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Abstract

This thesis introduces the idea of a topological current that flows in regions with

large magnetic fields, dense matter, and parity violation. We propose that such a

current exists in the cores of neutron stars and may be responsible for the large

proper motion (kicks) observed in some pulsars. This current is similar to the

charge separation effect and chiral magnetic effect that may be responsible for par-

ity (P) and charge conjugation-parity (C P) violation observed at the Relativistic

Heavy Ion Collider (RHIC).

We start by deriving the topological current two ways. The first is a macro-

scopic derivation where we appeal to an anomaly induced by the presence of a

fictitious axial field. The second method is microscopic, in which we consider how

the modes of the Dirac equation in a magnetic field and chemical potential con-

tribute to the current. We then discuss in great detail the elements necessary for a

topological current to exist in a dense star.

Our concern then rests with calculating the magnitude of topological currents

in the many phases of matter thought to exist in dense stars. We choose four repre-

sentative processes to investigate: nuclear matter, hyperons, kaon condensates, and

strange quark matter. We then suppose that this current may somehow transfer its

momentum out of the star, either by being physically ejected or by emitting radia-

tion, causing a kick. We also discuss how the current may induce magnetic helicity

and a toroidal magnetic field in the core of the star.

We end by discussing the topological current in terms of the AdS/CFT corre-

spondence, a powerful tool that allows one to obtain results from strongly coupled

field theories by transferring the problem to the language of a weakly coupled grav-

itational theory. We introduce a toy model to how one might introduce topological

currents into the AdS/CFT framework.
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Preface

A version of Subsection 2.2.2 and Chapters 3, 4, and 6 has been published. J.

Charbonneau and A. R. Zhitnitsky, Topological Currents in Neutron Stars: Kicks,

Precession,Toroidal Fields, and Magnetic Helicity. JCAP08(2010)010. [arXiv:

0903.4450]. I completed the calculations, the first draft, revisions, and editing, as

well as being the principal during the review process. Dr. Ariel Zhitnitsky con-

tributed edits and revisions to the manuscript as well as collaborating to develop

the central ideas in the paper.

The results of Chapters 3, 4, and 6 appear in J. Charbonneau, Observational

Consequences of Topological Currents in Neutron Stars, prepared for the proceed-

ings of the Lake Louise Winter Institute: Fundamental Interactions (LLWI 2009)

[arXiv:0904.4268].

A version of Chapter 5 has been published. J. Charbonneau, K. Hoffman and J.

Heyl, Large Pulsar Kicks from Topological Currents. MNRAS:Letters 404 (2010)

L119. [arXiv:0912.3822]. I collaborated with two astronomers in the department,

Dr. Jeremy Heyl and his PhD student Kelsey Hoffman. I did the calculations,

initial draft, and edits of the paper and was the principal in the review process.

Dr. Heyl and Ms. Hoffman contributed to the editing and refined the paper with

their knowledge of astronomy.

The results of Chapter 5 appear in J. Charbonneau, The Axial Anomaly and

Large Pulsar Kicks, prepared for the proceedings of proceedings of Lake Louise

Winter Institute: Celebrating 25 Years (LLWI 2010) [arXiv:1005.3851].

A version of Chapter 7 has been published. L. Brits and J. Charbonneau, A

Constraint-Based Approach to the Chiral Magnetic Effect. Phys. Rev. D 83,

126013 (2011). [arXiv:1009.4230]. While I proposed the idea for the paper to

Mr. Brits, a PhD student in the string theory group, this was a very close col-

laboration with both authors simultaneously contributing to calculations and edits

through the use of an on-line wiki. I was the principal in the review process and

responsible for the revisions and corrections.

A version of the introduction to the AdS/CFT correspondence in Section 2.3

appears in a collaboration at the 6th Summer School on Particles, Fields and Strings.

N. Ambrosetti, J. Charbonneau, and S. Weinfurtner, The fluid/gravity correspon-

dence. (2008) [arXiv:0810.2631].
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Who is the third who walks always beside you?

When I count, there are only you and I together

But when I look ahead up the white road

There is always another one walking beside you

Gliding wrapt in a brown mantle, hooded

I do not know whether a man or a woman

But who is that on the other side of you?

T.S. Eliot, The Waste Land (1922)

—What’re you chewin’ over?

—Dream I had once. I was walkin’ in the woods, I don’t know why. Wind came

up and blew me hat off.

—And you chased it, right? You ran and ran, finally caught up to it and you

picked it up. But it wasn’t a hat anymore and it changed into something

else, something wonderful.

—Nah, it stayed a hat and no, I didn’t chase it. Nothing more foolish than a

man chasin’ his hat.

Verna and Tom Reagan, Miller’s Crossing (1990)

It takes a lot of lights to make a city, doesn’t it?

Joyce Harwood, The Blue Dalia (1946)
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Chapter 1

Introduction

In this thesis we will introduce a new kind of current in which the potential is not

the standard electric potential but one that arises from the chirality of the particles

involved. We will refer to these currents as topological currents and they take the

form

JA = (µl +µr)
eΦ

(2π)2
, (1.1)

JV = (µl−µr)
eΦ

(2π)2
, (1.2)

where µr and µl are the chemical potential of the right and left-handed Dirac

fermions and Φ is the magnetic flux. We are particularly interested in the vec-

tor current as it can couple to charge. For the vector current to appear there must

be a chiral chemical potential, a difference in the number of left-handed and right-

handed fermions, present in the system. The natural places for the current to exist

are those where parity symmetry is violated, where processes act differently on

left-handed and right-handed fermions. We will focus on parity violation in the

Standard Model, particularly the weak interaction. The weak interaction plays a

crucial part in the equilibrium processes in neutron stars and we will spend much of

the thesis establishing the role these currents play in neutron stars. These currents

may also appear in heavy ion collisions such as those performed at the Relativis-

tic Heavy Ion Collider. It is thought that the temperatures of these collisions may

cause transitions in the QCD vacuum that induce parity in the system. The last part

of this thesis will discuss the nature of these currents in strongly coupled theories.

We will start with a short history.

The first example1 of such a current was studied by Alekseev, Cheianov, and

Fröhlich [4] in the context of universal transport properties, namely conductance,

in condensed matter systems in equilibrium. They consider a system in which there

exist two commuting conserved charges, QL and QR, that correspond to particles

1Non-dissipating topological currents were introduced in a series of papers by Vilenkin [1–3],

that were lost to the community until very recently (shortly before the author’s defence), in which

macroscopic parity violation is discussed.
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of left and right-handed chirality. These charges are conjugate to the left and right-

handed chemical potentials µL and µR. From this model they derive a universal

transport equation that they apply to one-dimensional fermion systems and three-

dimensional Dirac fermions coupled to an electromagnetic field, the latter which

resulted in the equation (1.2) above. The derivation of the topological current relied

on inserting a Chern-Simons term to ensure that the currents were still conserved.

Even in the context of transport phenomenon the chiral anomaly plays an important

role. The two important conclusions from this paper are that a non-zero topological

current implies that massless modes exist in the system and that this current can

exist without spontaneous symmetry breaking.

The topic went dormant until Son and Zhitnitsky [5], unaware of [4], discussed

anomalies in dense matter. They derive the axial current in (1.1) by starting with

the chiral anomaly. They considered an effective field theory that has two U(1)
fields. One is the standard electromagnetic field and the other is a fictitious field

that has the baryon chemical potential as a zeroth component. They also assume

the existence of a Nambu-Goldstone boson as the result of some spontaneous sym-

metry breaking. From this an axial baryon current can be defined and the standard

triangle anomaly can be written in terms of the divergence of this current. With this

they were able formulate an effective Lagrangian for the Nambu-Goldstone boson

that could be used to compute the axial topological current.

The microscopic understanding of topological currents came with the work of

Metlitski and Zhitnitsky [6, 7]. Though they still focused on the axial current they

were able to use a simple model of Dirac fermions along with index theorems

to specifically identify the zero modes that carried the current. This method re-

moved the necessity of the Nambu-Goldstone boson required in [5] and refine the

effective Lagrangian approach. With these techniques they had arrived at identical

conclusions as [4], but now had a wealth of techniques for working at non-zero

temperature and mass, and for understanding the current in dense nuclear matter.

The focus of study then turned to applications. Neutron stars are an ideal en-

vironment for these currents to exist. They are degenerate objects with large mag-

netic fields which have equilibrium conditions dictated by the weak interactions.

Charbonneau and Zhitnitsky [8] studied the effects topological vector currents (1.2)

would have on the superconducting vortex structure. For this they considered a

topological vector current that runs along along the superconducting vortex. It was

shown that a sufficient current could change the vortex structure in the star from

type-II to type-I.

Topological vector currents (1.2) continued to be studied in neutron stars by

Charbonneau and Zhitnitsky [9] who refined the conditions for their existence and

calculated the magnitude for these currents for various phases of matter. The appli-

cation of topological currents to many problems in neutron stars, including mag-
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netic helicity and kicks, were also discussed. The kick model was further refined

by Charbonneau, Hoffman, and Heyl [10] and introduced as a possible origin for

large pulsar kicks.

Concurrent to these studies of topological currents in dense stars, two terres-

trial phenomena associated with topological currents were introduced that sparked

real interest in the field. Using the techniques of [6, 7] Kharzeev and Zhitnitsky

introduced the charge separation effect [11] and Fukushima, Kharzeev, and War-

ringa introduced the chiral magnetic effect [12]. These observable effects allowed

for topological currents to be potentially observed through P and C P violating

effects at the Relativistic Heavy Ion Collider (RHIC). It was supposed that the col-

lisions involved in RHIC could generate bubbles of non-zero θ angle or topological

transitions in the QCD vacuum. The actual observation of P and C P violation in

QCD at RHIC [13–17] generated even more excitement leading to a large number

of papers being published on the topic.

With the topological current throughly defined in quantum field theory efforts

were made to incorporate it into the holographic description of the QCD. The initial

attempts by Bergman, Lifschytz, and Lippert [18] using the Sakai-Sigumoto model

of holographic QCD easily reproduced the axial (1.1) and vector (1.2) topological

currents. This success was short lived. In an effort to reproduce the results of

[18] while introducing the appropriate form of the covariant anomaly, which has a

conserved vector current in the presence of the chiral anomaly, Rebhan, Schmitt,

and Stricker [19] found that the vector topological current is cancelled by counter-

terms. This opened a debate, that still continues, as to whether or not holographic

QCD actually contains the appropriate anomaly to create a topological current.

Gorsky, Kopnin, and Zayakin [20] quickly addressed this by using the pseudoscalar

sector of the soft-wall model and current algebras to introduce the vector current,

but failed to reproduce the correct axial current.

The fundamental problem was that in the holographic dictionary the chemical

potentials responsible for the vector currents were being associated with charges

that were not actually conserved. The question became how to introduce the chem-

ical potential properly. Rubakov [21] addressed this by defining the charge such

that it was conserved. Gynther, Landsteiner, Pena-Benitez, and Rebhan [22] and

Brits and Charbonneau [23] addressed the problem through the discussion of non-

trivial, unphysical, boundary conditions.

As this is my thesis (Charbonneau) we will focus on the contributions from

the papers [9, 10, 23]. These papers span a wide range of topics—field theory,

astrophysics, string theory—but they all focus on aspects of the topological vector

current (1.2).
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A Detailed Layout of the Thesis

Given the range of topics discussed, we will start by reviewing three seemingly

disjoint topics: quantum anomalies, dense stars, and string theory. It is our goal

that the intersection of these three topic will become apparent as we discuss the

origins and observational consequences of topological currents in the bulk of the

thesis.

Our review of quantum anomalies in section 2.1 will focus on the origin of the

anomaly in quantum field theory. We will first derive it diagrammatically and then

discuss how it arises naturally using path integrals. We will also discuss how the

anomaly is related to index theorems. This should establish how anomalies fit into

a discussion on field theory and topological currents.

In section 2.2 we will give a basic introduction to the astrophysics of neutron

stars and quark stars. The physics of dense stars is incredibly rich. Our introduction

will first attempt to establish dense stars as observable objects with a discussion on

pulsars and pulsar emission mechanisms. We will see how many of the funda-

mental properties of dense stars can be obtained from these. We will then give an

overview of the composition of a dense star, focusing on the possible states of mat-

ter they may contain and the processes that exist in these states. This will establish

dense stars as a suitable environment for topological currents to exist. This will

also provide the groundwork for discussing how topological currents may be used

to describe kicks, the focus of Chapter 5.

The discussion in section 2.3 will turn to an aspect of string theory known as

the AdS/CFT correspondence. We will introduce the AdS/CFT correspondence

as a tool and illustrate its usefulness by doing a calculation of the shear viscosity

entropy ratio. This will hopefully illustrate the power of the technique and will

prepare the reader for the calculation of topological currents using AdS/CFT later

in Chapter 7.

With the review taken care of we can discuss the original work contained in

the thesis. In Chapter 3 we will explain how topological currents arise in dense

matter. This mirrors the discussion contained in the first part of Charbonneau and

Zhitnitsky [9]. We will first explicitly derive the topological vector current (1.2).

We will then discuss the elements required for the current to exist in dense matter

and devise an expression of their magnitude in dense stars. We will particularly

focus on why the current is not washed out due to QED interactions. Our goal

is to present a quantitative analysis of the conditions when parity violation (µr 6=
µl) occurs in dense stars and a persistent, topological current is induced. It is

well known that the weak interactions (where parity is strongly violated) play a

dominant role in neutron star physics. Producing the asymmetry µr 6= µl for a

given process is common in the bulk of neutron stars, but we are interested in
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coherent parity violating effects when the asymmetry appears in macroscopically

large regions.

Chapter 4 is the direct application of the ideas in Chapter 3 to the various

possible forms of matter found in dense stars. This was the focus of the second

half of Charbonneau and Zhitnitsky [9]. Our consideration in the primary process

that occurs to create electrons in each phase. We will discuss the current that

arises from the direct urca process, the modified Urca process, kaon scattering,

and the quark Urca process. These are also the primary processes responsible for

cooling star through neutrino emission. The calculations to find the magnitude of

the current are very close to that of neutrino luminosity, but different enough that

some computation effort is required.

We introduce the idea of topological kicks in Chapter 5 as a mechanism for

generating large pulsar kicks. Topological kicks were first suggested in Charbon-

neau and Zhitnitsky [9] and described in detail by Charbonneau, Hoffman, and

Heyl [10]. If non-dissipating vector currents are induced they can transfer momen-

tum by either escaping the star or radiating photons. The mechanism is similar to

neutrino emission in that we are ejecting a particle from the star, but there are some

key differences. Neutrino emission is automatically asymmetric with respect to the

direction of the magnetic field ~B; however, most neutrino-based kick mechanisms

have difficulty delivering the produced asymmetry to the surface of the star. Only

when it can reach the surface can the asymmetry push the star. In most neutrino

based mechanisms the star must be very hot (T > 1 MeV) for neutrinos to be en-

ergetic enough to transfer sufficient momentum and the kick occurs in a matter of

seconds. But at such high temperatures the neutrinos cannot escape the star with-

out interacting and washing out the asymmetry. The topological kick continues

to work even when temperature drops well below T ≪ 1 MeV because it is the

chemical potential (µl−µr) 6= 0, not the temperature, that drives the kick.

In Chapter 6 we also suggest that a current running along the magnetic flux

(the poloidal field) may be the source of the toroidal magnetic field and the finite

magnetic helicity thought to be required in a neutron star [24–27]. The magnetic

helicity, H ≡ ∫ d3x~A ·~B, that arises from the linking of toroidal and poloidal mag-

netic fields is a topological invariant and is a P-odd effect that must be gener-

ated though parity violation. Our method of generating a toroidal field naturally

produces magnetic helicity without requiring arguments to temporarily break the

topological invariance of the magnetic helicity. Many attempts to generate mag-

netic helicity rely on instabilities in the magnetic field caused by the star’s rotation.

Such correlations 〈~B ·~Ω〉 are P-even, and though they may generate toroidal fields,

they cannot be responsible for magnetic helicity. We will also briefly discuss how

the current may change the superconductivity in the star from type-II to type-I.

In Chapter 7 we make a departure from direct applications of the current and
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discuss its existence in holographic models of QCD. The discussion will follow that

introduced by Brits and Charbonneau [23]. The existence of topological currents

in holographic models is important in showing that topological currents exist at the

strong coupling limit of QCD, and thus would be observed in the strongly coupled

quark-gluon plasma though to result from collisions at RHIC. We will introduce a

constraint based paradigm of looking the topological current by investigating how

the current arises from non-trivial boundary conditions in the field theory descrip-

tion. Previous attempts to produce topological currents in holographic QCD have

redefined the axial charge to be conserved, but this is somewhat unsatisfying. We

take a bottom up approach, which is to say we are trying to reverse engineer the

holography, and try to determine what kind of boundary conditions on the string

theory side act as a constraint to force the axial charge to be conserved on the QCD

side. We illustrate the concept with the simplest of holographic QCD models.
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Chapter 2

Background Material

This chapter contains the material for understanding the original work contained in

the other chapters. We will start with a review on quantum anomalies. Understand-

ing anomalies is central in understanding why topological currents exist in dense

matter and why there was trouble finding them in holographic QCD. We will then

establish a simple consistent model for dense stars that will be used throughout the

paper to show why topological currents exist in dense stars, what their magnitude

must be, and how they can be used to provide kicks to pulsars. We finish with a

review of the AdS/CFT correspondence, which we will use to show how currents

can appear in the strong coupling limit of QCD.

2.1 The Axial Anomaly

It is well known that quantum anomalies have important implications for low-

energy physics. Anomalies reveal intricate relationships between topological ob-

jects such as vortices, domain walls, Nambu-Goldstone bosons, and gauge fields

and often result in very unusual physics. A particularly relevant example is the su-

perconducting cosmic string on which an electric current flows without dissipation

and carries momentum [28]. The effects of anomalies are well established and are

reviewed in [29].

More recently the role of anomalies in QCD has been studied at finite baryon

density [5–7] and similar phenomena have been studied in condensed matter sys-

tems [4, 30, 31]. Since the original paper [5] many other applications of anoma-

lies in dense QCD have been considered: an analysis of the axion physics and

microscopic derivation of anomalies [6]; studying the vortex structure due to the

anomalies currents in neutron stars (type-I versus type-II superconductivity) [8];

the charge separation effect at the relativistic heavy ion collider (RHIC) [11, 32];

magnetism of nuclear and quark matter [33]; anomaly mediated neutrino-photon

interactions at finite baryon density [34]; the chiral magnetic effect at RHIC [12]

and many others.

The study of the axial anomaly started with Steinberger’s [35] calculation of

the π → 2γ decay using triangle diagrams and the recently developed subtrac-
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tion method used to renormalize quantum electrodynamics. With some help from

Schwinger [36] these calculations using triangle diagrams became the standard.

The real issue came some years later with the introduction of the partial conser-

vation of the axial current (PCAC) and current algebras (where fields form Lie

algebras based on classical symmetries) were introduced to explain pion decays.

The idea behind PCAC was that the charged pion field was proportional to the

divergence of the axial current. This lead to a number of very successful calcula-

tions of the charged pion decay rates. But, Sutherland and Veltman showed that if

current algebras hold then the rate for π0 decay should be extremely small, nearly

zero. This conclusion contradicted experimental results that showed that the decay

did indeed occur.

The next development came when Bell and Jackiw [37] investigated a truncated

σ -model that contained a proton, neutral pion, and a scalar meson. This model has

PCAC attributes, in that the divergence of the axial current is proportional to a

field, and seems to obey the assumptions made by Sutherland and Veltman to show

the failure of the current algebras. As would be expected for a PCAC model, Bell

and Jackiw were able show that the π → 2γ amplitude vanishes as the mass of the

pion goes to zero. But they came across a paradox. In calculating the decay to the

lowest order in perturbation theory, which is a triangle diagram, they found that

the amplitude does not vanish as the mass goes to zero. This is a hint that there is

something very special contained within these triangle diagrams. Bell and Jackiw

remedied this paradox by attempting to restore the PCAC results by introducing a

regulator field that cancels the contributions from the triangle diagrams as the mass

goes to zero. For a massive pion the triangle diagrams contributed, but only in a

limited capacity.

The final step came when Adler [38] reinterpreted the paradox of Bell and

Jackiw by assuming that is was actually PCAC that was breaking down. He as-

sumed that the triangle diagrams gave a genuine contribution to the divergence of

the axial current, rather than one that should be removed. He isolated the part of the

triangle diagram responsible for the anomalous non-conservation of the axial cur-

rent and modified the PCAC statement to include this term, known as the anomaly.

Using PCAC and with this correction he showed that the correct value of the pion

decay could be achieved. Interestingly enough, this was the value Steinberger and

Schwinger originally calculated. Nothing was learned about the decay rate of the

pion itself, but important lessons were learned about symmetries and how they

break down due to the quantum corrections introduced by perturbation theory.
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2.1.1 Ward Identities

Beyond this colloquial introduction to anomalies, the study of anomalies involves

a discussion of the Ward identities. Ward identities are statements about the ampli-

tudes of diagrams that reflect the underlying conservation laws that can be found

through formal manipulations of the field theory. What Adler, Bell and Jackiw

found was that the Ward identities do not hold in perturbation theory. The formal

field theory derivation of the Ward identities somehow fails. The failure of the

Ward identities indicates a breakdown of gauge invariance, which can cause many

problems with a theory. We will look at how the anomalous violation of the Ward

identities comes about in perturbation theory and how the anomaly can be properly

derived with formal field theory using insights from Fujikawa.

Our first step is to derive the conservation laws that the Ward identities will

follow from. We will consider only a simple case involving Dirac fields ψ . The

axial and vector currents are defined as

jµ5 = ψγµγ5ψ , (2.1)

jµ = ψγµψ , (2.2)

where we define ψ = ψ†γ0. We can find the divergence of the axial current using

the Dirac equation,

(iγµ∂µ −m)ψ = 0, (2.3)

ψ(iγµ←−∂ µ −m) = 0 (2.4)

such that

∂µ jµ5 = (∂µψ)γµγ5ψ−ψγ5γµ∂µψ , (2.5)

= i2mψγ5ψ , (2.6)

= i2m j05. (2.7)

Similarly, we find the divergence of the vector current to be

∂µ jµ = 0 . (2.8)

In the massless limit both of these currents are conserved. The mass unnecessarily

complicates the argument and adds nothing to the result so we set the mass to zero

in what follows.

These conserved currents lead to Ward identities for vertex interactions. Ver-

tex interactions between matter and gauge fields can be written in terms of these
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currents. Consider an arbitrary process involving an external photon with a polar-

ization vector ε∗µ that has the amplitude

iT (q) = iT µ(q)ε∗µ(k). (2.9)

If there are more external photons we can pull out those polarization vectors as

well and add more indices to the amplitude. In QED and QCD the only ones that

exist are the vector interactions of the form
∫

d4xgv jµWµ , (2.10)

where Wµ is some kind of gauge field. The theory of the weak interactions also has

axial current interactions,

∫
d4xgA jµ5Wµ . (2.11)

In diagrammatic form these interactions look like Figure 2.1 where the three lines

meet at a point. In reality though the vertex has many corrections. The grey circle

is used as a place holder that accounts for higher order diagrams that could result

in this vertex. Included in these higher order corrections is a fermion triangle that

will lead to the triangle anomaly.

p p′

q

Tµ

Figure 2.1: A general fermion-gauge boson vertex.

We expect the amplitudes of these vertices to be proportional to a matrix ele-

ment of these interactions,

T µ(q) =
∫

d4xeiqx〈 f | j5µ |i〉 , (2.12)
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where i and f are initial and final particle states. There is a similar expression for

the vector current. Contracting the amplitude with a momentum qµ gives us

qµT µ = i

∫
d4xeiqx〈 f |∂µ j5µ |i〉 , (2.13)

= 0, (2.14)

where we remember that the matrix element 〈 f | j5µ |i〉 vanishes at x = ±∞ such

that the first term from the product rule for derivatives vanishes, as is common

for Fourier transforms. The Ward identity holds for a vertex interaction where the

current is conserved. The current conservation is a consequence of gauge invari-

ance. The end result is that replacing a polarization vector with a momentum vector

causes the matrix element to vanish. Every vertex will have a similar Ward identity

that tells us how the current is conserved in the interaction.

2.1.2 Triangle Diagrams and the Anomaly

The Ward identities have many important uses. One is ensuring that non-physical

timelike and longitudinal photon polarizations do not contribute to the squared am-

plitudes used to calculate probabilities in scattering processes. They guarantee that

negative norm states can never contribute to physical processes. A breakdown of

the Ward identity may allow negative norm states to be considered when evaluating

physical processes and threaten the unitarity of the theory. The Ward identities are

also used to prove the renormalizability of a theory, ensuring that sensible predic-

tions may be obtained from it.

We are now in a position to discuss the breakdown of the Ward Identities in

perturbation theory. For simplicity we will restrict our discussion to anomalies in

QED. The discussion of the derivation of the anomaly from the triangle diagrams

follows that found in [39–41] We are interested in the matrix element for the axial

current to create two photons,

∫
d4xe−iq·x〈p1, p2| j5µ(x)|0〉= (2π)4δ (4)(p1− p2−q)ε∗ρ(p1)ε

∗
σ (p2)T

µρσ .

(2.15)

Expanding the axial vertex shown in Figure 2.1 to fifth order we find a graph that

contains a full fermion triangle as seen in Figure 2.2. The graphs are AVV inter-

actions where A= γµγ5 and V= γµ . There are other contributions at this order

and higher come from those with abnormal parity. Examples are AAA triangles,

AVVV squares, and AVVVV pentagons and so on. A topic that we will not dis-

cuss in this thesis is the role the anomaly plays in renormalization of a theory. The

contributions from anomalies to currents that are conserved by gauge symmetries
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must completely cancel. It has been shown that the steps taken to cancel the AVV

anomaly cancels the contributions from these higher order shapes. In light of this

a discussion of the anomaly only needs to consider this simplest graph. The AVV

anomaly can also appear as the result of a breakdown in a global symmetry. These

anomalies pose no danger to the theory and are the kind we will discuss later in the

thesis to derive the current. We should note that the triangle graph shown are the

p1 + p2

p2

p1 + p2

p1 p1p2

γ
σγ

ρ

γ
µ
γ
5

q + p2q − p1

q q

q − p2 q + p1

γ
σ

γ
ρ

γ
µ
γ
5

Figure 2.2: The AVV fermion triangles.

only contributions to the anomaly. It has been proved to all orders in perturbation

theory that radiative corrections contribute nothing additional [42]. This greatly

simplifies the discussion.

We can write the total amplitude as the contribution from both graphs,

T µρσ (p1, p2) = Sµρσ (p1, p2)+Sµσρ(p2, p1). (2.16)

Using the Feynman rules we can write down the contribution of just the fermion

portion of these graphs when we account for the coupling constants of two external

legs,

Sµρσ (p1, p2) =−(−ie)2

∫
d4q

(2π)4
Tr

[
γµγ5 i

/q+ /p2

γσ i

/q
γρ i

/q− /p1

]
, (2.17)

=−ie2

∫
d4q

(2π)4

Tr
[
γµγ5(/q+ /p2

)γσ/qγρ(/q− /p1
)
]

(q+ p2)2(q− p1)2q2
. (2.18)

The amplitude Sµρσ (p1, p2) contains the information for the currents at each ver-

tex. Using this with the formal arguments earlier, where we replace polarization
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vectors for external photons with momentum vectors, one might expect that each

vertex conserves current independently, leading to the following Ward identities,

(p1 + p2)
µTµρσ = 0 axial vertex, (2.19)

p
ρ
1 Tµρσ = 0 vector vertex, (2.20)

pσ
2 Tµρσ = 0 vector vertex. (2.21)

We will calculate the Ward identities explicitly and show that the axial and vec-

tor Ward identities can never be satisfied simultaneously, only one or the other.

We will evaluate the integrals based on symmetry arguments found in Ryder and

Frampton, but we will take care to account for any divergences that appear. We

will only concern ourselves with one of the two amplitudes that make up T µρσ as

both calculations are nearly identical.

Evaluating the axial Ward identity explicitly tells us calculate the integral

(p1 + p2)µSµρσ =−ie2

∫
d4q

(2π)4

Tr
[
(/p1

+ /p2
)γ5(/q+ /p2

)γσ/qγρ(/q− /p1
)
]

(q+ p2)2(q− p1)2q2
.

(2.22)

It is obvious that

(/p1
+ /p2

)γ5 =−(/q− /p1
)γ5− γ5(/q+ /p2

), (2.23)

which can be used to rewrite the integral as

(p1 + p2)µSµρσ =ie2

∫
d4q

(2π)4

Tr
[
(/q− /p1

)γ5(/q+ /p2
)γσ/qγρ(/q− /p1

)
]

(q+ p2)2(q− p1)2q2

+ ie2

∫
d4q

(2π)4

Tr
[
γ5(/q+ /p2

)(/q+ /p2
)γσ/qγρ(/q− /p1

)
]

(q+ p2)2(q− p1)2q2
, (2.24)

=ie2

∫
d4q

(2π)4

Tr
[
γ5(/q+ /p2

)γσ/qγρ
]

(q+ p2)2q2

+ ie2

∫
d4q

(2π)4

Tr
[
γ5γσ/qγρ(/q− /p1

)
]

(q− p1)2q2
. (2.25)

We now make the observation that Sµρσ is a rank 3 pseudotensor. This can be

seen by switching indices in equation (2.17) and using the gamma matrix com-

mutation relationships. Contracting one of the indices with a momentum turns it

unto a rank 2 pseudotensor. Both of the integrals in equation (2.25) depend on
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only one four-momentum. No rank 2 pseudotensor exists that depends on just one

four-momentum, so the integrals must vanish. A rough argument for this is by con-

sidering what you can contract with four-vectors (or pseudovectors). The only two

two objects we have are the metric ηµν and the rank 4 Levi-Civita εµνρσ . Given

that we want to make a rank 2 pseudotensor with single four-vector dependence

our options are to contract the four-vector with the Levi-Civita. We now have to

contract another index on the Levi-Civita to make a rank two object, but there is

nothing left other than another copy of the four-vector, which upon contracting

would makes the object vanish. The vanishing of these integrals seems to confirm

the axial Ward identity, but the vector Ward identities still to be confirmed.

Both of the vector ward identities are nearly identical so we will only consider

p1ρSµρσ =−ie2

∫
d4q

(2π)4

Tr
[
γµγ5(/q+ /p2

)γσ/q/p1
(/q− /p1

)
]

(q+ p2)2(q− p1)2q2
. (2.26)

We now shift variables,

q′µ = (q+ p2)µ , (2.27)

but we have to be careful because the integral is superficially linearly divergent

(7 powers of q in the numerator and 6 in the denominator or D=4L-). We can

determine how much the integral changes by looking at the expansion,

∫
d4qF(q) =

∫
d4q′F(q′− p2), (2.28)

=
∫

d4q′F(q′)+
∫

d4q′
∂

∂ p2

F(q′− p2)

∣∣∣∣
p2=0

p2 + ... , (2.29)

=
∫

d4q′F(q′)+
∫

d4q′
∂

∂q
F(q)

∂q

∂ p2

∣∣∣∣
p2=0

p2 + ... , (2.30)

=
∫

d4q′F(q′)− pν
2

∫
d4q

∂

∂qν
F(q)+ ... . (2.31)

If F is linearly divergent then the second term in this expansion will be finite and

non-vanishing. With this we can account for the shift of variables in the divergent

part of our integral. The divergent term in the integral is

(p1ρSµρσ )div =−ie2

∫
d4q

(2π)4

Tr
[
γµγ5/qγσ/q/p1/q

]

q6
. (2.32)

Equation (2.28) says that a change of variables results in the total integral pick-

ing up an addition term as a result of the linearly divergent part of the integral.
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Performing the shift of variables (2.27) results in the integral

p1ρSµρσ = p1ρS′µρσ − pν
2

∂

∂qν
(p1ρSµρσ )div, (2.33)

=− ie2

∫
d4q′

(2π)4

Tr
[
γµγ5/q′γσ (/q′− /p2

)/p1
(/q′− /p1

− /p2
)
]

q′2(q′− p1− p2)2(q′− p2)2

+ ie2 pν
2

∫
d4q

(2π)4

∂

∂qν

Tr
[
γµγ5/qγσ/q/p1/q

]

q6
. (2.34)

We can modify the first term through the manipulation

/p1
= (/q

′− /p2
)− (/q

′− /p1
− /p2

) (2.35)

to get

p1ρSµρσ =− ie2

∫
d4q′

(2π)4

Tr
[
γµγ5/q′γσ (/q′− /p2

)(/q′− /p1
− /p2

)
]

q′2(q′− p1− p2)2

+ ie2

∫
d4q′

(2π)4

Tr
[
γµγ5/q′γσ (/q′− /p2

)(/q′− /p1
− /p2

)
]

q′2(q′− p2)2

+ ie2 pν
2

∫
d4q

(2π)4

∂

∂qν

Tr
[
γµγ5/qγσ/q/p1/q

]

q6
. (2.36)

The first two terms of this integral are subject to the same symmetry argument

discussed earlier to show that the integrals in equation (2.25) vanish. Only the last

term remains to be evaluated,

p1ρSµρσ = ie2 pν
2

∫
d4q

(2π)4

∂

∂qν

Tr
[
γµγ5/qγσ/q/p1/q

]

q6
. (2.37)

The trace can be evaluated using the identity

Tr[γ5γργλ γσ γκγτγµ ] =− 4iεκτµα(δ
ρ

α gλσ −δ λ
α gρσ +δ σ

α gρλ ) (2.38)

+4iερλσα(δ κ
α gτµ −δ τ

α gκµ +δ
µ

α gκτ) , (2.39)

which allows us to evaluate

Tr
[
γ5
/qγσ

/q/p1/qγµ
]
=−4iερσ µα p1ρqαq2 . (2.40)
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Using this and Wick rotating the integral using q0 = iq0 yields,

p1ρSµρσ = ie24ερσ µα p1ρ pν
2

∫
d4q

(2π)4

∂

∂qν

qα

q4
. (2.41)

To evaluate this integral we first notice that if ν 6= α it vanishes due to it being odd

in q. When α = ν we can rewrite the integral as a divergence,

p1ρSµρσ = ie24ερσ µν p1ρ pν
2

∫
d4q

(2π)4

∂

∂qα

qα

4q4
. (2.42)

This allows us to use Green’s Theorem to rewrite the integral as a surface term,

p1ρSµρσ = ie2ερσ µν p1ρ p2ν

∮
(d3q)α

(2π)4

qα

q4
, (2.43)

= ie2ερσ µν p1ρ p2ν lim
q→∞

∫
qα

q
q3 dΩ3

(2π)4

qα

q4
, (2.44)

= ie2 1

8π2
ερσ µν p1ρ p2ν . (2.45)

A similar calculation can be done for pσ
2 Sµρσ using the shift q′′ = q− p2 and we

arrive at our result,

p1ρSµρσ = ie2 1

8π2
ερσ µν p1ρ p2ν , (2.46)

pσ
2 Sµρσ =−ie2 1

8π2
ερσ µν p2σ p1ν . (2.47)

The vector Ward identities (2.19) that we naively calculated using formal field

theory manipulations are wrong. The triangle anomaly has introduced a correction

that appears to cause the vector current to pick up a divergence. This is a disaster if

left alone as it toys with charge conservation. In order to fix this we must introduce

counter-terms by insisting that the vector current be conserved. This has the effect

of moving the offending terms from the vector Ward identities to the axial Ward

identities. Non-conservation of the axial charge, though unpleasant, is something

we can live with. The way we add the counter-terms is to redefine the amplitude

for the triangle graph such that equation (2.16) now reads

T ′µρσ (p1, p2) = Sµρσ (p1, p2)+Sµσρ(p2, p1)+
ie2

4π2
εµρσν(p1− p2)ν . (2.48)

The Ward identities (2.19) now become

(p1 + p2)µT ′µρσ =
i

2π2
εµρσν p2µ p1ν axial vertex, (2.49)

p1ρT ′µρσ = 0 vector vertex, (2.50)

p2σ T ′µρσ = 0 vector vertex. (2.51)
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No method of regularization can avoid this term. Even dimensional regularization,

which ensures that the vector Ward identities are valid, fails because γ5 is an in-

trinsically four-dimensional object and the manipulations required to deal with that

lead to an additional contribution. We can use the axial Ward identity to calculate

the divergence of the axial current. From equation (2.15) we can see that

〈p1, p2|∂µ j5µ(0)|0〉= ε∗ρ(p1)ε
∗
σ (p2) i(p1 + p2)µT µρσ , (2.52)

=
1

2π2
εµρσνε∗ρ(p1)ε

∗
σ (p2)(i p2µ)(i p1ν), (2.53)

=− e2

16π2
〈p1, p2|εµρνσ FµρFνσ (0)|0〉, . (2.54)

This gives us the equation for the anomaly,

∂µ j5µ =− e2

16π2
εµρνσ FµρFνσ . (2.55)

The triangle diagram has added a correction to the divergence of the axial current.

But why? Our formal field theory derivation of the divergence failed to find this.

To see why we will look at Fujikawa’s derivation of the axial anomaly using a path

integral approach.

2.1.3 Fujikawa’s Explanation

Fujikawa’s approach to deriving the anomaly gives a vivid picture of where the

anomaly comes from. We will see that contributions from quantum mechanics will

directly interfere with the classical symmetries of the theory. The account given

here is complied from discussions found in [40, 43, 44]. Consider the functional

integral for fermions with the Dirac operator Dµ = ∂µ + ieAµ(x) in the massless

limit,

Z =
∫

DψDψ exp

[
i

∫
d4xψ(i /D)ψ

]
, (2.56)

with the global chiral transformation

ψ(x)→ ψ ′(x) = (1+ iα(x)γ5)ψ(x), (2.57)

ψ(x)→ ψ ′(x) = ψ(x)(1+ iα(x)γ5). (2.58)
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Performing this transformation on the Lagrangian yields

∫
d4xψ ′(i /D)ψ ′ =

∫
d4x
[
ψ(1+ iα(x)γ5)(i /D)(1+ iα(x)γ5)ψ

]
, (2.59)

=
∫

d4x
[
ψ(i /D)ψ−α(x)ψγ5 /Dψ−ψ /Dα(x)γ5ψ

]
, (2.60)

=
∫

d4x
[
ψ(i /D)ψ−α(x)ψγ5 /Dψ +α(x)ψγ5 /Dψ (2.61)

−∂µα(x)ψγµγ5ψ
]
, (2.62)

=
∫

d4x
[
ψ(i /D)ψ +α(x)∂µ(ψγµγ5ψ)

]
. (2.63)

We see that a global chiral transformation, with constant α , is a symmetry of the

Lagrangian. Contributions from the chiral transformations can only come from

terms that contain derivatives of α(x), which can be rearranged to show that a vari-

ation with respect to α(x) results in the conservation of the chiral current. This

reproduces the formal result (2.5) where the axial current is conserved with mass-

less particles.

The Lagrangian is not the only part that changes with the transformation. We

must consider how this transformation affects the measure of the path integral. To

see how the functional measure is affected we write the fermions in terms of a

complete set of eigenstates of /D. We define the left and right eigenvectors of /D by

(i /D)φm = λmφm φ †
m(i /D) = λmφ †, (2.64)

∫
d4xφm(x)φ

†
n (x) = δmn , (2.65)

∑
n

φnφ †
n = 1, (2.66)

λ 2
m = k2 = (k0)2− (k)2. (2.67)

In order to precisely define the path integral we use these to expand the fermions

in a complete basis and change from the x-representation to the m-representation,

ψ = ∑
m

amφm(x) = ∑
m

〈x|m〉am ψ = ∑
m

âmφ †
m(x) = ∑

m

〈m|x〉âm, (2.68)

where a and â are independent Grassmann coefficients that multiply the eigenvec-

tors of /D to enforce anti-commutation relations. Now we define the functional
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measure in terms of these such that

DψDψ =[det〈m|x〉det〈x|m〉]−1
∏
m

dam ∏
n

dân , (2.69)

=

[
det

∫
dx4〈m|x〉〈x|n〉

]−1

∏
m

damdâm , (2.70)

=[detδmn]
−1

∏
m

damdâm , (2.71)

=∏
m

damdâm , (2.72)

where the normalization constant of the states is set to unity and we used the or-

thonormal eigenvector expansion under the integral in the measure to make the

eigenstates disappear. Under the transformation the expansion becomes

ψ ′(x) = ∑
n

a′nφn(x) = ∑
n

an(1+ iα(x)γ5)φn(x). (2.73)

We can manipulate this further using the orthonormality condition,

∑
n

a′nφn(x) = ∑
n

∑
m

δmnam(1+ iα(x)γ5)φn(x), (2.74)

= ∑
n

∑
m

∫
d4xφm(x)φ

†
m(x)am(1+ iα(x)γ5)φn(x), (2.75)

which implies that

a′n = ∑
m

∫
d4xφ †

m(1+ iα(x)γ5)φnam , (2.76)

= ∑
m

Cm,nam . (2.77)

The measure then changes like

∏
n

da′n = det[Cm,n]
−1

∏
n

da , (2.78)

where the inverse determinant is the Jacobian of the transformation. The determi-

nant appears as a inverse because of the nature of Grassmannian calculus.
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We now evaluate the determinant in the Jacobian,

det[Cm,n]
−1 = exp(−Tr lnCm,n), (2.79)

= exp

(
−Tr ln

[
δmn +

∫
d4xφ †

miα(x)γ5φn

])
, (2.80)

= exp

(
−i tr∑

n

∫
d4xφ †

n α(x)γ5φn

)
, (2.81)

= exp

(
−i

∫
d4xα(x)A(x)

)
, (2.82)

where

A(x) = tr∑
n

φ †
n (x)γ

5φn(x). (2.83)

Note that we used uppercase Tr to indicate the full trace over indices and operators

and lowercase tr to indicate just the operator trace. The Jacobian for the other

part of the functional measure gives a similar factor. This means that the measure

transforms as

Dψ ′Dψ ′ = DψDψ exp

(
−2i

∫
d4xα(x)A(x)

)
. (2.84)

So after a local chiral rotation our function integral becomes

Z =
∫

DψDψ exp

[
i

∫
d4x
(
ψ(i /D)ψ +α(x)

{
∂µ jµ5−2A(x)

})]
, (2.85)

where we used jµ5 = ψγµγ5ψ . Forcing this to vanish gives us the form of the

anomaly

∂µ jµ5 = 2A(x) . (2.86)

All that is left is to calculate A(x). Naively it appears that this is zero given

that tr[γ5] = 0, but A(x) must be properly regularized first by cutting off the large

eigenvalues |λn|> M. We do this by introducing the regulator

A(x) = lim
M→∞

tr∑
n

φ †
n (x)γ

5φn(x)e
λ 2

n /M2

, (2.87)

= lim
M→∞

tr∑
n

φ †
n (x)γ

5e(i
/D)2/M2

φn(x). (2.88)
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Notice that the sign of the regulator is correct. Upon Wick rotation (2.64) tells us

that the eigenvalues squared will be negative. The Dirac operator can be be written

as

(i /D)2 =−D2 + e
i

4
[γµ ,γν ]Fµν . (2.89)

We want to expand the exponential that contains this operator. With the γ5 present

the first order of the expansion that will not vanish under a trace must contain at

least four Dirac matrices. The second order is the lowest order that meets this

requirement. We get

A(x) = lim
M→∞

tr∑
n

φ †
n (x)A e−∂ 2/M2

φn(x), (2.90)

A =

[
γ5 1

2!

(
e

i

4M2
[γµ ,γν ]Fµν

)2
]
. (2.91)

We can expand the eigenfunctions in plane waves, noting that −∂ 2 = k2, to get

A(x) = lim
M→∞

tr∑
n

∫
d4k′

(2π)4

d4k

(2π)4
φ †

n (k)e
ikxA ek2/M2

φn(k
′)e−ik′x. (2.92)

We are still in Minkowski space so this integral will converge upon a Wick rota-

tion. Using the cyclic property of the trace and the completeness relation for our

orthonormal basis we can get rid of the eigenfunctions and leave a delta function,

A(x) = lim
M→∞

tr

∫
d4k′

(2π)4

d4k

(2π)4
(2π)4δ (k− k′)eikxA ek2/M2

e−ik′x. (2.93)

We then Wick rotate and complete the integral,

A(x) = lim
M→∞

tr

∫
d4k

(2π)4
eikxA ek2/M2

e−ikx, (2.94)

= lim
M→∞

tr i

∫
d4kE

(2π)4
A e−k2

E/M2

, (2.95)

= lim
M→∞

i
M4

16π2
trA , (2.96)

= lim
M→∞

i
M4

16π2
tr

[
γ5 1

2!

(
e

i

4M2
[γµ ,γν ]Fµν

)2
]
, (2.97)

= lim
M→∞

−i
e2

4 ·32π2
tr
[
γ5γµγνγργσ FµνFρσ

]
, (2.98)

=− e2

32π2
εµνρσ FµνFρσ . (2.99)
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We can then plug this into equation (2.86) to get

∂µ jµ5 =− e2

16π2
εµνρσ FµνFρσ . (2.100)

We have arrived at the exact same axial anomaly as we did when calculating the

contribution from the triangle diagrams. But here it is clear where the correction

comes from. What would be a classical conservation law is ruined by quantum

corrections from the measure of the path integral.

2.1.4 Connection with the Atiyah-Singer Index Theorem

Anomalies are very closely related to Atiyah-Singer index theorem, the statement

that the analytic index of an operator is the same as its topological index. In fact

we unwittingly calculated the index of the Dirac operator while calculating the

contribution of the anomaly to the divergence of the axial current. We will also

see that the index theorem plays and integral result in deriving one of the central

results of this thesis. We follow the discussion from [43, 44].

The index of the operator a is given by the relationship

index(a) = dimkera−dimkera† , (2.101)

where dim ker is the dimension of the kernel of the operator. The dimension of

the kernel can be found by counting the number of normalizable states un of the

operator that satisfy the equation

aun = 0 . (2.102)

We can move this discussion into move familiar territory by calculating the index

of the standard creation and annihilation operators used to quantize the harmonic

oscillator. For the creation and annihilation we count the states that vanish when

a and a† is acted on them. For the annihilation operator a the only such state that

exists is the ground state |0〉. For all other states the annihilation operator just

lowers the number state by one. For the creation operator a† no such state exists.

The kernel of a and a† are

kera = {|0〉} kera† = {} . (2.103)

The dimension of the kernel is the number of states in the set. The index for the

operator that quantizes the harmonic oscillator is

dimkera−dimkera† = 1 . (2.104)
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The index counts the number of zero eigenvalue states.

We can now talk about our incidental calculation of the index of the Dirac

operator during our calculation of the anomaly. First consider the integral of over

all space of the operator in equation (2.83),

∫
d4xA(x) =

∫
tr∑

n

φ †
n (x)γ

5φn(x)d
4x. (2.105)

Using the relations /Dφn = λnφn and /Dγ5φn =−λnγ5φn, derived using /Dγ5+γ5 /D =
0, we can simplify the operator above. Starting with the surface term we find that

∫
/D(φ †

n γ5φn)d
4x = 0 , (2.106)

⇒
∫
( /Dφ †

n )γ
5φn +φ †

n ( /Dγ5φn)d
4x = 0 , (2.107)

⇒−2λn

∫
(φ †

n γ5φn)d
4x = 0 , (2.108)

which tells us that
∫
(φ †

n γ5φn)d
4x = 0 when λn 6= 0. The only modes of (2.105) that

survive are those with zero eigenvalue. These modes can be split up into positive

and negative chirality states. This results in the relation

∫
d4x tr∑

n

φ †
n (x)γ

5φn(x) = NR−NL , (2.109)

where NR and NL are the number of positive and negative chirality states given by

γ5φn = ±φn that have a zero eigenvalue λn. We have calculated the index of the

Dirac operator.

Using a regulator we also calculated (2.83) explicitly to get equation (2.94).

Integrating (2.94) over all space gives us a topological quantity known as the Pon-

tryagin index or winding number,

ν =−
∫

d4x tr
e2

32π2
εµνρσ FµνFρσ . (2.110)

Having calculated (2.83) in two different ways we can equate (2.109) and (2.110)

to arrive at the relationship

NR−NL = ν , (2.111)

which is the Atiyah-Singer index theorem. The technique used here to derive the

anomaly and index theorem can easily be extended to all even dimensions. This

intimate relationship between the index theorem and the two-dimensional anomaly

will be exploited later when calculating topological currents in dense matter.



Chapter 2. Background Material 24

2.2 Dense Stars

The average neutron star has a mass of 1.35 M⊙ [45] contained in a radius of only

10 km giving it the immense density of 1015 g/cm3. They are also cold objects,

in the sense that their Fermi temperature is well above their actual temperature,

and they have huge magnetic fields that range from 1012− 1015 G. The study of

neutron stars began with the proposal of the nucleus star by Landau in 1932 [46].

Later in 1934, after the discovery of the neutron, Baade and Zwicky [47] suggested

that a neutron star is the result of a supernovae in which the iron core of a mas-

sive star exceeds the Chandrasekhar limit, at which the star is so massive that the

gravitational forces of the star exceed the electron degeneracy pressure causing the

star to collapse. This prompted theorists to investigate such objects. A few years

later the famous Tolman-Oppenheiner-Volkoff equations [48, 49] were derived and

a basic equation of state was formulated that bounded the mass of a neutron star.

The field developed slowly as others refined the equation of state, discussed the

possibility of superfluidity in the core, and developed neutrino cooling models. It

was not unit the discovery of pulsars by Bell and Hewish [50] and the identification

by Pacini [51] and Gold [52] of these radio pulsars as neutron stars that genuine in-

terest in these objects developed. Since then over 2000 objects have been identified

as pulsars [53].

The name pulsar comes from the periodic pulses of radiation these stars emit.

Figure 2.3 illustrates the standard picture of the neutron star where the rotational

axis and the magnetic axis are misaligned. As a result of this misalignment the

radio emission caused by charged particles being accelerated and beamed by the

magnetic field swings around like the beam of a lighthouse causing us on earth to

see a pulse. We will discuss some properties of this emission in Section 2.2.

First we will focus on the direct consequences of a large, misaligned, rotating

magnetic dipole. This material is common in many textbooks but Lorimer and

Kramer [54] and Ghosh [55] are particularly good references. In this discussion

we will try to emphasize how using a simple model many basic properties can be

derived just by knowing the pulsar timing data.

A magnetic dipole with moment |m| inclined an angle θ from the spin axis

rotating at an angular velocity Ω will emit radiation at a rate

Ė =
2

3c3
|m|2Ω4 sin(θ)2 , (2.112)

which causes the star to gradually rotate slower and slower. We can quantify how

the star slows due to such mechanisms by associating this dipole radiation to the

change in the star’s rotational kinetic energy ∂
∂ t
(KE) = ∂

∂ t
(IΩ2/2) = IΩΩ̇ = Ė,

where I is the moment of inertia. This yields the braking equation for dipole radi-
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Figure 2.3: This shows the emision structure of a neutron star. Due to the rotation

of the star, charged particles are accelerated along magnetic field lines and emit

synchrotron radiation in a radio beam. The light cylinder is the point at which the

speed of light prevents charged particles from corotating with the magnetic field.

The axis of rotation and magnetic field axis are misaligned which causes the radio

beam to circle like a lighthouse producing what we observe as pulses of radiation.

ation,

Ω̇ =−KΩ3 , K =
2

3c3I
|m|2 sin(θ)2 , (2.113)

where K is assumed to be constant. In order to compare with observations this

braking equation can be generalized to

Ω̇ =−KΩn, (2.114)

where n is called the braking index. This generalization accounts for other possible

braking mechanisms. For instance, an observed braking index of n= 3 corresponds

with pure dipole braking, whereas a deviation from this number would indicate

another mechanism that dissipates rotational energy. By taking the derivative of

Equation (2.114) with respect to time and substituting it back in to remove K we
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find that n = Ω̈Ω/Ω̇2, which allows us to measure the braking index for given

stars based on the timing data, though determining the second derivative can be

difficult. Measurements of the braking index show numbers ranging from n = 1.4
to n = 2.9 [56], indicating that dipole radiation is not always the dominant braking

mechanism.

The braking equation can be used to estimate the characteristic age of the star.

If n 6= 1 equation (2.114) can be integrated to yield the characteristic time,

τ =− Ω

(n−1)Ω̇

[
1−
(

Ω

Ω0

)n−1
]
, (2.115)

where Ω0 is the angular velocity at birth and we used (2.114) again to remove

K. By assuming that the pulsar was spinning much faster at birth than it is now

Ω0≫Ω an estimate of the age of the star can be obtained,

τ ≈− Ω

(n−1)Ω̇
=

P

(n−1)Ṗ
, (2.116)

where we used P = 2π
Ω

to write the characteristic age in a more standard form in

terms of the spin period P. By assuming pure dipole braking n = 3 one can very

roughly estimate the ages of pulsars. For example, through historical records we

know that the Crab pulsar emerged from a supernova event in 1054 AD, giving

it an age of approximately 950 years. The characteristic age is determined to be

about τ = 1250 years. A good estimate, but not particularly close.

Young neutron stars have been observed to have rapid increases in their period

of rotation of the order ∆P/P∼ 10−6. These rapid changes are called glitches and

though they are an interesting subject in their own right, we will only mention that

they helped motivate the standard model in which a neutron star has a solid crust

and a liquid interior.

The timing data can also be used to estimate the surface magnetic field of star.

By rearranging Equation (2.113) and using B∼ |m|/r3 we write the magnetic field

at the surface of the star as

Bs = B(r = R) =

(
3c3

8π2

I

R6 sinθ
PṖ

)1/2

, (2.117)

= 1012 G

(
Ṗ

10−15

)1/2(
P

s

)1/2

, (2.118)

where we took θ = π , I = 1045 g cm2, and R = 10 km. This estimate assumes pure

dipole braking and provides an order of magnitude, or characteristic value, for the

surface magnetic field of pulsars.
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2.2.1 The Magnetosphere and Pulsar Emission

We will present a very simple model of how the emission of a neutron star is struc-

tured in which we assume the magnetic field axis and the axis of rotation are per-

fectly aligned. Though not realistic this will allow us to focus on the key features

of emission. It is believed that the magnetic axis and rotational axis are fairly close

to each other and it is the hope that the physics of such a system would not differ

much from our description. An especially strong review of pulsar emission is given

by Lyne and Graham-Smith [57].

The physics outside a neutron star is dominated by the magnetic field. Even

near the surface of the star the gravitational forces on an electron are orders of

magnitude smaller than the induced electrostatic forces. For instance, the ratio is

FG

FEM

=

(
GMm

r2

)( c

eΩrB

)
∼ 10−12 (2.119)

for an electron near the surface of the Crab pulsar [57]. These forces lead to the

star being surrounded by a dense plasma. The interaction between the magnetic

field of the star and the plasma that surrounds the star is responsible for the radio

emission we detect from the star. A very general picture of the emission mecha-

nism starts with the plasma being forced to corotate with the neutron star. Charged

particles run the along magnetic field lines and emit curvature or synchrotron radi-

ation linearly polarized in the plane of curvature. The emission forms a coherent

beam that we detect as pulses. From how the polarization of the beam changes as

the pulse passes through detectors it is possible to determine the axis of rotation of

the pulsar.

The argument for the magnetosphere that we discuss here was introduced by

Goldreich and Julian [58]. The basic physics arises by assuming that the interior of

the neutron star is a very good conductor. Because of this, a force free environment

in created where an electric field is induced to balance the forces created by the

magnetic field sweeping through space,

E+
(Ω× r)

c
×B = 0 . (2.120)

Let us assume for a moment that the star is surrounded by a vacuum instead of

a plasma. By solving Laplace’s equation we can determine the electric potential

induced by the rotating magnetic field as

Φ(r,θ) =
BsΩR5

6cr3
(3cos2 θ −1). (2.121)
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The surface charge for such a configuration results in a electric field near the sur-

face,

E|| =
E ·B

B

∣∣∣∣
r=R

=−ΩBsR

c
cos3 θ . (2.122)

As mentioned, the presence of this field causes particles on the surface of the star

experience electrostatic forces 10 orders of magnitude larger than gravitational

forces for typical neutron star parameter. A vacuum solution outside the star is

unstable to these forces and charged are pulled from the surface such that the star

is surrounded by a dense plasma.

We now assume that the star is surrounded by a dense plasma called the mag-

netoshere. This plasma experiences the same E×B field as the interior of the star

and is forced to corotate. This corotation continues up to a distance away from

the star where the particles would have to move faster than the speed of light to

continue corotating with the star. This boundary is a called the light cylinder. The

magnetosphere is seen as an extension of the neutron star and forms a region where

E ·B = 0. (2.123)

The magnetic field lines are then electric equipotentials. Because of this force free

environment, particles that move in the magnetosphere move along the magnetic

field lines, which is often described as sliding. The plasma in the magnetosphere

arranges itself into a force free configuration that results in a charge distribution

given by

ρe(r,θ) =
1

4π
∇ ·E =−Ω ·B

2πc
=−BsΩR3

4πcr3
(3cos2 θ −1). (2.124)

The charge distribution flips signs at Ω ·B = 0, which for our simple model where

the magnetic dipole axis and the rotation axis are aligned occurs at secθ =
√

3.

This results in a charge distribution where electrons populate the regions near the

poles of the star and protons populate the regions near the equator. If the axes

are anti-aligned then protons populate the poles and electrons populate the equator.

Dividing by the electric charge we get the Goldreich-Julian density

nGJ ≃ 7×1010 cm−3

(
P

s

)−1/2(
Ṗ

10−15

)1/2

, (2.125)

which is the maximum value for the charge at the pole, r = R and θ = 0.

Beyond this division of charge, the magnetosphere is broken into two regions

divided by whether or not the magnetic field lines close within the light cylinder.
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Figure 2.4: The pulse we see from earth traces a line through the polarization of

the magnetic field. From how this angle shifts we can infer which infer the rotation

vector of the star.

Within these closed field lines, indicated by the light grey in Figure 2.3, the plasma

is static. The forces inside this region are completely cancelled by the configura-

tion. The region with open field lines is dynamic. Particles are allowed to escape.

Other than the thermal emission that comes from the pulsar, all emission is thought

to come from this dynamic portion of the magnetosphere.

The dynamic region where charge is allowed to leave is repopulated by charge

ripped from the surface of the star by the electric field at the surface (2.122). Ac-

celerated by this force these particles slide along the magnetic field lines. While

following the curve of these field lines the electrons emit radiation through cur-

vature radiation or synchrotron radiation. The structure of the emitting regions is

beyond the scope of this review. The observation to be taken from this is that both

curvature and synchrotron radiation are linearly polarized in the plane of curvature,

though some more complicated radiation mechanism have polarization orthogonal

to this. Looking along the axis of the magnetic dipole the polarization forms a

pattern similar to the spokes of a bicycle wheel as seen in Figure 2.4.

The model that describes how the polarization changes as the pulse passes

through the detector of earth is called the rotating vector model [59]. By know-

ing how the polarization sweeps across the detector we can infer the direction of

the axis of rotation of the star and the angle between the magnetic axis and the

rotational axis. This is providing one has good enough data to constrain the mea-

surement of the angle between the spin axis and the magnetic field axis. It is often

difficult to sample enough polarization longitudes (measurements during the pulse)

to get a well defined polarization sweep.
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2.2.2 Inside a Neutron Star

To investigate the internal structure further we are required to look at the nature

of nuclear matter at high densities and low temperatures. Neutron stars have the

distinction of being extremely cold in terms of statistical mechanical, which points

to the possibility that the nuclear matter in the core is a condensate. The challenge

in studying neutron stars is trying to come up with a picture that describes all these

phenomena.

The primary composition of nuclear matter in a neutron star is constantly being

debated [60, 61]. The density of the neutron star lies in a critical area of the QCD

phase diagram where many states exist close together. Figure 2.5 outlines the lay-

ered structure that is thought to appear as the density increases from that of neutron

drip ρND near the surface, where neutron rich nuclei start to release free neutrons,

to beyond nuclear saturation ρ0 in the centre, where the density surpasses that of

nucleons in heavy atomic nuclei. The most basic division in the layered structure

of the star is between the solid crust and the liquid core. The crust contains the

density transition from the outer crust, consisting of degenerate electrons and ions,

though neutron drip densities to the inner crust where there are free neutrons, elec-

trons, and neutron rich nuclei. As the density increases the outer core is reached,

where the neutrons, protons, and electrons are completely free. At the inner core

densities are well above nuclear saturation and starts to impinge opon the plethora

of possible phases in dense matter. There are many popular scenarios: hyperons,

pion and kaon condensates, and pure quark matter. We should note that a recent

measurement of a 2 solar mass pulsar [62] favours stiff (incompressible) equations

of state which favours nuclear matter and rules out, for that star, many exotic equa-

tions of state with hyperons, condensates, and free quark matter.

The core of the star is what we are most interested in for the work of this thesis.

We will ignore questions about the equation of state of a neutron star and instead

consider many different states. For readers interested in the equation of state a

good review can be found in [60]. We will also quickly review the superfluidity

and superconductivity in the star and how this affects the magnetic field.

Basic Weak Processes

Fundamentally a neutron star is made of neutrons with small, equal fractions of

protons and electrons. In more exotic models hyperons may appear along with pion

and kaon condensates. In an effort to simplify the discussion we will constrain

ourselves to four fundamental interactions that describe the majority of cases in

dense stars. The neutrinos produced during these weak interactions can escape the

star, providing the temperature is low enough, and are responsible for cooling the
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Figure 2.5: The layered structure of the neutrons star broken into four parts. The

crust, shown in dark grey and white, is a solid structure. The core, shown in light

grey, is a liquid. The transitions are marked by the density at which they occur,

where ρ0 is the nuclear saturation density and ρND is the nuclear drip density. This

figure is modelled after Figure 1.2 of [60]

star. We will discuss a simple model of cooling in Chapter 5.

The first two processes are quite closely related—the direct and modified Urca

processes,

e−+P (+ νe) ↔ N (+ νe) , (2.126)

e−+P+N′ (+ νe) ↔ N′+N (+ νe) , (2.127)

where the neutrinos in parenthesis only appear in the final state of the interaction.

Both of these processes obey the beta equilibrium condition µe + µP = µN . The

neutrinos created in these processes only interact with matter through the weak

force, which is so weak that the star is transparent to the neutrinos. They leave the

star and do not contribute to the equilibrium condition.

The first of these interactions, the direct Urca Process, should be the dominant

process in normal nuclear matter but it is heavily suppressed because the particles

are unable to conserve momentum while remaining on their Fermi surfaces. It is
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possible for the direct process to conserve momentum if the proton fraction in the

star is above 1/9 [63], which could occur with the appearance of hyperons [64].

In these cases the direct Urca process dominates. The modified Urca process is

able to conserve momentum using an additional external nucleon. This was the

process used in the first neutrino emission calculations [65]. This is thought to be

the dominant electron producing process in normal nuclear matter, but it is very

slow. The presence of exotic particles introduces processes that create and destroy

electrons quicker.

As the density of matter increases it is likely that kaon [66] and pion conden-

sates will appear. We will restrict the discussion to kaon condensates, which appear

at much more reasonable densities, 3n0, than pion condensates, 300n0, but the phe-

nomenology of dealing with the two condensates is almost identical. Electrons are

still created and destroyed by the previous interactions, but at a much slower rate

than an electron decaying1 into a kaon and neutrino in the presence of nucleons,

e−+N (+ νe) ↔ 〈K〉−+N (+ νe). (2.128)

This interaction and its inverse process add another equilibrium condition, µe = µK ,

on top of the previously mentioned beta equilibrium.

The previous three interactions encompass the creation of electrons in almost

all possible neutron star interiors [61]. The last interaction we consider is the pri-

mary source of electrons in quark stars [67]. It may be possible that the star is so

dense that the quarks state extends right to the surface of the star and that the lay-

ered structure we outlined for neutron stars does not exist. The direct Urca process

for quarks are

e−+u (+ νe) ↔ d (+ νe) , (2.129)

e−+u (+ νe) ↔ s (+ νe) . (2.130)

Unlike in normal nuclear matter there is no trouble conserving momentum in quark

matter. The direct process occurs unsuppressed and there is no need to discuss a

modified process.

Simple Models for Dense Matter

We will review the features of neutron matter that are required for the rest of the

paper. Most importantly we will summarize the short reviews found in [67–70]

1Throughout this work the term electron decay means the transforming of an electron into a

neutrino as a result of interactions with surrounding hadrons. This process is often called electron

capture.
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and state the values used in the rest of the paper. The simplest model is the non-

interacting gas model where the ground state of the neutron star, T = 0, is a mixture

of neutrons, protons, and electrons that is electrically neutral. The baryon density

is on the order of nuclear density n0 = 0.17 fm−3, which leads to the nucleons and

electrons being highly degenerate.

The particles achieve equilibrium though the Urca processes (2.126). The neu-

trinos produced in these reactions only react weakly in the star and easily leave

it at low temperatures. Because of this neutrinos are often assumed to be non-

degenerate and the chemical potentials in the star satisfy

µe +µP = µN . (2.131)

Charge neutrality implies that ne = nP, which because ni ∝ k3
i implies that the

Fermi momenta of the electrons and protons are equal, ke = kP. This restriction

has two important effects. The electrons are relativistic and the protons are non-

relativistic implying that the chemical potential of the proton is much smaller that

of the electron. This further implies that the density of neutrons is much higher

than the electrons and protons, thus a neutron star. Assuming that the density of

the neutrons is that of nuclear matter then

kN = (3π2nN)
1/3 ≈ 340(n/n0)

1/3 MeV. (2.132)

Equating the electron and neutron chemical potentials yields

ke ≈
k2

N

2mN

≈ 62(n/n0)
2/3 MeV. (2.133)

In reality there is a correction to the non-interacting model due to the proton being

more bound than the electron. It is common in literature to assume a value of

ke ≈ 100(n/n0)
2/3 MeV, (2.134)

which is the value we will use through out the paper.

As the density of the star raises above 3n0 there is the possibility that K− con-

densates will appear [66]. As the density of the nuclear matter increases, the den-

sity of the electrons increases to a point where it becomes advantageous to decay

into negatively charged kaons though the process (2.128). The system reaches

equilibrium through the inverse process. These processes add an additional equi-

librium condition,

µe = µK . (2.135)
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Though negatively charged pions are lighter than kaons, they are unlikely to appear

until much higher densities due strong interactions in the dense medium increasing

the pion’s effective mass [64].

At around the same density as kaons appear, light hyperons and muons may

appear [64]. The existence of hadrons lowers the neutron density, which lowers

the ratio of neutrons to protons, making it possible for the direct Urca process to

proceed unsuppressed, and opens up processes such as Λ→ e−+P+ νe, which

are also not kinematically suppressed. These processes occur at about the same

rate as the direct Urca processes, so we will take the direct Urca process as a

reasonable substitute for them. The rate can then be adjusted by an integer factor

to compensate for additional processes. The appearance of muons has no effect of

our calculations as they are too heavy to couple to the current.

When the density gets high enough it is possible that the quarks deconfine—the

hadrons break down into their constituent quarks. The chemical potential for the

quarks in the star range from 300-500 MeV [71]. Because of this we will consider

only the existence of light quarks in the star, which attain equilibrium through the

quark Urca processes (2.129). The equilibrium conditions are

µu +µe = µd , (2.136)

µu +µe = µs , (2.137)

where, as in earlier cases, the neutrinos are not trapped and are not degenerate. The

quark matter must also be electrically neutral,

Q/e =
2

3
nu−

1

3
nd−

1

3
ns−ne = 0 . (2.138)

The simplest models assume that the quark masses are all zero, thus their Fermi

momenta are equal to their Fermi energies, and the predicted electron density is

zero. This, however, is not adequate as leptons do exist in the star. Room for

the electrons comes from the large mass of the strange quark. Though the up and

down quarks are relatively light, mu ∼ md ∼ 5− 10 MeV, the strange quark mass

is actually quite large, ms ∼ 100−300 MeV. The lower bound of the strange quark

mass is given by its current mass, whereas the constituent mass can be higher due

to the relatively low density of the dense star. Because of this large mass the strange

quark is nonrelativistic meaning there will be fewer of them and electrons must be

present to conserve charge. For this paper will will follow [67] by assuming that

the quarks are massless, ku ∼ ks ∼ kd ∼ kq, where

kq = (π2nb)
1/3 ∼ 235

(
nb

n0

)1/3

MeV , (2.139)
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where nb is the baryon number density. For typical densities in the core of the neu-

tron star the Fermi momentum is kq ∼ 400 MeV. We can approximate the electron

Fermi momentum using the fraction of electrons to baryons, Ye = ne/nb, which

yields

ke = (3Ye)
1/3kq . (2.140)

The electron fraction Ye has a complex relation between the mass of the strange

quark, the gluon coupling constant and the density of matter. The most sensitive

dependence is the sixth power of the strange quark mass, which as discussed can

vary by a factor of two. The highest values are Ye = 0.01 [67], whereas a free

quark estimate is Ye . 10−4 [72]. With interactions and a relatively low strange

quark mass the typical value for the electron fraction is Ye . 10−3 [60].

Superfluidity and Superconductivity

Being fermions, and subject to the Pauli exclusion principle, neutrons and protons

can only condense by forming pairs known as Cooper pairs. The wave function of

a Cooper pair is described as ψs1,s2
(R,r), where s1,s2 are the spin projections of

each particle and R and r are the centre of mass coordinate and orbital coordinates

respectively.

Cooper pairs orbit on the order of r ∼ 100 fm, which seems small, but is large

compared to the average distance of neutrons in the star. A Cooper pair is not

actually a pair of particles in the traditional sense, but is a pair in momentum space.

This pairing of fermions now makes a bosonic state which is no longer subject to

the Pauli exclusion principle. It is now possible for a number of Cooper pairs to

occupy the same energy state with a gap, ∆, in the energy spectrum. This ordering

is called a condensate and it occurs when the system has dropped below some

critical temperature Tc which changes depending on the particular baryon species.

For a Cooper pair this means that the amplitude of its wave function is coherent

over macroscopic distances and a large number of neutron pairs are described by

identical wave functions. The appearance of the energy gap is responsible for

the properties of the superfluid. Particle states now require a minimum energy to

excite and interact. Because it is a Fermi surface phenomenon superfluidity has

little affect of the equation of state, masses, and radii of the stars.

While there is no direct evidence that the core of a neutron star contains super-

fluid neutrons and superconducting protons, there are some compelling observa-

tions that point to a superfluid core. The first is the phenomena of glitches, sudden

increases in pulsar spin rate, that may be caused by a large number of superfluid

vortices simultaneously unpinning and transferring their momentum to the solid
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Figure 2.6: The superfluid transition temperature as a function of baryon density

for the dominant pairing state in protons and neutrons. The dashed line indicates

an extrapolation. This figure is modelled after Fig. 2 in [80].

crust of the star [73]. The second is the observation that Cassiopeia A is in a cool-

ing regime that can be described by the star’s core transitioning into a superfluid

state [74, 75]. Additionally, a good argument for superfluid cores can be made

based on experiments conducted on Earth and predictions from the BCS theory

of superconductors. Naively one can use the fact that neutron stars are very cold,

having a temperature T ∼ 109 K≪ Tfermi ∼ 1012 K, and that the transition temper-

ature for nuclear matter to condense here on Earth is Tc ∼ 10−3Tfermi [76]. For a

more accurate number we can look at the strength of the possible pairing states of

nuclear matter.

For fermions to form Cooper pairs, and in turn make a condensate, it is nec-

essary for there to exist an attractive force between them, no matter how small

[77]. Much work has been done studying the nucleon-nucleon interactions which

form Cooper pairs. The interactions can be determined by looking at the phase

shifts of free neutron scattering, which were discussed in the context of neutron

star interiors in [78]. As shown in Fig. 2.6 this data can be used to determine

what the dominant pairing interactions are at a given density. For neutrons at lower
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densities, where the momenta are lower, it is favourable to form zero angular mo-

mentum spin-singlet S = 0 states 1S0. At higher densities, and consequently higher

momenta, the L = 0 angular momentum S = 1 spin-triplet state 3P2 is favoured. For

protons it is thought that the 1S0 state dominates at all pairings [76, 79–81].

Though the strength of the interaction is not important in the formation of a

Cooper pair, it does give an indicator of the critical temperature of the nuclear

matter. Fig. 2.6 shows transition temperatures Tc & 0.5 MeV ≈ 510 K that are all

greater than the temperature the star at most phases of its life. But we should stress

that the pairing structure outlined in Fig. 2.6 is a rough outline. The exact details

of which pairing states exist in a neutrons star is still unknown. The nature of BCS

pairing is that Tc is exponentially proportional to the pairing strength and effective

mass of the particles. This makes it difficult to take terrestrial pairing strengths and

guesses of the effect nucleon masses to obtain a reliable value for Tc in the star.

There is also a possibility that if quark matter is the dominant state in the star

that it may be superconducting. Unlike protons and neutrons the number of flavours

and colours of quarks lead to many possible pairing states. In a compact star there

are up, down, and strange quarks that each have three colours leading to a 9× 9

colour-flavour matrix of possible pairings. A comprehensive review can be found

in [82]. The most symmetric paring configuration is where all three colours and

flavours contribute. This is called the colour-flavour locked (CFL) phase and is

thought do be favoured at high densities. At lower densities the strange mass starts

to stress CFL pairing and the 2SC phase, where two quark flavours of two colours

pair, may be dominant.

The presence of superfluidity can greatly affect the weak processes discussed

earlier [81]. The extreme degeneracy of the baryons only allows those near the

Fermi surface to participate in interactions. The strong interaction introduces an

attractive force between nucleons resting near the Fermi surface. When the star

has cools below the critical temperature Tc a gap ∆ appears in the energy spectrum.

The ground state of the system reorganizes itself such that no particle can have an

energy between EF +∆ and EF −∆. If the pairing interaction is strong enough this

gap suppresses interactions involving these nucleons and can render them inactive.

This has the effect of shutting off the Urca processes. At high densities such as

those in the core of the star and at temperatures near the critical temperature the

star is in a state were Cooper pairs are continually being formed and broken. This

process can contribute the to cooling of the star and is the focus of the results

in [74, 75] where it is believed that the increased cooling seen in Cassiopeia A is

caused by the onset of a superfluid phase. In Chapter 4 we will calculate the current

using the standard processes without taking into account the affects of pairing. As

we discuss in the next section we are interested in calculating the magnitude of the

current in regions of the star where the magnetic field has destroyed the superfluid
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proton state. We are also interested in calculating the currents in the core of the

star where the pairing is less likely to affect the interactions. Later when discussing

kick models we will be concerned with the time right after the stars birth where the

temperatures are very hot and superfluids are unlikely to form.

Structure of the Magnetic Field in a Neutron Star

In this thesis we will introduce the idea of a topological current that flows along

magnetic flux lines. Magnetic flux structure inside a neutron star is non-trivial. In

estimating the magnitude of the topological current in Section 3.2 we will simplify

this by considering what would happen if the flux were uniformly and continuously

spread throughout the star. The magnitude of the current in the entire star depends

only on the amount of flux, not its structure. The total current leaving the star would

be the same if some complex structure were present. Bunching flux lines would

simply mean there are smaller regions with stronger magnetic fields. However, it

is important to be aware of this non-trivial structure as it will be considered later in

Chapter 6 when we discuss applications of the current.

As discussed the protons are likely superconducting and the neutrons form a

superfluid. The magnetic field is large enough that it is favourable for the flux to

penetrate the superconductor, destroying the superconducting state in a small re-

gion, rather than being completely expelled. The Meissner effect forces the flux to

bundle into into either type-II vortices or type-I domains, which is often called the

intermediate state. It is generally believed that the protons form a type-II supercon-

ductor. The Landau-Ginzburg parameter κ = λ/ξ determines the type of supercon-

ductivity. Typically in a neutron star the London penetration depth is λ ∼ 120 fm

and the coherence length of the proton superconductor is ξ ∼ 30 fm. This creates a

ratio κ > 1/
√

2, which indicates type-II superconductivity. For a type-II supercon-

ductor the magnetic field will penetrate the star by destroying narrow regions of

superconductivity that each carry a single quantum of flux, Φ0 = 2π/q = 2 ·10−7

Gcm2. But there are problems with this picture [83, 84]. It is possible that the sys-

tem behaves as type-I superconductor even though the Landau-Ginzburg parameter

would suggest type-II behaviour [8]. The argument in [8] relies on the electromag-

netic interaction between current carrying vortices rather than altering the value of

the Landau-Ginzburg parameter κ .

If the intermediate state is realized in neutron stars the magnetic field distri-

bution will be again non-uniform, but the structure would be quite different. The

intermediate state is characterized by alternating domains of superconducting and

normal matter where the superconducting domains exhibit the Meissner effect,

while the normal domains carry the required magnetic flux. The pattern of these

domains is strongly related to the geometry of the problem, see [8] for details.
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While precise calculations are required for understanding of the magnetic structure

in this case one can give the following estimation for typical size of a domain as

suggested in [8, 85],

a∼ 10
√

Rλ , (2.141)

where R is a typical external size identified with a neutron star core (R ∼ 10 km),

while λ is a typical microscopical scale of the problem. Numerically a∼ 10−1 cm,

which implies that a typical domain can accommodate about 104 neutron vortices

separated by a distance 10−3 cm. While the field distribution for the intermediate

state and the type-II superconductor are very different one should anticipate that

the ratio of normal to superconducting regions are the same.

Regardless of the flux structure, there are two regions of the neutron star to

consider—those with magnetic flux and those without. The total units of quantum

flux can be estimated as

Nv ∼
πR2B

Φ0

∼ 1031B12, B12 ≡
(

B

1012G

)
. (2.142)

The region that a single unit of flux occupies has a radius equal to the London

penetration depth of the field λ ∼ 100 fm. This is multiplied by the number of

vortices Nv to get the total area. If we take a slice of the neutron star perpendicular

to the magnetic field we find that the ratio of the area occupied by flux tubes is

much smaller than the area occupied by the void,

Avortices

Astar

≃ Nvπλ 2

πR2
≃ πλ 2B

Φ0

≃ 10−3 ·B12 . (2.143)

This suppression essentially reflects the difference between typical magnetic field

B∼ 1012 G and the critical magnetic field Bc1∼ 1015 G when the superconductivity

is destroyed.

2.2.3 Pulsar Kicks

Various studies have found that pulsars general travel through space between 100−
1000 km/s while their progenitors, normal stars, travel around 30 km/s [86]. This

discrepancy indicates that at some time during the pulsar’s birth energy was asym-

metry imparted to push it up to speed. This asymmetric push is known as a kick.

There have been many attempts to determine the velocity distribution of pul-

sars. It is difficult to determine space velocities because we only see the proper mo-

tion of the pulsar, the angular path it traces through the sky. The analysis of [87]

favours a bimodal velocity distribution with peaks at 90 kms−1 and 500 kms−1

with 15% of pulsars travelling at speeds greater than 1000 kms−1. Alternatively
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[88] and [89] both predict a single peaked distribution with an average velocity of

∼ 400 kms−1.

The origin of these kicks is still uncertain. One of the ambiguities in con-

straining kick models is that there are very few correlations between the kicks and

neutron star properties. For example, the kick direction is currently uncorrelated

with the period or magnetic dipole strength, two of the main observational prop-

erties of the pulsar. But there does seem to be a correlation between the spin of

the pulsar and the direction of the kick. One method of determining the spin axis

comes from modelling pulsar wind tori that appear in Chandra X-ray data [90]. By

accurately modelling the torus formed around a spinning pulsar it is possible to

infer the spin axis. Another method is to use the rotating vector model discussed

in the introduction. Knowing the polarization of the radiation in the pulse and by

measuring how it sweeps across the sensor it is to determine the spin axis of the

star [91]. Both of these studies indicate that the spin axis and kick direction are

aligned.

The rotating vector model discussed earlier can be used to determine the angle

between the kick direction and the spin. The model does not always hold perfectly

because the polarization does not always align with the plane of curvature of the

magnetic field, but sometimes orthogonally. Though accounted for in [91], we will

discuss the study done in [92], which more directly focuses on this issue. As shown

in Figure 2.4 the line of sight, spin axis, and magnetic axis all rest in the same plane

are all aligned at the centre of the pulse. The polarization angle at this point will be

parallel, for regular emission, or perpendicular, for orthogonal polarization. They

pick measurements where the error in pulsar proper motion is under 15 degrees

and the polarization is under 20 degrees. They calculate the difference in these two

and discard those results with error larger than 25 degrees. After starting with a

data set of 233 [88] they are left with 24 pulsars. The plotted distribution of the

polarization minus the proper motion is peaked at 0 and 90 degrees. Assuming

that some pulsars prefer to emit orthogonal polarization and some normal, they

conclude that the spin axis and kick direction are very closely aligned.

Though there have been many attempts to explain kicks each mechanism has

its own problems [93]. The mechanisms fall into three basic categories: hydro-

dynamic kicks, neutrino kicks. Hydrodynamic kicks occur due to asymmetric

buildups of mass in the star during supernova. This asymmetry causes an off-

centre explosion that can kick the star. The original models could not kick the star

to velocities much higher than 100 km/s. Recent models that include neutrino lu-

minosities to drive the explosions have been more successful [94, 95] in reaching

the higher velocities observed. These models require maximum asymmetry due to

instabilities and neutrino energy to be artificially introduced and fail to intrinsically

predict the alignment of the spin and kick. Despite this they are appealing because
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they take advantage of the immense energy of the supernova, which we know exist.

Neutrino kicks arise because of the asymmetry in neutrino emission created by

the existence of a single spin state in the lowest Landau level of the electron. Be-

cause they only interact weakly neutrinos easily leave the star. The left-handedness

of the neutrino conspires with the electron stuck in the lowest Landau level to force

some neutrinos to leave the star in a preferred direction casing a kick. We will dis-

cuss these models in detail when we introduce the idea of topological kicks in

Chapter 5. The main problem with neutrino kicks is that they require temperatures

so high that the bulk of the star becomes opaque to the neutrino and it cannot es-

cape. To remedy this many models consider neutrinos only being emitted from a

thin shell on the surface of the star. Unfortunately, these models require very large

surface magnetic fields (∼ 1015 G) to get a large enough asymmetry. These models

however do predict the spin-kick correlation quite naturally.

The third category, electrodynamic kicks [96, 97], are less studied but deserve

mention. The off axis rotating dipole responsible for spin braking can emit radia-

tion that very gradually imparts an acceleration along the pulsar’s spin axis. This

effect naturally produces the spin-kick correlation, but requires sustained spin peri-

ods less than 2 ms and an initial spin period of less than 1ms to produce substantial

kicks. Pulsar birth spins are much greater than 1 ms, likely ruling this mechanism

out.

In Chapter 5 we will introduce the idea of topological kicks where we use the

topological kicks introduced in this thesis to generate the asymmetry required to

kick the star. Topological kicks get their energy from the chemical potential rather

than the temperature and avoid many of the problems that plague neutrino kicks.
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2.3 The AdS/CFT Correspondence

A hologram is a two-dimensional object that, when light hits it just the right way,

can produce a three-dimensional image. All the information for the extra dimen-

sion of the image is encoded in the two-dimensional object. It has been proposed

by Thorn, ’t Hooft, and Susskind that a similar connection exists between gravity

and quantum mechanics. More precisely, they state that a description of physics

in our universe with gravity in three spatial dimensions has an equivalent theoret-

ical description in two dimensions in which the laws are different and there is no

gravity.

The insight gained from these investigations is that the physics in a volume

of space can be alternatively, and completely, described by a different theory that

exists at lower dimensions on the boundary of that volume. As a crude example

imagine our universe was the fruit of an orange. Holography states that the laws

that govern the universe, the fruit, can be described by considering a theory that

lives on the boundary of the universe, on the peel of the orange. It looks noth-

ing like the theory that governs our universe, yet we can use it to derive similar

conclusions about our universe. We will discuss the most striking example of this

holographic principle, the conjecture of the AdS/CFT correspondence.

The AdS/CFT correspondence conjectures a connection similar in spirit to

those discussed above, but it is between 10-dimensional string theories and 4-

dimensional gauge theories. Two such theories are said to be dual to each other.

The first AdS/CFT correspondence was introduced by Maldacena [98], but since

then many models have been proposed. We are particularly interested in dual mod-

els in which one of the dual theories approximates the world we live in and the other

theory is easy to solve. These models have a parameter space such that string the-

ory can be effectively described by a familiar theory of gravity and the gauge theory

can be effectively described by hydrodynamics. These are known as fluid/gravity

correspondences and they will we the focus of our discussion.

There is a symbiotic relationship between these theories and the insight gained

is rooted in the fact that they are dual to each other via the AdS/CFT correspon-

dence. Their respective coupling constants scale inversely to each other, meaning

that doing perturbative calculations in the weak coupling limit of one theory can

give us non-perturbative results in the strong coupling limit of the other. This is

provided we have the dictionary between the two theories that give us a map be-

tween objects in both theories.

The fluid/gravity correspondence provides us with an exceptionally powerful

tool for calculations and provides an interesting connection between two seemingly

disconnected fields. It is analogous to a giant Laplace transform for field theories

where, when confronted with a difficult problem, we can switch to a space where
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the calculations can be carried out, then the results are translated back into the

language of the original problem.

The goal of this section is to introduce the AdS/CFT correspondence by show-

ing how it can be used to explore the universal properties of matter. The even-

tual aim of such a program is to do calculations in the strongly coupled regimes

of quantum chromodynamics (QCD), relevant to describe for example the quark-

gluon plasma produced in relativistic heavy ions collisions. Using gravity at weak

coupling to calculate hydrodynamic properties has been successful in yielding the

shear viscosity to entropy density ratio of the strongly coupled quark-gluon plasma

created in RHIC collisions [99],

η

s
=

1

4π
. (2.144)

The key to doing this calculation was the observation that the long distance dy-

namics of any interacting quantum field theory near thermal equilibrium is well

described by a relativistic fluid equation. In this introduction we will discuss what

the AdS/CFT correspondence is in a more technical terms and show how it can be

used to calculate dynamic properties of gauge fields [100].

2.3.1 Motivation for Studying the Correspondence

The motivation for studying the fluid/gravity correspondence is the observation of

a quark-gluon plasma at the Relativistic Heavy Ion Collider (RHIC) Brookhaven.

The plasma is created by smashing gold nuclei into each other at velocities with a

gamma factor of about 100. In this collision the individual protons and neutrons

that make up the gold ion break into their constituent quarks creating a hot soup

of particles made of quarks and gluons. These quarks quickly rejoin in a spray

of mesons and hadrons that are observed in particle detectors. At extremely high

temperatures QCD enters a new phase in which the quarks and gluons become

a free gas. But at the temperatures accessible by RHIC the quarks a gluons are

still strongly coupled and the plasma they form is difficult to describe theoretically

because perturbative techniques do not work.

This strongly coupled quark-gluon plasma is modelled as a relativistic hydro-

dynamic system. The shape of the plasma that appears after a collision has to do

with how squarely the gold ions hit each other. Consider the plane perpendicular to

the collision axis where the ions are essentially circles. A head-on collision would

create perfectly circular region filled with plasma. An off-centre collision would

create an almond shaped plasma (imagine the intersection of two circles in a Venn

diagram). By studying how the particles form from the plasma of the off-centre

collisions it is possible to study the elliptic flow of this almond shaped plasma as
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it dissipated and infer hydrodynamic properties of the plasma. These properties

generally fall into two categories, static and dynamic.

The static properties are those concerned with the system in thermal equilib-

rium, such as the entropy density, and are handled well using lattice QCD. The dy-

namic properties of the system, such as shear viscosity, must be treated are not han-

dled well using lattice QCD. Dynamic properties require the use of a Minkowski

formalism, rather than the Euclidean formalism inherent to lattice QCD.

2.3.2 Argument for the Correspondence

The AdS/CFT correspondence we will discuss is the classic example between type

IIB string theory on AdS5×S5, a 10-dimensional theory of gravity, and N = 4

supersymmetric Yang–Mills (SYM), a 4-dimensional gauge theory. As we are in-

terested in the correspondence as a tool we will focus calculations using the theory

rather than the origin of the theory. We will give a short introduction here, but

those readers interested in a comprehensive review should read [101]. This is dif-

ferent than the simple AdS/CFT correspondence we will develop in Chapter 7, but

it should acquaint the reader rather well with the basic concept.

Crucial to the understanding of the correspondence is the identification of two

very similar objects, Dp-branes and p-branes. The first formulations of string the-

ory considered only excitations of string-like objects. A string can be open with

loose ends wiggling at the speed of light, or closed, where the excitations are peri-

odic. A renaissance occurred when it was realized that there existed membrane-like

objects with spatial dimension p that open strings could end upon with Dirichlet

boundary conditions, thus the moniker Dp-brane. A D0-branes is a single point,

a D1-brane is a line, and so on. The D-brane is also a source for closed strings to

propagate from.

The massless modes of the open strings that end on D-branes describe the os-

cillations of the brane and the gauge field that lives on it. The boson degrees of

freedom of the Dp-brane can be described with a p+1-form gauge potential. An

example is a D0-brane, a point particle, can be described by a one form gauge

potential, which one might recognize as something similar to electromagnetism.

As shown in figure 2.7, if there are N coincident Dp-branes a string has N places

to start and end upon. It turns out that the low energy dynamics of such strings

is described by a U(N) gauge theory. These p+ 1-form gauge fields have p+ 2-

form field strengths. In the presence of D-branes these field strengths contribute

to the stress energy tensor, which curves the geometry of the spacetime. This is

associated with closed string modes.

The other object we must consider is the p-brane. Initially p-branes were in-

troduced as solitonic solutions to supergravity, the merger of supersymmetry and
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Figure 2.7: A stack of N D-branes with open strings attached to them. The ends of

the open strings are confined to the D-branes. Away from the D-branes is a closed

string drifting in spacetime.

general relativity. Supergravity is also the low energy limit of string theory. The

p-brane solutions often have horizons where the singularities are not just points,

but could be extended objects like lines. The solutions are often called black p-

branes. It was found that a certain set of these solutions, called extremal solutions,

are actually equivalent to the low energy limit of D-branes in string theory.

We are now at least conceptually prepared to discuss the correspondence that

arises from 10-dimensional type IIB string theories. The II implies that the theory

contains only closed string configurations. Open strings must be attached to D-

branes. The B indicates that the theory contains p = odd solutions and is a chiral

theory. Consider the string theory formed by stacking N D3-branes on top of each

other. Such a system can be thought of in two ways, one as a quantum field theory

and one as a gravitational theory that curves space. On the field theory side there

are two parameters—the number of colours N (i.e., the rank of the gauge group

SU(N)) and the gauge coupling g. When the number of colours is large perturba-

tion theory is controlled by the ’t Hooft coupling λ = g2N. On the string theory

side the parameters are the string coupling gs, the string length ℓs =
√

α ′, and the

radius R of the AdS5 space, which is proportional to N1/4, where N is also the

number of branes.
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D-Branes as Gravity

We will start by considering the gravity side. A single Dp-brane has a mass

MD3 =
1

(2π)3ℓ4
s gs

, (2.145)

which is inversely proportional to the string coupling. It is a non-perturbative ob-

ject in the weak coupling limit. Vice-versa, at strong coupling Dp-branes become

light and a large number, of order N ∼ 1/gs, are required to have a sizeable grav-

itational effect. The Dp-brane is also charged under a (p+1)-form potential with

a charge Q equal to its tension resulting in the BPS bound being saturated.2 In a

supersymmetric theory saturation of the bound means that half of the supersym-

metry is preserved and the other half is broken. Most importantly, it means that

the configuration is stable. In our case this implies that we can stack an arbitrary

number of Dp-branes and the configuration will remain stable. The mass of a black

hole scales as M ∼ N2 ∼ 1/g2
s so stacking N branes creates a background with a

black brane equivalent of a black hole.

We can now look at these stacked D-branes from the low energy limit, which

is a supergravity. The object we are interested in is a D3-brane, which is a 3+ 1-

dimensional plane in a 9+1-dimensional space. We start by looking at the p-brane

solution. The solution to the equations of motion of type IIB supergravity for a

black 3-brane [102, 103] is the metric

ds2 = H−1/2
(
− f dt2 +dx2 +dy2 +dz2

)
+H1/2

(
f−1dr2 + r2 dΩ2

5

)
(2.146)

where

H(r) = 1+R4/r4 and f (r) = 1− r4
0/r4, (2.147)

and the Ramond–Ramond 5-form

F(5) =−
4R2

H2r5
(R4 + r4

0)
1/2(1+∗)dt ∧dx∧dy∧dz∧dr. (2.148)

The Ramond–Ramond 5-form, F(5), is self dual and couples to the D3-brane, and

the dilaton field Φ is constant. Since gs = eΦ we are free to choose any value for

the string coupling. Note that we have chosen a solution that has an event horizon

at r0 and thus a black hole (black brane). The extremal solution when this becomes

equivalent to a D3-brane is given by setting r0 = 0. By comparing the low energy

limit of the string theory with general relativity it is possible to rewrite the string

parameters in terms of gravity parameters 16πG = (2π)7g2
s ℓ

8
s .

2The BPS bound is in general M ≥ Q.
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Figure 2.8: This is a representation of ds/dr, the radial part of extremal p-brane

geometry (2.146), multiplied by −1 for aesthetics. The throat geometry at r≪ R

and the flat spacetime at r≫ R are apparent.

An important aspect of our discussion is the asymptotic behaviour of the metric

(2.146) as shown in Fig. 2.8. The radius of curvature defines two regions which will

be important in the discussion. When r≪ R, known as the near horizon limit, the

geometry has a funnel-like shape called a throat. Far away form the centre at r≫ R

the spacetime becomes flat. That there are these two separate regions, a throat

and a flat space with type II supergravity, become important when establishing the

correspondence.

The spacetime (2.146) above has an AMD mass, which is a quantity defined

similarly to the charge found using Gauss’s law in electrodynamics. It reflects the

total contribution of the stress-energy to the curvature of the spacetime. The ADM

for this spacetime has been calculated to be

MADM =
2π3

8πG10

R4 =
R4

32π4g2
s ℓ

8
s

, (2.149)

where we have written MADM in terms of string parameters for comparison.

The final step is to associate the ADM mass of this black brane (black hole)

with the mass obtained from the string tension of N D3-branes, MD3 = MADM. We

get the relation

R4

ℓ4
s

= 4πNgs , (2.150)

where remember that ℓ2
s = α ′. This is the first step in building the AdS/CFT dic-

tionary between gravity variables and field theory variables.
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D-Branes as Field Theory

We have considered low energy limit of string theory with N D3-branes. The de-

scription from this is that of a supergravity described by solitonic solutions called

3-branes. Another relationship between parameters comes from considering the

gauge theory created by open strings attached to Dp-branes. The massless spec-

trum of the open strings on the Dp-brane is that of the maximally supersymmetric

(p+1)-dimensional gauge theory with gauge group SU(N) for N stacked branes.

In the case of D3-branes the field theory is four-dimensional N = 4 supersymmet-

ric Yang-Mills (SYM), which is a gauge theory that has a gauge field, six real scalar

fields, and four Weyl fermions [104]. The supersymmetric charge N the number

of independent supersymmetries and is a indicator of how many superpartners a

particle has. The most familiar is N = 1 supersymmetry, which is considered a

possible solution to the hierarchy problem in the Standard Model. For our discus-

sion we will only be concerned with the gauge field of the theory. The particle

content and supersymmetric aspects will be largely ignored in our discussion.

The effective action of the Dp-brane is the Dirac–Born–Infeld (DBI) action

that, when expanded at first order in α ′, yields the usual Yang-Mills action in the

large N limit plus other terms we will ignore,

SND3 ≃
1

4πgs

Tr

∫
d4x

(
1

2
(Fµν)

2 + dilation and fermion terms

)
. (2.151)

By identifying of the coefficient of the gauge kinetic term as the Yang-Mills action

we get the gauge coupling of Yang-Mills in terms of string theory parameters,

g2 = 4πgs . (2.152)

In this picture the D-branes also act as a source of closed strings. These closed

strings propagating away from the D-branes form a type IIB supergravity. We have

established another way to look at string theory as N D3-branes stacked together

to form a gauge theory, which also sources closed string that from a supergravity

in a flat background far away from the branes.

Absorption in Two Pictures

We have discussed two pictures of D-branes. In one picture the open strings on the

D-branes form a field theory while far away from the brane closed strings form a

supergravity. In the other picture an extremal p-brane that is identified as the low

energy counterpart to a Dp-brane, forms a black hole. Far away from this black

hole the spacetime is flat and contains a supergravity. In fact, it is is the same
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supergravity that appears in the both pictures: closed strings propagating in 10-

dimensional flat spacetime. This comes about because of the equivalence between

p-branes and D-branes.

An interesting aspect of these two pictures is that one can calculate the absorp-

tion cross section of both the black hole geometry, called the throat, and the N D3-

branes from the surrounding 10-dimensional supergravity. We follow the discus-

sion found in [105]. The absorption cross section from the throat geometry is done

in a regime where stringy corrections are suppressed such that R4/ℓ4
s = g2

Y MN≫ 1

and the theory looks like a classical gravity theory. The cross section obtained from

this is

σthroat =
π4

8
ω3R8 . (2.153)

The cross section from of the stack of D-branes is calculated by using DBI ac-

tion from earlier and doing perturbative dilaton-photon interactions in the ’t Hooft

coupling, which implies λ = g2
Y MN≪ 1. This process gives

σND3 = 2π6g2
s N2ℓ8

s ω3 . (2.154)

Using the string relationships derived earlier it can be shown that these absorption

cross sections are identical. Though the details of calculating these cross sections

are beyond the scope of this thesis, one aspect is important. Each of these cross

sections was calculated in different regimes of the ’t Hooft parameter. The super-

gravity result was calculated in the supergravity approximation at strong ’t Hooft

coupling The D-brane calculation was done at weak ’t Hooft coupling. This cu-

riosity provided the motivation for the conjecture of the duality.

The Decoupling Limit

Maldacena took the similar cross sections as evidence that the theories where

linked in some way and proposed the decoupling limit. If one takes the R, α ′→ 0

while keeping the ’t Hooft coupling λ = R4/ℓ4
s = 4πgsN = constant, the absorption

cross sections go to zero σ → 0.

Each of our two pictures now has two decoupled theories. From the point of

view of the open strings on N D3-branes we have a four-dimensional N = 4 SYM

field theory decoupled from closed strings away from the D-branes that form a

type IIB supergravity. In the supergravity picture there exists a throat geometry

containing a black hole and closed strings that is decoupled from a supergravity in

flat space far away from the black hole. In this limit the theory of gravity in the

throat becomes

ds2 =
r2

R2
(−dt2 +dx2 +dy2 +dz2)+

R2

r2
dr2 +R2dΩ2

5. (2.155)
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Figure 2.9: An illustration of where N = 4 SYM lives on AdS5 space. The 4

dimensions of the gauge theory (t,x) live on the boundary of the AdS5 space at

r = ∞.

which is the geometry of 5 dimension Anti de-Sitter space crossed with the 5

sphere, AdS5×S5.

The two pictures share a decoupled theory, that of type IIB supergravity. It

is natural to identify the other two theories. This leads to the conjecture that

four-dimensional N = 4 supersymmetric Yang-Mills is equal to (dual to) five-

dimensional AdS5 spacetime. The first thing that one might notice about such a

conjecture is that the two theories have a different number of dimensions. In terms

of the correspondence the gauge theory lives on the 4-dimensional boundary, lo-

cated at r = ∞, of the 5-dimensional AdS5 space. This relationship is illustrated in

Figure 2.9. The gravity theory dual to this field theory extends into the bulk of the

AdS5 space where r < ∞.

For the gravitational description of string theory to be valid we require for the
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Table 2.1: Summary of the corresponding elements that appear in our duality.

bulk boundary

AdS/CFT type IIB string theory

on asymptotically

AdS5×S5

N = 4 SYM on S3×
R

1 or with a Poincaré

patch R
3×R

1

effective description Einstein equation

with cosmological

constant

relativistic fluid dy-

namics

known static solutions black hole or black

brane in AdS

static configuration

of a perfect fluid

perturbation non-uniformly evolv-

ing black branes

dissipative fluid flow

two dimensionless string parameters that

R

ls
=

R√
α ′
≫ 1 and gs≪ 1, (2.156)

where the ratio between the curvature scale for the string background R and the

string length ls to be large (to suppress stringy effects), and simultaneously we

assume the string coupling to be small (to further suppress quantum effects).

The equivalent of the gravitational limit in terms of fundamental parameters for

the conformal field theory, the ’t Hooft coupling λ and the Yang–Mills coupling g,

is given by the correspondence

{
R2

ℓ2
s

,4πgs

}
⇋

{
λ = g2 N,g2

}
. (2.157)

Therefore the suppression of stringy and quantum effects on the boundary requires

that

λ ≫ 1 and
λ

N
≪ 1, (2.158)

and that both λ → ∞ and N → ∞. This is the ’t Hooft limit with λ → ∞. We can

see that holding λ constant and varying N causes 4πgs = g2 to vary inversely. This

is where the advantage gained by the correspondence. In the large N limit, when λ

is large, the gauge theory is strongly coupled. At the same time gs is small and the

stringiness is suppressed such that we can use the low energy approximation, type

IIB supergravity, to do calculations.
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The fundamental ideas behind the conjectured correspondence are outlined in

Table 2.1. We will now move on to discuss some of the details of the dictionary

between CFT operators on the boundary and field configurations in the bulk.

2.3.3 The Operator-Field Relationship

Now that the conjecture has been established we can see how it might be useful in

calculating properties of matter. It would be particularly useful to be able to use

the gravity theory to somehow calculate two-point functions in field theory. This

requires a relationship between operators and field theory and some object (fields)

in the gravity theory. The original operator-field relationship was made using the

Euclidean formalism [106, 107]. The gauge-gravity correspondence states that a

retarded two-point correlation function in gauge theory can be calculated by taking

derivatives of the generating functional of its dual gravity theory. On the gauge side

the sources J(x) are coupled with operators O(x). On the gravity side there is a field

φ that is dual to the operator O(x). The correspondence says that the expectation

value of the operator is equated to the value the field on the gravity side takes

on the boundary of the theory. Technically this means that the derivatives on the

generating functional that are usually taken with respect to the source J(x) and now

taken with respect to φ0 = φ(r = ∞).
This idea can be written more formally as

Zgauge[J(x)O(x)] = Zgravity[φ ]

∣∣∣∣
φ0→J

, (2.159)

where Zgauge and Zgravity are the partition functions of the dual gauge and gravity

theories. Now it is clear that when we find gauge field correlation functions by

taking functional derivatives with respect to the sources J that couple to our desired

operator, that on the gravity side we actually take these derivatives with respect to

the scalar field at the boundary φ0. This is a non-trivial statement, and it is true

that there is a one-one mapping between sources J and boundary conditions of the

scalar field φ0.

For example, to calculate two-point correlation functions one takes two deriva-

tives of the generating function. The correspondence tells us to take two derivatives

of the generating function on the gravity side,

G(x− y) =−i〈TO(x)O(y)〉= δ 2

δJ(x)δJ(y)
Zgravity[φ ]

∣∣∣∣
φ0→J

. (2.160)

Because there are only two derivatives with respect to φ0 we are only required

to consider the AdS action up to the quadratic order when looking for two point
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functions on the CFT side. After equating the sources and the field at the boundary,

J is still set to zero, as in the regular method of finding correlation functions, and

any higher terms in the action will vanish.

Discussion of the quark-gluon plasma often requires a Minkowski formalism

[99, 108, 109]. It might not be clear why a Minkowski formalism is needed when

the Euclidean one is so successful, especially when the Euclidean results can be

analytically continued by Wick rotation to get the Minkowski result. The method

of Wick rotating only works in systems in thermal equilibrium. The Euclidean

method, though generally easier to work with, runs in to a problem when we

want to calculate quantities that are slightly out of equilibrium. To calculate non-

equilibrium quantities retarded and advanced Green’s functions are required. To

find these Green’s functions it is necessary to take the low frequency limit. In

the Euclidean formalism the Euclidean time becomes periodic in the temperature.

When the Euclidean Green’s function is Wick rotated back to make a retarded or

advanced Green’s function, only discrete frequencies, the Matsubara frequencies,

will survive. The lowest of these frequencies is already 2πT , too large to be use-

ful, so it is necessary to calculate the retarded Green’s function directly from a

Minkowski formalism. Working in the Minkowski formalism requires a different

definition of the Green’s function to ensure that the retarded Green’s function is

imaginary.

2.3.4 Calculating Thermal Properties from Gravity

We will provide a quick sample calculation using the correspondence to give the

reader a feel for the technique. We will follow the work done in [99, 100, 108, 109].

To calculate thermal properties it is necessary to look at the non-extremal black 3-

brane metric is a solution to the type IIb equations of motion. As discussed, at low

energy this has the form

ds2 = H−1/2
(
−hdt2 +dx2 +dy2 +dz2

)
+H1/2

(
h−1dr2 + r2dΩ2

5

)
, (2.161)

where H(r) = 1+R4/r4 and h(r) = 1− r4
0/r4. This solution is slightly different

that the earlier one in that the event horizon explicitly appears in the metric at r = r0

as a measure of its non-extremalness. As we will determine later a nonzero value

for r0 is associated with the Hawking temperature of the system, which through

the correspondence is equal to the temperature of the field theory. A non-extremal

3-brane is dual to a finite temperature field theory. As discussed, for the AdS/CFT

correspondence to work we need to take the near horizon limit of this metric, r≪R,

which technically amounts to ”dropping the 1” in H(r). Dropping the 1 yields

ds2 =
r2

R2

(
−h(r)dt2 +dx2 +dy2 +dz2

)
+

R2

r2h(r)
dr2 +R2dΩ2

5 . (2.162)
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As discussed earlier this kind of metric gives rise to actions for the scalar field φ of

the form

S = K

∫
d4xdr

√−ggµν∂µφ∂νφ + ... , (2.163)

where the coefficient K = −π3R5/4κ2
10 comes from the normalization of the dila-

tion field. The constant κ10 =
√

8πG is the ten-dimensional gravitational constant.

Using the parameter matching discussed in the introduction it can be rewritten as

κ10 = 2π2
√

πR4/N. Substituting this in gives K = N2/16π2R3.

Entropy Density

Here we can get our first result from the AdS/CFT correspondence. The Hawking

temperature is determined by the even nearer horizon behaviour which is found by

Taylor expanding around r2h(r) around r0 to find r2h(r) ≃ 4r0(r− r0). Ignoring

the spherical part of the metric and focusing on the t and r part we get

ds2 =−4r0

R2
(r− r0)dt2 +

R2

4r0(r− r0)
dr2 . (2.164)

We can change coordinates r = r0 +ρ2/r0 to make the metric non-singular,

ds2 =
R2

r0

(
dρ− 4r2

0

R4
ρ2dt2

)
. (2.165)

Performing a Wick rotation t → iτ and letting θ = 2r0R−2τ it’s clear that we’re

dealing with a metric that is proportional to the flat metric expressed in polar coor-

dinates,

ds2 =
R2

r0

(dρ +ρ2dθ 2) . (2.166)

We want to interpret the black hole horizon as a regular origin where locally we are

unable to detect any curvature, unlike if we had a conical singularity. To avoid a

conical singularity we make it flat near the origin by identifying θ = 0 with θ = 2π

such that θ ∼ θ +2π . The Euclidean time τ in thermal field theory is also periodic,

but in the inverse temperature τ ∼ τ +1/T . So, going around the origin once gives

us the relation

2π =
2r0

R2

1

T
⇒ T =

r0

πR2
, (2.167)

which defines the Hawking temperature. It is the Hawking temperature on the grav-

ity side that we associate with finite temperature in N = 4 SU(N) SYM theory.
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Calculating the entropy of the black hole using the Bekenstein-Hawking for-

mula we can find the entropy in N = 4 SYM by converting the parameters accord-

ing to the AdS/CFT prescription outlined in the introduction. The horizon lies at

t =constant and r = r0 or u = 1. The area of this surface is

A =
∫

d3xd5Ω
√

g . (2.168)

The determinant of the metric is
√

g = r3
0/R3 and the area of the five sphere is π3R5

and the V3 =
∫

d3x is an infinite spatial volume leaving

A = π3r3
0R2 . (2.169)

We can rewrite Newton’s constant as

G =
π4R8

2N2
, (2.170)

so the entropy becomes

S =
A

4G
=

π2V3N2

2

( r0

πR2

)3

(2.171)

=
π2

2
V3N2T 3 , (2.172)

where we have used the formula for the Hawking temperature and V3 is the three-

dimensional volume. This result is 3/4 the value of the entropy density found in

the weak coupling regime where the ’t Hooft coupling is zero . A difference is to be

expected when dealing with a strongly coupled plasma. What is very interesting is

that similar deviations are found in lattice QCD calculations. For those interested

in further reading I suggest [103] and [110]. This is a static property though and

we did not need to use the Minkowski formalism. We still haven’t calculated a

dynamic property.

Shear Viscosity

To calculate a dynamic property we want to use the Minkowski formalism. We

follow the work of [99, 100, 108, 109] To do this we still want to work in the

near horizon limit (“dropping the 1”). The first step is to the coordinate change

u = r2
0/r2,

ds2 =
(πT R)2

u
(−h(u)dt2 +dx2 +dy2 +dz2)+

R2

4u2h(u)
du2 +R2dΩ2

5 , (2.173)
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where we have used the Hawking temperature to rewrite the metric in terms of

thermal quantities. We see that the event horizon occurs at u= 1 and spatial infinity,

the boundary of the space, occurs at u = 0. Based on the Minkowski prescription

we want to find low frequency solutions to the equations of motion of this space.

This will give us the what we need to calculate the Green’s function on the CFT

side. As found in Appendix A.1 the equation of motion is

∂µ
√−g(gµν∂ν)φ = 0 , (2.174)

where µ,ν run over all coordinates.

The AdS/CFT correspondence says that the operators in the CFT side live at

the boundary of the gravity theory. To find a solution we need to impose boundary

conditions on the gravity side. We use separation of variables to write the solution

of the equation of motion with the boundary condition φ(k,r = 0) = φ0(k) as

φ(k,r) = fk(r)φ0(k) , (2.175)

where fk(r) is the called the mode function.

To proceed two results are needed. The quark-gluon plasma can be thought of

as a relativistic hydrodynamic system. The shear viscosity η is a hydrodynamic

property that can be described by the Kubo formula discussed in appendix A.2,

η =− lim
ω→0

1

ω
Im GR(k,ω) . (2.176)

The second result is the form the Green’s function takes in the Minkowski field-

operator relationship (2.160). The details from deriving the relationship are given

in appendix A.1. The relationship itself is

GR(k) =−2F(k,r)

∣∣∣∣
rB

. (2.177)

where,

F(r,k) = K
√−ggrr f ∗k (r)∂r fk(r)

= F(r,−k)∗ , (2.178)

We can now calculate a dynamic quantity of a strongly coupled hydrodynamic

system using the AdS/CFT correspondence. Note that we discarded contributions

to (2.177) from the horizon r = rH and we will consistently do so throughout the

calculation.
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Using the black three-brane metric 2.173 with the equation of motion 2.174

with these boundary conditions we get the mode equation

f ′′k −
1+u2

uh(u)
f ′k +

w
2

uh(u)2
fk−

k
2

uh(u)
fk = 0 , (2.179)

where prime is a derivative with respect to u and we have defined

w=
ω

2πT
and k=

k

2πT
. (2.180)

The mode equation is second order differential equation with a singular point

at u = 1. When solving such equations the first thing we want to do is find the

behaviour of the singularity. If we substitute

fk = (1−u2)αH(u) (2.181)

into the mode equation we find that has α has two possible values α = ±iw/2.

This is unlike the Euclidean case were it only takes one value. We are left with a

differential equation for H(u) which is impossible to solve analytically. A power

series representation for H(u) in w and k
2 can be found perturbatively,

H(u) = 1+
iw

2
ln

2u2

1+u
+ k

2 ln
1+u

2u
+ ... . (2.182)

We will make a low frequency ω ≪ T low momentum k≪ T approximation and

disregard everything but the first term, H(u)≈ 1.

We now have to make an interesting decision. Our solution for the wave func-

tion fk has two possible values and we must choose which is correct. The two

solutions can be written in form more conducive to our argument by doing the

coordinate transformation

r∗ =
ln(1−u)

4πT
. (2.183)

Restoring the phase e−iωt yields

e−iωt fk = e−iω(t+r∗) , (2.184)

e−iωt f ∗k = eiω(t−r∗) , (2.185)

which take the form of plane wave solutions. The horizon lies lies at r∗ = 0 of the

new coordinate system. The first solution corresponds to a wave moving toward

the horizon, an incoming wave, and the second solution is a wave moving away

from the horizon. The choice of which solution to discard is simply motivated by

the fact that nothing should leave the horizon. This leaves us with one solution,

fk(u) = (1−u2)−iw/2 . (2.186)
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Changing variables back to u = r2
0/r2 we get

fk(r) =

(
1− r4

0

r4

)−iw/2

= h(r)−iw/2 . (2.187)

Using the incoming wave solution for fk(r), −K = N2/16π2R3,
√−g = r3/R3 for

the determinant of the metric, and grr = r2h(r)/R2 we find that

K
√−ggrr =−N2r5h(r)

16π2R8
, (2.188)

and the kernel (2.178,A.8) of our action becomes

F(r) =−N2r5h(r)

16π2R8
f−k(r)∂r fk(r) . (2.189)

Recognizing that f−k = f ∗k and substituting in the incoming wave solution we find

that

F(r) = iω
πN2

16T

( r0

πR2

)4

(2.190)

= iω
πN2T 3

16
. (2.191)

We now use the conjectured relationship (2.177), where as discussed we have

thrown out the contribution form the horizon, to calculate the Green’s function,

GR(k) = −2F(k,r)

∣∣∣∣
r=∞

(2.192)

= −iω
πN2T 3

8
. (2.193)

We use the Kubo formula for shear viscosity (2.176) to get

η =
πN2T 3

8
, (2.194)

the shear viscosity of N = 4 SYM, where N is the number of colours and T is the

temperature.

The Shear Viscosity to Entropy Density Ratio

We have calculated two thermal properties in N = 4 SYM using the AdS/CFT

correspondence - the entropy (2.171) and the viscosity (2.194). If we write equa-

tion (2.171) in terms of the entropy density s = S/V3 then the entropy and viscosity

have, up to a constant, identical forms. The ratio of the two is

η

s
=

1

4π
=

h̄

4πkB

(with dimensionality restored) . (2.195)
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This ratio has been shown to be true for all thermal field theories in a regime to be

described by gravity duals. Corrections to this have been calculated in [111] for

N = 4 SYM and are shown to be positive. It is natural then to conjecture a bound,

η

s
≥ 1

4π
. (2.196)

This implies that a fluid with a finite entropy density can never truly reach zero

viscosity.

The lower bound is quite small compared to the most substances. For exam-

ple water has η/s ≈ 380/4π . One place to look where the bound should break

down is in superfluids. Superfluids flow without dissipation, which implies zero

viscosity. However, any superfluid describes by the Landau effective theory actu-

ally has a shear viscosity, which is the property being bounded in the conjecture.

For superfluid helium the shear viscosity has been measured in a torsion-pendulum

experiment and the ratio η/s remains at least 8.8 times larger than the minimum

value of h̄/4πkB ≈ 6.08× 10−13 Ks for all ranges of temperatures and pressures.

Numerical models indicate that the shear viscosity quark-gluon plasma at RHIC is

very close to, but still above this bound. Further discussion on universality can be

found in [112], [100] and [113].
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Chapter 3

Topological Currents in Dense

Matter

We are now ready to discuss the central ideas of the thesis. The goal of this section

is to formally introduce topological vector currents and discuss what is required

for these currents to appear in matter. Our motivation comes from the possible

application of topological currents to the physics of neutron stars. In previous

work it [8] was suggested that the presence of topological currents could cause

the formation of a type-I superconductor in the neutron star. We will see that the

neutron star is an ideal system for the current. Critical to the topological vector

current is the existence of parity violation in the system. The weak interaction,

which strongly violates parity, is a natural source for the required asymmetry and

is where we focus our attention.

We will start with two derivations, one using the chiral anomaly and one using

index theorems, which will illuminate two important aspects of the current. First,

boundary conditions of the system are important for manifesting the current in a

physical system. Second, the current can be understood on a microscopic level

by counting the particles that contribute to the current. We will see that both of

these concepts are critical for finding a reasonable estimate for the current in dense

matter and how a current would flow in the neutron star. Another aspect of the

current illustrated by both of these derivations is that the current has a topological

character and that the phenomenon is quite robust. The interior of a neutron star is

hostile and we will go through great lengths to describe how the current can survive

in the star without being washed out.

In nuclear matter we will assume that electrons are the only reasonable charge

carrier because all other charged particles in the star are too heavy. The particles in

a neutron star attain equilibrium through the weak interaction, which creates pre-

dominantly left-handed particles. This creates an intrinsic difference in the num-

ber of left-handed and right-handed electrons. In an infinite system this imbalance

would disappear—the average helicity of the electrons would be washed out due

to the inverse weak P-violating processes. The key is that the neutron star is a

finite system and electrons are removed from the star by the current before they

can decay. The asymmetry that created the current is allowed to propagate to the
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surface and not get washed out.1

This topological current corresponds to the lowest energy state in the thermo-

dynamic equilibrium when µl 6= µr is held fixed. In reality there is a tendency for

µl and µr to equilibrate though weak interactions; however, due to the finite size of

the system a complete equilibrium cannot be achieved. This is analogous to how

neutrinos in cold stars can leave the system without further interactions, but unlike

with neutrinos the electron chemical potential does not drop to zero. The induced

current only remains non-dissipating when the system is degenerate, µ≫ T . In the

star’s crust this condition becomes invalid, the current will become dissipative and

the trapped electrons will return into the system.

In the following subsections we will discuss the structure and processes of

dense matter, formally derive the topological current, and discuss in greater detail

how the magnitude of the current can be estimated.

3.1 Topological Vector Currents

The purpose of this section is to explicitly derive the form of the vector current.

We will do this two ways: one using the anomaly and one using index theorems.

The methods compliment our understanding of the current. The derivation using

anomalies approaches the current from a effective field theory point of view using

fictitious fields to generate the necessary terms. The index theorem derivation ap-

proaches the current from microscopic point of view, counting each mode of the

Dirac equation that contributes. Even with these approaches are quite different they

are linked by the intimate relationship between anomalies and indexes.

3.1.1 Derivation Using the Axial Anomaly

The first derivation will involve effective action created by considering a fictitious

axial field Aµ = (µ5,0,0,0), where 2µ5 = µL− µR is the axial chemical potential

and a regular U(1) vector field V µ . In subsection 2.1.3 we used the path integral

approach to show that the axial current becomes anomalous in the presence of

a regular U(1) vector field. We will use the same mechanics to show that the

presence of an axial field causes the vector current to become anomalous.

1Here and in what follows we neglect all QED re-scattering effects, which are much stronger

than weak interactions but they are P-even and, therefore, cannot wash out the produced asymmetry.

This is discussed in detail in Section 3.2. Because of the large magnetic field the electron only travels

in the direction of the magnetic field while the motion in transverse directions confined to Landau

levels. The term “mean free path” in this paper implies the weakly interacting P-odd “mean free

path” when a produced asymmetry can be washed out.
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We consider the same functional integral we did earlier in equation (2.56),

Z =
∫

DψDψ exp

[
i

∫
d4xψ(i /D)ψ

]
, (3.1)

but now we consider a Dirac operator that has both axial and vector fields,

Dµ = ∂µ + ieAµ(x), (3.2)

Aµ(x) =Vµ + γ5Aµ . (3.3)

We are interested in the vector Noether current, so we apply a global U(1) trans-

formation ψ(x)→ eiα(x)ψ(x). Being a global symmetry an anomaly is not a threat,

but is a legitimate part of the theory. This is a symmetry of the Lagrangian so we

are left with just terms that are derivatives of α , which can then be written as
∫

d4xψ ′(i /D)ψ ′ =
∫

d4x
[
ψ(i /D)ψ +α(x)∂µ(ψγµψ)

]
. (3.4)

One arrives at the statement that the vector current is conserved. If the fictitious

axial field were set to Aµ = 0 then there would be no quantum corrections to this.

But in our derivation we are forcing axial field to be nonzero and there are contribu-

tions from the measure of the path integral, just as the axial current gets corrections

vector field contributions from the measure.

If we apply the same argument we did for the axial current by considering the

contribution of the measure we find the we find that the functional integral becomes

Z =
∫

DψDψ exp

[
i

∫
d4x
(
ψ(i /D)ψ +α(x)

{
∂µ jµ −2K(x)

})]
(3.5)

where we used jµ = ψγµψ and

K(x) = lim
M→∞

tr∑
n

φ †
n (x)e

(i /D)2/M2

φn(x) . (3.6)

Note that we have already inserted the regulator. Forcing the α(x) term to vanish

gives us the anomaly associated with the vector current in the presence of an axial

field,

∂µ jµ = 2K(x) . (3.7)

The calculation of K(x) is almost identical to before. The Dirac operator becomes

(i /D)2 =−D2 +2i

(
i

4
[γµ ,γν ]

)
DµDν , (3.8)

=−D2 + i

(
i

4
[γµ ,γν ]

)
(Vµν + γ5Aµν) , (3.9)
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which we can see has picked up an axial tensor component compared to equation

(2.89). The calculation from this point is identical to the case with just the vector

field. The critical moment comes when we reach

K(x) =−i
1

4 ·32π2
tr
[
γµγνγργσ (Vµν + γ5Aµν)(Vρσ + γ5Aρσ )

]
, (3.10)

as compared to (2.94). The only terms that contribute are the mixed terms that

contain a single γ5. The other terms are antisymmetric objects contracted with

symmetric ones and thus they vanish. We are left with

K =− 1

16π2
εµνρσ AµνVρσ . (3.11)

The divergence of the vector current is then

∂µ jµ =− 1

8π2
εµνρσ AµνVρσ . (3.12)

We have shown that the vector current in the presence of an axial field is anoma-

lous. If we remove the background axial field by setting Aµν = 0 we indeed repro-

duce the canonical conservation of the vector current.

There are many ways we can proceed to get the current from this. One is

to appeal to chiral symmetry breaking and invoke a goldstone boson to write an

effective Lagrangian. We will instead consider a region in which the axial chemical

potential that is the zeroth component of our fictitious field A0 = µ5 is confined to a

domain R where inside A0 = µ5 and outside the domain A0 = 0. This is illustrated

in Fig. 3.12. The existence of this domain wall is a characteristic feature of the

current that will be the focus of this thesis. To find the current in the real world one

must find in what situations these domain walls appear. Note that this is the exact

situation we will apply later to finding the current in neutron stars.

Proceeding with our pillbox derivation of the current we assume that the vector

charge density is zero and choose Vµν such that there is only background magnetic

field ~B and no electric field. The expression for the current (3.12) then takes the

form

∇ ·~j = 4

8π2
∇ · (A0

~B) , (3.13)

which vanishes inside and outside R. But, integrating over a small pillbox on the

boundary of R inside the domain we get

~j ·d~S =
1

2π2
µ5
~B ·d~S . (3.14)

2This figure is modelled after Fig. 4 in [114].
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Figure 3.1: Outside the domain R the temporal component of the fictitious axial

field A0 is zero. Inside R we set A0 = µ5. The change in A0 across the boundary

of R causes a current to be induced within R that is proportional to the background

field ~B.

This is the topological vector current running through a surface S inside a region

with axial charge µ5. Using the definition for flux Φ =
∫
~B · d~S, the total current

J =
∫
~j ·d~S, and the axial chemical potential 2µ5 = µl−µr we find the total current,

JV =
1

(2π)2
(µl−µr)Φ , (3.15)

which is the same as that given by 1.2. This concludes our derivation of (1.2) using

anomalies directly. We will now derive the same current using the index theorem.

3.1.2 Derivation Using the Index Theorem

We now move to a microscopic derivation of the axial current. The previous deriva-

tion shows the intimate connection between the current and anomalies, but is some-

what nebulous with its use of a fictitious axial field. We start by considering the
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Lagrangian

L = ψi(∂µ + ieAµ)ψ−mψψ +µψγ0ψ . (3.16)

which describes a single light fermion ψ of mass m with a background electromag-

netic field Aµ , at a chemical potential µ . The Dirac Hamiltonian in the presence of

a magnetic field is given by

H =−i(∂i− eAi)γ
0γ i +mγ0 . (3.17)

We are interested in calculating the expectation value of the vector current J3
v =∫

d2x〈 j3
v(x)〉 in the presence of a magnetic field pointing z-direction. The current

is defined as j3
v(x) = ψγ3ψ(x), where ψ is a Dirac spinor. Ultimately we are

interested in the left and right-handed modes and write the current in the Weyl

representation,

j3
v = ψ†

l σ3ψl−ψ†
r σ3ψr . (3.18)

The Dirac equation in a magnetic field with potential ~A can be written as

−Hrψl +mψr = Eψl , (3.19)

mψl +Hrψr = Eψr , (3.20)

where Hr = (−i∂i+eAi)σ
i. This means that ψl =

1
m
(E−Hr)ψr, which substituting

back leads us to

(H2
r +m2)ψr = E2ψr . (3.21)

The eigenvalues of Hr acting on ψr are labelled ε , hence the Dirac equation has two

solutions that have energies E± = ±
√

ε2 +m2. The Dirac spinor can be written

entirely in terms of the right-handed spinor and its eigenvalues,

ψ± =

(
ψl

ψr

)

±
=

1

[4(m2 + ε2)]1/4

(
±[(m2 + ε2)1/2∓ ε]1/2

[(m2 + ε2)1/2± ε]1/2

)
ψr (3.22)

We further break up the operator Hr into transverse and longitudinal components

Hr = p3σ3 +H⊥, where p3 are momentum eigenstates along the magnetic field,

−i∂3ψr = p3ψr, and H⊥ = (−i∂i + eAi)σi is a transverse operator with eigenstates

|λ 〉. We take the longitudinal direction to be periodic in L and take the limit L→∞

later. One can prove that the zero modes of H⊥ are simultaneously eigenstates of

Hr with eigenvalue ε = p3σ3.

The expectation value for the current is found in the usual manner by summing

the current over all states weighted by the probability of each state. For fermions

the probability is given by the Fermi-Dirac distribution. We consider the possibility
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that the densities of left-handed and right-handed modes are different and assign

them each their own Dirac distribution, fl and fr, which gives an expectation value,

〈 j3
v(x)〉 = ∑

E±

[
fl(E) ψ†

l σ3ψl(x)− fr(E) ψ†
r σ3ψr(x)

]
,

= ∑
ε

[ fl(E+)+ fl(E−)− fr(E+)− fr(E−)]ψ
†
r σ3ψr , (3.23)

where we used the spinor definition above and the fact that summing over terms

odd in ε vanish. We now integrate to find the total current and find the expectation

values of the wavefunction. If we write everything in terms of the eigenstates of

H⊥ it can been shown that only the zero modes of λ survive and we are left with

〈J3
v 〉=

1

L
∑
p3

∑
λ=0

[ fl(E+)+ fl(E−)− fr(E+)− fr(E−)]〈λ |σ3|λ 〉. (3.24)

Following the standard arguments from [6], the factor 〈λ |σ3|λ 〉 counts the differ-

ence in transverse zero modes travelling parallel to the magnetic field with positive

or negative eigenvalues, N+ and N−. Taking L→∞ and integrating each Dirac dis-

tribution gives the number density of 1-dimensional left and right-handed fermions,

n(T,µ)l−n(T,µ)r where,

n(T,µ)l/r =
∫ ∞

0

d p3

2π

[
fl/r(E+)+ fl/r(E−)

]
. (3.25)

Note the integral is only over half the range of p3 because of the nature of the

spectrum for left and right handed particles. With this all taken into account the

current can be written as

〈J3
v 〉= [nl(T,µ)−nr(T,µ)](N+−N−). (3.26)

As we discussed in Section 2.1.4 the difference in the positive and negative modes

travelling along the magnetic field is given in physical terms by the index theorem.

In Section 2.1.4 we calculated the index of a 4-dimensional operator. Here we use

the index of the two-dimensional Dirac operator [6] given by

N+−N− =
eΦ

2π
, (3.27)

where Φ is the magnetic flux. We see that the topological index counts the units of

quantum flux Φ0 = 2π/q in the system. The current is then

〈J3
v 〉= (nl−nr)

eΦ

2π
, (3.28)
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where nr(T,µ) and nl(T,µ) are one-dimensional number densities of left and right-

handed Dirac fermions. Furthermore, at zero temperature the one-dimensional

number density in the massless limit can be written in terms of the chemical po-

tential nl/r(T = 0,µ) = µl/r/2π in which case the expression for the current is

reduced to

〈J3
v 〉= (µl−µr)

eΦ

(2π)2
, (3.29)

In this case it is purely topological.

In the zero temperature, massless case it is easy to see how the current appears

through defining separate left and right-handed chemical potentials to reproduce

(1.2). In a neutron star it is unclear what exactly these chemical potentials are.

We will use a different language to describe the current. Additionally, the systems

we are interested in require us to consider massive fermions. With a mass we can

only write one chemical potential and the current as we have it (3.28) is zero. The

chemical potential that both the left and right-handed modes see is the same and

left to its own devices the current is washed out nr(T,µ) = nl(T,µ).
What is required for the current to be nonzero is some boundary condition.

In our case the boundary condition will result in time reversal symmetry being

violated. We stressed this in the derivation using the anomaly but have not explic-

itly introduced one. In the massless case this boundary condition is introduced so

seamlessly that one barely notices it. The boundary condition is captured by the

fact that we can set the left and right handed chemical potentials to different values,

that we somehow have a reserve of each handedness of particle. We have to find

a way to introduce left and right-handed particles in such a way that the particle

density is not simply a function of the temperature and chemical potential. The

density has to be promoted to some more general function involving the processes

w occurring in the system n(T,µ,w) to add new particles.

3.1.3 Interpretation

These currents are simply statements of the motion of left and right-handed parti-

cles given their spin alignment in a magnetic field. Formulae (3.23) and (3.28) have

a very simple physical meaning: to compute the current one should simply count

the difference between left-handed and right-handed modes in the background of

a magnetic field, as shown in Figure 3.2. We assume that the modes of the current

couple to electrons. The splitting of the Landau levels is ω = eB/m and Landau

levels manifest themselves when T ≪ω . For a magnetic field of eB∼ 1012 G∼ 0.1
MeV2 the splitting normalized to the mass of the electron is ∼ 0.2me/m MeV. The

typical temperature for the neutron star is about 109 K∼ 0.01 MeV. So the Landau

levels affect the electrons much more than they affect they affect heavier particles,
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Figure 3.2: A left-handed electron placed inside the magnetic flux in a background

of electrons with no average helicity will be pushed out. The current wants to

balance the number of left-handed and right-handed particles and acts as a helicity

pump.

say protons or even muons. When we do out calculations later we will take into

account both the temperature and the chemical potential on the Landau levels of

the electron.

The lowest Landau level is the one that breaks the symmetry in the problem

and is critical to the formation of the current The single spin state in the lowest

Landau level only allows the spin of an electron to anti-align with the field. In

the lowest Landau level left-handed zero modes move along the magnetic field and

right-handed zero modes move against the magnetic field. An excess of left-handed

or right handed modes will couple to electrons and form a current that runs either

along the field or against the field. The topological vector current acts as a pump to

remove the average helicity and it stops pumping once the average helicity is zero

again.

In general the difference in left and right-handed modes is a complicated func-

tion of many parameters: magnetic field B, chemical potential µ , temperature T ,



Chapter 3. Topological Currents in Dense Matter 69

and mass of the particle m; but in the chiral limit (m = 0) the expression for the

current takes the simple form (3.29), has pure topological character, and can be

derived from an anomalous effective Lagrangian without referring to the dynam-

ics. The current is expressed in terms of one-dimensional fermi distributions (3.26)

and the physics of two other dimensions is determined by Landau levels (the low-

est one for m = T = 0). When T 6= 0 and m 6= 0 the current will still be induced,

but it will not have a simple topological form (3.29). The relevant formula in this

case becomes much more complicated and is determined by the ratios of a number

of dimensional parameters mentioned above, see [12] where some limiting cases

have been studied.

The current is insensitive to the structure of the magnetic field and will be

induced if the magnetic field is confined to magnetic flux tubes or uniformly dis-

tributed. The current is simply confined to the regions where the magnetic field

is present. Our eventual goal is to derive a form for the current in neutron stars.

For our purposes it is not essential whether the magnetic field is represented by

magnetic flux tubes, as found in type-II superconductors, or by magnetic domains,

the typical structure for the intermediate state3 argued for in argued for in [8]. The

current is strongest in the degenerate regions with µ ≫ T where the background

magnetic field is large. When the system becomes a less degenerate (or not degen-

erate at all) one should expect strong suppression [6, 12]. For numerical estimates

of the effect it is convenient to count number of superconducting flux tubes in the

entire star and compute the current per unit quantum flux Φ0 =
2π
q
= 2 ·10−7 Gcm2,

where q = 2e is the charge of the proton Cooper pair.

3.2 Non-dissipating Currents in Dense Stars

There are three requirements for topological vector currents to be present: an im-

balance in the number of left and right-handed particles nl 6= nr, degenerate matter

µ ≫ T , and the presence of the background magnetic field B 6= 0. All of these are

present in neutron and quark stars. The weak interactions, which the star attains

equilibrium through, violate parity; particles created in this environment are pri-

marily left-handed, see the Appendix for a quantitative estimates. As discussed the

interior of the star is dense, µe = 100 MeV, and cold, T = 0.1 MeV, such that the

degeneracy condition µ≫ T is met, and the star is known to have a huge magnetic

field, B∼ 1012 G.

All three criteria are met but there is a subtlety to consider. In an infinite system,

3The intermediate state is characterized by alternating domains of superconducting and normal

matter where the superconducting domains exhibit the Meissner effect, while the normal domains

carry the required magnetic flux.
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a system large enough to allow the electron to decay, any asymmetry in left and

right-handed electrons created by the weak interaction would be washed out; the

creation and annihilation rates of the left-handed particles are the same. Though

many more left-handed electrons are created, they are also destroyed much faster

than the right-handed and no asymmetry builds. This is similar to the argument

found in [115]—there is no asymmetry in equilibrium in an infinitely large system.

Unlike in [115], we are interested in low temperatures where the neutron star is

a finite system with respect to the weak interaction—see Figure 3.3. The electron

travels to the surface of the star before the inverse process that captures the electron

can remove it. Removing the reverse process effectively breaks the time reversal

symmetry of the system and the weak interaction can no longer remove the parity

introduced into the system. As a result a current forms to remove the parity.

In Section 3.2.1 we will first explain how the current is induced and derive a

formula more calculating the magnitude of the current. In Section 3.2.2 we will

discuss why the induced current is not washed out by fast quantum electrodynamic

(QED) processes, but can only be washed out by slow weak interactions. The

reason is the P-odd nature of the phenomenology: an effect induced by P-odd

forces, can only be washed out by P-odd forces.

3.2.1 Estimating the Strength of Induced Currents

Directly calculating the current would require careful consideration of the helic-

ity of electrons in regions with flux, where all electrons created are left-handed,

and regions without flux, where the helicity can be washed out, and how electrons

diffuse from one region to the other. If we assume that the magnetic field is uni-

formly distributed (as discussed in Section 2.2.2) then every electron created by a

P-odd process in the star potentially contributes to the current. As discussed in

Section 3.1.3 we can calculate the current by counting the number of left-handed

electrons minus the number of right-handed electrons created in the star. Unlike

Section 3.1.3 there is now a large Fermi momentum that opens up many Landau

levels, but only the lowest Landau level contributes to the current. The current

arises because the lowest Landau level has a single spin state, electrons created in

that spin state are primarily left-handed, and this helicity state propagates out of

the star, preserved through through countless QED interactions, before the inverse

weak process can remove it. These helicity states propagating out of the star make

up the current.

We explicitly see how both the magnetic field and parity violation are nec-

essary for the current. The spin degeneracy of the lowest Landau level is one,

while all other Landau levels have spin degeneracy two. This implies that the

produced P-asymmetry in the polarization 〈Λ〉= 〈~σ ·~P/|~P|〉 is not translated into
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Figure 3.3: The neutron star is a finite system—the mean free path with respect to

the weak interaction is much larger than the radius of the neutron star ℓweak≫ R.

Electrons leave the system before they can be captured. The current flows because

the system is not in equilibrium.

P-asymmetry in the correlation of the momentum and magnetic field 〈~B ·~P〉 for all

Landau levels except the lowest one. Even though the P-asymmetry is present in

the higher levels the spin degeneracy allows particles with the same polarization are

allowed to travel in opposite directions, which results in zero current. The single

spin degeneracy of the lowest Landau level means that any longitudinal polariza-

tion will result in more particles moving one way than the other, thus a current. The

correlation between spin and the magnetic field is a P-even effect 〈~σ ·~B〉 and to-

gether with the P-odd correlation between spin and momentum 〈~σ ·~P〉 it produces

the P-odd asymmetry 〈~B ·~P〉 we are interested in.

Equation (3.28) tells us how to proceed. If we considered a single unit of quan-

tum flux the current is found by counting the difference in left and right-handed

electrons in the lowest Landau level. The occupation of the lowest Landau level is

given by the number of electrons that are created during the equilibrium processes.

For two units of quantum flux the current is twice as big and so on. The magni-

tude of the current only depends on the flux. The current through the surface of

the star can then be found by counting the difference in rates of left-handed and

right-handed electrons created in a magnetic field in the entire volume of the star.
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For the entire star this results in a current of the form

Jv = Pasym(B,µ,T ) ·
w

Ω
Vstar , (3.30)

where w/Ω is the transition rate per unit volume assuming the magnetic field is

uniformly distributed, Pasym(B,µ,T ) accounts for both the polarization of electrons

created in a magnetic field and the suppression due to Landau levels, and Vstar is

the volume of the region of degeneracy, which we assume is about the same size as

the star itself.

The extreme degeneracy of the electrons means that electrons are uniformly

distributed throughout the Landau levels. As we will discuss in Section 4.1.2 the

number of Landau levels is nmax = (E2
e −m2

e)Bc/2m2
eB. Each Landau level except

the lowest one has a degeneracy of two. Only an electron created in the lowest

Landau level will contribute to the current. The ratio of the lowest Landau level

to the total number of states is approximately ∼m2
eB/µ2

e Bc, which is supported by

the analysis in [116]. Therefore, we estimate P-odd asymmetry factor as

Pasym(µe,T,B)≃−〈Λ〉 ·
(

m2
e

µ2
e

B

Bc

)
∼ 2 ·10−5

(
B

Bc

)(
n

n0

)−4/3

, (3.31)

where the polarization 〈Λ〉 calculated later and is given by (4.55). Numerically we

see that a large chemical potential means that the number of states in the lowest

Landau level is small compared to the total number of states. We have calculated

the average polarization not just for the lowest level, but for electron created in

all levels. Because we are looking at an average current in a large system it is

likely that polarization states other than those in the lowest landau level are the

ones to propagate. What is important is that there are more spin-down states than

spin-up states and there is an average polarization. The density dependence in

(3.31) reflects that found in a neutron star; in the case of quark stars we use the

appropriate electron chemical potential and density dependence described in the

background material.

For non-trivial vortex structures it is convenient to determine the current per

unit fundamental flux by dividing by the total number of flux tubes. In a type-II

structure this would be the current that runs along a single vortex; in a uniformly

distributed environment it is simply a convenient normalization,

JV = Pasym(B,µ,T ) ·
w

Ω

Vstar

Nv

. (3.32)

The current in a type-I domain is found by multiplying (3.32) by the units of flux

trapped inside the domain.



Chapter 3. Topological Currents in Dense Matter 73

The expression for the induced current, (3.30) and (3.32), naively has a differ-

ent form than previously discussed (3.26), but in fact is precisely the same induced

current with the same physical meaning. The separation of transverse and longitu-

dinal degrees of freedom (with respect to magnetic field Bz) that is explicit in (3.26)

is hidden now in the formula for Pasym(B,µ,T ) where the Landau levels (transverse

degrees of freedom) are treated separately from longitudinal motion. This is ex-

plicitly calculated in Section 4.1.3. The longitudinal degrees of freedom in eq.

(3.26) are represented at T = 0 by the one-dimensional number density ∼ µ/π ,

which is the correct expression when the problem is treated as a grand-canonical

ensemble with µL and µR constant due to the infinitely large bath surrounding the

system. In our case the neutron star is a finite system at T 6= 0 where particles

are continuously injected at a rate w. Along with Pasym(B,µ,T ) this describes the

resulting asymmetric number density as a function of external parameters T,µ,B.

And as they should, both equations (3.26) and (3.30) have units of current: number

of particles per unit time.

The topological vector current4 arises specifically because the system is no

longer in equilibrium with respect to the weak interaction and a small asymmetry

(nL− nR) 6= 0 appears. The current is a steady state5, but constantly requires new

polarized electrons to be created in the magnetic field background, then pushed out

of the system, into the crust or into space. Because of this steady state the rate w/Ω

is calculated when the electron chemical potential is constant.

The electron chemical potential µe does not necessarily go to zero as it does

for neutrino emission. Only a small fraction of electrons equal to the number in

the lowest Landau level actually participate in the current and these will constantly

be repopulated by the equilibrium processes in the star. When electrons leave the

region of degeneracy, where the non-dissipating current is produced, the current

loses its quantum properties and becomes a normal dissipating current capable of

transferring momentum, emitting photons, etc. These electrons may get trapped in

the crust and diffuse back in, maintaining µe.

If the electrons manage to escape, the chemical potential µe will slowly de-

crease over time. As electrons escape the star may become positively charged and

start to accrete matter. Eventually, when µe becomes sufficiently small, the produc-

tion of the induced current stops. Later we will introduce the current as a mech-

anism for produce pulsar kicks. This is precisely the moment when the neutron

4The axial current will always be induced even when µl = µr, but it will not be coupled to the

electromagnetic field, and cannot carry the momentum. The physical consequences of this axial

topological current might be quite interesting, but shall not be discussed in the present paper.
5 We assume that the variation of (µL−µR) is adiabatically slow process, with a typical variation

time to be much longer than any other time scales of the problem. It allows us to treat the system as

being in the equilibrium when (µL−µR) is assumed to be a fixed parameter.
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star kick engine stops. As we mentioned previously it is the chemical potential that

fuels the kick, not the temperature. The engine stops when chemical equilibrium is

achieved, not when the temperature drops which happens much earlier.

3.2.2 P-odd Effects, QED, Polarization and Thermodynamics

An important aspect of the topological current is that it is neither a zero temperature

effect nor a chiral effect. It persists as long as parity, an asymmetry in left and right-

handed electrons, is present in the system. While topological currents originally

were computed at T = 0 for exactly massless fermions [5], it was later shown [6]

that the effect persists for T 6= 0,me 6= 0. The lesson learned from these calculations

is that the effect is not washed out, even when a nonzero temperature is introduced

and an arbitrarily large number of collisions between electrons occur to maintain

thermodynamic equilibrium. The crucial point for our mechanism is that P-odd

effects are not washed out by fast QED processes.

It is important to remember there are three scales in our problem: the mean

free path of quantum electrodynamic processes ℓQED, the mean free path of weak

interactions ℓweak, and the radius of the neutron star R. For the temperatures we are

interested the scales are ordered as ℓweak≫ R≫ ℓQED. We see that with respect to

QED interactions the neutron star is considered to be an infinite system, but with

respect to weak interactions it is finite.

Quantum electrodynamic processes cannot wash out polarization even though

massive particles introduce processes that can flip helicity, even when these pro-

cesses occur thermally. The key here is the unitarity of interactions; processes go

forwards and backwards at the same rate. Though helicity is lost through these

interactions, it is also created. This cancellation due to unitarity is aptly illustrated

in [115], where the authors consider the weak interactions inside a star at high tem-

peratures. Just as in [115] we can use thermal equilibrium and unitarity to show

how the current propagates.

Consider electron-proton scattering where neither particle is confined to Lan-

dau levels. The change in the number of electrons with a given helicity n(e)(q ·σ , t)
can be written as

∂

dt
n(e)(q ·σ , t) = ∑

σ ,σ ′,s,s′

∫
d3p

p0

d3p′

p′0

d3q′

q′0
(3.33)

[
S W (q ·σ ,p · s|q′ ·σ ′,p′ · s′)
−S ′ W (q′ ·σ ′,p′ · s′|q ·σ ,p · s)

]
, (3.34)

where q and p denote the momentum of the electron and proton, σ and s denote the

electron and proton spin, and W (q′ ·σ ′,p′ · s′|q ·σ ,p · s) is the probability of scat-
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tering |p(q,s)e(q,σ)〉 → |p(q′,s′)e(q′,σ ′)〉 per unit time per unit phase volume.

These are all the processes that change the helicity of the electron.

There is a statistical factor S to account for the Fermi distribution of the initial

states and the Pauli blocking of the final particles. In the massive limit the chemical

potential enters the Lagrangian by a term µN, where the particle number N is the

charge associated with the chemical potential. The mass term literally mixes up the

left and right spinors in the Lagrangian. One can write this chemical potential in

terms of left and right-handed chemical potentials, but because the mass term mixes

the helicity only one chemical potential can enter the statistics of the problem. In

this case the current is given by equation (3.28) where we calculate the difference in

the numbers of left and right-handed electrons. It is common to work in the chiral

limit where there is no mass term and it is possible in the Weyl representation to

introduce two separate chemical potentials, one for the left-handed and one for the

right-handed spinors. There are then two charges that enter the statistics and there

are two separate Fermi surfaces. The current could then be determined by looking

at the difference in these chemical potentials. But in the chiral limit there are no

helicity flipping amplitudes and the imbalance in left and right-handed chemical

potentials created by the weak interaction would never be washed out. The purpose

of this section is to show that the current does not get washed out when helicity

flipping amplitudes exist so we choose the massive limit where the electrons feel

only a single chemical potential regardless of their helicity.

With this in mind the statistical factor written explicitly is

S =
1

1+ e−(E(pe)−µe)/T

1

1+ e−(E(pp)−µp)/T
×

1

1+ e(E(p′e)−µ ′e)/T

1

1+ e(E(p′p)−µ ′p)/T
. (3.35)

The factor S ′ is similar but has the primed and unprimed variables swapped. We

have chosen degenerate functions to illustrate that the average polarization of the

electrons along a specific direction (in our case along the magnetic field) is con-

stant, and cannot be washed out by QED interactions, see eq. (3.43) below. We

have made no assumptions about the initial and final chemical potentials and as-

sume that they are different.

The general statement of thermal equilibrium is

S = S ′ , (3.36)

Thermal equilibrium is attained with respect to QED interactions because the mean

free path is much smaller than the size of the neutron star. This in not the case with

the weak interactions, which have a mean free path much larger than that of the
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star. This non-equilibrium of the weak interaction generates the parity asymme-

try required for the current and is discussed in detail in Section 3.2.1. Given our

specific distributions, the statement of thermal equilibrium has two solutions,

E(p′e)−µ ′e = E(pe)−µe and E(p′p)−µ ′p = E(pp)−µp , (3.37)

or

E(pe)−µe = E(p′p)−µ ′p and E(p′e)−µ ′e = E(pp)−µp . (3.38)

Substituting either of these solutions into the conservation of energy equation for

the interaction E(pe)+E(pp) = E(p′e)+E(p′p) yields

µe +µp = µ ′e +µ ′p , (3.39)

which is the condition for chemical equilibrium. Particles can only scatter from

their Fermi surface onto another Fermi surface.

The key element of the argument is the unitarity of the interaction,

1 = ∑
σ ′,s′

∫
d3p′

p′0

d3q′

q′0
W (q ·σ ,p · s|q′ ·σ ′,p′ · s′) (3.40)

= ∑
σ ′,s′

∫
d3p′

p′0

d3q′

q′0
W (q′ ·σ ′,p′ · s′|q ·σ ,p · s), (3.41)

This says that every initial state scatters into a final state and that every final state

scatters into an initial state.

Using (3.36) the electron and proton distributions can be factored out and using

(3.40) we find that the forward and reverse rates cancel each other, causing the right

hand side of (3.33) to vanish. We have found that the number of electrons of a given

helicity is constant,

∂

dt
n(e)(q ·σ , t) = 0 . (3.42)

This is the result of detailed balance, which ensures that there can be no asymmetry

in the creation and annihilation rates of particles in thermal equilibrium. Given

this spectrum of static solutions, the average polarization of the electrons along a

specific direction (in our case along the magnetic field) is constant,

〈Λ〉=
∫

d3q
[
n(e)(+|q ·σ |)−n(e)(−|q ·σ |)

]
∫

d3q
[
n(e)(+|q ·σ |)+n(e)(−|q ·σ |)

] = constant. (3.43)
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The physical meaning of equation (3.43) is very simple: if we start with no average

polarization, none develops; if we start with an overall polarization, it cannot be

washed out. This interaction by interaction proof provides the dirty details for

a very simple argument: a system that starts with some kind of parity violation

(i.e., different numbers of left and right-handed electrons) cannot have that parity

violation removed by QED because QED does not violate parity.

An example of this principle can be found in the experimental set up of a beam

of electrons. Consider an unpolarized beam of electrons travelling along the z-

direction. While there are many electromagnetic interactions, the result (3.43)

states that the longitudinal polarization Pz remains zero as time passes. Why does

this happen? Consider the collision of two particles in the beam with initial mo-

menta ~k1 and ~k2 and zero total polarization along the z-axis. After the collision

polarization can be induced in the transverse direction ~P ·~k1×~k2, but not in the

longitudinal directions, ~P · ~k1 or ~P · ~k2, as this would contradict the fundamental

parity symmetry of the QED Lagrangian. In particular, suppose (~k1,~k2) are in

the xz-plane. The polarization can be only induced in the positive y-direction. It is

clear that in the thermodynamical equilibrium there will be another pair of particles

which produce a polarization in the negative y-direction such that total polarization

remains zero. This simple example explains what equation (3.43) states: if longi-

tudinal polarization of the beam was initially zero, it will remain zero in spite of

the fact that each given process may induce polarization.

So far the discussion has considered only particle-particle QED scattering and

not scattering off a background field. It is tempting to think that the helicity flip-

ping amplitudes of an electron scattering off a semi-classical background field will

wash out an asymmetry. Such arguments neglect that polarization is given to the

background field in the form of operators such as the magnetic helicity 〈~A ·~B〉 and

higher order operators that are not invariant under P transformations. These op-

erators are the manifestation of the parity lost by electrons to the background field,

and is the parity responsible for creating the toroidal magnetic fields discussed in

Chapter 6. There is a point where the background field, which now contains P-

odd parity configurations in the form of magnetic helicity, will start to give parity

back to the electrons through scattering. This steady state is once again achieved

through unitarity and thermal equilibrium. This system of topological currents

combined with an E&M field carrying magnetic helicity is complicated and it is not

our goal to present a complete description of how these P-odd effects transform

from one form to another. This would require us to analyze a system comprising of

time dependent Maxwell equations with non-static sources. We explicitly calculate

the current when these interactions with the external magnetic field are effectively

turned off. However, from the P invariance of QED we know that P-odd effects

will stay even when these interactions with the external magnetic field are turned
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on.

This has a physical analogue in beam physics as well. As discussed, a beam

with no longitudinal polarization that has only particle-particle QED interactions

will remain unpolarized. However, a beam with longitudinal polarization can be

created if a magnetic field configuration with nonzero helicity is applied, which is

the standard technique used to produce a longitudinally polarized beam. As this po-

larized beam propagates it cannot lose its polarization due to the internal particle-

particle QED interactions. If it did, time reversal symmetry, which is unitarity,

would tell us that a beam with no longitudinal polarization could spontaneously

polarize due to particle-particle interactions. This is untrue and the polarization

stays in the beam. Furthermore, time reversal symmetry applied to the longitu-

dinally polarized beam tells us that when the beam encounters a magnetic field,

the field may reconfigure itself to absorb some P-odd magnetic helicity from the

beam. This is exactly how the current in a neutron star imparts magnetic helicity to

the field. To conclude, the entire P-odd configuration which includes longitudi-

nal electron polarization and magnetic helicity (and higher order P-odd operators)

cannot be washed out by QED interactions.

We must also consider that some collective bosonic mode such as heat may

destroy the current. To destroy the current these dissipative modes must carry the

helicity out of the star faster than the current does. It does not imply that P-odd

effects are destroyed. Rather it means that P-odd configurations in principle may

leave the system. We can account for these dissipative modes by assuming they

are carried out of the star by photons or phonons. The helicity modes that the

current carries out of the star are subject to direct walk and leave the star close to

the speed of light while a photon is subject to a random walk. The number of steps

in a random walk is the square of the number of steps in a direct walk, so it takes

much longer for a photon to escape than the current to carry helicity out. Some

tiny fraction of the helicity manages to escape this way, but the current remains

intact. Thermal cooling of the star is also not the dominant cooling mechanism of

the star while the current is active, neutrino emission is. The processes that create

the neutrinos are the exact processes responsible for the current. We can quantify

when the star is too hot for the current to propagate by finding the temperature

where ℓe < R. This means that the current can no longer carrying the helicity out

of the system and does not flow. Essentially this violates the conditions formulated

above for the current to be induced.

The statement that P-odd effects, if produced, cannot be destroyed or washed

out by conventional QED processes is correct for any system, including condensed

matter systems. However, there is a crucial difference between our discussion of

the current and conventional condensed matter systems, where it is known that the

induced spin polarization inevitably relaxes even though QED preserves parity. In
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any condensed matter system the relaxation process takes relatively short period

of time as the heat can easily leave the system. This heat is actually represented

by long wavelength photons (microwaves) that are partly polarized and can easily

leave the system. The situation is drastically different for neutron stars or quark

stars (due to the very large density) when it takes very long period of time before

a photon can reach the surface of the star to have a chance to escape. In principle,

the P-odd effects in neutron/quark stars will also inevitably relax when no new

polarization is pumped in. However, the time scale for this to happen is much

longer than in condensed matter systems. This is analogous to the evolution of

the magnetic field in neutron stars trapped in a type I superconductor. It is known

that the magnetic field should be expelled from the bulk of type-I superconductors.

However, it takes a very long time (much longer than the life time of the universe)

before the magnetic field is actually expelled from neutron stars.

Nowhere in the arguments above have we assumed (or implied) that our state is

a pure quantum state with definite parity; on the contrary, our arguments are based

on thermodynamics and a density matrix formalism where the polarization for a

mixed electron state is defined as the sum over all particles ~P = ∑n gn
~Pn where gn

is a probability to find the n−th particle with polarization ~Pn with normalization

∑n gn = 1.

For the sake of curiosity there is an example of a strongly interacting, many

body system where a P-odd configuration could be produced, but nevertheless is

not washed out by very fast strong interactions, which is very similar to the case we

consider. Specifically, we have in mind the charge separation effect in heavy ion

collisions [11, 32] where P and C P odd effects survive in spite of the fact that

the system is in thermodynamical equilibrium with respect to strong interactions.

There is a simple argument why a P-odd effect is not washed out by the strong

interactions: it is an invariance of QCD with respect to P and C P symmetries.

The analogy between our topological current and the P-odd effect in heavy ion

collisions is even deeper than it appears: both effects in fact originate from the

same anomaly[11, 32].

3.3 Summary

We first derived the topological vector current in two ways: using anomalies and

using index theorems. These two derivations led to understanding two important

aspects of the current. First, the current requires a boundary condition to manifest

itself. It is the physics of surface terms. This will become even more important

when we discuss the current later in terms of holographic QCD. The second aspect
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resulted from the formula (3.28),

〈∫

S

~jv ·d~S
〉
= (nl−nr)

eΦ

2π
, (3.44)

where the current is described by the difference in one-dimensional number densi-

ties of left and right-handed particles nl−nr. The conclusion is that the current is

not mysterious. It is simply the result of counting modes in a magnetic field.

We then focused on how this boundary condition arises in dense stars. The key

is the finite size of the star and the relatively long life of particles with respect to

the weak interaction. This allows left-handed particles to be made inside the star

and travel to the surface before they are destroyed. In a more technical sense the

finite radius of the star causes the time reversal symmetry of the weak interaction to

be destroyed. The system can create left-handed electrons, but is unable to destroy

them.

Our simple counting argument lead to the parameterization of the magnitude

of the current created in the star along the magnetic field is

Jv = Pasym(B,µ,T ) ·
w

Ω
Vstar , (3.45)

which is equation (3.30) in the text. This is the current that arises by considering

the creation of particles in the lowest Landau level. The quantity Pasym(B,µ,T )
determined in equation (3.31) captures the breaking of parity symmetry by the

weak interaction and the lifting of the spin degeneracy in the lowest Landau Level.
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Chapter 4

Estimating the Magnitude of the

Current

Now that we have established how the current arises in dense stars we will use this

new expression (3.32) to calculate the magnitude of the topological vector current

in a variety of different phases. We choose four representative phases that capture

the behaviour of the the majority of phases thought to exist inside a dense star.

Notation

We use the convention h̄ = c = kB = 1 unless otherwise stated. We will always de-

note the momentum of particle as pi, the Fermi momentum as ki, and the chemical

potential as µi. When convenience dictates, the subscript i will either be the sym-

bol of the particle or a number, which will be labelled on the Feynman diagram.

The three momentum will be bolded pi, with a magnitude denoted pi, and the four

momentum will have a greek index pµ .

4.1 Nuclear Matter: The Direct Urca Process

We want to determine the mean free path of the weak interaction of an electron

travelling inside a neutron star and the rate at which electrons are created. To do

so we will estimate the transition rate following the standard techniques from [65].

Estimating the mean free path allows us to determine whether the helicity built

from the weak interaction is washed out or if the asymmetry can escape the star1.

Similar calculations have been done only for neutrinos as the electron’s mean free

1 Here and in what follows we do not assume that an electron physically escapes a star: we use

the term “escape” to emphasize that the electron can leave the region of degeneracy without being

re-scattered by dense surrounding matter. The fate of the moving electrons when they enter the

non-degenerate region µe ∼ T from deep degenerate region depends on specific properties of matter

with µe ∼ T . In this region the current becomes dissipating, and the electrons may transfer their

energy/momentum to the surrounding dense environment. This subject is beyond the interests of the

present work, and shall not be discussed here.
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path is assumed to be much shorter due to electromagnetic interactions. How-

ever, as we argued above, the electromagnetic interactions do not wash out P-odd

asymmetry and the electrons are allowed to propagate due to the non-dissipating,

topological vector current. In order to find the mean free path we will consider

the direct Urca process, equation (2.126), given by the Feynman diagram in Figure

4.1.

p1 p4

p2
P

νe

N
p3

e−

Figure 4.1: The direct Urca process.

Given the order of the diagram this should be to dominant process in normal

nuclear matter, but it is not. It is suppressed because the particles taking part are

unable to conserve momentum. If all interacting particles lie on their Fermi surface

then

pe + pP− pN ≪ T , (4.1)

where T is approximately the energy of the neutrino. In order for the process to

conserve momentum the initial electron and proton, or the final neutron, must be

far from their Fermi surface in a region with almost no particle occupation. Forcing

this inequality to become an equality introduces a suppression of order ∼ e−kN/T .

We can calculate the proton fraction required to conserve momentum and allow

the direct Urca process to proceed unfettered. In a system well below the Fermi

temperature the particles momentum is that of their Fermi momentum. If we ignore

the small contribution from neutrinos then the condition for conservation of mo-

mentum is ke + kP > kN . Charge neutrality forces the proton and electron density

to be equal ne = nP, which means that their fermi momenta are equal resulting in

2kP > kN . The number density for a particle species goes as ni ∝ k3
i , which leaves

the inequality as 8nP > nN . We find that momentum is conserved only when the

proton fraction is sufficiently large xp = nP/(nP +nN)> 1/9.

The transition rate is given by

w =
Ω4

(2π)12

∫
d3 p1d3 p2d3 p3d3 p4 S (2π)4 Ω δ (p f − pi) |Ŝ|2 , (4.2)
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where Ω is the volume of the phase space, the pi are respectively the electron,

proton, neutron, and neutrino momentum, S is a statistical factor that takes into

account the Fermi blocking, and Ŝ the scattering matrix.

The Fermi blocking factors limit the phase space in which the initial particles

can exist and the final particles can be created. Particles that exist at the beginning

of the reaction, such as the electron and proton in this case, are given a factor equal

to the Fermi distribution,

fi =
1

1+ e−(Ei−µi)/T
, (4.3)

which tells us where particles exist. The particles to be created, such as the neutron,

are given a factor of one minus the Fermi function,

1− fi =
1

1+ e(Ei−µi)/T
, (4.4)

which restricts the phase space that particles can be created in. There is no Fermi

blocking term associated with the neutrino because they leave the star without in-

teracting and do not become dense enough to form a Fermi surface. All of these

blocking factors make the statistical factor S .

We use the standard four Fermi scattering matrix element

|Ŝ|2 = G2
F

Ω4
(1+3C2

A)

[
1− 1−C2

A

1+3C3
A

p1 ·p4

E1E4

]
, (4.5)

where CA = 1.26 is the Gamow-Teller coupling and GF = 1.17×10−11 MeV−2.

Following [65] we separate the angular and radial integrals such that the tran-

sition rate becomes

w =
Ω5

(2π)8
|Ŝ|2 PQ , (4.6)

where

P =
∫

p2
1d p1 p2

2d p2 p2
3d p3 p2

4d p4 S δ (E f −Ei) , (4.7)

Q =
∫

dΩ1 dΩ2 dΩ3 dΩ4 δ (3)(p f −pi) . (4.8)

We start with the Q integral. The contribution from the momentum of the neutrino

is small compared to the rest so we neglect it in the δ -function. This allows us to

take an integral over all angles causing the term with angular dependence to vanish.

As in [65] the angular integrals become

Q =
(4π)5

2p1 p2 p3

, (4.9)
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which we evaluate in detail in Appendix B. We can now do the PQ integral,

PQ =
(4π)5

2

∫
p1d p1 p2d p2 p3d p3 p2

4d p4 S δ (E f −Ei) . (4.10)

The first step is to change variables from energy to momentum. In doing so we will

approximate the energy by the value at the Fermi surface as these are the particles

most likely to participate in the interaction. For the proton and neutron, which

are nearly non-relativistic, we will approximate the energy by the effective mass,

m∗N ∼ 0.8mN and m∗P ∼ 0.8mN [69]. For the electrons, which are highly relativistic,

the chemical potential is equal to the Fermi momentum, ke = µe. These factors can

be pulled out of the integral. Doing the transformation yields

p1d p1 = µedE1 , (4.11)

p2d p1 = m∗PdE2 , (4.12)

p3d p1 = m∗NdE3 , (4.13)

p2
4d p1 = E2

4 dE4 . (4.14)

Performing the neutrino integral, dE4, over the δ -function leaves

PQ =
(4π)5

2
µem∗Nm∗P

∫
dE1 dE2 dE3 (E1 +E2−E3)

2 S . (4.15)

The next step is to make the integral dimensionless making the substitutions

x1 = (E1−µe)/T , (4.16)

x2 = (E2−µP)/T , (4.17)

x3 = −(E3−µN)/T , (4.18)

such that the statistical factor accounting for the Fermi blocking becomes

S = ∏
i=1,2,3

1

1+ exi
. (4.19)

The Jacobian of these transformations introduces a factor of T for each measure.

Also, a factor of T 2 comes from the (E1+E2−E3)
2 term. The chemical potentials

introduced all cancel because of the equilibrium condition µe +µP−µN = 0. The

substitution also causes m∗N →−m∗N such that we are left with a positive transition

rate,

PQ =
(4π)3

2
m∗N m∗P µe T 5 I . (4.20)
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where I is an analytic integral evaluated in Appendix B,

I =
∫ ∞

−∞
dx1

∫ ∞

−∞
dx2

∫ ∞

−(x1+x2)
dx3

(x1 + x2 + x3)
2

(1+ ex1)(1+ ex2)(1+ ex3)
, (4.21)

=
3

4

(
π2ζ (3)+15ζ (5)

)
, (4.22)

≈ 20.56 . (4.23)

Putting everything together, and using the numerical estimates from the nuclear

matter discussion, the transition rate becomes

w

Ω
= 8π5G2

F(1+3C2
A)m∗N m∗p µe T 5 I , (4.24)

= 1.1×1031
( µe

100 MeV

)(m∗N
mN

)(
m∗P
mP

) (
n

n0

)2/3

(T9)
5 s−1 cm−3 ,(4.25)

where T9 = T/(109 K) is the dimensionless, scaled temperature. A typical value

for the reduced mass factor is 0.6. The temperature dependence T 5 is consistent

with literature—remember that we are calculating the transition rate, not the lumi-

nosity. The luminosity contains an additional factor of energy in the integral that

contributes an extra factor of T .

4.1.1 Estimate of the Current from Direct Urca

The first step is to ensure that the electron can actually escape the star before it

decays via the weak interaction. This involves calculating the mean free path and

seeing if it is larger than the radius of the star. In the literature for calculations of

this type, such as neutrino luminosity for cooling, Ω is the volume of the neutron

star—it is necessary to account for all the transitions that occur in the entire star.

Here, we are interested in the decay rate of a single electron, so we will take Ω to

be the volume in which a single electron exists, which is the inverse of the electron

number density,

Ωe =
1

ne

=
3π2

µ3
e

= 2 ·10−37

(
n

n0

)−2

cm3. (4.26)

Assuming that the electron travels at the speed of light though the protons—

due to the non-dissipative nature of the current with respect to the electromagnetic

interactions, the mean free path can be found using

ℓe ∼
c

w
∼ 1.2×1011 (T9)

−5

(
n

n0

)4/3

km. (4.27)
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The typical radius for the neutron star is R ∼ 10 km. We see that for T ≤ 1010

K the electrons can easily escape the degenerate region before the P-odd asym-

metry gets washed out due to the weak interactions. The counterintuitive density

dependence—at higher densities the mean free path is larger—is a natural con-

sequence of Pauli blocking. As the density of the star increases the number of

protons increases and we would expect a shorter mean free path, but the number

of neutrons increases as well. The suppression due to the higher neutron chemical

potential is greater than the enhancement gained by increasing the proton density.

Using (3.32) we are now in a position to estimate the magnitude of the current

travelling along a single quantum of flux,

JV = 9.4×10−10

(
n

n0

)−2/3

(T9)
5 MeV. (4.28)

There is no dependence on the magnetic field because we have normalized per unit

of quantum flux. As discussed earlier this reaction is dominant when hyperons

appear at n/n0 ≥ 3 or when the proton fraction is large xp > 1/9.

From (4.27) we see that is it much easier for an electron to escape a cool star

rather than a hot, newly born star, T ≥ 1011 K. If the star is very hot the electron

is not able to keep its asymmetry due to the weak rescattering, as one can see from

(4.27). As it cools there will be a critical value where the electrons can escape,

but are still created at a large rate, meaning the current is very large (4.28). The

current is largest when the star is hot, but not so hot that the electrons are unable to

escape the region of degeneracy, µe≫ T . This temperature is roughly determined

by the condition that the electron mean free path with respect to weak interactions

is approximately equal to radius for the neutron star is R ∼ 10 km. It is expected

that this temperature drastically depends on the equation of state and other specific

properties of the environment as (4.27) suggests.

4.1.2 The Effect of a Large Magnetic Field on the Transition Rate

We will now argue that the effects of the magnetic field can be safely neglected

in calculating the transition rate. Of course, the magnetic field still plays a crucial

role in producing the required asymmetry for the current. There has been much

consideration of Landau levels on the rates of processes that occur in neutron stars.

Landau levels can have drastic effects on the spin of electrons, though these effects

are suppressed by the unusually high chemical potentials found in neutron stars. An

extremely large magnetic field is needed for these effects to manifest themselves

in neutron stars. It must be roughly comparable to the chemical potential eB∼ µ2
e

in order for substantial changes for the transition rates to occur. Numerically, this

corresponds to very large fields B∼Bcµ2
e /m2

e ∼ 1017G, which are much larger than
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the magnetic fields found in typical neutron stars. As a note, magnetic field of 1017

G are thought to appear in the off-centre Au-Au collisions at RHIC.

To introduce Landau levels to the earlier calculation we can simply replace the

electron dispersion relation with

E2
e = p2

z +m2
e(1+2nb) , (4.29)

where n are all natural numbers, but only electrons with a spin antiparallel to the

magnetic field are allowed in the lowest, n = 0, level and b = B/Bc is the magnetic

field normalized to the critical field, Bc = m2
e/e = 4.4×1013 G. The electron phase

space becomes

Ω

∫
d pz

2π

nmax

∑
n=0

gnm2
eb

(2π)2
, (4.30)

where the term after the sum is the degeneracy per unit area and gn, equal to 1 for

n = 0 and 2 otherwise, counts the spin degeneracy. The maximum Landau level

occurs for pz = 0 when all the energy goes to putting the electron in the Landau

level and none goes into the momentum. This yields

nmax =
E2

e −m2
e

2m2
eb

. (4.31)

If the number of Landau levels is very large, nmax ∼ E2
e

2bm2
e
≫ 1, which is a common

case for a typical neutron star, then the phase space returns to the one we used in

the previous Section (4.24). Therefore, for a typical neutron star the transition rate

basically remains the same, as the electron phase space essentially unchanged,

Ω

∫
d pz

(2π)3
µ2

e , (4.32)

where we used Ee ∼ µe and µe ≫ me. This result is in accordance with our pre-

vious rough argument that a very large magnetic field is required to produce any

substantial changes.

We want to contrast this generic case with a rare situation when only the lowest

Landau level is accessible, nmax = 0. This occurs when eB ∼ µ2
e ∼ 1017 G [116].

In this approximation we recover the usual electron dispersion relation, while the

available phase volume becomes

Ω

∫
d pz

(2π)3
m2

eb . (4.33)

As before, we move the momentum dependent parts of the phase space outside

of the integral by approximating them by their Fermi momenta. The rest of the
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integral takes place identically. We can compensate for the magnetic field in our

calculation of the transition rate simply by taking

µe→
m2

e b

µe

. (4.34)

This suppression factor is identical to (3.31) but appears because only one Landau

level exists in the system. This is different than in (3.31) where the factor appears

because we are only considering the Landau levels that contribute to the current.

In fact this transformation can be done to account for the magnetic field for any

of the other rates we derive (4.73), (4.85), (5.10). In particular, for the direct Urca

case we are left with

w

Ω
=

G2
F

8π5
(1+3C2

A)m∗N m∗P
m2

e b

µe

T 5 I, (4.35)

which we can compare to equation (4.24). This expression is valid when b >
µ2

e /m2
e . This condition has a chance of manifesting itself in magnetars, where

huge magnetic fields on the order of B ∼ 1016 G are thought to exist. Otherwise

the Landau levels do not have a significant contribution and the earlier expression

is valid.

4.1.3 Calculation of the Helicity Λ(µ,B,T )

In order to calculate the average helicity of the electrons, we must consider the cre-

ation of an electron through nuclear beta decay in a large magnetic field and chem-

ical potential. There have been many calculations of transition rates in magnetic

fields, notably [117, 118], and more recently for both large magnetic fields and

chemical potentials [116] and references within. We are looking for a specific prop-

erty of the weak interaction, the helicity of electrons produced in a large magnetic

field and chemical potential. The helicity of a particle is given by Λ = σ ·p/|p|,
where σ are the Pauli matrices and p is the particle’s spatial momentum. The two

eigenstates of the helicity operator correspond to the values

p ·ξξξ =±|p| , (4.36)

where ξξξ is the rest spin vector of the particle. The expectation value of the helicity

can be calculated by looking at the ratio of decay rates Γ with different helicity,

〈Λ〉= Γ(p ·ξξξ = |p|)−Γ(p ·ξξξ =−|p|)
Γ(p ·ξξξ = |p|)+Γ(p ·ξξξ =−|p|) . (4.37)



Chapter 4. Estimating the Magnitude of the Current 89

The small scale of the interactions and the immense magnitude of the magnetic

field make it necessary to consider the Landau levels the electrons decay into. De-

tailed analysis of the effect of the Landau levels on interactions while considering

the complete electron wave function has concluded that the only significant change

is in the energy of the electron,

E2
e = p2

e +m2
e(1+2nb) ,n =

{
1,2, ... spin up

0,1,2, ... spin down
(4.38)

where b = B/Bc is the ratio of the magnetic field and the critical magnetic field,

Bc =
m2

ec3

he
∼ 4.4×1013 G.

The magnetic field also affects the phase space of the electron. It can only

carry linear momentum in the direction of the magnetic field. The magnetic field

also causes degeneracy of levels. With this taken in to account the phase space

becomes ∫
d pe

2π

m2
eb

2π
. (4.39)

We will confine ourselves to calculating the helicity for an electron created

through beta decay, one half of the direct Urca processes, Figure 4.1. We sum over

everything but the electron spin,

∑ |M|2 ≃ 16G2
FENEP

[
(1+3C2

A)Ev(Ee−pe ·ξξξ e) (4.40)

−(1−C2
A)pν · (pe−mese)

]
,

where CA ≃ 1.26 is the axial current constant, GF is the Fermi coupling constant,

and the spin is given by

s = ξξξ +
(p ·ξξξ )p

m(m+E)
, (4.41)

where ξξξ is the unit polarization vector.

In order to find the decay rate we use the modified electron phase space. To

find the total decay rate it is necessary to sum over the probability of an electron

appearing in the each of the Landau levels. The sum truncates where the energy of

a Landau level is high enough to be disallowed by conservation of energy. Specif-

ically we let nmax be the largest n that satisfies E2
e > m2

e(1+2nb). The total decay

rate is the sum of the decay rate of each level,

Γ =
nmax

∑
n=0

Γn , (4.42)

where

nmax = (E2
e −m2

e)/m2
e2b . (4.43)
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The highest Landau level is reached when all of the energy goes into putting the

electron in the highest landau level and none into the momentum pz. We see that

increasing the magnetic field decreases the number of levels to which the electron

has access. When b > E2
e /2m2

e − 1/2 the electron only has access to the lowest

Landau level meaning that all the electrons are spin down.

We must also account for the non-zero chemical potentials of the protons, elec-

trons, and neutrons. Because the electron and proton have large chemical potentials

their phase spaces are constricted. The presence of a Fermi surface means that only

higher energy electrons and protons can be created. This is modelled by multiply-

ing the usual phase space by Fermi blocking terms 1− f (E), where f (E) is the

Fermi distribution. With these considerations the decay rate into a single Landau

level n is

dΓn =
1

2EN

d pz

2Ee2π

m2
eb

2π

d3 pν

2Eν(2π)3

d3 pP

2EP(2π)3

×|M|2(2π)4δ 4(pN− pP− pe− pν)(1− fP)(1− fe) , (4.44)

There are a few quantities that naturally align themselves with the magnetic field.

Firstly, all spins are either aligned or anti-aligned so if we choose B = (0,0,Bz)
then

ξξξ e = (0,0,ξe) and ξξξ
N
= (0,0,ξN) . (4.45)

Also, because of the Landau levels, the electrons have linear momentum only in

the direction of the magnetic field,

pe = (0,0, pe) . (4.46)

The matrix element is reduced to

∑ |M|2 ≃ 8G2
FENEP

[
(1+3C2

A)Ev(Ee− peξe) (4.47)

−(1−C2
A)|pν |(pe−mese)cosθ

]
,

where θ is the angle between the z-axis and the direction of the neutrino momen-

tum.

The integrals up to the final electron integral are straight forward. We are left

with

dΓn = Agn d pe(EN−EP−Ee)
2

[
1− peξe

Ee

]
(1− fe) , (4.48)

where

A =
m2

eG2
Fb

(2π)3
(1−3C2

A)(1− fP(kP)) . (4.49)
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The term pe ξe =±|pe| gives us the helicity eigenstates. We can get the combina-

tions required for finding the average helicity by evaluating

Γn(+)−Γn(−) = −4Agn

∫ p0

0
d pe(EN−EP−Ee)

2 |pe|
Ee

(1− fe), (4.50)

Γn(+)+Γn(−) = 4Agn

∫ p0

0
d pe(EN−EP−Ee)

2(1− fe) . (4.51)

In order to do the final integral over the Fermi distribution we appeal to the Som-

merfeld expansion,

∫ E0

0
h(E)(1− f (E))dE =

∫ E0

µ
h(E)dE− T 2π2

6

∂

∂E
h(E)

∣∣∣∣
E=µ

. (4.52)

The particles in a neutron star are in chemical equilibrium. The maximum energy

available for the electron is equal to its chemical potential, E0 = µ , leaving the

integral part of the Sommerfeld expansion to vanish. Physically this makes sense

because the equilibrium processes only occur thermally—the transition rate at zero

temperature vanishes. Doing our integral has been reduced to taking a derivative,

Γn(+)−Γn(−) =
2AgnT 2π2

3

pe

Ee

∂

∂ pe

(EN−EP−Ee)
2 pe

Ee

∣∣∣∣
pe=ke

(4.53)

Γn(+)+Γn(−) = − 2AgnT 2π2

3

pe

Ee

∂

∂ pe

(EN−EP−Ee)
2

∣∣∣∣
pe=ke

, (4.54)

where remember that Ee(pe,n). We can sum over each of these to get the total

decay rate, then take the ratio to get the average helicity. The important values are

EN−EP = µe∼ ke and the sum goes up to nmax = k2
e/2m2

eb. The details after this are

largely uninteresting and is computed by doing the sum numerically. As a check

we find that the helicity at zero magnetic field is 〈Λ〉 = −1 as we expect. Over

the range of fields we are interested B = 1012−1015 G the helicity is surprisingly

constant. We arrive at

〈Λ〉 ≃ −0.84 . (4.55)

The helicity is close to−1, but not so close that it doesn’t warrant a comment. With

a large magnetic field the electron is forced into Landau levels. The single spin

down state in the lowest level sometimes forces the electron into a right-handed

configuration to conserve momentum. This occurs when the proton is created with

the same spin as the initial neutron. In this case the electron and the neutrino must

have opposite spins. If the electron is forced by the lowest Landau level to be spin

down then the antineutrino must be spin up. Being right-handed, the antineutrino

moves up in the direction of its spin. In order to conserve momentum the electron
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must move down, forming a right-handed configuration. The electron is bullied

into being right-handed by the antineutrino. The effect is not absolute though, and

the intrinsic left-handedness of the weak interaction wins out.

4.2 Nuclear Matter: The Modified Urca Process

The direct Urca process is the simplest to consider, but it is unlikely to be the most

common process in a star. It is much easier to conserve momentum if a nucleon is

included to supplement momentum transfer. We will consider the mean free path

of an electron scattering of a proton assisted by a neutron, equation (2.126). The

inclusion of the nucleon-nucleon interaction into the matrix element is non-trivial

and we will use the one pion exchange/Landau liquid method found in [119], the

interaction illustrated in Figure 4.2.

p2 p5

p6p3

p4

νe

P N

N ′ N ′

e−

N

π0

p1

Figure 4.2: The modified Urca process.

There are many other diagrams similar to the one illustrated. They include all

possibilities of pion exchange between protons and nucleons as well as crossing

diagrams to account for the final neutrons being indistinguishable. Summing them

all causes the vector contributions to cancel and we are left with the scattering

matrix approximated to be

∑
spins

|Ŝ|2 = 1

Ω6

64G2
F

(µe)2
C2

A

(
f

mπ

)4

αUrca , (4.56)

where f ∼ 1 is the p-wave πN coupling constant, CA = 1.26 is the Gamow-Teller

coupling, and αUrca ∼ (0.63−1.76)(n0/n)2/3 is a factor that accounts for the pion

propagator and the short range Landau liquid contributions. Following [119], but

somewhat preempting the calculation, we approximate the propagator of the in-
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ternal nucleon using the total lepton energy µe—remember that the energy the

neutrino carries away is negligible.

To calculate the mean free path we will first calculate the transition rate

w =
Ω6

(2π)18

6

∏
i=1

∫
d3 pi S (2π)4Ω δ (4)(p f − pi) ∑

spins

|Ŝ|2 , (4.57)

where S is the Pauli blocking factor.

We separate the transition rate into angular and radial parts leaving

w =
Ω

(2π)14 ∑
spins

|Ŝ|2 P Q , (4.58)

where

P =
6

∏
i=1

∫
p2

i d pi S δ (E f −Ei), (4.59)

Q =
6

∏
i=1

∫
dΩi δ (3)(p f −pi). (4.60)

We start with the Q integral. The contribution from the momentum of the neutrino

is negligible compared to the rest so we neglect it in the δ -function. This allows

us to take an integral over all angles causing the term with angular dependence to

vanish. As evaluated in Appendix B the angular integral is

Q =
(4π)5

2p1 p4 p5

. (4.61)

We can now do the PQ integral. Changing variables from momentum to energy

and approximating the energy by the particle’s fermi energy changes the measures

to

p1d p1 = m∗NdE1 , (4.62)

p2
2d p2 = µe m∗PdE2 , (4.63)

p2
3d p3 = µ2

e dE3 , (4.64)

p4d p4 = m∗NdE4 , (4.65)

p2
5d p5 = m∗NdE5 , (4.66)

p2
6d p6 = E2

6 dE6 , (4.67)

where we took kP ∼ µe. Then we take the E6 integral over the delta function and

make substitutions xi = ±β (Ei− µi) to make the remaining integral dimension-

less as in the direct Urca case. Compared to direct Urca, the two extra particles



Chapter 4. Estimating the Magnitude of the Current 94

contribute two more Fermi distributions to the statistical factor,

S =
5

∏
i=1

1

1+ exi
. (4.68)

Using the beta equilibrium condition, µP+µe = µN , all chemical potentials cancel,

leaving

PQ =
(4π)5

2
(m∗P)

2 (m∗N)
4 µe T 7 I , (4.69)

where I is the analytic integral evaluated in Appendix B,

I =
5

∏
i=1

(∫ ∞

−∞

dxi

1+ exi

)(
5

∑
j=1

x j

)2

Θ(x1 + x2 + x3 + x4 + x5), (4.70)

=
4

∏
i=1

(∫ ∞

−∞
dxi

)∫ ∞

−(x1+x2+x3+x4)
dx5

(
5

∑
j=1

x j

)2
5

∏
k=1

1

1+ exk
, (4.71)

≈ 192 . (4.72)

Gathering all the terms together we get the transition rate per unit volume for an

electron scattering off a proton assisted by a neutron,

w

Ω
=

G2
F C2

A

π9

(m∗N)
3m∗P µe

m4
π

αUrca T 7 I , (4.73)

= 9.2×1026
( µe

100 MeV

) (m∗N
mN

)4

T 7
9 s−1 cm−3 , (4.74)

where as discussed earlier m∗N ∼ m∗P ∼ 0.8mN . The rate of this process is much

smaller than we found earlier in the direct case (4.24) and the temperature depen-

dence is now T 7 rather than T 5. Also, because of the density dependence of αUrca,

the transition rate is independent of density. Both of these differences result from

this being a higher order calculation that involves two extra particles—the ingoing

and outgoing neutron assisting in momentum conservation. This means that the

transition rate is suppressed by a factor of αUrca and that two extra factors of T to

appear from the two extra measures of integration.

4.2.1 Estimate of the Current from Modified Beta Decay

We are interested in the mean free path of an electron. The volume occupied by

a single electron is Ωe ∼ 10−36 cm3, and the electron moves at the speed of light,
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leaving the mean free path to be

ℓe ∼ 1.4×1015 (T9)
−7

(
n

n0

)2

km. (4.75)

At the beginning of the star’s life, when it is very hot T ∼ 1012 K, the electrons

are trapped, then as the star cools the electrons are allowed to escape. Here we get

a similar counterintuitive density dependance as (4.27) but the effect is stronger

because there are two neutron Pauli blocking terms to contend with.

We now follow the same prescription as earlier to arrive at the value for the

current,

JV = 7.7×10−14

(
n

n0

)−4/3

T 7
9 MeV. (4.76)

This is by far the weakest current from any phase of matter. As before the current

is strongest early in the star’s life when it is hot, and though it is suppressed it can

get quite large at high temperatures due to the T 7 dependence.

4.3 Kaon Condensate

As the density of the star gets above three times nuclear density is it possible that

a charged kaon condensate will appear [66]. It is now energetically favourable for

electrons to scatter off the condensate and turn into neutrinos. We are interested

in calculating the transition rate of an electron decaying in the presence of a kaon

condensate, equation (2.128). The effect of condensates on the scattering matrix

was first used to describe pion condensates [68] and later for kaon condensates

[70, 120] and involves evaluating the process given by the Feynman diagram in

Figure 4.3.

N N

〈K−〉

(µk, 0)

p5p2

p1

p4
νee−

Figure 4.3: Electron decay in a kaon condensate.
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The process needs the aid of a nucleon, similar to that of the modified beta

decay, but the four-momentum from the kaon condensate does make it easier for

energy-momentum to be conserved during the process. We start with the usual

hadron and lepton currents and the kaon condensate is described by a chiral rotation

in V-spin space, U = eiγ5θ . For kaons a small rotation can have a large effect so

only θ ≪ 1 must be considered. The matrix element, as found in [70], is given by

∑
spins

|Ŝ|2 = G2
Fθ 2

4Ω4
(1+3C2

A)sin2 θc , (4.77)

where θ 2 ∼ 0.1 is the kaon amplitude, CA = 1.26 is the Gamow-Teller coupling,

and θc ∼ 13◦ is the Cabibbo angle.

We are interested in the regime where the kaon momentum p3 is zero. The

transition rate is given by

w =
Ω4

(2π)12

∫
d3 p1d3 p2d3 p4d3 p5 S (2π)4Ωδ (p f − pi)|Ŝ|2 . (4.78)

where S is the statistical factor containing Fermi blocking terms, Ω is the volume of

the neutron star. The subscripts on p1, p2, p4, and p5, label the momentum of the

ingoing neutron, the electron, the outgoing neutron, and the neutrino, respectively.

Following the work done in [65] we can separate the angular and radial integrals

so each can be evaluated independently,

w =
Ω5

(2π)8 ∑
spins

|Ŝ|2 PQ , (4.79)

where

P =
∫

p2
1d p1 p2

2d p2 p2
4d p4 p2

5d p5 S δ (E f −Ei) , (4.80)

Q =
∫

dΩ1 dΩ2 dΩ4 dΩ5 δ (3)(p f −pi) . (4.81)

We start by doing the angular integral Q is done in Appendix B and is the same as

in earlier cases,

Q =
(4π)3

2p1 p2 p4

. (4.82)

The PQ integral can now be started,

PQ =
(4π)3

2p1 p2 p4

∫
p2

1d p1 p2
2d p2 p2

4d p4 p5d p5 S δ (E1 +E2−E3−E4−E5) .(4.83)



Chapter 4. Estimating the Magnitude of the Current 97

We first change the variables of integration from momentum to energy pid pi =
EidEi and perform the neutrino integral over the delta function. In an effort to

make the final integral tractable, we follow [65] in approximating factors next to

the measures as constant. The neutrons are non-relativistic so their energy is just

their effective mass, m∗N , and the electron is ultra relativistic, because of its large

Fermi momentum, and the energy is just its chemical potential, µe. As before,

these factors can then be moved outside the integral. It is also convenient to change

variables to facilitate the final integral over the Pauli blocking factors. Changing

variables takes (E1 +E2−E3−E4)
2 to (x1 +x2 +x4)

2T 2, where we used the equi-

librium condition µk = µe. Upon changing variables the measure of integration

gives us a factor T 3 and we are left with

PQ =
(4π)3

2
(m∗N)

2 µe T 5 I , (4.84)

where I is the same analytic integral that arises from the statistical factor S in the

direct Urca process (4.21).

Putting everything together we get the transition rate per unit volume of an

electron decaying into a kaon,

w

Ω
=

G2
Fθ 2

(2π)5
(1+3C2

A)sin2 θc (m
∗
N)

2 µe T 5 I (4.85)

= 4.4×1029
( µe

100 MeV

)(m∗N
mN

)2(
n

n0

)2/3

(T9)
5

s−1 cm−3, (4.86)

where T9 = T/(109 K) is the scaled temperature, and m∗N ∼ 0.8mN . The tempera-

ture dependance is the same as the direct Urca process (4.24), but we would expect

it to be of higher order than direct Urca because it involves an extra particle, and

thus smaller. The temperature dependence is the same because of the way we treat

the kaons as a condensate, rather than an extra particle. The condensate picture is

a rotation of the direct process, rather than a whole new particle interaction as in

the modified Urca process.

4.3.1 Estimate of the Current in a Kaon Condensate

Because of the high chemical potential the electrons must be relativistic leaving

the mean free path to be

ℓe = 3.0×1012 (T9)
−5

(
n

n0

)4/3

km . (4.87)

Once again the mean free path larger than the radius of the neutron star and the

electrons can escape. We also notice the counterintuitive, but now familiar, density
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dependence discussed in the direct Urca case. This effective mean free path with

the helicity intrinsic in the weak interaction creates a current given by equation

(3.32),

JV ≃ 3.6×10−11 (T9)
5

(
n

n0

)−2/3

MeV. (4.88)

Though the generation of the current in a kaon condensate happens though a wildly

different process than direct Urca, and the numbers we use are quite different, we

see that after the star has cooled the numbers conspire to give currents of similar

magnitude (4.28).

4.4 Quark Matter

The last case we consider is what would occur if the hadrons separated into their

constituent quarks. This is the case in quark stars, where degenerate quarks exist

deconfined. In calculating the mean free path of electrons in quark matter there

are two possible reactions we must consider, if we restrict ourselves to the lightest

quarks, given in equation (2.129). Each is given by the Feynman diagram in Figure

4.4, where the d quark can be substituted out for the s quark.

p1 p4

p2u

νe

d
p3

e−

Figure 4.4: The direct Urca process for quarks.

Unlike nuclear beta decay, the lowest order quark beta processes do not re-

quire help from an external particle to to conserve momentum; they proceed un-

suppressed [67]. Because they are deconfined, the Fermi momentum of the quarks

are much closer to each other than the Fermi surfaces of the hadrons in neutron

stars. We will first consider the transition into the down quark. The transition rate

is given by

w =
Ω4

(2π)12

∫
d3 p1 d3 p2 d3 p3 d3 p4 S (2π)4Ωδ (4)(p f − pi) |Ŝ|2 , (4.89)
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where S is the statistical factor containing Fermi blocking terms, Ω is the volume

of the phase space. The subscripts on p1, p2, p3, and p4, label the momentum of

the ingoing electron, the up quark, the down quark, and the neutrino, respectively.

The matrix element of this process is found in [67],

|Ŝ|2 = 6

Ω4
G2

F cos2 θc

16αs

3π

[
1− p3 ·p4

E3E4

]
, (4.90)

which looks similar to the usual four Fermi matrix element but contains corrections

due to the ability to relate the quark’s momentum to the quark gluon coupling

constant by αs =
g2

4π . We have also included the factor to account for the degrees

of freedom of the quark here. The transition rate can be split into two integrals,

w = 64
Ω

(2π)9
G2

F cos2 θcαs PQ , (4.91)

where

P =
4

∏
i=1

∫
p2

i d pi SδE f −Ei , (4.92)

Q =
4

∏
i=1

∫
dΩiδ

(3)(p f −pi)

[
1− p3 ·p4

E3E4

]
. (4.93)

These integrals are nearly identical to the kaon case. The Q integral is the same

as in the direct Urca case (4.9). We make an approximation to the remaining PQ

integral when we change variables from momentum to energy. As we have done

in previous integrals, the momentum of the electron and quarks is replaced by

their value at the fermi surface. Performing the neutrino integral, dE4, over the

delta function leaves us with the same integral as equation (4.15). We perform a

similar change of variables as before to make the integral dimensionless. Following

the same procedure as the direct Urca case, the quark beta equilibrium condition

µe+µu = µd causes the chemical potentials to cancel, and the PQ integral becomes

PQ =
(4π)3

2
µe ku kd T 5 I , (4.94)

where I is the same integral given in equation (4.21), which is the same as the

direct Urca and kaon cases. An identical calculation can be done for the electron

scattering into strange quarks. Putting everything together we get the transition

rate for electrons in quark matter,

wd = Ω
4

π6
G2

F cos2 θc αs ke ku kd T 5 I , (4.95)

ws = Ω
4

π6
G2

F sin2 θc αs ke ku ks T 5 I . (4.96)
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To estimate the magnitude of the transition we assume that kd ≈ ku ≈ ks as in the

massless noninteracting case and use the relationship ke ≈ µe = (3Ye)
1/3kq, where

Ye = ne/nb is the ratio of electrons to baryons in the star. The Fermi momentum of

the quarks is estimated using (5.7). We follow [67] in estimating αs ≈ 0.4 and [60]

for estimating Ye = 1×10−3.

The total transition rate is the sum of ws and wd ,

w

Ω
= 8.0×1030

(
nb

n0

)
(T9)

5 s−1 cm−3 . (4.97)

We see the T 5 temperature behaviour that has become a signature for the first order,

four Fermi interaction.

4.4.1 Estimate of the Current in Quark Matter

As before, the first step in finding the current is estimating the mean free path of

the electron in quark matter by assuming that the electron propagates at the speed

of light. The same physics creates the current in quark matter and it is still non-

dissipating. We now use the new definition of ne to determine the volume occupied

by a single electron, Ω = (Ye nb)
−1, and we are left with

ℓe =
c

w
= 1.2×1010 (T9)

−5 km. (4.98)

The radius of the star, R ∼ 10 km, is much smaller than this and the current will

propagate. In quark matter the mean free path is not dependent on density; the

Pauli suppression and enhancement cancel each other. When the electrons reach

the crust they are removed from the system creating a new effective mean free path

for the electron. This effective mean free path with the helicity intrinsic in the weak

interaction creates a current

JV = 7.0×10−9 (T9)
5

(
nb

n0

)1/3

MeV . (4.99)

The typical density for quark matter is nb ∼ 10n0, but could easily be higher. Once

again the numbers have conspired and the magnitude of the current is close to the

value for both direct Urca (4.28) and kaon (4.88) processes. They are all first order

processes, but we see a critical difference in the density dependence. Unlike the

other currents the quark current actual gets larger with increasing density. This

happens because quark stars remain charge neutral in a fundamentally different

way than neutron stars, as discussed in Section 2.2.2 and the electron chemical

potential is determined differently.
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Table 4.1: A summary of the current per magnetic flux quantum calculated from

each interaction. The value is for a single quantum of flux, such as that found in a

type-II vortex. The appropriate density for the kaon and the direct Urca currents is

n = 3n0, for quarks is nb = 10n0, and for modified Urca is n = n0.

Current JV (MeV)

Direct Beta Decay 9.4×10−10
(

n
n0

)−2/3

(T9)
5

Modified Beta Decay 7.7×10−14
(

n
n0

)−4/3

(T9)
7

Kaon Condensate 3.6×10−11
(

n
n0

)−2/3

(T9)
5

Quark 7.0×10−9
(

nb

n0

)1/3

(T9)
5

4.5 Summary of Estimates

We have calculated the magnitude of the topological vector current in four types

of nuclear matter and summarize them in Table 4.1. Direct beta decay, which is

also the preferred reaction when hyperons are present, kaon condensates, and quark

matter, all are radically different, but they all make a current about the same order.

There is a stark difference in the modified Urca process, which occurs in ordinary

nuclear matter where the proton fraction is below 1/9. The current is four orders

of magnitude smaller than the rest. This is because it is a higher order process

involving more particles. It results in a more severe dependance on temperature

which suppresses the process when the star cools.

The estimates of the current are relatively small in magnitude, but much larger

currents exist on microscopic scales. The estimates represent a component of the

current that produces a coherent effect in the entire region where matter is degen-

erate and the magnetic field all points in one direction. As a technical remark, the

estimates of the current JV are presented in MeV units. The current is defined as

a number of particles crossing the surface equivalent to one quantum of magnetic

flux per unit time. We can obtain the electromagnetic current in conventional units

by multiplying by e =
√

4πα and converting the result into Amperes: eJV ∼ 102 A

for JV = 1 MeV.
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Chapter 5

Large Pulsar Kicks Generated by

Topological Currents

We will discuss the application of topological currents to neutrons star kicks. The

discussion follows that first presented in Charbonneau and Zhitnitsky [9] and Char-

bonneau, Hoffman, and Heyl [10]. We have spent the last chapter calculating the

magnitude of the current for many different phases of matter. We will now directly

use these values to discuss whether or not the current could be responsible for a

kick, and if so, how big of a kick could the current possibly produce.

It is accepted that pulsars have much higher velocities than their progenitors,

some moving as quickly as 1000 km/s [87, 93, 121–126]. There have been a num-

ber of studies that have compiled and modelled the velocities of pulsars. Although

they disagree on whether the distribution is indeed bimodal, they agree that a sig-

nificant number of pulsars are travelling faster than can be attributed to neutrino

kicks. The analysis of [87] favours a bimodal velocity distribution with peaks at

90 kms−1 and 500 kms−1 with 15% of pulsars travelling at speeds greater than

1000 kms−1. Alternatively [88] and [89] both argue for a single peaked distribu-

tion with an average velocity of ∼ 400 kms−1, but point out that the faster pul-

sars B2011+38 and B2224+64 have speeds of ∼ 1600 kms−1. Large velocities

are unambiguously confirmed with the model independent measurement of pulsar

B1508+55 moving at 1083+103
−90 kms−1 [127]. Our goal is to explain these large

kicks.

Currently no mechanism exists that can reliably kick the star hard enough. Ex-

plosions during collapse can only reliably kick a star 50 km/s [93], asymmetric

explosions can only reach 200 km/s [126], and asymmetric neutrino emission is

plagued by the problem that at temperatures high enough to produce the kick the

neutrino is trapped inside the star [128, 129]. Recent hydrodynamic models that

include neutrino luminosities to drive the explosions have been more successful

[94, 95] in reaching the higher velocities observed. These models require max-

imum asymmetry due to instabilities and neutrino energy to be artificially intro-

duced and fail to intrinsically predict the alignment of the spin and kick. The

simulations also end before most of the kick is created and the actually kick ve-

locity is an extrapolated result. However, they are very promising models. More
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exotic mechanisms require exotic particles and more fine tuning. Alterations of the

neutrino model that take into account only a thin shell of neutrinos require large

temperatures and huge surface magnetic fields.

Another aspect of the kick we must account for is the apparent agreement be-

tween the direction of the kick and the rotation axis of the star [130]. With current

models it is impossible to determine whether the kick direction and spin are aligned

or anti-aligned or randomly distributed. But this alignment has lead to the hypoth-

esis that kicks must be of long duration, much larger than the spin period [86].

The kick mechanism we will discuss relies on the existence of topological vec-

tor currents which have spent the last few chapters developing,

Jv = (µL−µR)
eΦ

(2π)2
, (5.1)

where µR and µL are the chemical potential of the right and left-handed electrons,

and Φ is the magnetic flux. There are three requirements for topological vector

currents to be present: an imbalance in left and right-handed particles µL 6= µR,

degenerate matter µ ≫ T , and the presence of a background magnetic field B 6= 0.

All of these are present in neutron and quark stars. The weak interaction, by which

the star attains equilibrium, violates parity; particles created in this environment are

primarily left-handed. The interior of the star is very dense, µe ∼ 100 MeV, and

cold, T ∼ 1 MeV, such that the degeneracy condition µ ≫ T is met, and neutron

stars are known to have huge surface magnetic fields, Bs ∼ 1012 G.

If the electrons carried by the current can transfer their momentum into space—

either by being ejected or by radiating photons—the current could push the star like

a rocket. In typical neutron stars this is unlikely because the envelope (the region

where µ ∼ T ) is thought to be about 100 m thick. Once it reaches this thick crust,

the current will likely travel along it and be reabsorbed into the bulk of the star.

But if the crust is very thin, or nonexistent, the electrons may leave the system or

emit photons that will carry their momentum to space. The electrosphere for bare

quark stars is thought to be about 1000 fm [131]1. With this in mind we conjecture

that stars with very large kicks, v≫ 200 kms−1, are quark stars and that slow

moving stars, v≤ 200 kms−1, are kicked by some other means, such as asymmetric

explosions or neutrino emission, and are typical neutron stars. Confirmation of this

would provide an elegant way to discriminate between neutron stars and quark

stars. As is known, other criteria such as mass, size, cooling rate, etc. cannot

1 It has been recently argued that a crust in quark stars could be much larger in size than previously

thought due to development of a new heterogeneous mixed phase [132, 133]. As we mentioned

above, it is not our goal to discuss the interaction of current with the crust, however, an intense

current from the core of quark star may destroy the crust in this new mixed phase in few locations

similar to volcanoes on earth.
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easily discriminate between quark stars and neutron stars, see e.g. [64, 134] for

review. This also naturally lends itself to a bimodal distribution for kick velocities

as supported in [87].

The topological kicks we will discuss have a sustained nature that allows a

rotation-kick correlation 〈~P ·~Ω〉 to form regardless of the angle between the star’s

rotation and magnetic field. Neutron stars spin on the order of milliseconds, which

is small compared to the kick duration. The force vectors from the kick form a

cone aligned with the axis of rotation that average to produce a kick along the axis

of rotation. Long duration kicks are supported by the analysis in [86].

Kicks caused by the topological current are very similar to neutrino kicks. The

helicity of the electrons and the single spin state in the lowest Landau level al-

low electrons to travel with a preferred direction through the neutron star. The

difference between the two mechanisms is the linear momentum that the particle

transfers to the star. Neutrinos have an energy close to the temperature of the star,

while the electrons, which are degenerate, have an energy close to their Fermi mo-

mentum. We will discuss this critical difference in Section 5.5.

A Rough Calculation

We will first provide a rough calculation demonstrating that topological kicks can

provide the momentum required and do so because of the immense electron chem-

ical potential, not because of the temperature of the star. Also, because of the

correlation between the magnetic field and the spin axis, topological kicks natu-

rally align with the spin axis of the star. Though it is unclear what will happen to

the electrons when they reach the surface of the star, we can estimate the size of

the kick if we assume the entire momentum carried by the topological current will

be transferred into space by some means.

The first step in estimating the magnitude of a topological kick is determining

the total momentum transferred to the star. There are Nv ∼ 7 ·1033 B/Bc quantum

units of flux in a star that can be distributed in either superconducting domains or

vortices, see eq. (2.142). The current is independent of the internal structure of the

star. If all the electrons are shot out of the star or transfer their entire momentum,

then the momentum is given by the total current (3.30), the number of electrons

that leave the star per unit time. The momentum a single electron transfers out of

the star is equal to its Fermi momentum, ke = 100 MeV. The fuel for the kick is

the chemical potential, not the temperature. Therefore the kick may continue even

when star is already cool; the kick in our mechanism is not an instant event, but is

rather a long, slow, steady process that pushes the star. Putting this all together, the

current transfers Nv ke 〈 j〉 units of momentum per unit of time.

The appropriate way to estimate the magnitude of the kick is to integrate the
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rate of momentum transfer per unit time by taking into account the time evolution

of the star. As Table 4.1 demonstrates, the current is very sensitive to tempera-

ture/time. We will account for this when we discuss the details of cooling later in

this chapter. The rate of momentum transfer also changes as the star cools and the

environment (density, phase) changes. We neglect all these complications for now

and take a value for the current corresponding to T ∼ 109 K.

The momentum transfer required for the star to reach a velocity of v = 1000

km/s is quite large. Per baryon, the momentum required is mn v∼ 3 MeV. The total

baryon number of a neutron star of one solar mass is Bn ∼ 1057. The momentum

for the entire star is then P∼ 3 ·1057 MeV. If we choose a current 〈 j〉= 10−10 (T9)
5

MeV, corresponding to an average current in Table 4.1, the time required to attain

this momentum is

t =
P

Nv ke 〈 j〉
≈ 3 ·1010

( v

1000 km/s

)(Bc

B

)(
1010 MeV

〈 j〉

)(
109 K

T

)5

s,

≈ 10,000 years, (5.2)

We restore the canonical dimensionality of MeV−1 in seconds by multiplying h̄ =
6.58 ·10−22 MeV·s. This is a conservative estimate of the kick strength. The current

is much larger at the star’s birth (when it is hot) and kicks such as those seen in,

for example, the Vela pulsar can be easily explained. If electrons actually leave

the star, rather than transferring their momentum through radiation, the electron

chemical potential will slowly decrease and the current may stop running. Charge

neutrality will cause matter to accrete isotropically and possibly maintain some of

the chemical potential.

The topological kick mechanism described here is similar to neutrino driven

kicks in that both use P-odd effects and particles to carry momentum out of the

star. The electron and neutrino have similar mean free paths, but the electrons

leave much lower rate than the neutrinos. The fundamental difference in the two

carriers in the energy they carry out of the star. At low temperatures, when the

neutrinos can escape the star, they do not carry enough energy to explain the kick.

In contrast, the electrons that make the non-dissipating current (or more precisely

the quasi-particles which freely travel along the magnetic field) carry very large

momentum ∼ µe. As a result the neutrino carries too little momentum when the

mean free path becomes sufficiently long, while the momentum carried by the

topological current remains very high even at very low temperatures T ∼ 108 K.

We will now discuss this in detail.
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5.1 Simple Model of Quark Stars

As we focused mostly on neutron matter in the introduction we will review the

model for quark stars used specifically for this calculation. The kick will likely

only occur in quark stars that are bare or have very thin crusts. We will consider

only the existence of light quarks in the star, which attain equilibrium through the

quark direct Urca processes,

e−+u (+ νe) ↔ d (+ νe) , (5.3)

e−+u (+ νe) ↔ s (+ νe) , (5.4)

where the neutrino terms only appear in the final state of the interaction. The direct

Urca processes in quark matter do not have the same Fermi momentum restrictions

as in neutron matter and are thus not suppressed. These processes are at equilibrium

when

µu +µe = µd and µu +µe = µs . (5.5)

In this balance we ignore the neutrino chemical potential. In discussing the kick

we will focus on temperatures where the star makes the transition from being

opaque to neutrinos to being transparent. We will refer to this temperature range

as the translucent regime. In the opaque regime the neutrino chemical potential

is nonzero. As the star cools the mean free path of the neutrinos becomes large

enough that all neutrinos created may freely leave the star. This is precisely the

temperature at which the topological current begins to flow and creates a kick. In

discussing these temperatures there is the concern that the neutrino chemical po-

tential cannot be ignored. However, once in the transparent regime the neutrino

chemical potential dissipates much faster than the time scale of the kick, thus we

can safely ignore it.

The quark matter must also be electrically neutral,

ρ/e =
2

3
nu−

1

3
nd−

1

3
ns−ne = 0 , (5.6)

where ρ is the charge density and ni are the number densities of the quarks and

electrons. We will consider the simplest model where the quark masses are set to

zero, thus their Fermi momenta are equal to their Fermi energies. Unfortunately,

this approximation requires the electron density to be zero to satisfy equation (5.6),

thus removing an essential element from the star: electrons. The strange quark

mass is quite large and the number density should be described using nonrelativistic

Fermi statistics, which readmits electrons into the mix to conserve charge. We will

follow [67] by assuming that the quarks are all massless and an electron chemical

potential is present to capture the contribution of the mass of the strange quark.
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The Fermi momentum of the quark species can be written in terms of the baryon

number density, denoted nb, as

kq = (π2nb)
1/3 ∼ 235

(
nb

n0

)1/3

MeV. (5.7)

For typical densities in the core of the neutron star the Fermi momentum is kq∼ 400

MeV, which is greater than the strange quark mass. Neglecting the mass of the

strange quark is a crude approximation but works well for this calculation. We can

obtain the electron Fermi momentum using the fraction of electrons to baryons,

Ye = ne/nb, which yields

ke = (3Ye)
1/3kq ∼ 10

(
nb

n0

)1/3

MeV. (5.8)

Because ke≫ me, we find that ke ∼ µe. [60] state a typical value for the electron

fraction as Ye . 10−3, which is the value we will use. In the very core of the

star the electron fraction may be lower Ye < 10−4[72]. This value is not critical

in determining the strength of the kick because we will find that the dependance

on ke cancels. However, as we will discuss in Section 5.5, the value of the Fermi

momentum ke when compared to the core temperature of the star Tcore is critical in

understanding how topological currents generate large kicks.

5.2 The Cooling of Quark Stars

In order to properly determine the size of a kick we need to understand how the core

temperature of the quark star evolves with time. Unfortunately, kicks are likely to

occur right after the birth of the star during the most poorly understood stage of

cooling. For insight into the cooling curve of a quark star we follow the work in

two papers. The initial cooling of the star is described in [135], which focuses

on neutrino diffusion through the star and thermal cooling. The star then cools

until the neutrinos can escape the quark star and the cooling moves into a purely

radiative regime as discussed in [136]. The part of the cooling curve between these

two well defined mechanisms constitutes the translucent regime.

The quark direct Urca processes, which are weak interactions, create both the

neutrinos responsible for cooling the star and the parity that drives the current. The

topological current only flows when the mean free path of the electron with respect

to the weak interaction is larger than the neutron star. As they take part in the same

processes, this is also when neutrinos start to escape the star. The mean free path

of the weak interaction for an electron in quark matter has been calculated in [9]
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Figure 5.1: The dashed line indicates the translucent part of the cooling curve,

modelled by exponential decay. The curve before the patch is taken from [135]

and the curve after the patch is from [136]. The black dot marks the start of the

kick at t = 0.

and is

ℓe = 1.2×1010

(
Tcore

109 K

)−5

km . (5.9)

Equation (5.9) tells us that for a star of radius R∼ 10 km the current starts to flow

at Tcore ∼ 8× 1010 K. At this point on the cooling curve the temperature changes

on the scale of seconds.

It is not clear how to model the short but critical cooling period that occurs in

the translucent regime, as it is a very complicated process, but we assume it must

make a smooth transition from the primarily thermal cooling of the core found in

[135] to the neutrino cooling found in [136]. Because we are interested in an esti-

mate of the kick and not the exact details of the cooling we will interpolate between

these two cooling curves by assuming the transition is smooth and exponential. We

will use the cooling curve from Figure 2a of [135] that models the cooling of the

core of the star. We then piece it together using an exponential decay to cool the

star to 1010.2 K and match the initialization of the cooling curve given in Figure
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1 of [136]. By requiring that the first derivatives are equal it is possible to find a

unique exponential decay that patches these cooling curves together. Figure 5.1

plots this patched region that describes the translucent region of the cooling curve.

It is possible that the cooling in the translucent regime is quite different from

the exponential patch we propose. The severity of the exponential cooling provides

us with a reasonable guess for the lower bound of the kick. Slower cooling in the

translucent regime would result in larger kicks.

5.3 Estimating the Size of the Kick

The topological current runs along the magnetic field of the star and consists of

electrons created in the core of the star travelling to the surface. Once at the surface

these electrons transfer net momentum to the star. We assume that the absence of a

crust on the quark star will allow all of the electron’s momentum to be transferred.

The electrons may be physically ejected from the star or the momentum may be

transferred by some radiative process such as bremsstrahlung. The size of the kick

is directly related to the strength of the current, which is related to the creation

rate of left-handed electrons in the quark star and the population of electrons in the

lowest Landau level. The calculations regarding the strength of the current in this

paragraph are detailed in [9]. We provide only a brief illustrative overview here.

The direct Urca processes for quarks create electrons at a rate per unit volume

w

Ω
=

G2
F

π6
αs ke k2

q T 5 I , (5.10)

= 8.0×1030

(
nb

n0

) (
Tcore

109 K

)5

s−1 cm−3 , (5.11)

where αs = g2/4π ≈ 0.4 and I ≈ 20.6 is a dimensionless integral. The helicity of

the electrons 〈Λ〉=−0.84 and the fraction of electrons in the lowest Landau level

are contained in the parameter

Pasym(µe,T,B) ≃ −〈Λ〉 ·
(

m2
e

k2
e

B

Bc

)
, (5.12)

≃ 2 ·10−4

(
B

Bc

)(
nb

n0

)−2/3

. (5.13)

The total number current for electrons reaching the surface of the star is given
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by

Jv = Pasym
w

Ω
Vstar , (5.14)

= 2.6×1026

(
10 MeV

ke

)(
B

10Bc

)(
Tcore

109 K

)5(
nb

n0

)1/3

MeV, (5.15)

where Bc = 4.4×1013 G is the critical magnetic field, Tcore is the core temperature

of the star, and n0 is nuclear density. The typical density for quark matter is nb ∼
10n0 but could easily be higher.

Because the current originates in the core of the star, we are interested in the

strength of the internal magnetic field. Though many pulsars have a surface field

of around 1012 G, the field in the bulk of the star is likely much stronger based on

virial theorem arguments in [137]. The scalar virial theorem for the star states that

2T +W +3Π+M = 0, (5.16)

where T is the total rotational kinetic energy, Π is the internal energy, W is the

gravitational energy, and M is the magnetic energy. Because the kinetic energies

are positive, the magnetic field energy can be at most equal to the gravitational

energy, (4πR3/3)(B2
max/8π)∼GM2/R, which yield possible core fields of Bmax ∼

1018 G. This is an extremely large field and is unlikely as it is a strict upper bound.

Based on this we choose a value of the core magnetic field to be Bcore = 10Bc.

The current, equation (5.14), gives a number rate of electrons reaching the

surface of the star. To get the momentum transferred per second we simply multiply

by the momentum each electron carries, ke, which is large due to the degeneracy

and is given by equation (5.8). The acceleration for a 1.4M⊙ star is then

a =
ke 〈 j(Tcore)〉

1.4M⊙
. (5.17)

We see that all the factors of ke cancel because 〈 j〉 contains a factor of k−1
e and

the precise value of Ye is not important. The kick is independent of the Fermi

momentum of the electrons, but as we will discuss later this does not mean the

Fermi momentum is unimportant.

As seen in Figure 5.2, the star quickly reaches a speed of

vmax ∼ 1600 kms−1 , (5.18)

which is big enough to account for the large kicks seen in many pulsars. This result

relies on the internal magnetic field of the star being two orders of magnitude larger

than what we observe on the surface of most pulsars. We have also neglected the
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Figure 5.2: Time evolution of the kick for an internal magnetic field B = 10Bc.

dissipation of electrons in the electrosphere of the quark star. As plotted, the entire

kick seems to happen very quickly, but the current keeps running throughout the

star’s life. With a large internal magnetic field the mechanism can account for

kicks seen in young pulsars. But because the kick is constantly running, pulsars

with smaller internal magnetic fields will eventually attain very large speeds very

late in life.

5.4 The Effect of the Kick on Cooling

We want to ensure that the energy from the kick does not contribute significantly to

the cooling of the star and that the neutrinos remain the dominant cooling mecha-

nism during the kick. We find that at the beginning of the star’s life the energy from

the kick does not contribute to the cooling of the star, but later in life the current

could become the dominant cooling mechanism.

The reason is that only a small fraction of the electrons created in the neutron

star actually escape due to the low occupation of the lowest Landau levels. As

discussed earlier the estimate for the neutrino kick has a similar suppression factor,

but all of the neutrinos actually escape the star, even those that do not contribute
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toward a neutrino kick. The electrons only propagate because the asymmetry in the

lowest Landau level allows the helicity states to propagate out of the star. Those

electrons that do not contribute toward the kick are trapped inside the star. The

helicity states that reach the surface due to the current are the only electrons that

contribute to the cooling of the star. The neutrinos cool the star with a luminosity

Lν ∼ Tw where the electrons cool the star with an energy current (luminosity) of

Le ∼ kenLw. The ratio of electron cooling to neutrino cooling is

Le

Lν
∼ µenL

T
=

m2
e

µeT

B

Bc

. (5.19)

At first the electrons cool the star at about 1/100 the rate of neutrino cooling. As

the star cools, eventually Le/Lν > 1 and the more energy is lost due to the current

than the neutrinos. This transition occurs at a temperature

Tt ∼ 10−2

(
B

Bc

)
MeV∼ 108

(
B

Bc

)
K , (5.20)

well after the kick has occurred. If electrons are escaping the star, new charged

particles will accrete to maintain charge neutrality and add energy back to the star.

But these will likely be much lower energy than those propelled from the star.

The current may be an additional cooling mechanism to consider in stars that have

cooled below 108 K.

5.5 The Difference Between Topological Kicks and

Neutrino Kicks

It is important to understand the differences between neutrino kicks and topologi-

cal kicks because superficially they seem very similar. In both cases a particle is

created through the weak interaction with a favoured helicity (left-handed)2 and

the large magnetic field forces the electrons into Landau levels. The lowest Lan-

dau level only accepts a spin down electron, whereas all the rest allow both spin

up and spin down states. Combining the preferred helicity of the particles with

the spin state asymmetry in the lowest Landau level means that the neutrinos and

electrons now travel with a preferred direction within the star. If the star is cool

enough, these particles can escape the star without decaying. The neutrino does

not participate in QED interactions and the electrons propagate due to the current,

which is allowed because parity is a symmetry of QED. The particles that exit the

star provide the linear momentum required to push the star.

2In a dense star the electrons are created with an average helicity 〈Λ〉=−0.84, but for simplicity

we will assume in this section that they are all left-handed.
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The electrons and neutrinos that contribute towards the kick are created at the

same rate w, given by equation (5.10). We are only interested in interactions that

create particles in the lowest Landau level so this rate is suppressed by a factor

to account for the population of the lowest Landau level. The momentum trans-

ferred to provide the kick is simply the momentum per particle that escapes the

star. On the surface of the star, where the chemical potential is low, Boltzmann

statistics are used to model the occupation of the lowest Landau level. This is what

is seen in many neutrino kick models. This is because neutrinos require such hot

temperatures to produce kicks that only a thin shell near the edge of the star is

considered to contribute to the kick. In the core of the star, where the electrons are

very degenerate, we must use Fermi statistics. This predicts an occupation of

nL ∼
(

m2
e

k2
e

B

Bc

)
(5.21)

in the lowest Landau level in the interior of the star.

At core temperatures below 7×1010 K the neutrinos can escape the star and the

topological current is active. The flux of particles contributing to both the electron

kick and the neutrino kick is about the same ∼ nL w. The difference between the

two mechanisms comes from the momentum that the relevant particle carries. The

neutrinos are created thermally and the typical momentum of a neutrino is equal

to the temperature of the star T . The momentum of the electrons comes from the

large chemical potential, µe ∼ 10 MeV. The momentum transfer per unit time for

neutrinos3 is Fν ∼ T nLw and for electrons is Fe ∼ µenLw. When the kick starts the

star has a temperature of only T ∼ 1 MeV. The electron kick is stronger than the

neutrino kick by a factor of

Fe

Fν
∼ µe

T
. (5.22)

Initially, when the star is very hot, the electron kick is an order of magnitude

stronger than the neutrino kick. Furthermore, as the star cools the neutrino kick

gets even weaker, while the electrons continue to have a momentum dictated by

their chemical potential. This why electrons generate larger kicks than neutrinos.

5.6 Modelling the Translucent Regime in Figure 5.1

In calculating the strength of the kick it is necessary to model the cooling of the

star. The bulk of the kick happens in a rather difficult part of the cooling which we

3Notice energy per unit time has the T 6 dependance we expect for a calculation involving neutrino

luminosity.
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call the translucent regime. This regime is where the star transitions from being

opaque to neutrinos to being transparent. Properly modelling the current in this

regime would be difficult so we patch it instead. Cooling is an exponential process

so we model this patch with an exponential decay,

y = ae−bt + c . (5.23)

For convenience we will make t = 0 the point where the dotted line in Figure 5.1

starts and t = τ the point where the dotted line ends. We have four boundary

conditions available to us

y(0) = a+ c , (5.24)

y′(0) = −ab , (5.25)

y(τ) = ae−bτ + c , (5.26)

y′(τ) = −abe−bτ . (5.27)

These correspond to the value and slope of the cooling curves derived from neu-

trino diffusion on the opaque side and free streaming neutrinos on the transparent

side.

These can be rewritten to solve for the unknowns in our exponential,

a = (y(τ)− y(0))

(
y′(τ)
y′(0)

−1

)−1

, (5.28)

b = −y′(0)
a

, (5.29)

c = y(0)−a , (5.30)

τ =
ln |y′(τ)|− ln |ab|

−b
. (5.31)

The values from the opaque cooling curve taken from [135] are

y(0) = 1011 K and y′(0) =−0.95×1011 K s−1, (5.32)

and the values from the transparent cooling curve taken from [136] are

y(τ) = 1010.2 K and y′(τ) =−4.06×109 K s−1. (5.33)

Plugging these is we see our patch has the form

T = (8.79e−1.08 t +1.21)1010 K for t > 0 and t < 2.91 s, (5.34)

where t = 0 denotes where the dotted line starts in Figure 5.1. This is a very

crude way to determine the cooling of the star during the translucent regime, but
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it allows for a realistic estimate of the kick caused by the current. Hydrodynamic

models take this complex cooling into account as part of their simulation, but many

neutrino kick models rely on a constant temperature on 1011 K for up to 10 seconds

to produce their kicks.

5.7 Summary

The introduction of this model of pulsar kicks, which we refer to as topological

kicks, is the cumulation of the last three chapters. We have worked from first

principles to develop a kick model. We have found that these topological kicks can

generate kicks greater than 1000 kms−1. This may explain large pulsar kicks that

are otherwise unattainable using traditional kick mechanisms. Topological kicks

occur only if the electrons that make up the topological current can transfer their

momentum through the star’s crust. Because neutron stars have thick crusts, it is

unlikely that they will be kicked due to this mechanism, but rather by mechanisms

that generate weak kicks. In contrast, bare quark stars have no crust and they may

allow the electrons to escape. Because of this distinction we conjecture that many

of the fastest pulsars are quark stars.

In calculating the kick velocity we assumed that the cooling curve of the quarks

star must make a smooth transition from the primarily thermal cooling of the core

found in [135] to the neutrino cooling found in [136]. This patched cooling curve

allowed us to integrate over time the momentum transferred from the topological

current and obtain the strength of the kick. We have also demonstrated that the

energy lost due to the current does not change the cooling of the star during the

kick. But, after the star cools below 109 K the topological current becomes the

dominant cooling mechanism rather than neutrino emission.

The magnitude of the kick also depends on the strength of the magnetic field

inside the star. The virial theorem puts a limit on the internal field of the star that

is much higher than the surface field. To generate the kick we used a field strength

of Bcore = 10Bc, which is a reasonable estimate for pulsars that have a surface

magnetic field of Bs ∼ 1012 G.

The observational evidence of this kick mechanism still needs to be developed.

The fact that the kick mechanism is only expected to work with quark stars means

that quark stars would generally be the faster moving pulsars. This would seem

to favour a bimodal kick distribution, such as that discussed in [87] where the

two peaks rested at 90 km/s and 500 km/s. One could conceive that the peak

around 90 km/s is produced by hydrodynamic mechanisms and is populated by

conventional neutron stars. The higher peak around 500 km/s would be populated

by quark stars that have topological currents as a primary kick mechanism. If there
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is indeed a bimodal kick distribution with neutron stars populating the lower peak

and quark stars populating the higher peak, this would be observational evidence

of the topological kick mechanism.
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Chapter 6

Other Applications of Topological

Currents in Dense Stars

In this section we briefly discuss four other applications of the topological vector

current first introduced by Charbonneau and Zhitnitsky [9],

Section 6.1: Toroidal Magnetic Fields

Section 6.2: Magnetic Helicity

Section 6.3: Pulsar Jets

Section 6.4: Type-I vs. Type-II Superconductivity

These phenomena are observed in many neutron stars and appear to be unrelated

to each other, but we will argue that they originate from the same source—non-

dissipating topological currents.

6.1 Toroidal Magnetic Fields

There is a strong theoretical evidence for the existence of toroidal fields in neu-

tron stars based on the instability of the poloidal magnetic field. References [24–

26, 138, 139] argue that toroidal and poloidal fields of similar magnitudes must

be necessary to stave off hydrodynamic instabilities—the toroidal field suppresses

poloidal instabilities and vice versa. Much has been done to find the observational

consequences of a toroidal field, for example [140].

Estimating the toroidal magnetic field is a very complicated problem that re-

quires a self consistent solution of the equation of the magnetic hydrodynamics.

Our induced, topological currents represent only a small part of the system. We are

not attempting to solve this problem. Instead, we shall argue that the currents we

estimated are more than sufficient to induce a toroidal magnetic field correlated on

large scale of order 10 km.

A natural consequence of having a current running parallel to the poloidal mag-

netic field is that a toroidal component Htor will be induced. The size of the field

can be calculated naively using Ampere’s law, but there is a subtlety because the
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magnetic field is being induced inside a superconductor. The magnetic field ob-

served in neutron stars B ∼ 1012 G is actually induced by a much larger field H.

The suppression comes from the perfect diamagnetism of the proton superconduc-

tor (the Meissner effect). This perfect diamagnetism is ruined at a critical field

Hc ∼ (Φ0/4πλ 2) ∼ 1015 G where flux penetrates the star through small regions

where superconductivity has been destroyed (vortices or domains). The supercur-

rents responsible for the perfect diamagnetism do not flow as easily and a small

field is induced.

Regardless whether the flux penetrates the superconductor as single vortices

or in flux domains, we can assume that the superconductor is type-II.1 The rela-

tionship between the applied magnetic field H and induced magnetic field B in a

type-II superconductor is very nonlinear. The details have been worked out in [141]

and [142], where the latter is a direct application to neutron stars. The important

points are that below the first critical field H < Hc1 there is no magnetic field B

induced. Just above the critical field a magnetic field appears that is approximately

B ∼ 10−3Hc1. As the applied magnetic field is increased above Hc1 the induced

field starts to approach the applied field.

We want to determine if the topological current produced by the poloidal field

can induce a sufficient toroidal field by finding the length scale where Htor ∼ H.

Following [142] we assume that H ∼ Hc and we get the relationship B ∼ 10−3H

for our magnetic field. We apply Ampere’s law for a region of size L to get

Htor2πL = e j ·
(

πL2B

Φ0

)
, (6.1)

where the expression in brackets describes the number of unit fluxes bundled in the

area πL2 such that we get the total current enclosed in our loop. We take Φ0 = π/e

and substitute use our relationship between H and B.

The naive estimate leads to the following expression for Htor in terms of mag-

nitude of poloidal magnetic field H,

Htor

H
∼ α〈 j〉L∼ 4

( 〈 j〉
10−10 MeV

)(
L

km

)
. (6.2)

This shows that a typical current from Table 4.1 can induce a toroidal field the same

magnitude as the poloidal field on scales the order L∼ 1 km, within the typical size

of a neutron star. It is quite obvious that our estimate becomes unreliable when

1The mechanism for type-I like superconductivity discussed in [8] relies on the electromagnetic

interaction between currents carrying vortices, not in altering the value of the Landau-Ginzburg

parameter κ = λ/ξ . We then still use results from type-II superconductors (indicated by κ > 1/
√

2)

but the vortices are now bunched together in large domains with higher winding numbers.
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Htor ≥H and we can no longer ignore the current induced by the toroidal field. For

Htor ≥ H the problem requires a self consistent analysis which is beyond scope of

the present paper. The point is that the toroidal field obviously develops as a result

of topological currents and eq. (6.2) shows that its magnitude can easily become

the same order as the poloidal magnetic field. If superconductivity is completely

destroyed, which we will discuss the possibility of in Section 6.4, B = H and the

toroidal field can induced on a much smaller scale, L∼ 1 m.

6.2 A Source for Magnetic Helicity

Magnetic helicity, see e.g. [143], is defined as

H ≡
∫

d3x~A ·~B. (6.3)

The magnetic helicity is a topological object that can be expressed in terms of the

linking number n(γ1,γ2) of two curves γ1 and γ2. The precise relation between H
and interlinked flux Φ1 and Φ2 is given by

H = 2Φ1Φ2 = 2Φ2
0 N1N2 , (6.4)

where Φ1 = Φ0N1 and Φ2 = Φ0N2 are expressed in terms of unit flux Φ0 and the

linking number is simply reduced to n(γ1,γ2) = N1N2. Therefore H takes integer

values up to a normalization 2Φ2
0. This linking number is preserved, dH

dt
= 0, in a

magneto-fluid with zero resistivity, which is a very good approximation for neutron

stars. This topological invariance provides the stability necessary for the poloidal

field.

We want to emphasize that the magnetic helicity is the dot product of a vector

and a pseudovector, making it a pseudoscalar. Under the parity transformation~x→
−~x the magnetic helicity is P-odd: H →−H . This implies that the magnetic

helicity can be only induced if there are parity violating processes producing a large

coherent effect on macroscopic scales. Many attempts to generate helicity rely on

instabilities in the magnetic field caused by the star’s rotation. Such correlations
~B ·~Ω are P-even, and though they may generate toroidal fields they cannot be

responsible for helicity.

Our observation here is that the non-dissipating topological current introduced

in the present work has precisely this property: the topological current produces the

P-odd correlation 〈~P ·~B〉 and is capable of inducing magnetic helicity H ∼ j. In

fact, our estimate for the induced toroidal field Htor unambiguously implies that the

magnetic helicity will be also induced, see eq. (6.2). The magnetic flux from the
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toroidal and poloidal fields is always interlinked and contributes to the magnetic

helicity,

H = 2ΦtorrΦ, (6.5)

where Φ and Φtorr are the original poloidal and induced toroidal magnetic fluxes

(6.2) correspondingly.

Strong observational evidence, see [140] and references therein, supporting the

presence of the toroidal component unambiguously suggests that the magnetic he-

licity H must be non-zero in neutron stars. The P-odd quality of the magnetic

helicity may be strong, indirect evidence supporting our claim that P-odd topo-

logical currents have been induced at some moment in the star’s life. Otherwise,

it is very difficult to understand how such a large, coherent P-odd effect could be

produced.

6.3 Pulsar Jets

A different but likely related phenomena is the recent observation of pulsar jets

[144] that are apparently related to neutron star kicks [145, 146]. It has been ar-

gued that spin axes and proper motion directions of the Crab and Vela pulsars are

aligned. Such a correlation would follow naturally if we suppose that the kick is

caused by a non-dissipating current as we mentioned above. The current, and thus

the proper motion, is aligned with the magnetic field, which itself is correlated with

the axis of rotation. It would be very tempting to identify the observed inner jets

[144] with the electrons/photons emitted as a result of the induced current.

It is possible that evidence of the topological current may be directly detected

in these jets. An observational consequence of the current is that a component of

the X-ray emission in the trail of the neutron star will be left circularly polarized.

Because of the parity violation in the star, only left-handed electrons will contribute

to the kick. When these left-handed electrons interact they will create mostly left-

handed photons, which coherently will be seen as left circularly polarized X-rays.

This signature of the current will be difficult to detect as measuring circular polar-

ization is hard. There are also many other sources of X-rays and the contribution

from the current is likely very small, but it further motivates the need for higher

precision X-ray polarimetry [147].

6.4 Type-I vs. Type-II Superconductivity

The following discussion of type-I vs. type-II superconductivity came from the

possibility that neutron stars may precess [148]. Recently, the timing noise has
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been reinterpreted and what was thought to be precession is now thought to be fast

changes in the emission state of the pulsar [149].

The problem with precession was that it conflicted with the commonly held

belief that the protons form a type-II superconductor in the core [83, 84]. When a

magnetic field is applied to a type-II superconductor the flux finds it energetically

favourable to penetrate it by forming many vortices each carrying a unit of quan-

tum flux. In a neutron star the large number of these get tangled with the superfluid

neutron vortices that have formed to carry angular momentum. If the star precesses

with a large enough angle the superfluid vortices must break through the supercon-

ducting vortices for rotation to continue. Incredibly large amounts of energy are

dissipated in this process which would cause the star to stop rotating. It was shown

that if the superconductor is type-I there is no conflict [150]. If the superconductor

is type-I, where the flux bunches in large groups organizing macroscopically large

domains, there is room for the neutron vortices to move around.

In [8] it was found that if a sufficiently large current runs along type-II vor-

tices an attractive force arises that causes the vortices to bundle together like they

would in a type-I superconductor even though the Landau-Ginzburg parameters

indicate type-II behaviour. It was suggested that this was a potential solution for

the precession problem. Even though the precession problem has disappeared with

the reinterpretation of timing noise the result that a current along the vortex would

cause a type-I superconductor still holds. The topological current discussed in this

thesis is such a current that would run along the vortex and change the type of

superconductivity.

Even if the current is not strong enough to make the vortices attract each other it

has also been argued [8] that the mere presence of an induced, longitudinal current,

arbitrarily small, would destroy superconductivity, thus resolving the problem. In

many condensed matter systems such kind of instability has been experimentally

tested (see [8] for relevant references). This instability can be delayed for small

currents or even stabilized due to impurities. But the lesson from these condensed

matter systems is that when a current aligns with the magnetic field creating the

vortex the properties of the vortex lattice are completely changed or destroyed.

We expect similar behaviour in regions of the neutron star where both the

Landau-Ginzburg parameter suggests type-II behaviour and longitudinal currents

are induced. While many features of the system are still to be explored, the point

is that that even small topological currents along the magnetic field could destroy

the vortex lattice by replacing it with a new, unknown structure, similar to the con-

densed matter experiments mentioned above.
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Chapter 7

Topological Currents in

AdS/QCD

This chapter marks a departure from the previous program in which we developed

the idea of topological currents in dense matter and then discussed the practical

applications of the current in pulsar physics. We will now discuss the topological

current in terms of its implications in string theory. As discussed in the background

material (Section 2.3) the interest in string theory is not as a theory of everything

but as a tool for doing calculations at strong coupling.

The motivation behind this work is simply that a potential theory of holo-

graphic QCD should contain all the results found in QCD. The initial investigations

of topological currents using quantum field theory. These considerations only in-

clude the first order contribution to the anomaly through the triangle diagram and

do not consider higher order corrections. The ensuing attempts to find evidence for

these currents in string theory resulted in debate over whether or not these string

models are complete [19, 20, 151]. These debates even went so far as to question

the type of anomaly cancellation occurring in lattice calculations that confirm the

presence of the topological current [152]. It was surmised that either the holo-

graphic model is somehow broken or that the topological currents do not exist at

strong coupling. Evidence for the current has been seen at RHIC, which is believed

to produce a strongly coupled quark-gluon plasma. It may be that the quark-gluon

plasma is sufficiently weakly coupled for the current not to be completely sup-

pressed. We will assume the holographic model is somehow deficient and aim to

show how one might introduce the current into a holographic description.

It was pointed out [21] that that the source of the confusion lies in incorporating

non-zero values of axial charge into these models. In previous derivations[19, 151],

a temporal component of a static axial background field was used to mimic an axial

chemical potential. This lead to the eventual cancellation of the current by Bardeen

counter-terms. A possible solution to the problem, then, is that a chemical potential

can only be introduced to a conserved quantum number, and so that a re-definition

of axial charge is necessary [21].

We will begin with a brief introduction of a simple AdS/QCD model in Section

7.1, which is the model we will use to illustrate our point. In this section we
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will solve the equations of motion and derive the expressions for the current using

the holography. In Section 7.2 we will discuss how the introduction of Bardeen

counter-terms restores the conservation of the vector current. In Section 7.3 we

will show how this holographic model manages to reproduce the topological axial

current,

J3
A =

Nc

2π2
Bµ , (7.1)

but fails to reproduce the topological vector current,

J3
V =

Nc

2π2
Bµ5 , (7.2)

when using the standard boundary conditions. We will review a possible solution

to this problem in Section 7.4 that involves reconsidering what the appropriate

boundary conditions are. We will then introduce our solution to the problem in

Section 7.5.

7.1 Soft-wall AdS/QCD

In the AdS/QCD model [153–155], the bottom-up approach is followed. The holo-

graphic dual lives on a 5D AdS space with the background metric

ds2 =
1

z2

(
ηµνdxµdxν +dz2

)
, (7.3)

with ηµν = diag(−1,1,1,1). The well-known conformal symmetry of this space

reflects the near-conformal behaviour of QCD in the UV (z→ 0 in the dual). To

break this symmetry at low energies, a “hard wall” is introduced in the form of

a brane in the IR (z→ ∞), effectively cutting off the space. In order to obtain

the correct Regge behaviour, the “soft-wall” model was introduced by [156, 157],

where the space is smoothly cut off by turning on the dilaton,

Φ(z) = z2. (7.4)

In four-dimensions we are interested in calculating currents. These four-dimensional

operators have five-dimensional fields as holographic counterparts. We are inter-

ested in axial and vector currents, so the five-dimensional fields are left and right-

handed gauge fields L and R. The naı̈ve global SU(N f )L× SU(N f )R flavour sym-

metry of the field theory becomes a local, gauge symmetry in the bulk, and the

associated Noether currents JL and JR are dual to gauge fields L and R. We will

focus on the case of a single flavour, as the extension to N f > 1 is not relevant to
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our discussion. The dynamics of the gauge fields in the bulk are described by the

action

S = SY M[L]+SY M[R]+SCS[L]−SCS[R], (7.5)

where the components of the action are made from the quadratic expansion of the

Dirac-Born-Infeld (DBI) action and Chern-Simons (CS) terms,

SY M[A] =− 1

8g2
5

∫
dzd4x e−Φ

√−gFMNFMN , (7.6)

SCS[A] =−
Nc

24π2

∫
dzd4x εMNQPRAMFNQFPR . (7.7)

The uppercase Latin indices run over all five coordinates {0,1,2,3,z}. The stan-

dard soft-wall model action has a scalar and pseudoscalar sector that we will ignore.

Here a Chern-Simons term has been included in order to reproduce the chiral

anomaly [158]. Note that the Chern-Simons action is not gauge invariant in that

its variation under a gauge transformation A→ A+ dα is a surface term. Since

A is coupled to a chiral fermion on the boundary, one may think of this variation

as being cancelled by the variation of the boundary action, δS = −∫ d4xα∂µJµ ,

by virtue of the anomaly [159]. If we think of the holographic relationship be-

tween the bulk and boundary theories as arising from taking some limit of a larger

theory (D-branes, for example) then this is the statement that the larger theory is

completely anomaly free, but that the anomaly cancellation does not survive the de-

coupling limit. If we wish to study, for example, the boundary theory in isolation,

we must cancel the anomaly by hand (by renormalization). It is not possible to do

so for both left- and right-handed transformations (equivalently, vector and axial

transformations) by means of local counter-terms, but we can at least cancel the

vector anomaly, which is enough to keep the theory consistent. The counter-term,

given by Bardeen [160], and introduced in the holographic setting in [19–22, 159],

takes the form of a boundary term in the 5D bulk action,

SBardeen =−
Nc

12π2

∫
d4x εµνρσ LµRν(Lρσ +Rρσ ), (7.8)

where Lµν and Rµν denote the left- and right-handed field tensors. This term is

introduced to ensure that the vector current is free of local anomalies. We will see

in Section 7.5.1 that the cancellation of the vector current due to these terms is not

complete if we allow for sources in the bulk. This source in the bulk introduces a

global anomaly responsible for the topological current.
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7.1.1 Correlation Functions

Correlation functions involving the current operators Jµ ∼ qγµq in the 4D gauge

theory are obtained by deforming the action by a small amount δS ∝
∫

d4x jµJµ ,

and formally expanding the partition function order-by-order in jµ . In the holo-

graphic correspondence such a deformation is dual to placing probes near the

boundary in the 5D bulk theory. This amounts to deforming the boundary con-

ditions for the gauge field Aa by a small amount ja. Similarly, we can introduce

a background field Bµ for the quarks by adding qγµbµq to the Lagrangian of the

4D theory, deforming the boundary condition for Aa by a further amount ba in the

bulk. We will therefore require the following behaviour of the fields AL and AR

near the boundary:

AL
µ(z→ 0)→ jL

µ +bL
µ ,

AR
µ(z→ 0)→ jR

µ +bR
µ . (7.9)

The electromagnetic currents are derived by taking derivatives of the action

with respect to j
L/R
µ as these are dual to the current

J
L/R
µ =

δS

δ j
L/R
µ

, (7.10)

where S is evaluated over a classical solution. Varying the action yields

δS =
∫

M

[
δL

δAa

−∂b

(
δL

δ∂bAa

)]
δAa +

∫

∂M
nb

(
δL

δ∂bAa

δAa

)
, (7.11)

where nb is normal to the boundary. This variation indicates we may evaluate

Eqn. (7.10) using the equation

J
L/R
µ =

δL

δ∂zA
L/R
µ

∣∣∣∣∣
z=0

+ . . . , (7.12)

where . . . represents the variation of the boundary contribution to the action. The

symmetric combination of the boundary conditions we will use are

bL
0 +bR

0 = µ, (7.13a)

bL
i +bR

i =−x jBk, (7.13b)

where we have chosen i jk to be the even permutations of 123.
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7.1.2 The Equations of Motion

The first thing we will do is establish the equations of motion. We work in the

Az = 0 gauge which yields a Yang-Mills action

SY M[A] =− 1

4g2
5

∫
dzd4x

{
e−φ

z
Aµ(

µν−∂ µ∂ ν)Aν (7.14)

+Aµ∂z

e−φ

z
∂zA

µ

}
(7.15)

+
1

4g2
5

∫
d4x

e−φ

z
Aµ∂zA

µ

∣∣∣∣
z=∞

z=0

. (7.16)

Varying the Yang-Mills part of the action Eqn. (7.5) with respect to the left-handed

potential yields

δSY M[L]

δLµ
=− R

2g2
5

[
e−φ

z
(�ηµν −∂ µ∂ ν)Lν +∂z

(
e−φ

z
∂zL

µ

)]
. (7.17)

Varying with respect to the right-handed potential yields a similar result. The

Chern-Simons term yields

δSCS[L]

δLµ
=

kNc

2π2
εµνρσ ∂zLνFρσ . (7.18)

Using the AdS/CFT relation R

g2
5

= Nc

12π2 allows us to write the equations of motion

as

∂z

(
e−φ

z
∂zL

µ

)
−24εµνρσ ∂zLν∂ρLσ =0 , (7.19)

∂z

(
e−φ

z
∂zR

µ

)
+24εµνρσ ∂zRν∂ρRσ =0 . (7.20)

We can also vary the system with respect to Az and get an equation of motion

that will later be used to write down the divergence of the current. This will be

used solely to illustrate the role of the Bardeen counter-term in the preservation of

the conservation of the vector current. The Yang-Mills portion gives us

δSY M[L]

δLz

=− R

2g2
5

eφ

z
∂z∂µLµ . (7.21)

The contribution from the CS term is

δSCS[L]

δLz

=
Nc

2π2
εµνρσ ∂µLν∂ρLσ . (7.22)
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Rewriting the constants using the dictionary we get the equation of motion,

Nc

24π2

eφ

z
∂z∂µLµ =

Nc

2π2
εµνρσ ∂µLν∂ρLσ . (7.23)

A similar equation of motion can be found for the right-handed field Rµ where the

right hand side picks up a negative sign.

Specific Solutions

We are interested in a background magnetic field in the x3 direction and choose

L1(x2) = R1(x2) =−1
2
Bx2 such that they have only x2 dependence. We can rewrite

these fields in terms of the axial and vector fields A and V by using the relations

V = L+R and A = L−R. We should note that this convention differs from some

papers that define the axial relation as A = R−L and can result in sign differences

when comparing equations involving axial components. Using our convention we

arrive at the equations of motion

∂z

(
e−φ

z
∂zV0

)
+12B∂zA3 = 0 , (7.24)

∂z

(
e−φ

z
∂zV3

)
+12B∂zA0 = 0 , (7.25)

∂z

(
e−φ

z
∂zA0

)
+12B∂zV3 = 0 , (7.26)

∂z

(
e−φ

z
∂zA3

)
+12B∂zV0 = 0 . (7.27)

These can be solved by introducing a new coordinate w with

∂w =
dz

dw
∂z =

e−φ

z
∂z , (7.28)

so that the appropriate solutions are

V0(z) = v00 +a31(e
−β w(z)−1), (7.29)

V3(z) = v31 +a01(e
−β w(z)−1), (7.30)

A0(z) = (a00 +a01)+a01(e
−β w(z)−1), (7.31)

A3(z) = (a30 +a31)+a31(e
−β w(z)−1), (7.32)

where β = 12B and w(z) has the property that w(0) = 0 and w(∞) = ∞ such that

we discard one set of solutions from the beginning. We must still apply appropriate

boundary conditions to these solutions. We have grouped the constants in a way

that will make the effect of these boundary conditions more transparent later in the

paper.
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7.1.3 Setting Up the Currents

We will now introduce the standard setup for holographic currents. As discussed

earlier the 4-dimensional currents can be found using

Jµ =
δS

δAµ(0)
= J

µ
0 + J

µ
Bardeen =

δL

δ∂zAµ

∣∣∣∣
z→0

+ J
µ
Bardeen . (7.33)

The Bardeen term is chosen to cancel nonconserved components in the vector cur-

rent. This is the common procedure in quantum field theory as the vector current

is the physical current. This process leaves the axial current anomalous.

The current receives contributions from both FµzF
µz and SCS. The currents that

arise from this are

J
µ
0,L =− Nc

24π2

e−φ

z
∂zL

µ +
Nc

6π2
εµνρσ LνLρσ , (7.34)

J
µ
0,R =− Nc

24π2

e−φ

z
∂zR

µ − Nc

6π2
εµνρσ RνRρσ . (7.35)

And the Bardeen currents that come from the Bardeen action in Eqn. (7.8) are

J
µ
Bardeen,L =− Nc

6π2
εµνρσ

(
Rν∂ρRσ +2Rν∂ρLσ −Lν∂ρRσ

)
, (7.36)

J
µ
Bardeen,R =+

Nc

6π2
εµνρσ

(
Lν∂ρLσ +2Lν∂ρRσ −Rν∂ρLσ

)
. (7.37)

As discussed earlier we can rewrite currents in terms of the axial and vector fields

A and V by using the relations V = L+R and A = L−R,

J
µ
0 =− Nc

24π2
∂wV µ +

Nc

12π2
εµνρσ

(
VνAρσ +AνVρσ

)
, (7.38)

J
µ
0,A =− Nc

24π2
∂wAµ +

Nc

12π2
εµνρσ

(
VνVρσ +AνAρσ

)
, (7.39)

J
µ
Bardeen =−

Nc

24π2
εµνρσ

(
−4AνVρσ +2VνAρσ

)
, (7.40)

J
µ
Bardeen,A =− Nc

24π2
εµνρσ 2VνVρσ . (7.41)

We have used Vµν and Aµν to denote the field tensors composed of vector and axial

fields respectively.

7.2 Cancellation of the Vector Anomaly

The first aspect of the problem that we will consider is the cancellation of the

vector anomaly. The Bardeen terms are introduced to ensure that the vector current
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is strictly conserved, even in the presence of an axial field. Consider the divergence

of the vector current given by Eqn. (7.38),

∂µJ
µ
0 =− Nc

24π2
∂w∂µV µ +

Nc

12π2
εµνρσ ∂µ

(
VνAρσ +AνVρσ

)
, (7.42)

=− Nc

2π2
εµνρσ ∂µVν∂ρAσ +

Nc

3π2
εµνρσ

(
∂µVν∂ρAσ

)
, (7.43)

=− Nc

6π2
εµνρσ ∂µVν∂ρAσ , (7.44)

where we used the right and left-handed version of Eqn. (7.23) to write

Nc

24π2

eφ

z
∂z∂µV µ =

Nc

2π2
εµνρσ ∂µVν∂ρAσ . (7.45)

The divergence of the vector Bardeen current given by Eqn. (7.41) becomes

∂µJ
µ
Bardeen =−

Nc

24π2
εµνρσ ∂µ

(
−4AνVρσ +2VνAρσ

)
, (7.46)

=
Nc

6π2
εµνρσ ∂µVν∂ρAσ . (7.47)

The Bardeen terms also alter the divergence of the axial current. The divergence of

the axial current given by Eqn. (7.39) is

∂µJ
µ
0,A =− Nc

24π2
∂w∂µAµ +

Nc

12π2
εµνρσ ∂µ

(
VνVρσ +AνAρσ

)
, (7.48)

=− Nc

12π2

(
∂µVν∂ρVσ +Aν∂ρAσ

)
, (7.49)

where we used the left and right-handed versions of (7.23) to write

Nc

24π2

eφ

z
∂z∂µAµ =

Nc

4π2
εµνρσ

(
∂µVν∂ρVσ +∂µAν∂ρAσ

)
. (7.50)

The divergence of the axial Bardeen current given by Eqn. (7.41) is

∂µJ
µ
Bardeen,A =− Nc

6π2
εµνρσ ∂µVν∂ρVσ . (7.51)

Without the counter-terms the anomaly appears in both the divergence of the vector

and axial currents. This configuration where both currents are anomalous is known

as the consistent anomaly. Adding the Bardeen counter-term shifts the anomaly

from the vector current to axial current leaving us with the covariant anomaly,

∂µJµ = 0 , (7.52)

∂µJ
µ
A =− Nc

12π2
εµνρσ

(
3∂µVν∂ρVσ +∂µAν∂ρAσ

)
. (7.53)
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The Bardeen terms do their job in conserving the vector current. The difference

is that we have implemented the procedure of cancelling the anomaly from the

holographic side.

7.3 The Problem

We have defined all the tools necessary to discuss the problem. We want to see

how the definition of the axial chemical potential as the temporal component of the

axial field fails to reproduce the topological vector current (7.2) when the Bardeen

counter-terms are introduced. The standard technique is to apply the following

boundary conditions to the holographic system.

At z = ∞ the boundary conditions are

V0(∞) = 0, (7.54)

A0(∞) = 0. (7.55)

Forcing the vector potential to vanish in the bulk at z = ∞ means that

v00 = a31 = µ (7.56)

as seen in Eqn. (7.29). This is how the vector chemical potential enters the deriva-

tion of the axial current. Forcing the axial field to go to zero in the bulk means that

a00 = 0 in Eqn. (7.31).

In a related system, the confined phase of the Sakai-Sugimoto model, the con-

dition Aµ(∞) = 0 is a natural choice for the following reason. In that model, the

two gauge fields live on D-branes that join in the bulk, and thus are actually two

branches of a single D-brane. Therefore Aµ(∞) = 0 reflects the continuity of the

single gauge field. This continuity also reflects the breaking of chiral symmetry in

the IR. Note that Aµ(∞) = 0 is not a gauge-dependent statement, as the theory is

not gauge invariant under axial transformations. It is a statement about continuity.

At z = 0 (i.e., the holographic boundary) the vector combination is given by

Eqn. (7.13a),

V0(0) = v00 = µ, (7.57)

Vi(0) =−x jBk , (7.58)

and we let the axial field be,

A0(0) = a01 = µ5, (7.59)

Ai(0) = 0. (7.60)
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We see that the zeroth component of the axial field is equated with the axial chem-

ical potential. To take the temporal component of the axial field as the axial chem-

ical potential is the common method of introducing and axial chemical potential

into the holography. It mirrors the way the vector chemical potential is introduced

by equating it with the temporal component of the vector field. By defining the

chemical potentials outright we have approached the problem by using the grand

canonical ensemble.

We assume no background axial field strength and take the background mag-

netic field to be in the x3 direction,

Aµν = 0 , (7.61)

V21 =−B , (7.62)

V12 = B . (7.63)

We apply these conditions to find the vector current from Eqns. (7.38) and (7.40)

and find that it vanishes,

J3 = J3
0 + J3

Bardeen , (7.64)

=− Nc

24π2
∂wV 3 +

3Nc

12π2
ε3νρσ AνVρσ , (7.65)

=
Nc

2π2
Ba01 +

3Nc

6π2
ε3012Ba01 = 0 , (7.66)

while the axial current from Eqns. (7.39) and (7.41) gives the result we would

expect,

J3
A = J3

0,A + J3
Bardeen,A , (7.67)

=− Nc

24π2
∂wA3 +

Nc

12π2
ε3νρσ AνAρσ , (7.68)

=
Nc

2π2
Bµ , (7.69)

where we used (7.56) to write this in terms of the chemical potential.

The contribution from the Bardeen counter-term that was introduced to ensure

gauge invariance of the currents has made the contribution to the topological vector

current from the axial chemical potential vanish. But, the axial current (7.1) that

arises from a vector chemical potential still appears, even in the presence of the

counter-terms. This demonstration of the counter-terms cancelling the vector cur-

rent was originally done using the Sakai-Sugimoto model [19] and lead people to

believe that maybe the topological vector current responsible for phenomena like

the chiral magnetic effect did not exist in holographic QCD models. But the effect

can be reproduced in many holographic models, like the one we present here. It

became apparent that the problem was one of thermodynamics.
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7.4 Rubakov’s Solution

In the previous section, by choosing to set V0(z→ 0) equal to the chemical poten-

tial, µ , and A0(z→ 0) equal to the axial chemical potential, µ5 we have chosen to

work in the grand canonical ensemble with respect to both the vector fermion num-

ber NL +NR and the axial fermion number NL−NR. However, the axial fermion

number is not conserved, precisely because of the anomaly (7.53), and so the

canonical and grand canonical ensembles do not represent equivalent pictures with

regards to this operator. This was pointed out by Rubakov [21], among others.

Working in the grand canonical ensemble requires us to replace the axial fermion

number operator with one that is conserved [21].

Though Rubakov used a different holographic model than the one we employ,

it is possible to demonstrate his solution. Rubakov stressed that the temporal com-

ponent of the axial field is not the same thing as a chemical potential. The chem-

ical potential must be introduced to the action conjugate to a conserved charge.

The procedure is to shut off all axial fields Aµ and define a conserved charge to

introduce a chemical potential µ5. The charge is usually given by the temporal

component of the current integrated over all space. With the anomaly present this

definition of the charge is not conserved. To ensure the charge is conserved we use

the part responsible for the nonconservation in Eqn. (7.53) to modify the charge,

Q5
Rubakov =

∫
dx3J5

0 +
3Nc

12π2

∫
dx3ε i jk Vi∂ jVk . (7.70)

Note that our axial current is defined as L−R while Rubakov’s is defined as R−L

giving a sign difference on our anomaly, as well as many of the other equations

that follow. This charge is invariant under electromagnetic gauge transformations.

We now add a chemical potential to the action,

S[µ5] = S+µ5

∫
dx0Q5

Rubakov , (7.71)

=

(
S+µ5

∫
dx4J5

0

)
+µ5

3Nc

12π2

∫
dx4ε i jk Vi∂ jVk , (7.72)

where S is the original action of the system with the chemical potential introduced

in such a way that we can find the current. As shown earlier, the Bardeen counter-

terms cause all contributions to the current from S to vanish. The counter-terms

also cancel the contributions of the vector field from the axial current J5
0 . The only

contribution to the current is from the variation of the last term in Eq. (7.72). The

variation produces

δS

δVi

= µ5

Nc

4π2
ε i jk ∂ jVk =

Nc

2π2
µ5B , (7.73)
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which is the vector current responsible for the chiral magnetic effect.

The axial chemical potential takes over the role of the temporal component

of the axial field, but without the problems of getting cancelled by the counter-

terms. Though this arrives at the correct answer it is unappealing because we have

to construct an effective action. The chemical potential is added in such a way it

cannot be cancelled and then is used to derive the current. This is a solution, but

it would be more desirable to see the current arise from the model itself. This is

where our program starts.

7.5 A Solution Arising from Boundary Conditions

While Rubakov’s method reproduced the accepted result, we would like to find a

resolution that is contained within the holographic model. Working entirely in the

grand canonical ensemble did not work. Working in the canonical ensemble, how-

ever, where one fixes the axial fermion number, is problematic on physical grounds.

One imagines a state at some initial time, having some value NL−NR, evolving to

a later time, and having a different value of NL−NR. Therefore, restricting the path

integral to states with a fixed value of NL−NR amounts to placing a constraint on

the system. We will now address whether this constraint is physical.

We will discuss three physical systems in which a constraint fixes the value of

NL−NR: induced topological currents in dense stars [9], the charge separation ef-

fect [11] and the chiral magnetic effect [12]. In each of these systems the constraint

is due to the quasistatic nature of the system, particularly, they require a nontrivial

boundary condition to induce and maintain an axial charge. For each example we

will discuss the external mechanism responsible for introducing the axial charge

and maintaining it such that the current can flow.

The first example is the appearance of topological currents in neutron stars,

where the current was derived by considering the microscopic elements of the sys-

tem [4, 6, 8, 9]. Given the complexity of neutron stars it is useful to think about the

current in terms of numbers of particles. The current is given by

JV = (nl−nr)
eΦ

2π
, (7.74)

where nr(T,µ) and nl(T,µ) are the one-dimensional number densities of left and

right-handed Dirac fermions and Φ is the magnetic flux. This formula tells us

that to find the magnitude of the current one has to count the number of particles

aligned with the magnetic field and subtract them against those aligned against

the magnetic field. In a neutron star the equilibrium processes are given by beta

and inverse beta decay, known collectively as the Urca processes. These are weak
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interactions that act more on left-handed electrons than right-handed electrons. In

an infinite system any difference in left and right-handed particles created by the

weak interaction would be washed out due to detailed balance; the creation of

a left-handed electron is as likely as the time-reversed process, the scattering of

an electron and a proton to create a neutron and neutrino. The finite size of the

star essentially breaks time-reversal symmetry and allows the electron to escape

before it decays through the weak interaction. This causes a current to flow through

the bulk of the star. The key is that electrons are constantly being added by beta

decay to maintain the difference between left and right-handed electrons. These

processes are like a pump that fixes the axial charge. This current may explain the

anomalously large pulsar kicks that have been observed [10].

The second example is the charge separation effect [11], wherein a current ap-

pears in regions where there is a dynamical or spatially varying theta angle θ(~x, t).
These regions may occur at RHIC where a collision creates a small bubble where

θ(~x, t) 6= 0 within a larger region (e.g., the rest of the world) where θ = 0. The

current takes the form

j0 = Nc ∑
f

e f µ f

2N f π2
~∇θ ·~Ω , (7.75)

ji = Nc ∑
f

e f µ f

2N f π2
∂0θ Ωi , (7.76)

where Ω is the angular velocity of the rotating coordinate frame, which mimics a

magnetic field. The domain wall created as the theta angle transitions is the reason

the current appears and draws charge to the surface of the theta bubble, which

we can see if we integrate over the volume of the theta bubble. If the bubble was

infinitely large or the gradient of the change was extremely small, the charge would

not accumulate on the domain wall. The finiteness of the bubble has introduced a

constraint in the parity violating aspect of the current. When the domain wall

disappears, the parity violation in the system disappears and the charge separation

vanishes with it.

The third example is the previously mentioned chiral magnetic effect [12]. The

effect is often written as a statement of the current that causes the charge separation,

jV = (µl−µr)
e2B

(2π)2
, (7.77)

but this current alone does not naturally appear in heavy ion collisions. What is

required is an external source to introduce chirality into the system. In heavy ion

collisions it may be possible for transitions to occur from one QCD vacuum to

another. When this transition occurs, chirality is induced through a change in the
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QCD winding number nw, which can be written as the charge

Qw = nw(t = ∞)−nw(t =−∞) . (7.78)

If induced during a collision the charge will introduce a difference in the number

of left and right-handed particles through the relation

N
f

L −N
f

R = 2Qw . (7.79)

The introduction of the topological charge Qw allows the system to violate parity

and induces a current. Only then can the charge separation occur.

We have seen three examples of how a constraint is used to hold the axial

charge fixed during the life of the current. We should note that these are real sys-

tems. In particular the charge separation effect and the chiral magnetic effect ex-

plain the P and C P violation seen at RHIC [13–17]. We will not consider the

physics behind the constraint, which often is poorly described in a formal field

theory setting. We will only assume that one is necessary for the current to be

nonzero.

7.5.1 New Boundary Conditions

As we have discussed, in previous derivations of the chiral magnetic effect using

holography it was common to associate the axial field on the holographic boundary

with the chemical potential. In light of the discussion in Section 7.1.1 the current

does not appear in a system that is in true thermal equilibrium. As pointed out in

[21] assigning the axial chemical potential to A0(0) is assigning a chemical poten-

tial to a quantity that is not conserved. In an effort to find the true conserved quan-

tity we will derive the axial current without assigning a thermodynamic meaning to

the boundary value of the axial field. We will then interpret the result afterwards by

comparing it to the results found in QCD. We will find that there is a component of

the axial field that survives the anomaly cancelation and that this component must

be associated with the induced axial charge of the system.

By allowing the axial field in the bulk to take nonzero values, A0(∞) 6= 0, we

allow the possibility for a source to add new charge into the system and contribute

to the current. This is the exact source needed to provide the axial charge with the

constraint required to keep it conserved as discussed in Section 7.5.

We now mirror the derivation in Section 7.3. As before we choose to use the

grand canonical ensemble for the vector combination Eqn. (7.13a). At z = 0, on

the holographic boundary we get

V0(0) = v00 = µ, (7.80)

Vi(0) =−x jBk. (7.81)



Chapter 7. Topological Currents in AdS/QCD 136

As discussed we choose not to assign the value of Aµ(0) any thermodynamic quan-

tity. In the IR (i.e., z=∞) we have more freedom in imposing boundary conditions.

In our model we wish to impose a nonzero axial charge on the boundary the-

ory. As mentioned above, this is complicated by the fact that the axial charge is not

conserved (equivalently, a lack of gauge invariance). Instead we suppose that there

is an IR cut-off in the bulk, beyond which some source exists. In a string model like

the Sakai-Sugimoto model, such a source would be provided by the endpoints of

strings stretching between the flavour branes and D-branes playing the role of in-

stantons. In a bottom-up model, the source must be inserted by hand. The value of

Aµ at the cut-off depends on the magnitude of this source. Motivated by this obser-

vation, we allow for the possibility that Aµ(∞) 6= 0, reflecting the fact that we have

a source of axial charge in the far IR. In the hard-wall model one could similarly

impose a nonzero charge on the IR boundary by choosing the correct boundary

conditions on the brane responsible for the hard IR cutoff. In the hard-wall model

this boundary condition is not the result of a source, but is just a characteristic of

the model.

This source beyond the IR represents the external source required to generate

the vector current using the axial anomaly in field theory models. As discussed in

Section 7.5 topological currents need an external source to manifest themselves.

In neutron stars this source is the Urca processes constantly producing new left-

handed electrons and in the chiral magnetic effect and charge separation effect this

source is the topological charge induced by particle collisions. With this source

we will be able to induce a topological vector current that survives the Bardeen

cancelation.

We should note that this asymmetric treatment of the axial and vector field

boundary conditions only arises because we cannot completely remove the anomaly.

With the vector field there is no problem with assigning V0(0) = µ because there

is no anomaly associated with the current and the vector charge is conserved. The

chemical potential can be assigned to the boundary value of the vector field. We

could take the same approach with the vector field as we are with the axial field,

but the boundary condition ends up still being V0(0) = µ . The special approach

for the axial field is required because of the anomaly. If we had instead chosen a

different Bardeen counter-term that made the axial current anomaly free and the

vector current anomalous the story would be reversed.

By allowing the possibility for Aµ(∞) 6= 0 our boundary conditions at infinity

given by the solutions to the equations of motion (7.29) and (7.31) are

V0(∞) = 0, (7.82)

A0(∞) = a00. (7.83)
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Forcing the vector current go to zero in the bulk means that v00 = a31 = µ , which

will contribute when we derive the axial current. The vector current is then found

by using Eqns. (7.38) and (7.40). In our solution we assume no background axial

field strength and a background magnetic field in the x3 direction,

Aµν = 0 , (7.84)

V21 =−B , (7.85)

V12 = B . (7.86)

We apply these to the vector current from Eqns. (7.38) and (7.40), which is further

simplified when we choose just the x3 direction for the current along the magnetic

field, to get

J3
0 =− Nc

24π2
∂wV 3 +

Nc

6π2
ε3012A0B . (7.87)

The Bardeen vector terms are similarly manipulated to give

J3
Bardeen =

Nc

3π2
ε3012A0B. (7.88)

We now substitute in the solutions given in Eqns. (7.29)–(7.32). To calculate the

true current we evaluate this on the boundary at z = 0. Using ε3012 =−1 the total

current can now be written as

J3 = J3
0 + J3

Bardeen . (7.89)

=
Nc

2π2
B(−a00). (7.90)

Recalling our solution for the axial field, A0(∞) = a00, we see that not fixing the

boundary condition in the bulk has yielded a connection between the UV and the

IR. The current on the boundary depends on a boundary condition in the bulk,

J3 =
Nc

2π2
B(−A0(∞)) . (7.91)

The current vanishes if A0(∞) = 0 and a nonvanishing current depends on a discon-

tinuity in the IR. Maintaining this field in the bulk acts as though a chiral charge

is being fixed externally. However, without axial gauge invariance we do not have

the equivalent of Gauss’ law to relate A(∞)−A(0) to the magnitude of the source

in the bulk. This would require treating the bulk and boundary in parallel, as dis-

cussed in Section 7.1. In our work we relax the interpretation of the value of the

axial field in the bulk, since there is no equivalent Gauss’ law available.
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As a consistency check we can use equations (7.39) and (7.41) to find the axial

current,

J3
A =

Nc

2π2
Bµ . (7.92)

This reproduces the standard result for anomalous axial currents first discussed in

[6]. The procedure we have outlined to introduce the axial charge leaves the well-

known result for the vector current unaffected. We would like to make a connection

between this result and the result for the vector current. If we had not chosen

V (0) = µ and V (∞) = 0, but had taken an approach similar to that of the axial field

in deriving the vector current, then Eqn. (7.92) would have a31 in it instead of µ .

We would then compare Eqn. (7.92) with the result from [6] and find that a31 = µ ,

an answer consistent with choosing V (0) = µ and V (∞) = 0. Both methods, either

setting the vector potential to zero in the bulk or leaving it free, achieve the same

results for the axial current, unlike with the vector current.

If we had instead chosen to move the anomaly to the vector current instead of

the axial current, we would still achieve the same results. With the vector current

now anomalous, we would be free to define the axial chemical potential as the

temporal component of the axial field on the holographic boundary, but we would

have to redefine the vector chemical potential to be associated with a constraint in

the bulk.

7.6 Discussion

In the spirit of the bottom-up approach we will now attempt to determine the phys-

ical meaning of the boundary condition in Eqn. (7.91) by comparing it to currents

that arise in QCD. In an attempt to model the current we have chosen to make the

boundary condition on the horizon nonzero. We do this because defining an axial

chemical potential makes no sense when the axial charge is not conserved. This

boundary condition occurs at an IR cutoff we imposed on the bulk. A nonzero

boundary condition must be caused by a charge configuration (source) past this

boundary further into the bulk (i.e., past the IR cutoff).

In quantum field theory one can describe the topological current in a very gen-

eral way through the introduction of a dynamic theta angle θ(~x, t) 6= 0 that is in-

duced by some nonequilibrium process. The existence of these processes in real

systems is discussed at length in Section 7.5. The result of this is the induction of

a term proportional to

∼ θ(~x, t)Fµν
a F̃a

µν . (7.93)
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After a chiral rotation this dynamic theta angle appears as a boundary term.

This causes a current to be introduced that is proportional to the derivative of the

theta angle. The current that arises from the portion of the current that varies with

time is

~J = θ̇(~x, t)
Nc
~B

2π2
. (7.94)

Comparing this with Eqn. (7.91), we see that it is natural to identify the boundary

condition in the bulk with the induced theta angle,

−A0(∞) = θ̇(~x, t) . (7.95)

In field theory models θ̇(~x, t) 6= 0 must be induced by some process. This is the

constraint that violates parity and is responsible for a topological current. We

have equated this induced θ̇(~x, t) to the boundary condition that survives Bardeen

cancellation. By adding a source beyond the IR we have reproduced the current

responsible for the chiral magnetic effect that does not get cancelled due to the

Bardeen counter-terms.

It has been argued that a time-dependent theta angle is equivalent to an axial

chemical potential θ̇ = µ5 [114]. A change in the theta angle, an external process,

induces a chemical potential in the system. A chemical potential must be associ-

ated with a conserved charge. This chemical potential must be conjugate to the

conserved axial charge of the system. The conserved axial charge then must exist

as a configuration in the bulk of the holography.

We can attempt to see what the charge configuration in the bulk looks like

by using the definition for charge Q = ∂S
∂ µ and assuming that the axial chemical

potential is defined as µ5 = −A0(∞). The surface terms that contribute are those

that contain A0,

∂S

∂ µ5

=
∂

∂ (−A0(∞))

∫
d4x

{
1

4g2
s

A0
e−φ

z
∂zA0 (7.96)

− Nc

24π2
ε i jk

(
2

6
A0ViVjk +

4

6
ViA0Vjk +

12

6
A0AiA jk

)
(7.97)

+
Nc

24π2
ε i jkA0AiVjk−

Nc

12π2
ε i jkA0ViVjk

}∣∣∣∣
z=∞

, (7.98)

where the first line is from the YM action, the second line is from the CS action,

and the last line is from the Bardeen counter-term. Performing the derivative we
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find that A0(∞) is coupled to a charge,

Q5
cutoff =

∫
d4x

(
− Nc

24π
∂wA0 +

2Nc

24π2
ε i jkAiA jk (7.99)

+
3Nc

24π2
ε i jkViVjk−

Nc

24π2
ε i jkAiVjk

)∣∣∣∣
z=∞

. (7.100)

Let us look closer at the form of this charge.

One would expect the axial charge of the system to be given by integrating over

the zeroth component of the axial current given by (7.39) and (7.41),

Q5 =
∫

d4xJ5
0 , (7.101)

=
∫

d4x

(
− Nc

24π
∂wA0 +

2Nc

24π2
ε i jkAiA jk

)
. (7.102)

We see that the charge derived by assuming the boundary condition at infinity is

an axial chemical potential (7.99) differs from the charge of the system found by

looking at the zeroth component of the axial current (7.102). In fact, if we set

Ai = 0, as Rubakov does, the two charges, Q5 and Q5
cutoff, differ by exactly the

amount Rubakov used to define his conserved charge given by equation (7.70),

Q5
Rubakov =

∫
d4x

(
J5

0 +
3Nc

24π2
ε i jkViVjk

)
. (7.103)

The difference is that the charge we calculated for the boundary condition is evalu-

ated at z = ∞, while Rubakov’s rests on the holographic boundary. That the bound-

ary value of the axial field −A0(∞) is coupled to an object that matches the form

of Rubakov’s charge is evidence that −A0(∞) is related to the axial chemical po-

tential. What configuration past the IR would cause this boundary condition is

unknown.

A similar definition of the axial chemical potential was necessitated in the work

of [22]1, working in the context of linear response theory, where the horizon of an

AdS-Schwarzschild black hole provides the screening of the IR physics. They de-

fine, based on the work of [161], the chemical potential as the difference in energy

between the boundary and bulk. They then use the Kubo formula to derive their

currents. A boundary condition from the bulk affects the current on the boundary.

7.7 Summary

We have introduced a new way of producing the topological current in holography.

We see from Eqn. (7.95) that there is now an additional contribution to the current

1Thank you to Karl Landsteiner for pointing this out to us.
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from allowing a non-zero boundary condition for the axial field in the bulk. When

A0(∞) = 0 one expects the anomalous currents to fully cancel and, as discussed

before, any contribution to the vector current to disappear. When A0(∞) 6= 0 we

have introduced a boundary condition on the string theory side that achieves the

well know result in the field theory side. This is a hint of how to introduce boundary

conditions into AdS/CFT calculations that produce finite-volume sensitive results

in QCD. We point out that the chiral magnetic effect is one application of this

technique. We expect that it can be used to deal with all anomalous currents of the

same nature.
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Chapter 8

Conclusion

There are two goals of this thesis. The first is to argue that a persistent, topological

current is induced in dense stars. This current is an unusual quantum phenomena

that has no analogue in classical physics. The idea of the topological vector current

introduced in Chapters 3 and 4 is fundamentally new. All the requirements for the

current are present in dense stars: a large degeneracy µe ≫ T , an approximately

chiral, Dirac-like spectrum at µe≫ me, and a large magnetic field B. The second

goal is to probe its existence at strong coupling using the AdS/CFT correspondence

as a tool.

Confirmation of the existence of topological currents in neutron stars would

have an effect on the physics of neutron stars. In Chapter 5 we discussed how the

current may explain large pulsar kicks and give a way to discriminate between neu-

tron stars and quark stars. In Chapter 6 we introduced many other ways the current

could possible affect the physics of pulsars. Topological currents also provide a

source of finite magnetic helicity, a P-odd topological invariant that does not de-

cay in a neutron star environment. This may shed some light on the origin of the

strong, self-supporting system of toroidal and poloidal magnetic fields in neutron

stars. We mention many apparently unrelated observational effects: neutron star

kicks, toroidal fields, and magnetic helicity. These all have a P-odd symmetry

and it is likely that they all originate from the same P-odd physics. The topo-

logical vector current introduced in this paper occurs because of parity violating

effects. This current may be responsible for all of these P-odd phenomena.

There is also a possibility that these types of currents will be observed ter-

restrially in the quark-gluon plasma created in gold-gold collisions at RHIC and

thought to be created in lead-lead collisions at LHC [162, 163]. An analogue to

the anomalous current has been used to predict a charge separation effect [11] and

preliminary experimental results from RHIC are supporting it through the observa-

tion of parity violating interactions [13–17]. In this analogue each requirement for

the current to exist in the neutron star has its complement: the role of the coherent

magnetic field is played by the angular momentum~L, which occurs at non-central

nuclei collisions, and the role of parity violating effects is played by the induced θ

vacua. The observation of the charge separation indirectly supports our prediction

of induced anomalous currents.
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The work done in Chapter 7 on producing topological currents in a holographic

model of QCD is related to the observation of the current at RHIC. The quark-gluon

plasma at RHIC is likely in a regime that is still strongly interacting. One would

like to be sure that the topological currents thought to be responsible for the parity

violation seen at RHIC actually exist is a strongly coupled regime. This would

mean that the very strong interactions in each nuclei-nuclei collision event cannot

wash out the produced asymmetry. This parallels our argument in Chapter 3 that

strong electromagnetic interactions do not wash out the P-odd produced asym-

metry and the relevant scale of the problem is the mean free path of the electron

due to the weak interactions that are capable of washing out P-odd effects. Our

discovery of how to introduce currents into holographic models may help ensure

that topological current phenomena, like the chiral magnetic and charge separation

effects, are indeed the cause of the parity violation at RHIC.

In condensed matter laboratories low temperatures and strong magnetic fields

present no technical difficulties. The key is finding a system of quasiparticles with

a Dirac-like spectrum. There are such systems: superfluid He3, high Tc supercon-

ductors with d-wave pairing, and graphene. Remarkably, in superfluid He3 the

current analogous to our anomalous current has been observed, see reviews [30]

and [31].

There is still much to be done to refine the applications of topological currents

in dense stars, which may advance the understanding of the phases of matter that

exist inside quark and neutron stars. Having discussed how one can use topological

currents to generate the large kicks observed in some pulsars, the next step is to

study the current and magnetic fields interact outside the quark star. How exactly

is the momentum transferred from the current to the kick? There is a possibility

that the predominantly left-handed electrons that make up the topological currents

could leave a polarization signature that could be observed.

There are also many questions to be answered about the nature of the poloidal

and magnetic fields in neutron stars. A toroidal component is required for the

stability of the poloidal component [25] and is responsible for the star’s surface

temperature distribution [140], but its source is undetermined. The configuration

and strength of the topological current in the star suggests it is a candidate for the

origin of this field. In addition, the cause of large glitches [73], discrete increases

in the angular momentum of the neutron star’s crust, is still unknown. It may be

that macroscopic vortex sheets caused by currents are responsible for these.

The work done to topological currents in the framework of holographic QCD

helped develop an new idea in holographic QCD. The realization made when in-

troducing these currents is that a non-physical boundary condition in the bulk of

the holography can contribute to physical results on the holographic boundary. It

would be interesting to extend this usage of boundary conditions to calculations
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in strongly coupled regimes that hinge on the existence of unphysical or abnormal

boundary conditions. The most promising is the work done on ghost dynamics in

curved space that may be the cause of dark energy [164].
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Appendix A

Details for Calculating Thermal

Properties from Gravity

A.1 Minkowski Correlation Functions

One more piece of the AdS/CFT dictionary is required before we go ahead. There

is a connection between operators and fields. Since we want to find properties of

the Maxwell field our operator is O =−L = 1
4
F2

µν which corresponds to the scalar

dilaton field φ on the gravity side. So when we calculate correlation functions for

the Maxwell field we will always take derivatives with respect to the boundary of

the dilaton field φ0.

We will follow the discussion from [100, 109]. Let’s consider the action of a

scalar field in the background that has a metric of the form

ds2 = grrdr2 +gµν(r)dxµdxν . (A.1)

A more general metric may be chosen but we are interested in this one as the AdS5

metric conforms to it. Up to second order in φ the action is

S = K

∫
d4x

∫
dr
√−g[grr∂rφ∂rφ +gµν∂µφ∂νφ −m2φ 2] , (A.2)

where K =−π3R5/4κ2
10. The Euler-Lagrange equations of motion follow easily,

∂r(
√−g grr∂rφ)+

√−g(gµν∂µ∂ν +m2)φ = 0 . (A.3)

In order to take functional derivatives of this we need to write it in terms of the

boundary fields φ0. We assume that φ has the solution

φ(r,x) =
∫

d4k

(2π)4
eik·x fk(r)φ0(k) , (A.4)
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and plug it in to the action

S = K

∫
d4x

∫
dr

∫
d4k

(2π)4

∫
d4k′

(2π)4

√−g ei(k+k′)·x [grr∂r fk(r)∂r fk′(r)

− (gµνkµk′ν +m2) fk(r) fk′(r)
]

φ0(k)φ0(k
′) ,

= K

∫
dr

∫
d4k

(2π)4

√−g [grr∂r fk(r)∂r f−k(r)

−(gµνkµkν +m2) fk(r) f−k(r)
]

φ0(k)φ0(−k) . (A.5)

Substituting the solution for φ(r,x) in to the equation of motion gives the equation

of motion for fk(r),

−√−g(gµνkµkν +m2) f−k = ∂r(
√−g grr∂r f−k) . (A.6)

Performing integration by parts on the first term of (A.5) and substituting in the

equation of motion for the second term yields

S = K

∫
dr

∫
d4k

(2π)4

[
∂r(
√−ggrr fk(r)∂r f−k(r))− fk(r)∂r(

√−g grr∂r f−k)

+ fk(r)∂r(
√−g grr∂r f−k)

]
φ0(k)φ0(−k) ,

= K

∫
dr

∫
d4k

(2π)4
∂r(
√−ggrr fk(r)∂r f−k(r))φ0(k)φ0(−k) ,

= K

∫
d4k

(2π)4

√−ggrr fk(r)∂r f−k(r)φ0(k)φ0(−k)

∣∣∣∣
rH

rB

,

=
∫

d4k

(2π)4
φ0(−k)[F(rH,k)−F(rB,k)]φ0(k) , (A.7)

where rB and rH are respectively the values for the boundary of the space and the

horizon and

F(r,k) = K
√−ggrr f−k(r)∂r fk(r) (A.8)

is the kernel. This is our candidate for the two-point retarded Green’s function.

To calculate the correlation function on the gravity side we follow the same

prescription we would on the field theory side. To find a two-point function we

take two functional derivatives, but now with respect to φ0(x) instead of J(x).
The fist thing we want to do is rewrite the action in position space. To do so
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we define

φ0(k) =
∫

d4xeikxφ0(x), (A.9)

φ0(−k) =
∫

d4ye−ikxφ0(y), (A.10)

F(x− y) =
∫

d4k

(2π)4
F(k)eik(x−y) . (A.11)

The action then becomes

S(x− y) =
∫

d4x

∫
d4yφ0(x)[F(rH,x− y)−F(rB,x− y)]φ0(y) . (A.12)

We place this into the partition function and we can now take functional derivatives

of it. The two-point correlation function is given by

< 0|TO(x1)O(x2)|0 >

=
1

Z0

−iδ

δφ0(x1)

−iδ

δφ0(x2)
eiS[φ0(x),φ0(y)],

=
1

Z0

−iδ

δφ0(x1)

[∫
d4y[F(rH,x1− y)−F(rB,x1− y)]φ0(y)

+
∫

d4xφ0(x)[F(rH,x− x1)−F(rB,x− x1)]e
iS[φ0(x),φ0(y)]

]∣∣∣∣
φ0=0

,

= i[F(rB,x1− x2)+F(rB,x2− x1)]− i[F(rH,x1− x2)+F(rH,x2− x1)].(A.13)

Taking the Fourier transform of this, the propagator in momentum space is

< 0|TO(k)O(0)|0 >= i[F(rB,k)+F(rB,−k)]− i[F(rH,k)+F(rH,−k)] . (A.14)

The retarded Green’s function in momentum space is defined as

GR(k) =−i < 0|TO(k)O(0)|0 >, (A.15)

which means that

GR(k) = [F(rB,k)+F(rB,−k)]− [F(rH,k)+F(rH,−k)] , (A.16)

which is great. The problem is that retarded Green’s functions are supposed to be

imaginary, and this is real. We can prove it by first noticing that fk(r) is the Fourier

transform of a real function. It then has the property fk(r)
∗ = f−k(r). Then F(r,k)

can be written as

F(r,k) = K
√−ggrr f ∗k (r)∂r fk(r) ,

= F(r,−k)∗ , (A.17)
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then the Green’s function can be written as

GR(k) = [F(rB,k)
∗+F(rB,k)]− [F(rH,k)

∗+F(rH,k)],

= Re[F(rB,k)]−Re[F(rH,k)] , (A.18)

as a real function. Apparently blindly following the program laid out for Euclidean

AdS/CFT does not work. In order to get a sensible retarded Green’s function it is

necessary to make a new conjecture for the relation between Minkowski correla-

tion functions on the CFT side and the correlation functions on the gravity side.

Throwing out the contributions from the horizon does not help because the result

is still real.

These difficulties can be avoided if we conjecture that the Green’s function is

defined similarly to the zero temperature case,

GR(k) =−2F(k,r)

∣∣∣∣
rB

. (A.19)

This is where the real conjecture for calculating Minkowski correlation functions

occurs. It doesn’t follow strictly by following the Euclidean AdS/CFT correspon-

dence but it does seem natural. The justification for it is that has worked in all

testable cases. The contribution from the horizon is discarded because we don’t

want solutions that are emitted from the horizon. This will be done consistently

throughout the calculation.

A.2 Hydrodynamics and the Kubo Formula

We are interested in how to think of hydrodynamics as an effective field theory that

describes the dynamics of a system at large distance and time scales. However,

unlike most effective field theories, hydrodynamics must be described in terms

of its equations of motion rather than its Lagrangian. Dissipative terms are very

difficult to encode in a Lagrangian formalism. It should still be possible to use the

equations of motion to extract low-energy Green’s functions.

We will follow the discussion on the Kubo formula found in [100]. The method

of finding a two point correlation function in field theory starts by coupling a source

J(x) to an operator O(x) and adding it to the existing action,

S = S0 +
∫

dkJ(x)O(x) . (A.20)

This source perturbs the system and the average value of O(x) will differ from its

equilibrium value. When the source J(x) is tiny the perturbations are given by
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linear response theory,

〈O(x)〉= i

∫
dx′GR(x− x′)J(x) , (A.21)

in terms of the retarded Green’s function GR(x− x′).
The hydrodynamic equations of motion are just the conservation laws of energy

and momentum,

∂µT
µ
ν = 0 . (A.22)

To make this a solvable system the number of independent equations must be re-

duced. This is done through the assumption of local thermal equilibrium. The

energy momentum tensor must also be expanded enough that the dissipative terms

appear. The elements of the dissipative terms are then found by use of rotational

symmetry. The energy momentum tensor can be written as

T µν = (ε +P)uµuν +Pgµν −σ µν , (A.23)

where ε is the energy density, P is the pressure, uµ is the local fluid velocity, and

σ is the dissipative term. The first two terms comprise the familiar equations for

ideal fluids. The dissipative term, which only has non-zero spatial components, is

given by

σi j = η

(
∂iu j +∂ jui−

2

3
δi j∂kuk

)
+ζ δi j∂kuk , (A.24)

where η is the shear viscosity and ζ is the bulk viscosity.

In order to use our effective field theory formulation a perturbative source must

be introduced. For an energy momentum tensor this is naturally the metric. So, the

hydrodynamic equations must be generalized to curved space. We can then find the

response of a tiny perturbation of the flat metric. We’re primarily concerned with

calculating dissipative properties so we will only consider σ µν in curved space,

σ µν = PµαPνβ

[
η

(
∇αuβ +∇β uα −

2

3
gαβ ∇ρuρ

)
+ζ gαβ ∇ρuρ

]
, (A.25)

where Pµν = gµν +uµuν is a projection operator.

We choose our metric to be of the form

gi j(t,x) = δi j +hi j(t) , hi j(t)≪ 1 , (A.26)

g00(t,x) =−1 , (A.27)

g0i(t,x) = 0 . (A.28)
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The perturbation is assumed to be traceless hii(t) = 0 and because it is spatially

homogeneous if the fluid moves the fluid is only allowed to move uniformly ui =
ui(t). But because of parity the fluid can’t all go in one direction, so it must be

stationary uµ = (1, 0, 0, 0). The metric is chosen such that the only non-zero

components of Pµν are spatial. Substituting this and gµν into the dissipative term

of the curved space energy momentum tensor gives,

σ µν = PµαPνβ
[
η
(

∂αuβ −Γ
γ
αβ uγ +∂β uα −Γ

γ
βαuγ

)
(A.29)

+

(
ζ − 2

3
η

)
gαβ gγρ(∂γuρ −Γσ

γρuσ )

]
(A.30)

= −PimP jn

[
η2Γ0

mn +

(
ζ − 2

3
η

)
gmngpqΓ0

pq

]
. (A.31)

Components of this give either the shear or bulk viscosity. Consider an off

diagonal component of the dissipation tensor - we will find that this corresponds

to a shear viscosity. The second term can be neglected as it is a higher order in hi j

than the first term leaving us with

σ xy ≈ PxmPyn[η∂0hmn], (A.32)

= −η∂0hxy−ηhxmhyn∂0hmn , (A.33)

≈ −η∂0hxy , (A.34)

where we have thrown out the second term due to hi j≪ 1.

We can compare the Fourier transform of this result to the linear response

(A.21), remembering that hi j is our source, and notice that to lowest order in ω

we have

GR(k) =−iηω +O(ω2) . (A.35)

Rearranging we see that we have derived the Kubo relation for the shear viscosity

it terms of a Green’s function,

η =− lim
ω→0

1

ω
Im GR(k,ω) . (A.36)
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Appendix B

Evaluating Integrals

Two particularly interesting integrals are required to calculate the magnitude of the

current. Both appear because we need to calculate the rate at which electrons are

created in dense matter.

B.1 Angular Integrals

B.1.1 The Integral to Get Equation (4.61)

In calculating the diagram for the modified Urca process we are interested in the

angular integral

Q =
∫

dΩ1 dΩ2 dΩ3 dΩ4 dΩ5 dΩ6 δ (3)(p f −pi), (B.1)

where pi−p f = p1−p4−p5 +ps and ps = p2 +p3−p6. The first step is to break

the δ -function down into

δ (p5−|p1 +ps−p4|)
p2

5

δ (Ω5−Ω1−4+s), (B.2)

and take the Ω5 integral to get

Q =
∫

dΩ1 dΩ2 dΩ3 dΩ4 dΩ6

δ (p5−|p1 +ps−p4|)
p2

5

. (B.3)

We can use the δ -function identity

δ ( f (x)) = ∏
i

δ (x−ai)

| f ′(ai)|
, (B.4)

where ai are the roots of f (x), to further write the δ -function as

δ (p5−|p1 +ps−p4|), (B.5)

= δ (p3− (p2
1 +(p4−ps)

2−2p1|p4−ps|cos(θ1))
1/2), (B.6)

= δ

(
cos(θ1)−

(p2
3− (p2

1 +(p2
1 +(p4−ps)

2)1/2

2p1|p4−ps|

)
p3

p1|p4−ps|
. (B.7)
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Taking the dΩ1 integral yields

Q =
2π

p1 p3

∫
dΩ2 dΩ4 dΩ5 dΩ6

1

|p4−ps|
. (B.8)

The physics of the problems helps us the rest of the way. We restrict the momentum

of the particles to lie close within their Fermi momentum as seen in Section 2.2.2

the neutron Fermi momentum is much larger than the proton and electron Fermi

momentum. We make the approximation p4 ≫ ps so we can move p2 out of the

integral. We are left with four solid angle integrals that contribute 4π each leaving

us with

Q =
2π(4π)4

p1 p2 p3

. (B.9)

This is used in the calculation of the transition rate of the modified Urca process.

B.1.2 The Integral to Get Equation (4.9)

The rest of diagrams (direct Urca, kaon, and quark) have only four angular in-

tegrals. Consider the diagram above with no assisting neutron N′. We have the

integral

Q =
∫

dΩ2 dΩ3 dΩ5 dΩ6 δ (3)(p f −pi), (B.10)

where pi−p f = p2+p3−p5−p6. Using the same steps as above we can write the

integral as

Q =
2π

p2 p5

∫
dΩ3 dΩ6

1

|p3−p6|
. (B.11)

The neutrino actually has no Fermi surface so we let p6 = 0 and the integral eval-

uates to

Q =
2π(4π)2

p2 p3 p5

. (B.12)

This is used in calculating the direct Urca, kaon, and quark transition rates.

B.2 Radial Integrals

The Pauli blocking factors

S =
5

∏
i=1

1

1+ exi
and S =

3

∏
i=1

1

1+ exi
(B.13)
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add a complex dimension to otherwise simple integrals. In the main text the radial

integrals for the modified and direct processes arise for these statistical factors are

reduced to two dimensionless integrals.

B.2.1 Evaluating the Integral in Equation (4.70)

This radial integral must be evaluated to find the transition rate of the modified Urca

processes. First consider the integral (4.70) which we write in the more transparent

way,

I =
∫ ∞

0
dyy2K , (B.14)

K =
∫ 5

∏
j=1

dx j (1+ exi)−1 δ

(
5

∑
i=1

xi− y

)
. (B.15)

Though I is restricted on the bottom, we will extend the integration boundaries

from −∞ to ∞. This introduces a small amount of error in the calculation on the

order e−βEP .

Our fist step in evaluating these integrals is to rewrite the δ -function as its

Fourier transform,

δ (z) =
1

2π

∫ ∞

−∞
eizydz . (B.16)

This allows us to rearrange the integral such that

K =
1

2π

∫ ∞

−∞
dze−izy f (z)5, (B.17)

f (z) =
∫ ∞

−∞
dxeizx (ex +1)−1 . (B.18)

We are now ready to tackle our first integral. We evaluate f (z) by considering

the integral

F =
∮

dweizw (ew +1)−1 . (B.19)

evaluated around the contour shown in Figure B.1,

The vertical parts of the path give no contribution to the integral. We can see

this using the path w = ρ + it which we can bound the absolute value of using

∣∣∣∣
∫ 2π

0
idt eiz(ρ+it)

(
eρ+it +1

)−1

∣∣∣∣≤
∫ 2π

0
dt e−zt (eρ −1)−1 , (B.20)
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Figure B.1: Contour for the integral F given by (B.19).

of which the R.H.S. goes to zero as ρ → ∞.

The contribution along 2πi only shifts the value of the integral of the path along

zero such that
∫

c=2πi
dweizw (ew +1)−1 =−e−2πz

∫

c=0
dweizw (ew +1)−1 . (B.21)

The only pole enclosed by this contour is at w = iπ where the residue is

eizw

d
dw

(ew +1)

∣∣∣∣∣
w=iπ

=−e−πz . (B.22)

The integral F is given by

F = f (z)− e−2πz f (z) =−2πie−πz , (B.23)

for which we can solve to get

f (z) =
−2πi

eπz− e−πz
=

π

isinh(πz)
. (B.24)

We can now substitute this back into our integral K,

K =
1

2π

∫ ∞

−∞
dze−izy

(
π

isinh(πz)

)5

, (B.25)

and attempt to evaluate it. Because there is a pole at w = 0 the proper way to

evaluate this would be to use the fractional reside theorem and evaluate the integral

over a contour that passes along the real axis. Unfortunately the pole is of order 5
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and the fractional residue theorem fails. So instead we will shift contour down by

a small amount ε such that the integral becomes

K = lim
ρ→∞

1

2π

∫ ρ−iε

−ρ−iε
dze−izy

(
π

isinh(πz)

)5

. (B.26)

We then close the contour back along z = i as shown in Figure B.2. Along the top

of the contour where z′→ z+ i our integral becomes

K′ = lim
ρ→∞

−ey

2π

∫ −ρ+i−iε

ρ+i−iε
dz′ e−iz′y

(
π

isinh(πz′)

)5

, (B.27)

= eyK. (B.28)

Figure B.2: Contour for the integral K given by (B.26)

With this shift the contour then neatly encompasses a single pole. This integral

is evaluated much the same way the previous one was. As in the previous contour

integral the vertical components contribute nothing as ρ→∞ and we can write the

integral around the entire contour as

(1+ ey)K = 2πiRes

(
e−izy

2π

(
π

isinh(πz)

)5

,z = 0

)
. (B.29)

The series expansion reveals the residue to be

1

2πi

(
3

8
π4 +

5

12
π2y2 +

1

24
y4

)
, (B.30)

which means that

K =

(
3

8
π4 +

5

12
π2y2 +

1

24
y4

)
1

1+ ey
. (B.31)
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We are now able to evaluate the integral we set out to evaluate,

I =
∫ ∞

0
dy

(
3

8
π4y2 +

5

12
π2y4 +

1

24
y6

)
1

1+ ey
, (B.32)

=
945

32
ζ (7)+

75

8
π2ζ (5)+

9

16
π4ζ (3), (B.33)

≈ 192 . (B.34)

This value is used to calculate the transition rate of the modified Urca process.

B.2.2 Evaluating the Integral in Equation (4.21)

The integral for the direct Urca, kaon, and quark processes is nearly identical to the

one just presented for the modified Urca process. The only difference comes from

the factors of f (z). We start with

I =
∫ ∞

0
dyy2K , (B.35)

K =
∫ 3

∏
j=1

dx j (1+ exi)−1 δ

(
3

∑
i=1

xi− y

)
. (B.36)

Just as before we can use f (z) given by equation (B.24) to write J as

K =
1

2π

∫ ∞

−∞
dze−izy

(
π

isinh(πz)

)3

. (B.37)

This is evaluated using the contour given in Figure B.2. The only difference is the

residue

(1+ ey)K = 2πiRes

(
e−izy

2π

(
π

isinh(πz)

)3

,z = 0

)
. (B.38)

which is evaluated by looking at the coefficient of the 1/z term in the series expan-

sion to yield

K =
y2 +π2

2(1+ ey)
. (B.39)

The integral I is then

I =
∫ ∞

0
dy

y4 +π2y2

2(1+ ey)
, (B.40)

=
45

4
ζ (5)+

3

14
π2ζ (3) . (B.41)

≈ 20.6 . (B.42)
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This result is used to calculate the transition rate of the direct Urca, kaon, and quark

processes.
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