imagine infinitesimally splitting the triple degen-
eracy as discussed in Sec. IV A 2.

If there are no stable nodes between the eigenstates
the constitute F (q) on or inside the trajectory ∆, then
the frame is smooth everywhere and ϕ(2π) = 0 mod 4π.
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This corresponds to the trivial quaternion charge +1. If
there is a stable double node in either the principal or the
adjacent gap, then the frame must perform a 2π rotation
around the node, so that ϕ(2π) = 2π mod 4π corresponds
to quaternion charge −1. Finally, if there is a simple
node in the principal gap or the adjacent gap or in both
gaps the frame performs a π rotation so that ϕ(2π) = π
mod 4π corresponds to quaternion charges i, j, k. Thus,
the frame rotation charge captures the stability of nodes,
but does not capture in which gap the nodes are located.
This is addressed further in Sec. IV A 2 and Appendix C.

Concretely, for the continuum model in Eq. (4), the
mapping R, formed by the eigenstates of the model, is
given by:

R(q) = FT (q)F (0) =
1

|q|

|q| 0 0
0 qx qy
0 −qy qx

 , (9)

where we have ordered the eigenstates by energy and we
have chosen a smooth gauge. Parameterizing R by planar
polar coordinates (r, θ) then gives

R(θ) = e−θLx , (10)

Note that this corresponds to a rotation around a fixed
axis. This is something we expect to hold more generally,
due to the decoupling of the flexural mode from the in-
plane modes, discussed in Sec. II A. When traversing the
entire loop, Eq. (10) gives ϕ(2π) = 2π mod 4π, which
gives a quaternion charge of −1, indicating that there is
a stable double node at Γ in the continuum model.

2. Quaternionic charge and Euler class

Whilst the frame rotation charge suffices to determine
whether or not there is a protected nodal charge asso-
ciated with the bands, it does not distinguish nodes in
different gaps. This is significant, as it is well-known that
the flexural mode at Γ can be gapped away from zero fre-
quency under certain conditions [61, 62]. This happens
for graphene grown on certain substrates, and the mag-
nitude of this splitting is sometimes used as a rough in-
dicator of the interaction between the substrate and the
graphene layers [62, 84, 85]. The substrate modifies the
out-of plane symmetry breaking, so that the NG theo-
rem can not be straightforwardly applied, and therefore
the triple degeneracy is not required. Note that if the in-
teraction with the substrate is sufficiently weak, and the
acoustic bands remain separated from all other bands,
them the nodal charge of free-standing graphene should
still be applicable to the case of graphene on a substrate.
We show in Sec. V that this nodal charge is non-trivial,
suggesting that the nodal charge only protects the cross-
ing of the in-plane bands. To investigate this further,
we now discuss how to distinguish the charge of nodes in
different gaps using the Euler class [54, 71, 74, 78].

The Euler class is defined for two-band subspaces of
three-band real Hamiltonians, in analogy to the more fa-
miliar Chern class for complex Hamiltonians. The Chern
class is an integer obtained by integrating the Berry
curvature (a differential two-form) over closed, even di-
mensional manifolds. Similarly, the Euler class between
states |v1(q)〉 and |v2(q)〉 is an even integer obtained by
integrating the Euler form,

Eu(q) = 〈∇v1(q)| × |∇v2(q)〉 , (11)

over closed even dimensional manifolds. In fact, the Eu-
ler form can be understood as the Berry curvature of
the state |v1(q)〉 + i|v2(q)〉 [54]. The Euler class is only
defined over orientable manifolds, but this is not a prob-
lem for continuum model as there are no non-contractible
loops in the plane.

Note that the only closed, even dimensional manifold
available in 2D is the whole BZ, which makes it difficult
to compute these quantities in a continuum model (where
the BZ corresponds to all of R2). However, for the Euler
class, a patch formulation exists (e.g. it is possible to
compute it on a subset of R2) as discussed in Refs. [54,
55, 78, 80, 81]. The patch Euler class over a patch D is
defined as

χ(D) =
1

2π

[∫
D

Eu−
∮
∂D

a

]
∈ Z (12)

Where ∂D is the boundary of D. Furthermore, Eu is the
Euler 2-form in Eq. (11) which can alternatively be de-
fined as Eu = da = dPfA, where Aij = 〈vi(q)|dvj(q)〉 =
Aij · dq =

∑
α=x,y〈vi(q)|∂qαvj(q)〉dqα in terms of the

band indices i, j ∈ {1, 2}. The second term in Eq. (12)
then amounts to the integral of the Euler connection 1-
form a = PfA·dq. We note that this definition intimately
profits from the reality conditions of the two-band Berry
connections ensuring that it take values in the orthogo-
nal Lie algebra SO(2). The integer χ(D) equals minus
twice the number of stable nodes between the two bands
inside D [78]. This should be contrasted with the Chern
class, where no patch formulation is readily obtainable
without gauge fixing, showing that the Euler class is an
ideal tool for analyzing continuum models.

One characteristic feature of Euler class topology is
that there can be multiple nodes in the same gap that are
unable to annihilate. To correctly capture this property,
a consistent gauge assignment must be made. This is
done by drawing Dirac strings between any pair of nodes,
which correspond to branch cuts across which the gauge
must change. Detailed rules for assigning such strings can
be found in Refs. [80, 81]. Most importantly, whenever
a principal node (see previous section) crosses the Dirac
string of an adjacent node, or vice versa, its chirality must
flip. This leads to non-trivial braiding statistics and non-
abelian charges. Knowing which gap hosts stable nodes,
one can then assign quaternion charge i for single nodes
in the principal gap, j for nodes in the adjacent gap, k
for one node in both gaps and −1 for a double node in
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a) b)

FIG. 2. a) Schematic of the Euler class computation, fol-
lowing the graphical notation from Ref. [80]. Perturbing the
dynamical matrix in Eq. (4) by an onsite term of magnitude
ε creates two nodes in the adjacent gap (blue triangles) with
opposite chirality (empty/filled) connected by a Dirac string,
and one principal node in the center (brown cirlce) with triv-
ial charge. This is confirmed by computing the patch Euler
class over the green annulus (χ = −1 and over the gray circle
(χ = 0), b) The band structure corresponding to the situation
sketched in a). The code used is available at Ref. [86]

either gap [59]. Note that the signs of i, j, k flip when
crossing a Dirac string [78], which explains the assertion
made above that the i, j, k are only defined modulo a sign.
The charge −1 consists of a double node and is therefore
unaffected by crossing a Dirac string, giving rise to the
aforementioned 5 equivalence classes.

The patch Euler class is only well-defined for two-band
subspaces, so the patch must be chosen so as to only con-
tain either principal or adjacent nodes. This is clearly not
possible for the triple point. This can be circumvented by
artificially adding a term to our dynamical matrix which
splits the triple degeneracy into principal and adjacent
nodes. If this splitting can be adiabatically mapped back
to the original triple point, then the charge of the princi-
pal/adjacent nodes should reflect the charge of the triple
point.

To make this concrete, we consider the continuum
model of Eq. (4). If we wanted to capture the physics
of graphene on a substrate discussed in Refs. [61, 62]
and Sec. V, we should lift the flexural band up in fre-
quency. However, this leads to nodal lines rather than
nodal points. We perform this lifting for graphene in
Sec. V. Here, we instead add an onsite energy to one of
the orbitals contributing to the linearly dispersing bands,
modifying D(q) from Eq. (4) as:

D̃(q) = D(q) + diag{ε, 0, 0}. (13)

Note that because vl 6= vt in our model, this will break
C4 invariance, but maintain C2T invariance (as well as
C2 and T separately), and therefore the reality condi-
tion. This splits the triple point into two adjacent nodes
on the qy-axis and a single principal node at Γ. This is il-
lustrated in Fig. 2b). Computing the Euler class over an
annulus/disc avoiding the principal/adjacent node, using
the code in Ref. [86], we find that the principal node at
the center has χ = 0, corresponding to quaternion charge

+1. The adjacent nodes on the qy-axis have a combined
Euler class of χ = −1, giving a corresponding quaternion
charge of −1. Combining the nodes by taking ε→ 0 gives
that the total quaternionic charge is −1, in agreement
with what was found using the frame rotation charge in
the previous section. However, knowing the gap struc-
ture, we now know that this charge is associated only
with the crossing between the linear bands [87]. Thus,
the crossing between the quadratic and the linear bands
is not topologically protected, whereas the crossing be-
tween the linear bands is protected. Note that because
the nodal charge originates from π1[SO(3)], this charge
is actually stable in the many-band limit. We emphasize
that this node cannot be obtained from an irreducible
representation (IRREP analysis), as it is present even in
layer groups without 2D IRREPs.

This result can be understood straightforwardly by
noting that adding any perturbation of the form
diag{0, δ, 0} to D̃(q) (with δ > 0, e.g. adding another
onsite term) will completely remove the principal node.
This is therefore an accidental node, in the sense that
it is not symmetry protected. It is, however, protected
by the NG theorem in as it cannot be removed with-
out modifying the conditions of the theorem (e.g. by
adding a substrate). This also implies that there are
strong constraints preventing the lifting of the in-plane
acoustic modes, e.g. if Goldstone’s theorem is broken
adiabatically, we only expect the flexural band to gap
out (though the crossing point between the linear bands
may shift in frequency).

We now argue why we generically expect nodal charges
of {+1,−1} for acoustic phonons in systems that have
P and T symmetry separately (rather than just their
product). As discussed in Sec. II B and elaborated in
Appendix A, this is in fact a very general condition when
sufficiently close to Γ, as a consequence of the physical
constraints on the phonons.

Time-reversal symmetry T implies that if there is a
band touching at q, then there is also be a band touch-
ing, between the same bands, at −q. Let us assume
without loss of generality that the node at q has charge
+i. Then the node at −q has charge ±i, (the sign de-
pends on the location of the Dirac strings from the adja-
cent nodes) . Now imagine splitting the triple point into
two pairs of nodes in each gap (as required by the pres-
ence of T ). Let us assign charge ±i to nodes in the first
gap and ±j to nodes in the second gap. The total node
configuration at the triple point will then have charge
Q = (±i)(±i)(±j)(±j), where the order of the factors
depends on the details of how the nodes are adiabatically
brought together. Regardless of the order, however, the
only possible result is Q = ±1. Thus, generically (that is,
unless there is a symmetry beyond the NG theorem pin-
ning the nodes at Γ), we expect the quaternionic charge
to reduce to ±1. Thus, the physical constraints can give
topology beyond what is expected from symmetry analy-
sis, but they also constrains the nodal charge beyond the
symmetry analysis.
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3. Relating to Berry phase

We now relate the above findings to the more con-
ventional Berry phase formulation of nodal charges, and
show that it is insufficient to capture this topology.

For a single band in a system with generalized PT
symmetry, the only gauge freedom is a choice of sign. If
the sign of the eigenvector necessarily flips as it is trans-
ported around the loop, there must be a discontinuity in
the gauge somewhere along the loop, due to the discrete-
ness of the gauge group (this corresponds to the Dirac
string discussed above). This indicates that the band
under consideration forms an odd number of topologi-
cally protected nodes within the loop. As discussed in
[75, 77], such a discontinuity can be analyzed by using
a smooth complex gauge, where a Berry phase of π in-
dicates a sign reversal. Thus, along the loop, each band
can (in a smooth complex gauge) have a Berry phase of
0 or π.

As we assume the acoustic bands to be separated from
all other bands on the loop and the disc it encloses, the
sum of the Berry phases of the three acoustic bands must
be 0 mod 2π (because a single node induces a Berry phase
of π in both bands forming the node). We write the Berry
phases of the bands as ~ϕ = (ϕ1, ϕ2, ϕ3), where we have
ordered the bands by their associated frequency on the
loop. Thus, e.g. the phases (π, π, 0) indicate a princi-
pal node, (0, π, π) indicate an adjacent node and (π, 0, π)
indicate one principal and one adjacent node. These re-
spectively correspond to quaternion charge i, j, k. Note
that the Berry phase (0, 0, 0) can correspond to quater-
nion charge +1 or −1, as the Berry phase is oblivious to
the presence of double nodes.

In the specific case of flexural phonons, we expect the
lowest energy flexural band to be completely decoupled
from the other two bands, so that it necessarily has a
trivial Berry phase. Therefore, the only possible assign-
ments of Berry phase are ~ϕ = {(0, 0, 0), (0, π, π)}. From
the above discussion, we generically expect a quater-
nion charge of ±1 in systems with TRS, leaving only
~ϕ = (0, 0, 0). Thus, the nodal charge of acoustic phonons
in 2D is completely invisible to the Berry phase.

B. Z2 charge of the real Grassmannian in 2D

The above discussion applies when all three bands can
be split on a loop around Γ. If there is a symmetry which
forces the two linear bands to be degenerate, either along
high-symmetry lines or everywhere, then any loop around
the triple point will necessarily contain a node between
the linear bands. Thus, the classifying space is the real
Grassmannian and the associated π1 charge in Tab. I is
Z2, which corresponds to the first Stiefel-Whitney class
as discussed in Ref. [77]. This invariant measures the ori-
entability of the real wavefunction as one traverses a loop.
Specifically, this corresponds to whether or not there is
(necessarily) a sign reversal of the subframe spanned by

the bands under consideration. This number can be de-
fined for either the flexural mode or the two linearly dis-
persing modes. For the flexural mode, it corresponds to
the Berry phase computed in a smooth complex gauge as
also discussed in Sec. IV A 3. Note that, because there is
no coupling between the flexural and the linearly dispers-
ing bands, the flexural mode is trivial, and there there-
fore exists an obvious gauge where the orientation is con-
stant. Thus, the first Stiefel-Whitney invariant is trivial,
and there is no protected π1 charge for this symmetry
setting. Note that this argument holds generally for dy-
namical matrices, not just in the continuum model, due
to the decoupling of the flexural band non-interacting
limit discussed in Sec.II A.

This argument relies on a global cancellation condition
- e.g. that the Berry phase of all three bands must be
zero, since these bands are disconnected from the other
bands at higher energy (indeed, a resultant π-Berry phase
indicates an unavoidable node with the other bands).
This is to be contrasted with the quaternion charges of
the frame, since the nontrivial frame charges indicate
stable nodes among the three bands of the frame and
not with the other bands. We furthermore note that a
nontrivial quaternion charge of −1 (Euler class of ±1)
around a region of the Brillouin zone is not required to
be cancelled by compensating nodes in any other region
of the Brillouin zone, contrary to the Berry phase and
the quaternion charges i, j, k. This directly implies that
only an even number of nodes are allowed within each
gap when considering the whole Brillouin zone.

V. APPLICATION: GRAPHENE

In this section, we apply the above ideas to the paradig-
matic 2D material graphene. We show that the nodal
charge described in the previous section is non-trivial in
this system, and that this charge predicts how phonons
in graphene will react to the presence of a substrate.

Previous work on phonon topology in free-standing
graphene [88, 89] have identified various topological nodal
points and lines in the spectrum away from Γ. Using
methods from topological quantum chemistry (TQC) [8],
Ref. [21] studied the symmetry decomposition of the in-
plane phonon modes, and found that in-plane phonons
in graphene are globally trivial from the perspective of
TQC, though they are close to a fragile phase.

The previous topological analyses do not address the
acoustic triple point at Γ. However, we now show that
this triple point crossing with the flexural band actually
possesses a non-trivial nodal charge (the frame-rotation
charge), which to the best of our knowledge has not been
reported before.

There exist a variety of models for graphene, includ-
ing valence force-field models (VFFMs) [61, 65], spring
models [88] and symmetry-based tight binding models
[90, 91]. We implement a VFFM for graphene as de-
scribed in Ref. [61]. This model explicitly considers six
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terms: nearest and next-nearest neighbor bond stretch-
ing, in-plane and out-of plane bending, bond twisting
and interactions with the substrate. The energy associ-
ated with each of these terms is written in terms of the
displacement of the various atoms in the unit cell, giv-
ing a total energy V . In the harmonic approximation,
this is differentiated twice with respect to the possible
displacements of the atoms in the unit cell. As there are
two atoms in the unit cell, which can displaced in three
independent directions, this gives a total of six phonon
branches. The strength of the various terms in the energy
are then treated as fitting parameters to experimental
dispersion, as shown in Ref. [61]. The term describing
interaction with the substrate is zero for free-standing
graphene, but non-zero when coupling to a substrate.
When this term is non-zero, the acoustic flexural bands
gaps out from the other acoustic bands[61, 62, 84, 85].

We consider the case of free-standing graphene as well
as graphene on the substrate TaC(111). For both cases,
we implement the model described above and solve it on
a loop encircling Γ, ensuring that none of the three low-
est bands touch on the loop and that we are sufficiently
close to Γ to avoid any interference from the three upper
bands. Before solving, we rotate the dynamical matrix to
a real basis. We choose the gauge of the initial point so
that the matrix F (q) in Sec. IV A 1 has determinant +1.
We can then choose a smooth gauge, by choosing the sign
of each eigenvector on the loop so that it maximizes the
overlap with the previous eigenvector. Decomposing the
matrix R(q) in Sec. IV A 1 into rotation generators, we
can then plot the accumulated angle, as shown in Fig. 3,
where we also plot the band structure. The model in
Ref. [61] is fitted only on the line ΓM, but as we are only
interested in a circle around Γ, this suffices for our pur-
poses. Note that there appears to be an additional triple
point in the optical phonons at K, but this is an artifact
of using a model which is fit only on the line ΓM. In
the full first-principle phonon spectrum [92], this triple
point is absent. Fig. 3 shows that the nodal charge for
free-standing graphene and graphene on TaC(111) is −1.
We also see that this charge is associated with the degen-
eracy between the linear bands, as the nodal charge does
not change when gapping the flexural band. We corrob-
orate these result by repeating the above calculation for
free-standing graphene using the symmetry-based model
found in Ref. [90]. This leads to the same charge.

VI. CONCLUSIONS

We have discussed how physical constraints for
phonons interplay with symmetry analysis. We summa-
rized the possible nodal charges of acoustic phonons with
a reality condition in up to three dimensions in Tab. I,
and discussed in detail how to compute and analyze these
charges in 2D.

We have found that acoustic phonons in 2D have an
effective inversion symmetry close to Γ, imposed by phys-
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FIG. 3. Phonon band structure and frame rotation charge on
a circle around Γ for graphene, based on a valence force-field
model from [61]. a) Phonon bands along high-symmetry lines
for free-standing graphene. b) Frame rotation charge on a
loop around Γ for free-standing graphene c)and d): Same as
a) and b) for graphene on a TaC(111) substrate

ical constraints (see Appendix A). This leads to acoustic
phonons generically having a quaternionic charge, which
however is further modified by the physical constraints to
be {+1,−1}. Additionally, the physics dictates that one
of the acoustic bands (the flexural band) is completely
decoupled from the other bands in the non-interacting
limit, which allowed us to identify the nodal charge as
belonging only to two of the bands.

Applying the above machinery to graphene, we showed
that acoustic phonons in graphene have a non-trivial
nodal charge which has not been previously addressed.
Knowing that this charge is associated with only two of
the bands explains, from a purely topological perspective,
the well-known fact that the flexural band of graphene
on a substrate can gap from the other acoustic bands.

These points illustrate that symmetry constraints must
in certain cases be augmented by physical constraints for
band structure analysis. We anticipate that similar ef-
fects could arise in other physical contexts. One example
may be photonic lattices. In this context, optical re-
sponses necessarily feature a Bosonic spectrum with an
inherent ”particle-hole” symmetry, as well as persistent
zero modes that are rather similar to an acoustic mode.
This can also lead to triple nodes at zero frequency that
are not rooted in symmetry (in fact irreducible represen-
tations can not formally be assigned in this case).

Finally, from a theoretical perspective it could be in-
teresting to relate above type of analyses to topological
charges of non-linear sigma models. Such sigma mod-
els have recently also been evaluated from a Flag man-
ifold perspective, as in this work (see e.g. Ref [93]).
It would therefore be interesting to investigate whether
these mathematical results find solid ground in the con-
text we have considered.
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Appendix A: Further constraints on the dynamical
matrix

In this section, we analyze the constraints on the dy-
namical matrix around Γ (q = 0) which arise from con-
straints that are not intrinsically captured by a pure
space group (SG) analysis. These constraints set the
phonon problem apart from the corresponding electronic
problem. We mostly discuss the case with time-reversal
symmetry, but briefly comment on the magnetic case at
the end.

1. Constraints with time-reversal symmetry

Let us begin by briefly reviewing the constraints that
the Bloch Hamiltonian H(k) of a non-magnetic electronic
system on a lattice should satisfy. The only required sym-
metry operations in this setting are lattice translations
and time-reversal. Working perturbatively close to Γ,
we can work with an effective continuum (local) model

H̃(k). The only constraints on permissible local Hamil-
tonians are then unitarity, i.e. H(k) = H†(k) and time-
reversal symmetry TRS, i.e. UH∗(−k)U† = H(k) for
some unitary operator U . Depending on whether spin-
orbit coupling (SOC) can be discarded or not, the TRS
operator may square to +1 (-1), corresponding respec-
tively to AZ class AI or AII. Additional constraints on
the Bloch Hamiltonian may arise from spatial symme-
tries. Such constraints have been extensively analyzed in
the literature [1, 7–10, 52] and form the symmetry clas-
sification of Bloch Hamiltonian, based on an analysis of
space groups (SGs).

We now turn to describing phononic systems, and show
that the same constraints emerge, but that they are sup-
plemented by additional conditions due to the physical
constrainst discussed in Sec. I. We consider the dynami-
cal matrix in the harmonic approximation, which in any
dimensions is given by [94, 95]:

Dαβ(ss′|q) =
1√
msm′s

∑
~l

Φαβ(~0s;~ls′)eiq·x(~l) (A1)

Where α, β label the Cartesian coordinates, s, s′ label the

atoms in the unit cell with masses ms,ms′ , ~l enumerates

the unit cells with coordinate x(~l) and Φαβ(~0s;~ls′) is the
force constant matrix in the harmonic approximation:

Φαβ(~ls;~l′s′) =
∂2V

∂uα(~ls)∂uβ(~l′s′)

∣∣
u=0

(A2)

Here V is the total potential energy, uα(~ls) is the dis-

placement along α of atom s in unit cell ~l and the matrix
is evaluated at the equilibrium position of the atoms. Be-
cause we expect that Φ is real, we immediately find:

Dαβ(ss′|q) = D∗αβ(ss′| − q) (A3)

Thus, we automatically satisfy spinless TRS in this for-
malism. (We provide a brief overview of how to break
TRS in phononic systems in Appendix A 2. A more de-
tailed discussion can be found in Ref. [30].) Furthermore,
by commuting the partial derivatives, we find:

Φαβ(~ls,~l′s′) = Φβα(~l′s′;~ls), (A4)

which implies that Dαβ(ss′|q) = Dβα(s′s|q). As shown
in Ref.[95], it follows that that D is Hermitian. We note
that it is not generally true that D(q) = UD(−q)U†

for some unitary U (this is condition is what we in the
main text refer to as a generalized inversion symmetry).
Therefore, D(q) is not in general unitarily equivalent to
a real matrix.

So far, all results are analogous to the non-magnetic
electronic case, and just like the electronic case, addi-
tional constraints can now arise from crystalline sym-
metries. However, even without additional symmetries,
there are further constraints (for stable structures) on
the form of D(q) which are not present for the Bloch
Hamiltonian H(k). As discussed in section I, D(q) must
be positive semidefinite to avoid imaginary frequencies,
which correspond to an unstable structure. Furthermore,
there should be an appropriate number of zero-energy
acoustic bands at q = 0, as dictated by the NG theorem.
We here assume that the NG theorem is not modified by
any substrate. It turns out that these constraints are suf-
ficient to guarantee that the nodal charge of the acoustic
bands at Γ is always captured by real topology.

To show this, let us focus on some region around Γ in
the BZ. Sufficiently close to Γ, we can construct an effec-
tive dynamical matrix D̃(q) containing only the acoustic

bands, e.g. if there are N acoustic bands then D̃(q) is an
N ×N matrix. This is guaranteed from the fact that the
acoustic modes all go to zero [96]. We require that all

eigenvalues of D̃(0) are zero, so that D̃(0) = 0. As this
is an effective model, we do not require it to be positive
semidefinite everywhere. Instead, we only require that
it should be positive semidefinite on a ball Bε of radius
ε in q-space surrounding Γ, where we also assumes that
the acoustic bands stay detached from all optical bands
on Bε. We assume throughout that ε > 0. We can now
expand D̃(q) in powers of q in Bε, where we note that
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the condition D̃(q) = 0 precludes a constant term. We
denote the (fixed) basis matrices for N × N hermitian

matrices by {Γi}N
2

i=1 (these can be chosen to be the iden-
tity and the Pauli matrices for N = 2 and the identity
and the Gell-Mann matrics for N = 3). The most general
form of the dynamical matrix is then:

D̃(q) = αjk1 qjΓk + αlmn2 qlqmΓn +O(q3), (A5)

where the summation convention for repeated indices has
been assumed. Positive semidefiniteness requires that:

zD̃(q)z∗ ≥ 0 ∀z ∈ CN (A6)

Let us now assume that the lowest order term that ap-
pears in the expansion is of order k, and assume that
D̃(q) is positive definite for q ∈ Bε. Then, sufficiently
close to Γ:

αi1...iknk qi1 . . . qikzΓnz
∗ ≥ 0 ∀z ∈ CN (A7)

Fixing a z ∈ CN\{0}, the same equation must hold at
−q, which by assumption is also in Bε. This clearly re-
quires that k be even, which gives the kth order term an
effective PT symmetry. Sufficiently cloes to Γ, only the
term of order k will matter. Therefore, there will always
be an effective PT symmetry sufficiently close to Γ.

We note finally that the positive semidefinite condition
does not further constrain the number of permissible ma-
trices {Γi} that can appear in D̃(q) as it is always pos-
sible to choose a basis for hermitian matrices consisting
exclusively of positive semidefinite matrices. TRS will in
general constrain the number of basis matrices, but this

feature is shared between the phononic and the electronic
case.

2. Breaking time-reversal symmetry in phononic
systems

Phonons, as opposed to electrons, are electrically neu-
tral. We therefore, a priori, do not expect them to cou-
ple strongly to an external magnetic field, and there-
fore breaking of TRS is a much more exotic effect in
phonons than it is in electrons. There are, however, var-
ious proposal to break TRS. Some ideas include Raman
spin-phonon couplings [37, 97], pseudo-magnetic fields
induced by the Coriolis force [41, 42] and optomechani-
cal interactions [45]. This clearly goes beyond the stan-
dard formulation of the dynamical matrix discussed in
the previous section, as this automatically incorporates
TRS (see Eq. (A3)).

The way around this is to introduce extra terms in the
Lagrangian. A summary of these effects can be found in
[30]. However, for non-interacting phononic band struc-
tures in the 80 layer groups in AZ class AI, such effects
do not occur. We therefore do not discuss the breaking
of TRS further in this work.

Appendix B: Acoustic phonons in 3D and 1D

1. Acoustic phonons in 3D

The continuum model for acoustic phonons in 3D can
be derived in a similar fashion as the 2D model [64].
There are no flexural modes, and in the continuum
model two of the linearly dispersing bands are degen-
erate. Concretely, the dynamical matrix is (where now
q = [qx, qy, qz]):

D(q) =

 v2
3,Tq

2 (v2
3,L − v2

3,T )qxqy (v2
3,L − v2

3,T )qxqz
(v2

3,L − v2
3,T )qxqy v2

3,Tq
2 (v2

3,L − v2
3,T )qyqz

(v2
3,L − v2

3,T )qxqz (v2
3,L − v2

3,T )qyqz v2
3,Tq

2

 (B1)

where v3,T and v3,L are the transverse and longitudi-
nal velocities in 3D respectively. In terms of elastic pa-
rameters, these are given by vl =

√
(λ+ 2µ)/ρ0 and

vt =
√
µ/ρ0. The explicit eigenfrequencies of this model

are given by:

ω2
1 = v2

3,Lq
2 (B2)

ω2
2 = v2

3,Tq
2 (B3)

ω2
3 = v2

3,Tq
2 (B4)

The topology of this model was considered in Ref. [63].
In agreement with Tab.I, they find that it is character-
ized by an Euler charge over a closed surface, as long as
there is a gap between ω2 and ω3 away from Γ. Adding

symmetry constraints can force the three bands to cross
along high-symmetry lines emanating from Γ, which pre-
vents the definition of a topological charge. As discussed
in Ref. [63], this happens when vL and vT become q-
dependent and change relative magnitude along high-
symmetry lines. By building more complicated models,
it may also be possible to lift the two-band degeneracy
away from Γ, allowing a multi-gap partitioning not dis-
cussed in Ref. [63]. However, as can be seen in Tab. I,
such a multi-gap system would have trivial charge.
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2. Model for 1D acoustic phonons

For a 1D material, the three bands completely decou-
ple [64]. We choose a rod geometry, where the material
is extended in the z-direction, with a very small radius
in the xy-plane. There is one subtlety in the 1D case
however: the displacement field u(z) can be large even

if the strain tensor
↔
u ij is small. This is the case for tor-

sional modes, which correspond to a twisting of the 1D
material, leading to a linear dispersion relation [64]. This
could potentially correspond to a fourth, torsional, mode
in rod geometries. This is not explored here, where we
focus only on the vibrations along the rod axis and per-
pendicular to it. Following Ref. [64], we then get (in the
classical regime) the trivial model:

D(qz) =

v2
l q

2
z 0 0

0 v2
xq

4
z 0

0 0 v2
yq

4
z

 (B5)

The velocities vx and vy depend on the moment of mass in
the x or y direction. If the material has radial symmetry
around the z-axis (the extended axis), then vx = vy.
Thus, once again, we can get either a full split or a partial
split, but we will never get a case where all three bands
are degenerate. However, as can be seen from Tab. I, the
homotopy charge is trivial independent of the split.

Appendix C: Non-abelian Wilson loops and the
lifting map

1. The lifting map

For completeness, we also include a method for dis-
tinguishing all five conjugacy classes of the quaternion
group Q, {1,−1,±i,±j,±k} without having to split the
nodes as was done in Sec. IV A 2 . This method was in-
troduced in [59]. The idea is to lift the SO(3) valued
Wilson loop to an SU(2) valued version, being isomor-
phic to the quaternions with unit norm. We start with
the so(3) valued Berry connection which in component
reads:

[A(q)a]ij = 〈uiq|∂qa |u
j
q〉 (C1)

with a ∈ {x, y} and i, j ∈ {1, 2, 3}. Being so(3) valued,
A(q) can be decomposed into the basis matrices of the Lie
algebra {Li}i=x,y,z. These can then be lifted to the Lie
algebra of the double cover su(2) by replacing {Li}i=x,y,z
with the corresponding Dirac matrices, which in this case
equals − i

2σx,y,z. Then, computing the standard Wilson

loop:

n∆ = exp

(∮
∆

A(q) · dq
)

(C2)

along a contour ∆, gives n∆ ∈ SU(2), which is isomor-
phic to the quaternionic group Q with unit norm. We
remark that care must be taken when computing the ex-
ponential, as the different matrices in the exponent do
not generically commute.

For the simple model in Eq. (4), this quantity is eas-
ily computed and we show in the next section that we
get n∆ = −1, in agreement with what was found by
the other computations in Sec. IV. For more complicated
systems, an approximation of this expression, using the
Baker-Campbell-Hausdorff formula, is given in [59]. We
numerically compute this quantity for the graphene sys-
tem considered in Sec. V, and find that it always agrees
with our observed frame rotation charge when only con-
sidering the lower three bands. However, considering all
six bands [e.g. lifting SO(6) to Spin(6)'SU(4)] gives a
trivial charge, which shows that the three optical bands
also carry a non-trivial frame rotation charge. This orig-
inates from the degeneracy of the optical bands at Γ,
visible in Fig. 3.

2. Computing n∆ for the continuum model

In this section we compute the non-abelian Wilson loop
charge n∆ explicitly for the simple model in Eq. (4).
Once again ordering by energy we get:

Ax = 〈ui|∂qx |uj〉 =
1

|q|2

0 0 0
0 0 −qy
0 qy 0

 =
qy
|q|2

Lx

Ay = 〈ui|∂qy |uj〉 =
1

|q|2

0 0 0
0 0 qx
0 −qx 0

 = − qx
|q|2

Lx

We note that this agrees with our observation from
Sec. IV A 1 that, because one band is decoupled, the
eigenvectors are rotated around a fixed axis. We per-
form the lift by replacing Lx → − i

2σx. Then, letting q
be along a loop away from the origin gives:

A(q) · dq =
i

2
σxdθ (C3)

This is obviously independent of q, so every matrix in
the exponential commutes. Letting ∆ be a circle in the
BZ, we then find:

n∆ = exp

(∮
∆

A(q) · dq
)

= exp(iπσx) = −1 (C4)

In agreement with the computations in Sec. IV.
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