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Abstract: The concept of m-polar spherical fuzzy sets (mPSFS) is a combination of m-polar fuzzy sets
(mPFS) and spherical fuzzy sets (SFS). An mPSFS is an optimal strategy for addressing multipolarity
and fuzziness in terms of ordered triples of positive membership grades (PMGs), negative mem-
bership grades (NMGs), and neutral grades (NGs). In this study, the innovative concept of m-polar
spherical fuzzy topology (mPSF-topology) is proposed for data analysis and information aggregation.
We look into the characteristics and results of mPSF-topology with the help of several examples.
Topological structures on mPSFSs help with both the development of new artificial intelligence (AI)
tools for different domain strategies and the study of different kinds of uncertainty in everyday
life problems. These strategies make it possible to recognise and look into a situation early on,
which helps professionals to reduce certain risks. In order to address various group decision-making
issues in the m-polar spherical fuzzy domain, one suggestion has been to apply an extended linear
assignment model (LAM) along with the SIR method known as superiority and inferiority ranking
methodology in order to analyze road accident issues and dispute resolution. In addition, we examine
the symmetry of optimal decision and perform a comparative study between the research carried out
using the suggested methodology and several existing methods.

Keywords: mPFS-topology; road accidents; dispute resolution; linear assignment model; superiority
and inferiority ranking

MSC: 03E72; 94D05; 90B50

1. Introduction

The conditions of our everyday life provide us with obstacles that arise from imprecise
information and an absence of appropriate modelling, both of which can lead to imprecise
answers and questionable reasoning. While human intelligence (HI), machine learning
intelligence (MLI), and online social networks have only been around for a short time,
they have changed the economic and social paradigms of society. Because of the rapid
expansion of HI, MLI, and big data over the past few years, incredible improvements in our
day-to-day lives have been made [1–7]. The theory of topology pertains to the interaction
between spatial components or modules. It can be utilised to design large datasets with the
ability to explain certain spatial functions. The definition of topological spaces is listed in
Table 1.

We have extended the study of topology to a new hybrid approach of SFS and mPFS,
i.e., m polar spherical fuzzy sets (mPSFS), by following the idea of Chang [5]. We define the
concept of mPSF-topological space using an mPSF-null set, mPSF-absolute set, and certain
basic operations of mPSFSs, such as union and intersection. Here, we investigate several
basic properties and analyse them with the help of theorems and examples.
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Table 1. Topological structures on fuzzy sets and soft sets.

Year Researchers Field of contribution

1968 Chang [5]
Fuzzy topological spaces and concepts
such as open set, closed set, neighbourhood,
interior set, continuity, and compactness

1955 Kelley [6] Definitions, theorems,
and proofs of topological concepts

1974 Wong [8] Fuzzy points and local countability, separability

1976 Lowen [9] Definitions for fuzzy topological spaces

1975 Hutton [10] Normality

1980 Ming and Ming [11] Link between fuzzy sets and their systems

1991, 1992 Ying [12,13] Technique of continuous valued logic

1993 Shen [14]
Introduced separation axioms and several of
their equivalences as well as their
relations with each other in fuzzifying topology

1995, 1997 Coker [15,16] Invented the idea of intuitionistic fuzzy
topological space

2011 Shabir and Naz [17] Soft topological spaces

2011 Cagman et al. [18] Soft topology

2019 Riaz et al. [19] N-soft topology and decision analysis

2019 Olgun et al. [20] Topological properties of Pythagorean fuzzy sets

2021 Alshammari et al. [21] Pythagorean fuzzy soft topological spaces

Fuzzy mathematics differs from traditional mathematics, primarily in the field of
set theory. Fuzzy mathematics was first developed only a few years ago, and is rich in
ideas. In automobiles and traffic control systems, where logic circuits control anti-lock
brakes, electronic systems, and other functions, its application is widespread. This is an
even more specific form of the phrase “crisp set.” It has the ability to decide either yes
or no, which corresponds to the numbers 1 and 0. Several of the ideas that are discussed
in this article were anticipated by an American philosopher by the name of Black [22],
who lived thirty years ago. The author of [22] developed a theory that has as its primary
building blocks “fuzzy sets,” which are simply sets with “imperfect” bounds. An important
work produced by Zadeh [23] in 1965 makes a crucial argument concerning the evolution
of contemporary ideas around ambiguity, and was an immediate extension of the crisp
set concept. Atanassov [24–26] suggested the idea of intuitionistic fuzzy sets (IFS) and
intuitionistic fuzzy numbers (IFN) in 1983. Yager proposed “Pythagorean fuzzy sets
(PFS)” [27,28], and Yager further introduced “q-rung orthopair fuzzy sets (q-ROFS)” [29].
Soft sets (SS) and SS theory were originated by Molodtsov [30,31]. Smarandache [32]
suggested a new model called neutrosophic sets by introducing another grade to FS. Picture
fuzzy sets (PiFS) were proposed by Cuong [33]. Spherical fuzzy sets (SFSs), which were
recently introduced by Kutlu Gündodu and Kahraman [34], are the most recent extension of
fuzzy sets; in these, the squared sum of the hesitancy-neutral degree, membership degree,
and non-membership degree does not exceed 1. Ashraf et al. [35] and Mahmood et al. [36]
introduced spherical fuzzy sets with certain operational rules and aggregation operations
based on Archimedean t-norm and t-conorms. SFS covers a wider area as compared to
picture fuzzy set (PFS). Feng et al. [37] proposed new score functions of q-rung orthopair
fuzzy sets for further utilization in decision analysis. Deveci et al. proposed the idea of
personal mobility in metaverse with autonomous vehicles based on q-ROFs [38]. Riaz
et al. [39] presented an application of bipolar fuzzy soft sets (BFSSs) to supply chain
management.
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Due to the sheer uncertainty and ambiguity of real-world circumstances, the ap-
proaches frequently employed in classical mathematics are not always suitable for solving
real-world problems. Using a variety of multi-criteria decision-making (MCDM) techniques
that analyse a collection of choices against a variety of methodologies, the reliability of
human judgments can be determined [40]. Information aggregation and synthesis are
fundamental to technological innovations such as deep learning, decision-making pro-
cesses, remote sensing data, principal component analysis, and mathematical abilities.
The process of combining individual preferences on a specific list of options into a single
unified collective preference is an example of a type of MADM problem known as group
decision-making. This type of MADM problem is typically thought of as the procedure by
which group decision-making is carried out. The process of making decisions as a group
involves the participation of multiple individuals, each of whom brings a unique set of
skills, years of experience, and relevant information to bear on the analysis of the various
facets of the issue. Multiple-Attribute Group Decision-Making (MAGDM) is the term used
to describe this category of problems [41]. Several MADM algorithms have been changed
to work with spherical fuzzy sets, and the applications of these changes have been exam-
ined in the literature. The conventional approach to decision analysis known as MCDM,
utilises the linear assignment model (LAM) and the superiority and inferiority ranking
(SIR) method in mPSFS to determine an order of liability for the causes of road accidents. In
1977, Bernardo and Blin [42] came up with the idea for what would become known as the
linear assignment technique (LAM), which took its influence from an assignment problem
in linear programming for MADM [43]. The fundamental concept behind the LAM is that
the rankings of the criteria provide an overall preference ranking that, when combined
with the other component rankings, results in the best possible compromise [44,45]. Many
acandemics have extended LAM under a variety of fuzzy extensions and making use of a
variety of modelling and solution methodologies to account for the unavoidable uncertainty
that is inherent in real-life decision-making situations; several of these are mentioned in
Table 2.

Table 2. Applications based on LAM in different fuzzy domains.

Researchers Applications

Bashiri et al. (2011) [46] Optimum maintenance strategy

Chen (2013) [47] Optimal preference

Chen (2014) [48] Solution of interval-valued MCDM problems

Wei et al. (2017) [49] Solution of MCDM problems
under a hesitant fuzzy environment

Hajiagha et al. (2018) [50] Solution of MCGDM using hesitant fuzzy linguistic term sets

Yang et al. (2018) [51] MCGDM based on interval neutrosophic sets

Liang et al. (2019) [44] Solution of MCDM problems under Pythagorean
fuzzy environment

Donyatalab et al. (2020) [52] Determination of ranking
for allocation under spherical fuzzy environment

Gundogdu (2021) [53] Selection of penthouse location using picture fuzzy set

Moslem et al. (2021) [54] Evaluation of service quality ranking in picture
fuzzy environment

In a similar way, the SIR method has been used by a number of researchers in different
fields of FSs. First, in 2001, Xu [55] gave a presentation on the approach known as the
superiority and inferiority ranking (SIR). In the SIR method, the placement of the options is
determined by two different segmentation overviews, which are as follows. In this method,
the various options are ordered according to the predominance positioning arrangement
as well as the inadequacy positioning arrangement. Notably, the major degree of latitude
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afforded by the use of the SIR method merges the characteristics of various other MCDM
procedures. Numerous researchers have added their expertise using this method in various
fields and domains, which are discussed in Table 3.

Table 3. Applications based on SIR in different fuzzy domains.

Researchers Applications

Tam et al. (2004) [56] Used the strategy to choose a solid siphon

Tam and Tong (2008) [57] Utilized the method for venture enhancements to locate the
an expansive harbour

Liu (2010) [58] Solutions fo supply chain management issues under intuitionistic
fuzzy environment

Ma et al. (2014) [59] Proposed an expanded SIR approach to HFS

Peng and Yang (2015) [60] Introduced the PF-SIR approach

Rouhani (2017) [61] Applied the F-SIR method to the selection of software in the
IT sector

Tavana et al. (2018) [62] Solved the third-party reverse logistics problem using the
IFG-SIR approach

Zhao et al. (2019) [63] Solve the investment selection problem, the IVIF-SIR method
was applied

The following are the main objectives of the suggested framework:

• Construction of the topological structure on mPSFFSs.
• Analyzing the fundamental topology concepts of mPSF-open set, mPSF-closed set,

mPSF-interior, mPSF-closure, mPSF-base, and mPSF-subbase, as well as their instances.
• Introducing theorems and the proofs that support them in order to illustrate how

mPSF-topology works;
• Description of a case study entitled “Day by Day Increasing Road Accidents”.
• As an expansion of MCDM, LAM is used to elaborate the application for finding the

causes of road accidents.
• The SIR framework is a well-known and frequently used MCDM technique that is

useful for finding the rankings of similar applications in order to obtain precise results.
• A comparison analysis is provided to conclude our work.

Recent developments in fuzzy techniques in decision-making include those proposed
in [64–68]. Further details on group decision-making are discussed in [69,70].

The rest of the present paper is categorised in the following fashion across the re-
maining sections. Section 2 explores core mPSF principles. The most important findings
of mPSF-Topology are outlined in Section 3. In Section 4, we demonstrate a SIR and
LAM framework that is embedded inside the mPSFSs and has an application to vehicular
mishaps. In Section 5, the most important results of the investigation are provided.

2. Preliminaries

In this section, we concisely review a few primary concepts related to different kinds
of sets, including fuzzy sets, soft sets, spherical fuzzy sets and spherical fuzzy soft sets, that
are employed during the rest of this paper.

Definition 1 ([23]). Let q̆ be a classical set and µ̃A : q̆ → [0, 1] be the membership function.
Then, a fuzzy set A can be written in the form

A = (q̆, µ̃A) = {(ρ, µ̃A(ρ)) : ρ ∈ X}

The value of the mapping µ̃A at ρ ∈ q̆ i.e., µ̃A(ρ) denotes the degree of membership of ρ to fuzzy
set A. The aggregate of all fuzzy sets in q̆ is designated as F (q̆).
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Definition 2 ([34–36]). Let U be the universe of discourse; then, a spherical fuzzy set (SFS) Ḡ U
is an object with the form

Ḡ =
{
(q̆, µ̃(q̆), γ(q̆), η̃(q̆)) : x ∈ U

}
Ḡ =

{
q̆(

µ̃(q̆), γ(q̆), η̃(x)
) : q̆ ∈ U

}
where µ̃(q̆) ∈ [0, 1] is called the “degree of membership (MG) of q̆ in U”, γ(q̆) ∈ [0, 1] is called
the “degree of hesitancy (HG) of q̆ in U”, and η̃(q̆) ∈ [0, 1] is called the “degree of non-membership
(NMG) of q̆ in U”; furthermore, µ̃(q̆), γ(x) and η̃(q̆) satisfy the following condition:

µ̃2(q̆) + γ2(xq̆+ η̃2(q̆) ≤ 1, ∀q̆ ∈ U

Then, for q̆ ∈ U,

π(q̆) =
√

1− µ̃2(q̆)− γ2(q̆)− η̃2(q̆)

is called "refusal degree" of q̆ ∈ U. A spherical fuzzy number (SFN) can be simply represented as

e = (µ̃e, γe, η̃e)

where (µ̃e)2 + (γe)2 + (η̃e)2 ≤ 1

Definition 3. Let U be a universal set of discourse. An m-polar fuzzy set on U is defined on
interval [0, 1]m and can be expressed as

M =
{(
q̆,
(
µ̃i(q̆)m

i=1
)

: q̆ ∈ U
}

3. m-Polar Spherical Fuzzy Set

Now we define m-polar spherical fuzzy sets (mPSFSs) as a hybrid structure comprised
of both spherical fuzzy sets (SFS) and m-polar fuzzy sets (mPSFS). For m = 1, an mPSFS
turns into an SFS.

Definition 4. A fuzzy S̄Γ defined on a universal set U of the following form is called an m-polar
spherical fuzzy set (mPSFS)

S̄Γ =

{〈
(µ̃(1)(q̆), γ(1)(q̆), η̃(1)(q̆)), (µ̃(2)(q̆), γ(2)(q̆), η̃(2)(q̆)),

· · · , (µ̃(m)(q̆), γ(m)(q̆), η̃(m)(q̆))
〉

: q̆ ∈ U
}

=

{〈
q̆,
(
µ̃(j)(q̆), γ(j)(q̆), η̃(j)(x)

)〉m

j=1
: q̆ ∈ U

}

where µ̃(j) : M→ [0, 1], γ(j) : M→ [0, 1], η̃(j)) : M→ [0, 1] represent the membership function
(MF), hesitancy function (IF), and non-membership function (NMF), respectively, and the values
µ̃(j)(q̆), γ(j)(xq̆, η̃(j)(q̆) ∈ [0, 1] represent the membership grade (MG), hesitancy grade (HG),
and non-membership grade (NMG), respectively, which satisfy the condition

0≤
(
µ̃(j)(q̆)

)2
+
(
γ(j)(q̆)

)2
+
(
η̃(j)(q̆)

)2 ≤ 1.
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The refusal degree is R =

√
1−

(
µ̃(j)(q̆)

)2
−
(

γ(j)(q̆)
)2
−
(

η̃(j)(q̆)
)2

, j = 1, 2, 3, ..., m.

An m-polar spherical fuzzy number (mPSFN) can be written as

N =
〈
(µ̃(1)(x), γ(1)(x), η̃(1)(x)), (µ̃(2)(x), γ(2)(x), η̃(2)(x)), · · · , (µ̃(m)(x), γ(m)(x), η̃(m)(x))

〉
=

〈
(µ̃(j)(q̆), γ(j)(x), η̃(j)(x)

〉m
j=1

with the constraint
0≤
(

µ̃(j)(q̆)
)2

+
(
γ(j)(q̆)

)2
+
(
η̃(j)(q̆)

)2
≤ 1

For a fixed q̆, N =
〈
(µ̃(1), γ(1), η̃(1)), (µ̃(2), γ(2), η̃(2)), · · · , (µ̃(m), γ(m), η̃(m))

〉
is called m-

polar spherical fuzzy number (mPSFN).
Tabular representation of (mPSFS) with cardinality K is expressed in Table 4.

Table 4. m-polar spherical fuzzy sets.

S̄Γ mPSFSs

q̆1

(
µ̃(1)(q̆1), γ(1)(q̆1), η̃(1)(q̆1)

)(
µ̃(2)(q̆1), γ(2)(q̆1), η̃(2)(q̆1)

)
· · ·
(

µ̃(m)(q̆1), γ(m)(q̆1), η̃(m)(q̆1)

)
q̆2

(
µ̃(1)(q̆2), γ(1)(q̆2), η̃(1)(q̆2)

)(
µ̃(2)(q̆2), γ(2)(q̆2), η̃(2)(q̆2)

)
, · · ·

(
µ̃(m)(q̆2), γ(m)(q̆2), η̃(m)(q̆2)

)
q̆3

(
µ̃(1)(q̆3), γ(1)(q̆3), η̃(1)(q̆3)

)(
µ̃(2)(q̆3), γ(2)(q̆3), η̃(2)(q̆3)

)
, · · ·

(
µ̃(m)(q̆3), γ(m)(q̆3), η̃(m)(q̆3)

)
...

...

q̆k

(
µ̃(1)(q̆k), γ(1)(q̆k), η̃(1)(q̆k)

)
,
(

µ̃(2)(q̆k), γ(2)(q̆k), η̃(2)(q̆k)

)
, · · ·

(
µ̃(m)(q̆k), γ(m)(q̆k), η̃(m)(q̆k)

)

And matrix representation of m-polar spherical fuzzy set(mPSFS) is

S̄Γ
k,m =



(
µ̃(1)(q̆1), γ(1)(q̆1), η̃(1)(q̆1)

)
,

(
µ̃(2)(q̆1), γ(2)(q̆1), η̃(2)(q̆1)

)
, · · ·

(
µ̃(m)(q̆1), γ(m)(q̆1), η̃(m)(q̆1)

)
(

µ̃(1)(q̆2), γ(1)(q̆2), η̃(1)(q̆2)

)
,

(
µ̃(2)(q̆2), γ(2)(q̆2), η̃(2)(q̆2)

)
, · · ·

(
µ̃(m)(q̆2), γ(m)(q̆2), η̃(m)(q̆2)

)
(

µ̃(1)(q̆3), γ(1)(q̆3), η̃(1)(q̆3)

)
,

(
µ̃(2)(q̆3), γ(2)(q̆3), η̃(2)(q̆3)

)
, · · ·

(
µ̃(m)(q̆3), γ(m)(q̆3), η̃(m)(q̆3)

)
...

...
. . .

...(
µ̃(1)(q̆k), γ(1)(q̆k), η̃(1)(q̆k)

)
,

(
µ̃(2)(q̆k), γ(2)(q̆k), η̃(2)(q̆k)

)
, · · ·

(
µ̃(m)(q̆k), γ(m)(q̆k), η̃(m)(q̆k)

)


Example 1. Let M = {q̆1, q̆2, q̆3} be the set of vehicles. Then, 5PSFS in M is expressed in
Table 5.

Table 5. 5-polar spherical fuzzy set S̄Γ.

S̄Γ 5PSFSs

q̆1

(
0.389, 0.175, 0.412

)
,
(

0.655, 0.423, 0.392
)

,
(

0.622, 0.183, 0.245
)

,
(

0.417, 0.118, 0.279
)

,
(

0.397, 0.271, 0.369
)

q̆2

(
0.546, 0.253, 0.645

)
,
(

0.391, 0.125, 0.629
)

,
(

0.620, 0.187, 0.390
)

,
(

0.445, 0.198, 0.322
)

,
(

0.467, 0.218, 0.329
)

q̆3

(
0.719, 0.345, 0.283

)
,
(

0.320, 0.217, 0.691
)

,
(

0.543, 0.165, 0.281
)

,
(

0.623, 0.346, 0.479
)

,
(

0.517, 0.118, 0.249
)

In 5PSFS, each vehicle namely, q̆1, q̆2, and q̆3 is examined under 5 attributes (j =
1, 2, 3, 4, 5), and evaluated in terms of mPSFNs. From the first row of the table, the first triplet
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(
0.389, 0.175, 0.412

)
shows that vehicle q̆1 has a 38.9% membership grade, 17.5% hesitancy

grade, and 41.2% non-membership grade for the first attribute. Similarly, we may see the additional
values that relate to each attribute.

Definition 5. Let S̄Γ
A and S̄ΓB be two mPSFSs . Then,

• S̄Γ
A ∪ S̄ΓB =

{〈
x,
(

max
(

µ̃
(j)
A (q̆), µ̃

(j)
B (q̆)

)
, min

(
γ
(j)
A (q̆), γ

(j)
B (q̆)

)
,

min
(

η̃
(j)
A (q̆), η̃

(j)
B (q̆)

))〉m

j=1
: q̆ ∈ U

}
• S̄Γ

A ∩ S̄ΓB =

{〈
q̆,
(

min
(

µ̃
(j)
A (q̆), µ̃

(j)
B (q̆)

)
, max

(
γ
(j)
A (q̆), γ

(j)
B (q̆)

)
,

max
(

η̃
(j)
A (q̆), η̃

(j)
B (q̆)

))〉m

j=1
: q̆ ∈ U

}
• S̄Γ

A ⊆ S̄ΓB i f f µ̃
(j)
A (q̆) � µ̃

(j)
B (q̆), γ

(j)
A (q̆) � γ

(j)
B (q̆), η̃

(j)
A (q̆) � η̃

(j)
B (q̆), ∀q̆ ∈ U, j =

1, 2, 3, ..., m

• S̄Γ
A

.
= S̄ΓB i f f S̄Γ

A ⊆ S̄ΓB and S̄Γ
A ⊇ S̄ΓB

• S̄Γc
A =

{〈
q̆,
(

η̃
(j)
A (q̆), γ

(j)
A (q̆), µ̃

(j)
A (q̆)

)〉m

j=1
: x ∈ U

}
• S̄Γ

A ⊕ S̄ΓB =

{〈
q̆,
((

(µ̃
(j)
A (q̆))2 + (µ̃

(j)
B (q̆))2 − (µ̃

(j)
A (q̆))2(µ̃

(j)
B (q̆))2)

)1/2
,(

(1− (µ̃
(j)
B (q̆))2)(γ

(j)
A (q̆))2 +(1− (µ̃

(j)
A (q̆))2)(γ

(j)
B (q̆))2− (γ

(j)
A (q̆))2(γ

(j)
B (q̆))2

)1/2
,

η̃
(j)
A (xq̆)η̃(j)

B (q̆)
)〉m

j=1
: x ∈ U

}
• S̄Γ

A ⊗ S̄ΓB =

{〈
x,
(

µ̃
(j)
A (x)µ̃(j)

B (x),
(
(1− (η̃

(j)
B (q̆))2)(γ

(j)
A (q̆))2 + (1−

(η̃
(j)
A (q̆))2)(γ

(j)
B (q̆))2 − (γ

(j)
A (q̆))2(γ

(j)
B (q̆))2

)1/2

,(
(η̃

(j)
A (q̆))2 + (η̃

(j)
B (q̆))2 − (η̃

(j)
A (q̆))2(η̃

(j)
B (q̆))2

)1/2)〉m

j=1
: q̆ ∈ U

}
• λS̄Γ

A =

{〈
q̆,
((

1−
(

1− (µ̃
(j)
A (q̆))2

)λ)1/2
,
((

1− µ̃
(j)
A (q̆))2

)λ
−
(

1− (µ̃
(j)
A (q̆))2 −

(γ
(j)
A (q̆))2

)λ)1/2
, (η̃(j)

A (q̆))λ

)〉m

j=1
: x ∈ U

}
, λ > 0

• S̄Γλ
A =

{〈
x,
(
(µ̃

(j)
A (q̆))λ,

(
(1− (η̃

(j)
A (q̆))2)λ −(

1− (η̃
(j)
A (q̆))2 − (γ

(j)
A (q̆))2

)λ)1/2
,
(

1−
(

1− (η̃
(j)
A (q̆))2

)λ)1/2
)〉m

j=1
: ∈ U}, λ >

0

Example 2. Let M = {q̆1, q̆2, q̆·1, q̆·2} and let S̄Γ
A and S̄ΓB be two 5PSFSs defined as shown in

the Tables 6 and 7, respectively.
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Table 6. 5-polar spherical fuzzy set A.

S̄Γ A 5PSFSs

q̆1

(
0.389, 0.145, 0.422

)
,
(

0.665, 0.126, 0.351
)

,
(

0.682, 0.183, 0.295
)

,
(

0.678, 0.112, 0.299
)

,
(

0.419, 0.197, 0.382
)

q̆2

(
0.576, 0.243, 0.391

)
,
(

0.217, 0.450, 0.632
)

,
(

0.690, 0.119, 0.351
)

,
(

0.442, 0.198, 0.454
)

,
(

0.523, 0.215, 0.323
)

Table 7. 5-polar spherical fuzzy set B.

S̄ΓB 5PSFSs

q̆′1
(

0.362, 0.189, 0.614
)

,
(

0.699, 0.009, 0.298
)

,
(

0.389, 0.267, 0.510
)

,
(

0.477, 0.120, 0.321
)

,
(

0.411, 0.179, 0.399
)

q̆′2
(

0.541, 0.275, 0.332
)

,
(

0.341, 0.195, 0.324
)

,
(

0.594, 0.167, 0.336
)

,
(

0.543, 0.116, 0.313
)

,
(

0.492, 0.289, 0.314
)

Then, union S̄Γ
A ∪ S̄ΓB of S̄Γ

A and S̄ΓB can be defined as shown in the Table 8.

Table 8. Union of two 5-polar spherical fuzzy sets S̄Γ
A ∪ S̄ΓB.

S̄Γ A ∪ S̄ΓB 5PSFSs

q̆1 ∪ q̆
′
1

(
0.389, 0.145, 0.422

)
,
(

0.699, 0.009, 0.298
)

,
(

0.389, 0.183, 0.295
)

,
(

0.477, 0.02, 0.29
)

,
(

0.419, 0.179, 0.382
)

q̆2 ∪ q̆
′
2

(
0.576, 0.243, 0.332

)
,
(

0.341, 0.195, 0.324
)

,
(

0.690, 0.119, 0.336
)

,
(

0.543, 0.116, 0.313
)

,
(

0.523, 0.215, 0.314
)

Then, intersection S̄Γ
A ∩ S̄ΓB of S̄Γ

A and S̄ΓB can be defined as shown in the Table 9.

Table 9. Intersection of two 5-polar spherical fuzzy sets S̄Γ
A ∩ S̄ΓB.

S̄Γ A ∩ S̄ΓB 5PSFSs

q̆1 ∩ q̆
′
1

(
0.362, 0.189, 0.614

)
,
(

0.665, 0.126, 0.351
)

,
(

0.389, 0.267, 0.510
)

,
(

0.477, 0.120, 0.321
)

,
(

0.411, 0.197, 0.399
)

q̆2 ∩ q̆
′
2

(
0.541, 0.275, 0.391

)
,
(

0.217, 0.450, 0.632
)

,
(

0.594, 0.167, 0.351
)

,
(

0.442, 0.198, 0.454
)

,
(

0.492, 0.289, 0.323
)

And the complement of S̄Γc
A can be calculated as shown in the Table 10.

Table 10. Complement operation on 5-polar spherical fuzzy set.

S̄Γc
A 5PSFSs

q̆c
1

(
0.422, 0.145, 0.389

)
,
(

0.351, 0.126, 0.665
)

,
(

0.295, 0.183, 0.682
)

,
(

0.299, 0.112, 0.678
)

,
(

0.382, 0.197, 0.419
)

q̆c
2

(
0.391, 0.243, 0.576

)
,
(

0.632, 0.450, 0.217
)

,
(

0.351, 0.119, 0.690
)

,
(

0.454, 0.198, 0.442
)

,
(

0.323, 0.215, 0.523
)

Definition 6. The score function for any mPSFN e = (µ̃
(j)
e , γ

(j)
e , η̃

(j)
e ) , j = 1, 2, 3, ..., m is

defined as

s(e) =
1
m

(
m

∑
j=1

µ̃
(j)2
p − γ

(j)2

p − η̃
(j)2
p

)
where −1 ≤ s(e) ≤ 1. If ei and ej are two spherical fuzzy numbers, then

1. Given s(ei) < s(ej) , ei precedes ej i.e., ei ≺ ej,
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2. Given s(ei) > s(ej) , ei succeeds ej i.e., ei � ej,
3. Given s(ei) = s(ej) , ei∼ej.

Definition 7. The accuracy function for any SFN e = (µ̃
(j)
e , γ

(j)
e , η̃

(j)
e ), j = 1, 2, 3, ..., m is

defined as

a(e) =
1
m

(
m

∑
j=1

µ̃
(j)2
p + γ

(j)2

p + η̃
(j)2
p

)
where 0 ≤ s(e) ≤ 1. If ei and ej are two spherical fuzzy numbers, then

1. If s(ei) and s(ej) coincide and a(ei) exceeds a(ej), then ei � ej,
2. If both s(ei), s(ej) and a(ei), a(ej) coincide, then ei∼ej

Definition 8. An m-PSFS is said to be an empty or null m-PSFS if µ̃(j)(x) = 0, γ(j)(x) = k and
η̃(j)(x) = 1− k for all j = 1, 2, 3, ..m and 0 ≤ k ≤ 1. It is denoted as ¯̄∅ and scripted as

¯̄∅ = {〈x, ((0, k, 1− k), (0, k, 1− k), . . . , (0, k, 1− k))〉 : 0 ≤ k ≤ 1 & x ∈ U}

Its matrix representation is

¯̄∅ =


(0, k, 1− k) (0, k, 1− k) · · · (0, k, 1− k)
(0, k, 1− k) (0, k, 1− k) · · · (0, k, 1− k)

...
...

. . .
...

(0, k, 1− k) (0, k, 1− k) · · · (0, k, 1− k)


Definition 9. An m-PSFS is said to be an absolute m-PSFS if µ̃(j)(x) = 1− k, π(j)(x) = k and
v(j)(x) = 0 for all j = 1, 2, 3, ..m and 0 ≤ k ≤ 1. It is denoted as X̄ and scripted as

X̄ = {〈x, ((1− k, k, 0), (1− k, k, 0), . . . , (1− k, k, 0))〉 : 0 ≤ k ≤ 1 & x ∈ U}

Its matrix representation is

X̄ =


(1− k, k, 0) (1− k, k, 0) · · · (1− k, k, 0)
(1− k, k, 0) (1− k, k, 0) · · · (1− k, k, 0)

...
...

. . .
...

(1− k, k, 0) (1− k, k, 0) · · · (1− k, k, 0)


4. m-Polar Spherical Fuzzy Topology

This section describes the idea of mPSF-topology in relation to a mPSF set. The
concepts of mPSF-union and mPSF-intersection are used as building blocks while designing
mPSF topology. Several elements of the mPSF-topology are defined, and the accompanying
illustrations are presented in an optimized way.

Definition 10. Assume XΓ is a set which is non-empty and mPSFS(XΓ) is the collection of all
the mPSF-subsets. A sub-collection TΩ of mPSFS(XΓ) is called m-polar Spherical fuzzy topology
(mPSFT) on XΓ if the following properties hold true:

(i) ¯̄∅ , XΓ ∈ TΩ

(ii) TΩ is closed under arbitrary union, i.e., if S̄Γq ∈ TΩ, ∀q ∈ Q, then ∪q∈QS̄Γq ∈ TΩ.
(iii) TΩ is closed under finite intersection, i.e., if S̄Γ

µ̃, S̄Γ
η̃ ∈ TΩ, then S̄Γ

µ̃ ∩ S̄Γ
η̃ ∈ TΩ.

The couplet (X,TΩ), or simply TΩ, is known as m-polar spherical fuzzy topological space,
shortened as mPSFTS.
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Example 3. Let X̄ = {q̆1, q̆2, q̆3} be a universal set and S1, S2, and S3 be as shown in Tables 11–13
below

Table 11. 4-polar spherical fuzzy set S1.

S1 4PSFSs

q̆1

(
0.429, 0.738, 0.275

)
,
(

0.372, 0.669, 0.232
)

,
(

0.731, 0.384, 0.419
)

,
(

0.556, 0.423, 0.361
)

q̆2

(
0.542, 0.821, 0.121

)
,
(

0.734, 0.298, 0.467
)

,
(

0.657, 0.156, 0.279
)

,
(

0.459, 0.325, 0.576
)

q̆3

(
0.425, 0.145, 0.361

)
,
(

0.421, 0.264, 0.532
)

,
(

0.541, 0.121, 0.219
)

,
(

0.785, 0.312, 0.421
)

Table 12. 4-polar spherical fuzzy set S2.

S2 4PSFSs

q̆1

(
0.411, 0.761, 0.312

)
,
(

0.352, 0.731, 0.248
)

,
(

0.653, 0.451, 0.527
)

,
(

0.418, 0.598, 0.426
)

q̆2

(
0.398, 0.865, 0.178

)
,
(

0.645, 0.357, 0.576
)

,
(

0.611, 0.257, 0.343
)

,
(

0.405, 0.399, 0.586
)

q̆3

(
0.365, 0.198, 0.376

)
,
(

0.405, 0.357, 0.545
)

,
(

0.445, 0.267, 0.376
)

,
(

0.634, 0.398, 0.499
)

Table 13. 4-polar spherical fuzzy set S3.

S3 4PSFSs

q̆1

(
0.521, 0.678, 0.229

)
,
(

0.439, 0.547, 0.165
)

,
(

0.763, 0.249, 0.211
)

,
(

0.618, 0.403, 0.267
)

q̆2

(
0.632, 0.765, 0.18

)
,
(

0.76, 0.269, 0.424
)

,
(

0.721, 0.136, 0.234
)

,
(

0.532, 0.234, 0.477
)

q̆3

(
0.534, 0.132, 0.256

)
,
(

0.468, 0.213, 0.461
)

,
(

0.545, 0.167, 0.189
)

,
(

0.798, 0.254, 0.345
)

Then TΩ
1 = { ¯̄∅, X̄}, TΩ

2 = { ¯̄∅, S1, X̄}, TΩ
3 = { ¯̄∅, S2, X̄}, TΩ

4 = { ¯̄∅, S3, X̄},TΩ
5 = { ¯̄∅, S1, S2, X̄},

TΩ
6 = { ¯̄∅, S1, S3, X̄},TΩ

7 = { ¯̄∅, S2, S3, X̄}, and TΩ
8 = { ¯̄∅, S1, S2, S3, X̄} all are 4-PSFTS over X̄.

The components ¯̄∅ and X̄ in all these topologies are both 4-polar spherical fuzzy open and closed sets.

Definition 11. Let TΩ
1 and TΩ

2 be two mPSF-topologies over X. If every member of TΩ
1 is also

a member of TΩ
2 , i.e., TΩ

1 ⊆ TΩ
2 , then TΩ

1 and TΩ
2 are comparable. In such situations, TΩ

1 is
purported to be coarser or weaker than TΩ

2 and TΩ
2 is purported to be finer or stronger than TΩ

1 .
In Example 3, TΩ

3 is coarser than TΩ
2 , and hence these are comparable.

Remark 1. The mPSFTS intersection is always an mPSFTS, however, its union does not have to
be an mPSFTS.

Example 4. Let X={q̆1, q̆2} be the universal set and S̄Γ
1 and S̄Γ2 be 3PSFSs as provided below

in Tables 14 and 15,

Table 14. 3-polar spherical fuzzy set S̄Γ
1.

S̄Γ1 3PSFSs

q̆1

(
0.276, 0.413, 0.720

)
,
(

0.425, 0.511, 0.623
)

,
(

0.324, 0.256, 0.163
)

,
(

0.536, 0.168, 0.256
)

q̆2

(
0.424, 0.563, 0.471

)
,
(

0.265, 0.891, 0.314
)

,
(

0.476, 0.145, 0.67
)

,
(

0.406, 0.211, 0.321
)
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Table 15. 4-polar spherical fuzzy set S̄Γ2.

S̄Γ2 4PSFSs

q̆1

(
0.414, 0.320, 0.646

)
,
(

0.387, 0.569, 0.648
)

,
(

0.368, 0.217, 0.11
)

,
(

0.571, 0.116, 0.215
)

q̆2

(
0.587, 0.465, 0.381

)
,
(

0.322, 0.735, 0.247
)

,
(

0.413, 0.243, 0.717
)

,
(

0.503, 0.213, 0.712
)

Then,
TΩ

1 = { ¯̄∅, S̄Γ
1, X̄},

TΩ
2 = { ¯̄∅, S̄Γ2, X̄}

are 4PSF topologies over X. However,

TΩ
1 ∪ TΩ

2 = { ¯̄∅, S̄Γ
1, S̄Γ2, X̄}

fails to be a 4PSFT over X.

Theorem 1. Let (X,TΩ) be m-polar spherical fuzzy topological spaces. Then, the following
conditions are satisfied:

(i) ¯̄∅, X̄ are closed.
(ii) TΩ is closed under an arbitrary intersection of closed mPSFSs .
(iii) TΩ is closed under a finite number of unions of closed mPSFSs.

Proof. (i) ¯̄∅c = X̄ and X̄c = ¯̄∅ both are open and closed mPSFSs.
(ii) If {S̄Γq : S̄Γc

q ∈ TΩ, q ∈ Q} is the collection of all closed mPSFSs, then(
∩q∈Q S̄Γq

)c
= ∪q∈QS̄Γc

q

is open. This shows that ∩q∈QS̄Γq is a closed mPSFS.
(iii) Because S̄Γq is closed for q=1,2,3,...,n,(

∪n
q=1 S̄Γq

)c
= ∩n

q=1S̄Γc
q

is an open mPSFS. Thus, ∪n
q=1S̄Γq is a closed mPSFS.

Definition 12. Let (X,TΩ) be an mPSFTS and Y ⊆ X and Ȳ be an absolute mPSFS on Y . Then
TΩ
Y is an mPSF topology on Y with mPSF open sets as S̄ΓY = S̄ΓX ∩ Ȳ, where S̄ΓX are mPSF

open sets of TΩ
X and S̄ΓY are mPSF open sets of TΩ

Y . Then, Ȳ is termed the mPSF-subspace of X̄,
i.e.,

TΩ
Y = {S̄ΓY : S̄ΓY = S̄ΓX ∩ Ȳ , S̄ΓX ∈ TΩ

X},

with TΩ
Y also known as the relative mPSF topology or induced mPSF topology on Y .

Example 5. Suppose that X={q̆1, q̆2, q̆3} is the universal set. If 4-polar spherical fuzzy set S̄Γ
1

and S̄Γ2 are defined as in the Tables 16 and 17, respectively.
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Table 16. 4-polar spherical fuzzy set S̄Γ
1.

S̄Γ1 4PSFSs

q̆1

(
0.319, 0.428, 0.486

)
,
(

0.398, 0.546, 0.622
)

,
(

0.495, 0.809, 0.134
)

,
(

0.525, 0.239, 0.284
)

q̆2

(
0.268, 0.297, 0.432

)
,
(

0.660, 0.447, 0.081
)

,
(

0.168, 0.439, 0.134
)

,
(

0.295, 0.099, 0.534
)

q̆3

(
0.635, 0.489, 0.217

)
,
(

0.489, 0.317, 0.159
)

,
(

0.719, 0.563, 0.443
)

,
(

0.455, 0.092, 0.387
)

Table 17. 4-polar spherical fuzzy set S̄Γ2.

S̄Γ2 4PSFSs

q̆1

(
0.421, 0.167, 0.312

)
,
(

0.632, 0.459, 0.430
)

,
(

0.697, 0.217, 0.065
)

,
(

0.596, 0.217, 0.195
)

q̆2

(
0.523, 0.211, 0.148

)
,
(

0.692, 0.216, 0.056
)

,
(

0.389, 0.301, 0.112
)

,
(

0.364, 0.008, 0.112
)

q̆3

(
0.679, 0.372, 0.213

)
,
(

0.694, 0.245, 0.132
)

,
(

0.752, 0.321, 0.033
)

,
(

0.536, 0.075, 0.211
)

then
TΩ

X = { ¯̄∅, S̄Γ
1, S̄Γ2, X̄}

is a 4PSF topology on X.
Now, let the absolute 4PSF on Y = {q̆1, q̆3} ⊆ X be is shown in the Table 18. Working is

shown in Tables 19 and 20 .

Table 18. 4-polar spherical fuzzy set Ȳ .

Ȳ 4PSFSs

q̆1

(
1.000, 0.000, 0.000

)
,
(

1.000, 0.000, 0.000
)

,
(

1.000, 0.000, 0.000
)

,
(

1.000, 0.000, 0.000
)

q̆3

(
1.000, 0.000, 0.000

)
,
(

1.000, 0.000, 0.000
)

,
(

1.000, 0.000, 0.000
)

,
(

1.000, 0.000, 0.000
)

Because Ȳ ∩ ¯̄∅ = ˜̄̄∅. Furthermore,

Table 19. 4-polar spherical fuzzy set SΓ
′

1.

Ȳ ∩ S̄Γ1 = S̄Γ
′

1 4PSFSs

q̆1

(
0.319, 0.428, 0.486

)
,
(

0.398, 0.546, 0.622
)

,
(

0.495, 0.809, 0.134
)

,
(

0.525, 0.239, 0.284
)

q̆3

(
0.635, 0.489, 0.217

)
,
(

0.489, 0.317, 0.159
)

,
(

0.719, 0.563, 0.443
)

,
(

0.455, 0.092, 0.387
)

Table 20. 4-polar spherical fuzzy set S̄Γ
′

2.

Ȳ ∩ S̄Γ2 = S̄Γ
′

2 4PSFSs

q̆1

(
0.421, 0.167, 0.312

)
,
(

0.632, 0.459, 0.430
)

,
(

0.697, 0.217, 0.065
)

,
(

0.596, 0.217, 0.195
)

q̆3

(
0.679, 0.372, 0.213

)
,
(

0.694, 0.245, 0.132
)

,
(

0.752, 0.321, 0.033
)

,
(

0.536, 0.075, 0.211
)

and Ȳ ∩ X = Ȳ .
Thus, TΩ

Y = { ˜̄̄∅, S̄Γ
′

1, S̄Γ
′

2, X̄} is a 4PSF sub-topology of TΩ
X .
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Definition 13. Let (X, TΩ) be an mPSFTS and S̄Γ ⊆ mPSFS(X); then, the interior of S̄Γ is
indicated as S̄Γ◦ and described as the union of all open mPSF subsets included in S̄Γ. Alternatively,
it can be defined as the largest open mPSFS that includes S̄Γ.

Example 6. Let X={q̆1, q̆2, q̆3}. Let us consider 4PSFSs S̄Γ
1 and S̄Γ2 in X such that TΩ =

{ ¯̄∅, S1, S2, X̄} is the topology on X. S̄Γ
1 is given in Table 21, S̄Γ2 is given in Table 22 and S̄Γ is

given in Table 23. Then,

Table 21. 4-polar spherical fuzzy set S̄Γ
1.

S̄Γ1 4PSFSs

q̆1

(
0.276, 0.435, 0.394

)
,
(

0.254, 0.337, 0.325
)

,
(

0.548, 0.440, 0.122
)

,
(

0.248, 0.462, 0.282
)

q̆2

(
0.239, 0.332, 0.419

)
,
(

0.611, 0.226, 0.192
)

,
(

0.440, 0.459, 0.523
)

,
(

0.458, 0.286, 0.331
)

q̆3

(
0.316, 0.297, 0.196

)
,
(

0.632, 0.149, 0.218
)

,
(

0.198, 0.387, 0.291
)

,
(

0.627, 0.312, 0.112
)

Table 22. 4-polar spherical fuzzy set S̄Γ2.

S̄Γ2 4PSFSs

q̆1

(
0.412, 0.229, 0.323

)
,
(

0.254, 0.325, 0.190
)

,
(

0.630, 0.382, 0.110
)

,
(

0.418, 0.362, 0.172
)

q̆2

(
0.406, 0.313, 0.218

)
,
(

0.621, 0.210, 0.082
)

,
(

0.554, 0.287, 0.137
)

,
(

0.554, 0.256, 0.231
)

q̆3

(
0.652, 0.267, 0.134

)
,
(

0.674, 0.149, 0.145
)

,
(

0.731, 0.329, 0.290
)

,
(

0.687, 0.212, 0.092
)

Consider S̄Γ as

Table 23. 4-polar spherical fuzzy set S̄Γ.

S̄Γ 4PSFSs

q̆1

(
0.416, 0.344, 0.389

)
,
(

0.465, 0.256, 0.276
)

,
(

0.597, 0.385, 0.049
)

,
(

0.388, 0.453, 0.231
)

q̆2

(
0.376, 0.276, 0.311

)
,
(

0.619, 0.225, 0.089
)

,
(

0.595, 0.430, 0.255
)

,
(

0.597, 0.210, 0.231
)

q̆3

(
0.654, 0.271, 0.123

)
,
(

0.740, 0.112, 0.194
)

,
(

0.291, 0.372, 0.115
)

,
(

0.736, 0.218, 0.105
)

Then, the 4PSF interior of S̄Γ is

S̄Γ◦ = ¯̄∅∪ S̄Γ
1 = S̄Γ

1

Theorem 2. Let (X, TΩ) be an mPSFTS and let S̄Γ ∈ mPSFS(X).
Then, S̄Γ is open mPSFS ⇔ S̄Γ◦ = S̄Γ.

Proof. If S̄Γ◦ = S̄Γ, then S̄Γ◦ is an open mPSFS. This means that S̄Γ is an open mPSFS.
Conversely, if S̄Γ is an open mPSFS, then the largest open mPSFS included in S̄Γ is itself S̄Γ.
Thus, S̄Γ◦ = S̄Γ.

Theorem 3. Let (X, TΩ) be an mPSFTS and let S̄Γ, S̄Γ
1, and S̄Γ2 ∈mPSFS(X). Then, the following

results hold:

(i) (S̄Γ◦)◦ = S̄Γ◦

(ii) S̄Γ
1 v S̄Γ2 ⇒ S̄Γ◦

1 v S̄Γ◦
2
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(iii) (S̄Γ
1 u S̄Γ2)

◦ = S̄Γ◦
1 u S̄Γ◦

2

(iv) (S̄Γ
1 t S̄Γ2)

◦ w S̄Γ◦
1 t S̄Γ◦

2

Definition 14. Let (X, TΩ) be an mPSFTS and let S̄Γ ∈mPSFS(X); then, closure of S̄Γ is indicated
as S̄Γcl and is described as the intersection of all closed mPSF supersets of S̄Γ; it can also be defined
as the smallest closed mPSFS of S̄Γ.

Example 7. Let X={q̆1, q̆2, q̆3} be a 4PSFTS. Let us consider 4PSFSs S̄Γ
1 and S̄Γ2 of X as

provided in Example 6. These 4PSFSs are open in 4PSFTS given in Tables 24 and 25. Then, their
corresponding 4PSF closed sets is given in Table 26.

Table 24. 4-polar spherical fuzzy set S̄Γc
1.

S̄Γc
1 3PSFSs

q̆1

(
0.394, 0.435, 0.276

)
,
(

0.325, 0.337, 0.254
)

,
(

0.122, 0.440, 0.548
)

,
(

0.282, 0.462, 0.248
)

q̆2

(
0.419, 0.332, 0.239

)
,
(

0.192, 0.226, 0.611
)

,
(

0.523, 0.459, 0.440
)

,
(

0.331, 0.286, 0.458
)

q̆3

(
0.196, 0.297, 0.316

)
,
(

0.218, 0.149, 0.632
)

,
(

0.291, 0.387, 0.198
)

,
(

0.112, 0.312, 0.627
)

Table 25. 4-polar spherical fuzzy set S̄Γc
2.

S̄Γc
2 4PSFSs

q̆1

(
0.323, 0.229, 0.412

)
,
(

0.190, 0.325, 0.254
)

,
(

0.110, 0.382, 0.630
)

,
(

0.172, 0.362, 0.418
)

q̆2

(
0.218, 0.313, 0.406

)
,
(

0.082, 0.210, 0.621
)

,
(

0.137, 0.287, 0.554
)

,
(

0.231, 0.256, 0.554
)

q̆3

(
0.134, 0.267, 0.652

)
,
(

0.145, 0.149, 0.674
)

,
(

0.290, 0.329, 0.731
)

,
(

0.092, 0.212, 0.687
)

Consider S̄Γ as

Table 26. 4-polar spherical fuzzy set S̄Γ.

S̄Γ 4PSFSs

q̆1

(
0.233, 0.317, 0.450

)
,
(

0.189, 0.484, 0.390
)

,
(

0.108, 0.487, 0.651
)

,
(

0.163, 0.412, 0.508
)

q̆2

(
0.213, 0.375, 0.45

)
,
(

0.071, 0.382, 0.653
)

,
(

0.059, 0.376, 0.598
)

,
(

0.221, 0.396, 0.591
)

q̆3

(
0.120, 0.365, 0.718

)
,
(

0.142, 0.221, 0.689
)

,
(

0.286, 0.342, 0.733
)

,
(

0.092, 0.422, 0.693
)

Then, the 4PSF closure of S̄Γ is

S̄Γcl = X̄∩ S̄Γc
2 = S̄Γc

2.

Theorem 4. Let (X, TΩ) be an mPSFTS and let S̄Γ, S̄Γ
1, and S̄Γ2 ∈mPSFS(X). Then, the following

results hold:

(i) S̄Γcl = S̄Γcl

(ii) S̄Γ
1 v S̄Γ2 ⇒ S̄Γcl

1 v S̄Γcl
2

(iii) (S̄Γcl
1 t S̄Γ2) = S̄Γcl

1 t S̄Γcl
2

(iv) S̄Γcl
1 u S̄Γ2 w S̄Γcl

1 u S̄Γcl
2
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Theorem 5. Let (X, TΩ) be an mPSFTS and let S̄Γ ∈ mPSFS(X). Then,

(i) (S̄Γ◦)c = (S̄Γc
)cl

(ii) (S̄Γcl)c = (S̄Γc
)◦.

Proof. (i) Let S̄Γ =

{〈
x,
(
µ̃(j)(x), γ(j)(x), η̃(j)(x)

)〉m

j=1
: x ∈ X

}
be an mPSFS in X.

Suppose that the collection of all open sets in (X, TΩ) which are contained in the set S̄Γ is
provided by

Ȯi =

{〈
q̆,
(
µ̃
(j)
i (q̆), γ

(j)
i (x), η̃

(j)
i (q̆)

)〉m

j=1
: q̆ ∈ X

}
, where i ∈ I.

Now, the interior of S̄Γ is provided by

S̄Γ◦ =

{〈
q̆,
(
maq̆i∈I µ̃

(j)
i (q̆), mini∈I γ

(j)
i (q̆), mini∈I η̃

(j)
i (q̆)

)〉m

j=1
: q̆ ∈ X

}
and

(S̄Γ◦)c =

{〈
q̆,
(
mini∈I η̃

(j)
i (q̆), mini∈I γ

(j)
i (q̆), maq̆i∈I µ̃

(j)
i (q̆)

)〉m

j=1
: x ∈ X

}
.

Now, let S̄Γc
=

{〈
q̆,
(

η̃(j)(q̆), γ(j)q̆q̆), µ̃(j)(x)
)〉m

j=1
: q̆ ∈ q̆

}
be all possible closed sets in (q̆, TΩ) which contain S̄Γ, as provided by

Ȯc
i =

{〈
q̆,
(

η̃
(j)
i (q̆), γ

(j)
i (q̆), µ̃

(j)
i (q̆)

)〉m

j=1
: q̆ ∈ q̆

}
, where i ∈ I.

Therefore,

(S̄Γc
)cl =

{〈
q̆,
(
mini∈I η̃

(j)
i (q̆), mini∈I γ

(j)
i (q̆), maq̆i∈I µ̃

(j)
i (q̆)

)〉m

j=1
: q̆ ∈ X

}

Hence, (S̄Γ◦)c = (S̄Γc
)cl.

Now, we must verify that (S̄Γ◦)c and (S̄Γc
)cl are mPSFS.

For this purpose, assume that maq̆i∈I µ̃
(j)
i (q̆) = µ̃

(j)
k (q̆) for some k ∈ I.

Now, consider(
mini∈I η̃

(j)
i (x)

)2
+
(
mini∈I γ

(j)
i (x)

)2
+
(
maq̆i∈I µ̃

(j)
i (x)

)2

=
(
mini∈I η̃

(j)
i (x)

)2
+
(
mini∈I γ

(j)
i (x)

)2
+
(
µ̃
(j)
k (x)

)2

≤
(
η̃
(j)
k (x)

)2
+
(

γ
(j)
k (x)

)2
+
(

µ̃
(j)
k (x)

)2

≤
(

µ̃
(j)
k (x)

)2
+
(

γ
(j)
k (x)

)2
+
(

η̃
(j)
k (x)

)2

≤ 1, as Ȯk is an mPSFS.

Hence, (S̄Γ◦)c and (S̄Γc
)cl both lie in the mPSF domain.

We can prove (ii) in a similar way.

Proposition 1. Let (X, TΩ) be an mPSFTS and let S̄Γ ∈ mPSFS(X). Then,

(i) ¯̄∅ = ¯̄∅
(ii) X̄◦ = X̄
(iii) S̄Γ◦ ⊆ S̄Γ ⊆ S̄Γcl.
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Definition 15. Let (X, TΩ) be an mPSFTS and let S̄Γ ∈ mPSFS(X). Then, the frontier of S̄Γ is
indicated as Fr(S̄Γ), and is described as

Fr(S̄Γ) = S̄Γcl ∩ (S̄Γc
)cl.

Definition 16. Let (X, TΩ) be an mPSFTS and let S̄Γ ∈ mPSFS(X). Then, the exterior of S̄Γ is
indicated as Ext(S̄Γ) and is described as

Ext(S̄Γ) = (S̄Γc
)◦.

Example 8. In Example 7, the frontier of S̄Γ is provided as follows:

Fr(S̄Γ) = S̄Γcl ∩ (S̄Γc
)cl = (S̄Γ2)

c ∩ X̃ = (S̄Γ2)
c

and the exterior as Ext(S̄Γ) = (S̄Γc
)◦ = ¯̄∅.

Proposition 2. Let (X, TΩ) be an mPSFTS and let S̄Γ ∈ mPSFS(X); then, Fr(S̄Γ) = Fr(S̄Γc
).

Proof. By definition,

Fr(S̄Γ) = S̄Γcl ∩ (S̄Γc
)cl = (S̄Γc

)cl ∩ S̄Γcl = (S̄Γc
)cl ∩ (S̄Γc

)ccl = Fr(S̄Γc
).

Proposition 3. Let (X, TΩ) be an mPSFTS and let S̄Γ ∈ mPSFS(X); then,

(i) Ext(S̄Γc
) = S̄Γ◦

(ii) Ext(S̄Γ) ∪ Fr(S̄Γ) ∪ S̄Γ◦ 6= X̄
(iii) S̄Γ◦ ∩ Fr(S̄Γ) 6= ¯̄∅.

5. Multi-Criteria Group Decision Making by m-PSF Topology

Choice-making occurs in trading, business, and sciences, and often faces huge chal-
lenges. It differentiates between a minimal regime’s constant operational analyses and
leaders’ extensive formulation and management. While collected data can be analyzed to
reach inferences that can have major or unfavorable implications, ultimately officials must
show a logical operational strategy for winning.

Before reaching a choice, decision-makers should assess a wide range of factors.
Consequently, while coming to a conclusion, it is imperative that all of these variables are
factored into the equation. In legal terms, a systematic approach to decision-making is
essential to guarantee that all of the key data and information are properly considered.

Among several other methods, mathematics can assists in reaching conclusions based
on the evidence provided by science. This excerpt provides an illustration of a strategy
for handling the problem of multiple criterion group decision-making by employing the
superiority inferiority ranking (SIR) and linear assignment model (LAM) within an mPSF
framework.

MCDM with SIR method.
The essential steps for the extended SIR approach for mPSFS are outlined below.

1 Determine the individual measure degree ik(k = 1, 2, ..., l), then obtain the relative
closeness coefficient using the formula provided below:

ik =
d
(

Wdk
, W−DR

)
d
(

Wdk
, W−DR

)
+ d
(

Wdk
, W+

DR

)
where W−DR

and W+
DR

denote the relative minimum and relative maxima, respectively,
and can be calculated as follows:
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W−DR
= (min{µ̃k}, max{γk}, max{η̃k})

W+
DR

= (max{µ̃k}, min{γk}, min{η̃k})
2: Normalize ik(k = 1, 2, ..., l) using the formula

W̄k =
ik

∑l
k=1 ik

and denote them as an individual measure degree by

W̄ = (w1, w2, . . . , wn)

3: Acquire the amalgamated mPSF decision matrix and weight vector utilizing the mPSF
operator to class individual viewpoints together into an aggregated frame of reference.

• the mPSFWAM aggregation operator for integrating individual decision matrices
is
mPSFWAM (k(1)ij ,k(2)ij , ...,k(l)ij ) = ∑l

k=1 wk k
(l)
ij

=

{√
1−∏l

k=1(1− µ̃2
(i)(x))wk ,√

∏l
k=1(1− µ̃2

(i)(x))wk − ∏l
k=1(1− µ̃2

(i)(x)− η̃2
(i)(x))wk ,

∏l
k=1 γ

wk
(i)(x),

}m

i=1
• the mPSFWAM aggregation operator for integrating th weights of individual

attributes is
mPSFWAM (v

(1)
j , v

(2)
j , ..., v

(l)
j ) = ∑l

k=1 wk v
(l)
j

=

{√
1−∏l

k=1(1− µ̃2
(i)(x))wk ,√

∏l
k=1(1− µ̃2

(i)(x))wk −∏l
k=1(1− µ̃2

(i)(x)− η̃2
(i)(x))wk ,

∏l
k=1 γ

wk
(i)(x),

}m

i=1

4: Build a performance relationship based on relative performance using the formula

fαβ =
d
(

Pαβ, P−
)

d
(

Pαβ, P−
)
+ d
(

Pαβ, P+
) ,

the superiority matrix

Sαβ =
m⊕

t=1

F
(

fαβ − ftβ

)
,

and the inferiority matrix

Iαβ =
m⊕

t=1

F
(

ftβ − Fαβ

)
.

Activate where F
(

PK) = 0.01 if 0〈Pκ〈1 and F(Pκ) = 0 if 0 ≥ Pκ or Pκ ≥ 1
5: Compute the superiority and inferiority indexes as follows:

z′(Pκ
α ) =

n⊕
β=1

Sαβwβ

zγ(Pκ
α ) =

n⊕
β=1

Iαβwβ

6: Determine score functions of z′(Pκ
α ) and zγ(Pκ

α ).
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7: By following the rules below, determine the flow of superiority and inferiority.
Superiority flow rules (SFRs):

• Pκ
α > Pκ

t if S(z′(Pκ
α ) < S(z′(Pκ

t )) and S(zγ(Pκ
α )) > S(zγ(Pκ

t ))
• Pκ

α > Pκ
t if S(z′(Pκ

α ) < S(z′(Pκ
t )) and S(zγ(Pκ

α )) = S(zγ(Pκ
t ))

• Pκ
α > Pκ

t if S(z′(Pκ
α ) = S(z′(Pκ

t )) and S(zγ(Pκ
α )) > S(zγ(Pκ

t ))

Inferiority flow rules (IFRs):

• Pκ
α < Pκ

t if S(z′(Pκ
α ) > S(z′(Pκ

t )) and S(zγ(Pκ
α )) < S(zγ(Pκ

t ))
• Pκ

α < Pκ
t if S(z′(Pκ

α ) > S(z′(Pκ
t )) and S(zγ(Pκ

α )) = S(zγ(Pκ
t ))

• Pκ
α < Pκ

t if S(z′(Pκ
α ) = S(z′(Pκ

t )) and S(zγ(Pκ
α )) < S(zγ(Pκ

t ))

8: Obtain the best possible outcome by coupling SFRs and IFRs next to each other

MCDM with LAM.
On the basis of attributes and structures, the classical linear assignment method (LAM)

can be extended to mPSFs. The following algorithm explains the numerous processes that
form the proposed mPSFLAM.

1: Take into account the scores and alternative weights of decision-makers.
2: Aggregate the score matrices and weights of decision-makers.
3: Compute the score values of the aggregated decision matrix.
4: Determine the rank frequency non-negative matrix Υi

k
5: Establish a weighted rank frequency i, where the ii

k receives the alternative contribu-
tion to the total ranking. The value is

ii
k = wi1 + wi2 + wi3 + ... + wiΥi

k

6: Calculate P = (ii
k). The LAM can be expressed in a linear programming format, as

mentioned below:
m

∑
i=1

m

∑
i=1

ii
k ◦ Pi

k

such that
m

∑
i=1

Pi
k = 1

m

∑
k=1

Pi
k = 1

Pi
k = 0

or Pi
k = 1

7: Find the best possible answer by working through the linear assignment model and
analyzing it.

8: Rank the optimal alternatives.

6. Case Study

Numerous kinds of vehicles, including automobiles, buses, tractors, motorcycles,
mopeds, pedestrians, animals, taxis, and others, use roads throughout the world. The
invention of the vehicle is directly responsible for the growth of many nations’ economies
and social structures. Nonetheless, every year, millions of people are killed and wounded
in vehicle-related incidents. Each year, 1.35 million people are killed on the roads and
highways of the world. Every day, more than 3700 people are killed in accidents involving
cars, buses, motorcycles, bicycles, lorries, and pedestrians around the globe. More than half
of those killed are cyclists, pedestrians, or motorcyclists. Gopalakrishnan has presented
these statistics in [71]. According to estimates, crash-related injuries are the eighth-leading
cause of death around the globe for people of all ages. Today, automotive accidents kill
more people than HIV/AIDS. The global death toll is depicted in Figure 1.
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Figure 1. Major causes of death toll globally.

Transportation system quality is one of the key indicators of the standard of living.
The transportation system is essential to human survival. Automobile crashes are a major
worry, as they risk people’s lives, health, and property. In addition, the management of the
transportation system may be compromised by road mishaps. Due to the dangerous nature
of this system, it might not be able to work properly. Therefore, traffic accident prediction
models may be useful for comprehending the elements that lead to accidents as well as
their frequency under different conditions.

Accidents are the largest cause of injury and death worldwide, and as a result, they
contribute to a vast array of social and economic problems. Here, we use Albania as a
case study for the creation of a fuzzy model for accident prediction. The conditions of the
road and the flow of traffic are two major contributors to road accidents. It is feasible to
reduce the number of accidents by investigating these factors. Research on road safety has
revealed the accuracy of collision prediction models.

Accidents on the road are the leading cause of hospitalisation for teenagers; drivers
between the ages of 18 and 24 account for 23% of all fatalities resulting from automotive
accidents. Similar to the incidence rate, the recurrence rate is rather high. Following an
initial accident, one in every four teenagers goes on to experience a recurrence during the
subsequent year. Cognitive deficiencies are known to be present in teenagers, and can be a
contributing factor in the development of risky behaviours. Risky behaviours are defined
as repeated engagement in potentially dangerous situations, such as getting into vehicle
accidents. There are two distinct groups of factors that appear to be linked to road accidents:
(1) characteristics that are unique to the environment in which the accident occurred and (2)
“human” factors, which appear to be the most significant of the two. Both of these groups of
factors are discussed further below. Additionally, the development of a tighter connection
to high speed driving increases the risk of becoming involved in a car accident, which is a
risk that can be amplified by the pursuit of extreme sensations. Additional variables, such
as the use of drugs (including alcohol, opioids, or “binge drinking”), have been identified
as risk factors. In addition, it would appear that both using a cell phone while driving and
having attention deficit disorder, whether or not it is accompanied by hyperactivity, are
major factors in the chance of being involved in a car collision.

Below, we describe the factors that can potentially cause vehicle accidents.

1. Speeding (Y1ג)
Speeding continues to be the major cause of automobile accidents. According to
the Royal Society for the Prevention of Accidents (RoSPA), improper speed leads to
around 11% of reported injury incidents and 24% of fatal collisions. All collisions
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caused by speeding are fully preventable; drivers and riders must respect traffic
regulations to ensure the safety of others. Keep in mind that speed restrictions govern
the maximum speed, not the minimum speed; therefore, modifying speed to the road
or weather conditions is perfectly reasonable. In addition to being aware of their
speed, one of the most crucial pieces of advice for drivers and riders is to maintain a
safe distance from the vehicle in front, sometimes known as the “two-second rule.”
Keeping a safe distance from other vehicles dramatically lessens the probability
of being involved in an accident. The following may occur in an accident due to
speeding.

A. Lessened ability to drive and stop the car
There is a correlation between high rates of speed and the likelihood of becom-
ing involved in an accident. The likelihood of a collision increases proportion-
ally with the absolute speed of travel. Consider the fact that the driver needs
a regular amount of time to respond effectively to unplanned events. As the
speed of the vehicle rises, so does the distance it travels before reacting. When
travelling at high speeds, there is less time to adapt to changes in the surround-
ings and less room to manoeuvre. In addition, as illustrated in Figure 2, the
stopping distance is larger.

Figure 2. Braking distance dependence on driving speed.

B. Increased the likelihood of roll-over
When driving at high speeds, there is a significantly increased risk of becoming
engaged in an accident involving a roll-over. It is highly uncommon for a car to
flip over when it is engaged in an accident that occurs at a low speed, such as
one that occurs in a parking lot. If even one of the vehicles is moving at a fast
rate of speed, the probability that one of them may roll over is greatly increased,
regardless of whether it is a car travelling at high speed or a lower-speed car
struck by the high-speed vehicle.

2. Overtaking (Y2ג)

A. Non-adherence to lane driving. According to official statistics, this is one of
the top five causes of accidents on Indian roads. There are 1214 car accidents
every single day in India, and one person loses their life as a result of a road
accident every four minutes. Figure 3 shows the number of accidents annually
due to changing and/or not following the lane.
The number of deaths, which has been rising over the last few years, did not
decrease despite the fact that there were fewer road traffic incidents overall.
Instead, the number of fatalities has been steadily rising.
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Figure 3. Number of accidents vs. year due to non-adherence to lane driving.

B. Overtaking in an incorrect manner. If you have been driving for a long time
and often go on lengthy journeys, you have likely witnessed accidents caused
by drivers who failed to properly pass another car or who came perilously
close to being struck by an oncoming vehicle when passing another vehicle.
When attempting to pass another car on the road, it is common for drivers
to underestimate the necessary space and time. This happens more often in
rural areas. One of the most common errors that can lead to accidents when
overtaking another vehicle is failing to give the proper signal to the cars in
front of and behind them. Overtaking is one of the leading causes of accidents,
as illustrated in Figure 4.

3. Pedestrian negligence contributes to road accidents and endangers their own lives
(Y3ג)

A. Running or Darting into the Road.
It is not unusual for children and adolescents to run into the street without first
checking to see if there are vehicles approaching from the opposite direction.
Because of this, there is a chance of an accident occurring in nearly any part
of the city. It is likely that a motorist will not have the time to react in the
appropriate manner when a pedestrian unexpectedly walks into the street.
Because of this, they stand a good risk of colliding with the pedestrian, which
may lead to serious injuries.

B. Standing, Lying, Playing, or Working in a Roadway.
When a person is standing or loitering in the middle of the roadway, it can
be difficult for a car to avoid colliding with the pedestrian. Even if a driver
swerves to avoid striking a pedestrian, the driver behind that vehicle may
not see the pedestrian in time. Pedestrians who are standing, lying down, or
playing in the roadway at the time of an accident may be held liable.
The negligence of drivers may endanger the lives of roadside workers. In
order to comply with safety standards, employees are frequently required to
show road signs and wear apparel that is highly visible to drivers. Similarly,
motorists are expected to exhibit heightened caution when driving close to a
construction site.
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Figure 4. Overtaking as a cause of accidents.

7. Decision-Making

Consider the CCTV footage of an accident shown in Figure 5.

Figure 5. CCTV footage of an accident.

Consider a set of experts Ek =
{
Ek

1 ,Ek
2 ,Ek

3
}

with the credibility weights W ={
WEk

1
, WEk

2
, WEk

3

}
, criterion Yג = ,Y1ג} ,Y2ג ,{Y3ג and alternatives U¶ =

{
U¶

1 ,U¶
2 ,U¶

3

}
,

which are highlighted in the Figure 5, namely, a red vehicle (U¶
1 ), two pedestrians (U¶

2 ), and
a white vehicle (U¶

3 ). Let Pk
αβ be the mPSFN assigned to αth potential cause of accident with

respect to βth by the kth expert. Construct the mPSF decision matrix P(k). Assume that wk
β

represents the mPSF weights of symptom SPβ
provided by the criteria decision matrix W .

The most effect patient is filtered using the proposed techniques.
The weights associated with experts’ assessments are provided in Table 27.

Table 27. Weights associated with experts.

WEk
1

(0.63, 0.15, 0.23)(0.42, 0.28, 0.19)

WEk
2

(0.59, 0.18, 0.09)(0.36, 0.41, 0.13)

WEk
3

(0.81, 0.07, 0.13)(0.48, 0.21, 0.36)
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The minimum reference weight and maximum reference weight are given in the
Table 28:

Table 28. Minimum and maximum reference weight.

W−
Ek (0.59, 0.18, 0.23)(0.36, 0.41, 0.36)

W+
Ek (0.81, 0.07, 0.09)(0.48, 0.21, 0.18)

1. Calculate the relative proximity coefficient using the following formula; for this
purpose, we first need to determine the distances, as calculated in the Table 29.

Table 29. Distance table for relative proximity.

d
(

WEk
1
, W−

Ek

)
0.1611

d
(

WEk
1
, W+

Ek

)
0.18303

d
(

WEk
2
, W−

Ek

)
0.1904

d
(

WEk
2
, W+

Ek

)
0.2423

d
(

WEk
3
, W−

Ek

)
0.2499

d
(

WEk
3
, W+

Ek

)
0.1304

The relative proximity coefficients are computed in are calculated in the Table 30.

Table 30. Relative proximity coefficients.

ik Values

i1 0.4681
i2 0.4400
i3 0.6571

sum 1.5652

2. By normalizing the weights using

W =
ik

∑n
k=1 ik

we obtain
W = (0.2991, 0.2811, 0.4198).

The criteria weights assigned by the accident cause evaluators are presented in the
Table 31. The decision matrices Ek

1 ,Ek
2 ,Ek

3 assigned by doctors are provided in the
Tables 32–34, respectively.

3. Furthermore, the aggregated mPSF-decision matrix is calculated and presented in the
Table 35. The aggregated weights are given in the Table 36.

Table 31. Criteria weights assigned by the experts.

Y1ג Y2ג Y3ג

Ek
1 (0.367, 0.284, 0.490)(0.516, 0.211, 0.178) (0.245, 0.387, 0.421)(0.631, 0.055, 0.248) (0.481, 0.332, 0.271)(0.322, 0.210, 0.433)

Ek
2 (0.251, 0.365, 0.418)(0.371, 0.276, 0.455) (0.167, 0.385, 0.480)(0.512, 0.320, 0.009) (0.672, 0.024, 0.218)(0.532, 0.187, 0.231)

Ek
3 (0.210, 0.376, 0.422)(0.798, 0.007, 0.156) (0.292, 0.328, 0.473)(0.398, 0.237, 0.320) (0.527, 0.271, 0.119)(0.480, 0.278, 0.159)

Table 32. Decision matrix by Ek
1 .

Y1ג Y2ג Y3ג

U¶
1 (0.531, 0.392, 0.326)(0.424, 0.283, 0.317) (0.612, 0.215, 0.117)(0.317, 0.421, 0.284) (0.420, 0.212, 0.345)(0.823, 0.135, 0.089)

U¶
2 (0.434, 0.281, 0.156)(0.291, 0.353, 0.115) (0.365, 0.416, 0.228)(0.813, 0.056, 0.133) (0.391, 0.123, 0.433)(0.611, 0.136, 0.247)

U¶
3 (0.224, 0.348, 0.379)(0.593, 0.186, 0.345) (0.632, 0.315, 0.262)(0.154, 0.423, 0.391) (0.718, 0.291, 0.187)(0.384, 0.241, 0.412)
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Table 33. Decision matrix by Ek
2 .

Y1ג Y2ג Y3ג

U¶
1 (0.522, 0.178, 0.231)(0.342, 0.251, 0.146) (0.418, 0.232, 0.179)(0.534, 0.242, 0.387) (0.623, 0.156, 0.241)(0.811, 0.054, 0.120)

U¶
2 (0.489, 0.234, 0.156)(0.378, 0.188, 0.369) (0.554, 0.210, 0.114)(0.692, 0.178, 0.203) (0.257, 0.316, 0.345)(0.630, 0.179, 0.311)

U¶
3 (0.812, 0.109, 0.089)(0.415, 0.233, 0.186) (0.723, 0.129, 0.159)(0.346, 0.287, 0.436) (0.628, 0.195, 0.249)(0.455, 0.271, 0.363)

Table 34. Decision matrix by Ek
3 .

Y1ג Y2ג Y3ג

U¶
1 (0.387, 0.312, 0.245)(0.562, 0.089, 0.431) (0.426, 0.178, 0.329)(0.516, 0.119, 0.230) (0.163, 0.309, 0.411)(0.589, 0.178, 0.254)

U¶
2 (0.584, 0.267, 0.123)(0.287, 0.344, 0.461) (0.179, 0.328, 0.612)(0.451, 0.245, 0.361) (0.560, 0.322, 0.143)(0.811, 0.131, 0.067)

U¶
3 (0.690, 0.127, 0.122)(0.389, 0.287, 0.497) (0.447, 0.235, 0.331)(0.567, 0.107, 0.213) (0.639, 0.115, 0.216)(0.383, 0.264, 0.419)

Table 35. Aggregated decision matrix.

Y1ג Y2ג Y3ג

U¶
1 (0.475, 0.313, 0.262)(0.473, 0.206, 0.290) (0.493, 0.207, 0.204)(0.475, 0.269, 0.284) (0.433, 0.237, 0.336)(0.747, 0.133, 0.150)

U¶
2 (0.519, 0.263, 0.141)(0.317, 0.311, 0.286) (0.384, 0.328, 0.284)(0.673, 0.169, 0.228) (0.450, 0.283, 0.255)(0.720, 0.147, 0.152)

U¶
3 (0.667, 0.185, 0.156)(0.472, 0.242, 0.338) (0.604, 0.239, 0.251)(0.431, 0.272, 0.312) (0.663, 0.214, 0.215)(0.405, 0.205, 0.400)

Table 36. Aggregated weights.

WגY1 (0.278, 0.347, 0.440)(0.655, 0.158, 0.219)
WגY1 (0.249, 0.363, 0.459)(0.516, 0.227, 0.109)
WגY1 (0.565, 0.244, 0.180)(0.459, 0.237, 0.238)

4. Calculate the relative performance using the values of P + and P − given in the
Table 37 are shown in the Table 38.

Table 37. Values of P + and P −

P + 0.667, 0.185, 0.141)(0.747, 0.133, 0.150)
P − (0.384, 0.328, 0.336)(0.317, 0.311, 0.400)

Table 38. Relative performance.

d[P11, P+] = 0.2897 d[P11, P−] = 0.1753 f11 = 0.3769
d[P12, P+] = 0.2694 d[P12, P−] = 0.2051 f12 = 0.4322
d[P13, P+] = 0.2185 d[P13, P−] = 0.3806 f13 = 0.6353
d[P21, P+] = 0.3627 d[P21, P−] = 0.1917 f21 = 0.3458
d[P22, P+] = 0.2587 d[P22, P−] = 0.2993 f22 = 0.5364
d[P23, P+] = 0.1879 d[P23, P−] = 0.3631 f23 = 0.6590
d[P31, P+] = 0.2481 d[P31, P−] = 0.2877 f31 = 0.5370
d[P32, P+] = 0.2867 d[P32, P−] = 0.2071 f32 = 0.4194
d[P33, P+] = 0.3090 d[P33, P−] = 0.2495 f33 = 0.4467

S11 =
3

∑
t=1

Φ[ f11 − ft1]

= Φ[ f11 − f21] + Φ[ f11 − f31]

S11 = 0.01

I11 =
3

∑
t=1

Φ[ ft1 − f11]

= Φ[ f21 − f11] + Φ[ f31 − f11]

I11 = 0.01
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5. First calculations are performed in order to get superiority and inferiority presented
in the Table 39. Further calculation are performed and the superiority index and
inferiority indexes using the values listed in Table 39 are given in the Table 40.

F〉
(

PK
i

)
=

3⊕
j=1

SijWdrj

Table 39. Values for superiority and inferiority.

S12 = 0.01 I12 = 0.01
S13 = 0.01 I13 = 0.01

S21 = 0 I21 = 0.02
S22 = 0.02 I22 = 0
S23 = 0.02 I23 = 0
S31 = 0.02 I31 = 0

S32 = 0 I32 = 0.02
S33 = 0 I33 = 0.02

Table 40. Superiority index and inferiority index values.

Sr. No. F〉
(

PK
i

)
F〈
(

PK
i

)
1 (0.6202, 0.0519, 0.3900)(0.1049, 0.0434, 0.3884) (0.6202, 0.0519, 0.3900)(0.1049, 0.0434, 0.3884)
2 (0.0945, 0.0693, 0.9513)(0.1042, 0.0538, 0.9295) (0.0401, 0.0528, 0.9837)(0.1056, 0.0297, 0.9701)
3 (0.0401, 0.0528, 0.9837)(0.1056, 0.0297, 0.9701) (0.0945, 0.0693, 0.9513)(0.1042, 0.0538, 0.9295)

6. The superiority rankings are provided in the Table 41.

Table 41. Superiority rankings.

Function Score Value Rank

F〉
(

PK
1
)

−0.8784 2
F〉
(

PK
2
)

0.0441 1
F〉
(

PK
3
)

−0.9498 3

7. The inferiority rankings are provided in the Table 42.

Table 42. Inferiority rankings.

Function Score Value Rank

F〈
(

PK
1
)

−0.9498 3
F〈
(

PK
2
)

0.0441 1
F〈
(

PK
3
)

−0.8784 2

8. The optimal Solution is Pk
2 . On the basis of this optimal value U¶

2 is the main cause of
the accident.

Numerical computation using LAM:
Step 1, Step 2 and Step 3 are the same as in the calculations for SIR.
Calculation of score function is given in the Table 43 :

Table 43. Score values of alternatives.

SP1 SP2 SP3

Pk
1 0.0781 0.1156 0.2681

Pk
2 0.0511 0.1658 0.2655

Pk
3 0.2182 0.1296 0.1548
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4. The ranking of each alternative based on each criterion is provided in the Table 44.
5. The rank frequency matrix is based on the score values shown in the Table 45.

Table 44. Ranking of alternatives vs. criterion.

SP1 SP2 SP3

1st Pk
3 Pk

2 Pk
1

2nd Pk
1 Pk

1 Pk
2

3rd Pk
2 Pk

3 Pk
3

Table 45. Rank frequency.

1st 2nd 3rd

Pk
1 1 2 0

Pk
2 1 1 1

Pk
3 1 0 2

The normalized weights are W = (0.2975, 0.3562, 0.3463), and th weighted rank
frequency matrix is calculated in the Table 46.

Table 46. Rank frequency (weighted).

1st 2nd 3rd

Pk
1 0.3463 0.6537 0

Pk
2 0.3562 0.3463 0.2975

Pk
3 0.2975 0 0.7025

6. Construct the linear assignment model:

max Z = 0.3463P11 + 0.6537P12 + 0.3562P21 + 0.3463

P22 + 0.2975P23 + 0.2975P31 + 0.7025P33

subject to
P11 + P12 + P13 = 1

P21 + P22 + P23 = 1

P31 + P32 + P33 = 1

P11 + P21 + P31 = 1

P12 + P22 + P32 = 1

P13 + P23 + P33 = 1

Pik = 1 or 0 for i = 1, 2, 3; k = 1, 2, 3
7. The optimal solution for the system is then P12 = 1, P21 = 1, P33 = 1; Z = 1.7124.

P =

 0 1 0
1 0 0
0 0 1


8. The optimal rank order is Pk

2 > Pk
1 > Pk

3 . On the basis of this optimal rank the
alternatives are ranked as U¶

2 > U¶
1 > U¶

3 . Hence U¶
2 is the main cause of accident

whose CCTV footage is shown in the Figure 5.

8. Discussion

The first benefit of the proposed method (LAM) is that it lowers the subjectivity of
decision-makers by explicitly calculating the proximity of each alternative to the best choice.
This is the initial benefit. Using a collection of criterion-specific rankings as inputs, the
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linear assignment method can yield a general preference ranking of the available options.
The SIR technique generalises the concepts of superiority and inferiority by taking into
account the distinctions between criterion values and other forms of generalised criteria.
As a consequence, it presents a model that is dependable, efficient, and objective for a
full investigation of the relative importance of alternatives. The capacity of the decision-
maker (DM) to alter the aggregation procedures depending on his or her perspective
on compensation, trade-offs, and the types of information gathered is possibly the most
significant aspect of the SIR method. As a result, the SIR methodology makes use of the
qualities shared by the majority of MCDM techniques when working with unquantifiable,
cardinal, and ordinal data. In order to address the MCDM issues, the beginning SIR
technique has been used; real figures are used to evaluate the criteria.

9. Conclusions

Topics associated with mPSF topology have been examined in this work. Combining
the notions of the mPSF-union and mPSF-intersection as well as the mPSF-absolute set
and the mPSF-null set produces the mPSF-topology. Meanwhile, several components
of mPSF-topology are specified, including mPSF-open sets, mPSF-closed sets, the mPSF-
interior, mPSF-closure, and the mPSF-exterior. Other features include mPSF-open and
mPSF-closed sets. In addition, this study emphasises the mPSF-base and the mPSF subbase.
mPSF-topology is a type of fuzzy topology that is an extension of m-polar fuzzy topology
and spherical fuzzy topology. In this article, we have demonstrated real-world applications
of MCGDM using mPSF-sets and mPSF-topologies. SIR and LAM are two well-known and
commonly used approaches that we employ. One of the phases is to create the appropriate
algorithms and flowcharts to make the process easier to visualise. We extend the SIR and
LAM to mPSFSs and apply it to obtain a ranking to find the main causes of road accidents.
In addition, we include a case study illustrating the use of both techniques for evaluating
the main reasons for roadside accidents.
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Notations
(ρ, µ̃A(ρ)) membership of ρ in A.
γ(q̆) degree of hesitancy of q̆
U¶

i i-th alternative
Ek

i i-th expert
WEk

i
credibility weight of i-th expert
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method for multiple criteria group decision-making problems. Informatica 2020, 31, 707–722. [CrossRef]

53. Gundogdu, F.K. Picture fuzzy linear assignment method and its application to selection of pest house location. In International
Conference on Intelligent and Fuzzy Systems, Proceedings of the INFUS 2020 Conference, Istanbul, Turkey, 21–23 July 2020; Springer,
Cham, Switzerland, 2020; pp. 101–109.
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