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Epilepsy is a neurological disorder marked by sudden recurrent episodes
of sensory disturbance, loss of consciousness, or convulsions, associated
with abnormal electrical activity in the brain. Statistical analysis of neuro-
physiological recordings, such as electroencephalography (EEG), facilitates
the understanding of epileptic seizures. Standard statistical methods typi-
cally analyze amplitude and frequency information in EEG signals. In the
current study, we propose a topological data analysis (TDA) framework to
analyze single-trial EEG signals. The framework denoises signals with a
weighted Fourier series (WFS), and tests for differences between the topo-
logical features—persistence landscapes (PLs) of denoised signals through
resampling in the frequency domain. Simulation studies show that the test is
robust for topologically similar signals while bearing sensitivity to topologi-
cal tearing in signals. In an application to single-trial epileptic EEG signals,
EEG signals in the diagnosed seizure origin and its symmetric site are found
to have similar PLs before and during a seizure attack, in contrast to signals
at other sites showing significant statistical difference in the PLs of the two
phases.

1. Introduction. Epilepsy is a neurological disorder marked by sudden recur-
rent episodes of sensory disturbance, loss of consciousness, or convulsions, asso-
ciated with abnormal electrical activity in the brain. During an epileptic seizure at-
tack, the patient may experience idiosyncratic symptoms ranging from visual hal-
lucinations to a sense of disassociation [Bancaud et al. (1994), Fried (1997)]. Find-
ings by the World Health Organization (WHO) indicate that approximately nine in
1000 people around the world suffered from epilepsy in 1998 [WHO (2005)]. The
Centers for Disease Control and Prevention (CDC) have recently reported that an
estimated 1% of adults in the United States currently suffer from active epilepsy
[Kobau et al. (2012)]. Neuroscientific researchers are pursuing all possible avenues
to gain better understanding and management of the disease. One key area of re-
search is the study of the epileptogenic zone, that is, the set of brain sites involved
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in the generation of seizures, particularly for the purpose of epilepsy surgery. How-
ever, high failure rate in epilepsy surgery suggests that epileptogenicity remains
elusive [Bartolomei, Chauvel and Wendling (2008)].

In our current study, we aim to gain fresh insight on the epileptogenic zone
through exploratory analysis of electroencephalography (EEG) from an epilepsy
patient. EEG is an important electrophysiological modality for understanding the
function and dysfunction of the brain. It is popular in studying epileptic seizures
because of its noninvasive procedure and high temporal resolution. EEG signals
are synchronous discharges from cerebral neurons detected by electrodes placed
on the scalp or intracranially implanted in the patient’s brain. Epileptic seizures are
associated with brief and episodic neuronal synchronous discharges with dramati-
cally changing amplitude and frequency in EEG signals. State-of-the-art statistical
methods have been developed to study EEG signals between and during epilep-
tic seizures [Donoho, Mallat and von Sachs (1998), Mitra and Pesaran (1999),
Ombao et al. (2001), Ombao, von Sachs and Guo (2005)]. In the medical literature,
more accessible methods have been developed for the purpose of understanding
epileptogenicity with EEG signals observed between and during seizure attacks
[Martinerie et al. (1998), McSharry, Smith and Tarassenko (2003), Bartolomei,
Chauvel and Wendling (2008)]. These methods tend to utilize transformed infor-
mation, such as time-frequency and phase space information, of the epileptic EEG
signals. There are also methods that utilize temporal information of the EEG sig-
nals. The local variance method, where variances of signal amplitude are computed
in a moving window across time, often serve as a baseline. The simplistic approach
has shown to be more effective in some cases than methods using information from
a transformed domain [Martinerie et al. (1998), McSharry, Smith and Tarassenko
(2003), Mohseni, Maghsoudi and Shamsollahi (2006)].

The epileptogenic zone has been shown to generate EEG pattern distinct from
other brain sites at the onset of a seizure [Lange et al. (1983), Van Quyen et al.
(2001), Burns et al. (2014)]. To gain fresh insight on epileptic EEG pattern through
topology, we need to account for the fact that amplitude and frequency of EEG
signals in the whole brain undergo drastic changes before and during a seizure
attack. We need the topological method to be reliable in detecting true topological
changes before and during seizure.

A promising exploratory approach is topological data analysis (TDA), an um-
brella term for various topological techniques to analyze scientific data [Carlsson
(2009)]. A key TDA technique is persistent homology (PH) developed by
[Edelsbrunner, Letscher and Zomorodian (2002)]. PH tracks changes in topolog-
ical features of EEG data based on the content of oscillations across multiple
resolutions and dimensions. PH on an EEG signal summarizes the evolution of
the connected components (based on the Fourier coefficients of the signal). PH
descriptors, such as the barcode and persistence diagram (PD), keep track of the
birth and death times of connected components as they appear and disappear in
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the sublevel set when the sublevel threshold λ increases—the parameter λ is anal-
ogous to but more general than the thresholding level in multi-resolution wavelet
analysis [Chung et al. (2014)]. It is a challenge to perform inference on barcode
and PD directly due to theoretical and practical reasons, as detailed in Section 3.
Bubenik (2015) proposed an alternative PH descriptor persistence landscape (PL)
that builds landscape-like features with a rigorous statistical framework.

PH has been applied to a wide range of data: Sousbie, Pichon and Kawahara
(2011) used PH for scale-free and parameter-free identification of the voids, walls,
filaments, clusters and their configuration within the cosmic web; Ahmed, Fasy
and Wenk (2014) proposed a localized version of PH to compare the intrinsic
structures of two road networks; Reininghaus et al. (2015) and Zhu et al. (2016)
proposed stable multiresolution PH kernels to capture global topology (and also
local topology in the latter work) for shape, motion and eye disease classifica-
tion; existing PH applications on medical imaging data have been focused on static
multivariate random samples, typically from positron emission tomography (PET),
magnetic resonance imaging (MRI) and functional MRI (fMRI) studies [Gamble
and Heo (2010), Lee et al. (2011), Heo, Gamble and Kim (2012), Chung et al.
(2015)]. A popular approach in neuroimaging applications is to model the data as
a network or graph based on sites on the brain and join two sites when the distance
between them exceeds a certain threshold λ [Lee et al. (2011), Chung et al. (2015)].
This approach has also been applied to EEG functional networks in a mouse model
of depression [Khalid et al. (2014)].

In this paper, we propose an inference framework for comparing the PLs of two
phases of a single-trial EEG signal. Our key contributions are as follows:

(a) This is the first PL application to study the topology in the sublevel set of
a univariate EEG signal. Related research is mainly based on Euler characteristics
[Worsley (1995), Adler et al. (2010), Turner, Mukherjee and Boyer (2014)].

(b) The proposed inference framework incorporates a frequency resampling
method for comparing two phases of a single-trial EEG signal by shuffling their
Fourier coefficients. Simulation studies show that the method is robust to signal
similarity in the time domain.

(c) We set topological performance criteria for the inference framework. We
want TDA to provide new insight on EEG data by controlling the “topological
false positive” rate. In other words, we want to control the rate of detecting false
difference between PLs. For instance, if what we detect is only a scaling difference
between signals, then we are not getting new insight by TDA. Our simulation
studies show that the proposed TDA framework is robust to topology-preserving
transformations such as translation, amplitude and frequency scaling. It is also
sensitive to topology-destroying transformations.

(d) We treat statistically insignificant difference between PLs before and during
a seizure as a “signal” in the test results. Using the proposed TDA framework, we
are able to identify PL indifference/difference before and during seizure of signals
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in/outside the seizure zone, which was not previously discovered by other methods
that used the same data, for example, SLEX methods in [Ombao et al. (2001),
Ombao, von Sachs and Guo (2005)]. The results are promising and provide new
insight on epileptogenicity through single-trial multichannel EEG signals.

In Section 3, we present our procedure for fitting and resampling thresholded
WFS of single-trial multichannel EEG signals, and for inference on the PLs of the
resampled thresholded WFS before and during a seizure attack. Sections 4 and 5
are designated for simulation studies and data application.

2. Preliminary on persistent homology. In Section 3.1, we will see how an
EEG signal becomes a one-dimensional Morse function after denoising. The ho-
mological information of a one-dimensional Morse function g :X ⊂R →R is the
connected components in its sublevel set

S(λ) = {
t ∈ X : g(t) ≤ λ

}
,

for some λ ∈ R. Increasing λ, the structure of connected components changes in
a process called Morse filtration. The birth and death of connected components in
the Morse filtration is characterized by the pairing of local minimums and max-
imums of the Morse function [Milnor (1963), Chung, Bubenik and Kim (2009),
Bubenik et al. (2010)]. To see this, let #S(λ) be the number of connected compo-
nents in the sublevel set S(λ). We denote the local minimums as g1, . . . , gm and
the local maximums as h1, . . . , hn. Since the critical values of the Morse function
are unique, we can order the local minimums from the smallest to the largest:

g(1) < g(2) < · · · < g(m),

and order the local maximums:

h(1) < h(2) < · · · < h(n).

We also collect all the local minimums and maximums:

z1 = g1, . . . , zm = gm, zm+1 = h1, . . . , zm+n = hn,

and order them as

z(1) < z(2) < · · · < z(m+n).

At each local minimum gi , a new component is born and

#S(gi) = #S(gi − ε) + 1

for sufficiently small ε. The new component is thus identified with the local min-
imum gi . Similarly, at each local maximum hi , a component merges with an old
component and

#S(hi) = #S(hi − ε) − 1.
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FIG. 1. The evolution of connected components in the sublevel set of a Morse function, and the
construction of a barcode encoding the birth and death times of the connected components.

The number of connected components changes only when we pass through a local
minimum or maximum zi :

#S(z(i+1)) = #S(z(i)) ± 1,

where the sign depends on whether z(i+1) is a local maximum (−1) or a local
minimum (+1).

In Figure 1, we illustrate how local minimums and maximums characterize the
birth and death of connected components in the sublevel set of a Morse function.
A horizontal line of reference indicating the threshold λ moves from the minimum
value of the function and up. Before the line hits the point A, the sublevel set of the
function is empty except for the boundaries. After the line touches A, the sublevel
set becomes a line segment on the x-axis underneath A that grows as the reference
line keeps moving upward. Another line segment under B joins the sublevel set
when the reference line hits point B. The two line segments join up when the ref-
erence line reaches point C. According to the Elder Rule [Edelsbrunner and Harer
(2010), Chung (2014)] that says older features live on at merging junctions, we pair
point B with point C and leave point A with the oldest line segment in the sublevel
set to be paired with a later local maximum. As we reach point D, a new line seg-
ment emerges in the sublevel set and is annihilated. The next point reached is E,
where the left boundary merges with the big component joined by line segments A
and B. When the reference line reaches the point F, the line segment created at D
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is merged with the right boundary. So we pair D with F. Lastly, the two big com-
ponents are joined as one at the point G and we pair the global minimum value
of the function with G, using an idea from extended persistence [Cohen-Steiner
and Edelsbrunner (2009)]. The pairing of birth and death times of the connected
components in the sublevel set are encoded in the barcode. Throughout the paper,
the PH of sublevel sets of any Morse function is calculated by a pairing algorithm
based on the Elder Rule [Chung, Bubenik and Kim (2009), Chung (2014)]. The
critical points used for the pairing algorithm were found numerically by checking
sign changes in the differences g(ti+1) − g(ti) of neighboring observations in an
EEG signal.

PH features. The collection of bars in the lower right plot of Figure 1 when
rotated 90◦ clockwise is called a barcode (Figure 2). The barcode or its equivalent
persistence diagram (PD) (collection of the upper end points of the bars in the
lower right plot of Figure 1) are the originally proposed PH features. PD has been
shown to possess desirable properties such as Lipschitz stability with respect to
the bottleneck distance [Cohen-Steiner, Edelsbrunner and Harer (2007), Cohen-
Steiner and Edelsbrunner (2009)]. It was also shown in [Mileyko, Mukherjee and
Harer (2011)] that the PDs under the Wasserstein distance form a Polish space—a
complete and separable metric space. The mean and variance appropriate for the
space are the so-called Fréchet mean and variance. The Fréchet mean, however,
is not unique [Turner et al. (2014)], rendering it a challenging statistical issue to
perform inference on PDs directly. Notable PD applications in medical imaging
studies also show that inference on PD is by no means straightforward in practice
[Chung, Bubenik and Kim (2009), Gamble and Heo (2010), Heo, Gamble and Kim
(2012)].

An alternative PH feature—the persistence landscape (PL)—was proposed by
Bubenik (2015) for the purpose of statistical analysis. Given a bar (a, b) in a bar-
code with a ≤ b, we can define the piecewise linear bump function h(a,b) :R →R

by

(1) h(a,b)(λ) = max
(
min(λ − a, b − λ),0

)
.

The geometric representation of the bump function (1) is a right-angled isosceles
triangle with height equal to half of the base of the corresponding interval in the

FIG. 2. Barcode and persistence landscape (PL) based on the example shown in Figure 1.
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barcode. The PL ν of the barcode {(ai, bi)}Ni=1 is a multi-valued function defined
by

(2) ν�(λ) =
{
�th largest value of

{
h(ai,bi )(λ)

}N
i=1, � = 1, . . . ,N,

0, � > N,

where ν� will be referred to as the �th layer of the PL ν. Figures 2 illustrate the
PL of the barcode obtained in Figure 1. The main technical advantage of PL is
that, as a function on a separable Banach space, the theory (and results) of random
variables can be applied [Bubenik (2015), Chazal et al. (2014)].

To compare the PLs of two groups of signals{
ν11, . . . , ν1n}

and
{
ν21, . . . , ν2n}

,

a parametric approach is to apply a real-valued functional to the PLs and then
conduct a two-sample t-test on the means of the functionals [Bubenik (2015)].
However, in the case of single-trial epileptic EEGs, the dataset does not contain
multiple signals; we observe only two PLs{

ν1}
and

{
ν2}

of the respective WFS (13) and (14) for Phases 1 and 2 of a seizure. Resampling the
signlas requires additional work on the covariance estimation of the corresponding
PLs. In Section 3, we propose a permutation test on the PLs of single-trial EEGs
resampled in the frequency domain.

3. Methods. We propose a permutation test on the PLs of single-trial EEG
signals by resampling in the frequency domain. Since TDA of raw EEG signals
may pick up more artifacts than features, particularly in the analysis of connected
component evolution [Bendich et al. (2016)], we first denoise an EEG signal to
stabilize the subsequent topological permutation test.

3.1. Signal denoising by weighted Fourier series. An EEG signal is recorded
at regular time intervals −T = t1 < t1 < · · · < tN = T . We denoise a signal by
estimating μ in the model:

(3) f (t) = μ(t) + ε(t), −T ≤ t ≤ T ,

where we assume the time to be continuous. The additive model (3) is the most
fundamental and flexible scientific model for a stochastic process. We estimate the
underlying signal μ(t) by a weighted Fourier series (WFS) since an EEG signal
is often considered as superpositions of sine and cosine waveforms with varying
amplitudes, and the weighting governs the relative weights of the high-frequency
components to the low-frequency ones. On a deeper level, the weighted Fourier
approach is motivated by the connection between kernel estimation and heat dif-
fusion equation. The popular Gaussian kernel estimator is noted to be equivalent
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to the solution of a Fourier heat equation [Chaudhuri and Marron (2000)], and a
more general heat diffusion equation generates a large class of kernel estimators
with desirable statistical properties [Botev, Grotowski and Kroese (2010)].

Now consider the series solution to the linear diffusion equation

(4)
∂

∂σ
g(t, σ ) = ∂2

∂x2 g(t, σ ), σ ≥ 0, t ∈ [−T ,T ].
By treating the observed signal f as the initial condition of the diffusion equation:

g(t,0) = f (t),

we are able to obtain a closed-form WFS estimate [Chung et al. (2007), Chung
et al. (2014)] for the signal f :

(5) μ̂(t) =
∞∑

j=0

e−γj σ ajφj1(t) +
∞∑

j=1

e−γj σ bjφj2(t),

with the eigenvalues γj = (jπ/T )2 for j ≥ 1, the Fourier coefficients

a0 = 1

2T

∫ T

−T
f (t) dt,

aj = 1

T

∫ T

−T
f (t) cos(jπt/T ) dt,

bj = 1

T

∫ T

−T
f (t) sin(jπt/T ) dt,

and the basis functions

φj1(t) = cos(jπt/T ), j ≥ 0,(6)

φj2(t) = sin(jπt/T ), j ≥ 1.(7)

The degree-k representation of (5) is

(8) μ̂k(t) = a0 +
k∑

j=1

e−(jπ/T )2σ [
aj cos(jπt/T ) + bj sin(jπt/T )

]
,

where the degree k decides the highest frequency [k/T ] to be included in the
representation (e.g., 100 Hz for k = 499 and T = 5), and the relative weights of
the high frequency components to the low frequency components is governed by
the parameter σ .

WFS also effectively reduces the Gibbs phenomenon in the FS estimation of
data at discontinuities [Chung et al. (2014)]. Figure 3 shows FS and WFS in a sim-
ple example. The underlying function takes step values 1 and −1 on the intervals
[−π,0) and [0, π] respectively. All series estimation is based on the first 50 terms
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FIG. 3. Gibbs phenomenon (ringing artifacts) is visible in the Fourier series expansion of a step
function, whereas the weighted Fourier series approximation shows less visible artifacts.

of finite approximation. The discontinuity at π and the two end-points cause the
FS to overshoot, whereas the WFS is not affected in the same way.

In practice, some low-frequency components may not matter in the degree-k
WFS estimator (8). So we include in the representation only those sine or co-
sine waveform (even those at high frequencies) whose amplitudes exceed some
threshold. We borrow strength from wavelet thresholding [Donoho and Johnstone
(1994), Donoho and Johnstone (1995), Abramovich and Benjamini (1996)] to
delete frequency components that are of lesser importance:

(9) μ̂k
Tu

(t) = ∑
j∈I1

e−(jπ/T )2σ aj cos(jπt/T ) + ∑
j∈I2

e−(jπ/T )2σ bj sin(jπt/T ),

with

(10) I1 = {
j = 1, . . . , k : |aj | > Tu

}
, I2 = {

j = 1, . . . , k : |bj | > Tu

}
,

where Tu is the universal threshold

(11) Tu = s
√

2 logn,

where n is the number of data points in each phase and s is the median of the
absolute deviation (MAD) of the Fourier coefficients:

(12)
s = median

{
j = 1, . . . , k : ∣∣aj − median

{
i = 1, . . . , k : |ai |}∣∣,∣∣bj − median

{
i = 1, . . . , k : |bi |}∣∣}.
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In summary, the signal μ(t) is estimated as superpositions of sinusoidal functions
corresponding to high-frequency oscillations, and relatively lower contribution to
the total variation in the signal are removed.

We fit the thresholded degree-k WFS estimator to the signals f1(t) and f2(t)

before and during seizure (Phases 1 and 2):

μ̂k
T 1

u
(t) =

k∑
j=0

e−(jπ/T )2σA1j cos(jπt/T )

(13)

+
k∑

j=0

e−(jπ/T )2σB1j sin(jπt/T ),

μ̂k
T 2

u
(t) =

k∑
j=0

e−(jπ/T )2σA2j cos(jπt/T )

(14)

+
k∑

j=0

e−(jπ/T )2σB2j sin(jπt/T ),

where

A1j = a1j Ij∈I11, B1j = b1j Ij∈I12,

A2j = a2j Ij∈I21, B2j = b2j Ij∈I22,

with aij and bij being the Fourier coefficients for Phase i, i = 1,2:

ai0 = 1

2T

∫ T

−T
fi(t) dt,

aij = 1

T

∫ T

−T
fi(t) cos(jπt/T ) dt,

bij = 1

T

∫ T

−T
fi(t) sin(jπt/T ) dt,

(15)

and the indicator functions Ij∈Ii1 and Ij∈Ii2 setting the universal threshold on aij

and bij , j = 0, . . . , k, by

(16) Ii1 = {
j = 0, . . . , k : |aij | > T i

u

}
, Ii2 = {

j = 0, . . . , k : |bij | > T i
u

}
,

where T i
u = si

√
2 logn is the universal threshold with

si = median
{
j = 1, . . . , k : ∣∣aij − median

{
l = 1, . . . , k : |ail|}∣∣,∣∣bij − median

{
l = 1, . . . , k : |bil|}∣∣}.
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3.2. Statistical inference on PLs of denoised EEGs. By denoising an EEG sig-
nal with a finite sum of weighted sinusoidal functions, we make it a Morse func-
tion. In Section 2 we describe how the evolution of connected components in the
sublevel sets of a Morse function is summarized by PLs. We now want to compare
the PLs of denoised signals μ̂1(t) and μ̂2(t) before and during seizure.

The before- and during-seizure phases of an EEG signal are modeled by

(17) f1(t) = μ1(t) + ε1(t) and f2(t) = μ2(t) + ε2(t), −T ≤ t ≤ T .

With the hypothesis
(18) H0 : μ1(t) = μ2(t) ∀ − T ≤ t ≤ T ,

we test the pointwise difference between the two phases of the signal in the time
domain. As emphasized in Section 2, only the local minimums and maximums
of WFS-denoised EEG amplitudes characterize the evolution of connected com-
ponents in the sublevel sets of the signal. So a statistical test on the pointwise
difference in the amplitudes contains redundant information and can yield a false
conclusion about the difference between the PH features of two phases of an EEG
signal. Instead, we conduct a test on the PLs ν1 and ν2 of the two phases:

(19) H0 : ν1 = ν2.

As we have only one epoch in each phase of the EEG signal, we require an in-
ference framework on PLs incorporating a natural resampling approach. Since we
estimate μ1(t) and μ2(t) by the degree-k WFS μ̂k

T 1
u
(t) and μ̂k

T 2
u
(t) in (13) and

(14), we resample in the frequency domain by randomly exchanging the frequency
components in the two WFS. In other words, we randomly exchange the labels
(Phase 1 and Phase 2) of the thresholded Fourier coefficients in (13) and (14) at
each frequency:

A10 . . . A1k B10 . . . B1k

� . . . � � . . . �
A20 . . . A2k B20 . . . B2k,

and reconstruct two WFS in the time domain:

μ̂k′
T 1

u
(t) =

k∑
j=0

e−(jπ/T )2σA′
1j cos(jπt/T )

(20)

+
k∑

j=0

e−(jπ/T )2σB ′
1j sin(jπt/T ),

μ̂k′
T 2

u
(t) =

k∑
j=0

e−(jπ/T )2σA′
2j cos(jπt/T )

(21)

+
k∑

j=0

e−(jπ/T )2σB ′
2j sin(jπt/T ),

where the A′
1j , A′

2j , B ′
1j , B ′

2j are the resampled thresholded Fourier coefficients.
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We measure the difference between the PLs ν1 and ν2 of the WFS μ̂k
T 1

u
(t) and

μ̂k
T 2

u
(t) by their L2 distance:

(22) L2
(
ν1, ν2) =

(∫ N∑
�=1

∣∣ν1
� (λ) − ν2

� (λ)
∣∣2 dλ

)1/2

,

where νi
� is the �th layer of νi, i = 1,2, and N is the larger of the numbers of

layers of the two PLs. For each permutation, we calculate the L2(ν
1′
, ν2′

) between
the PLs ν1′

and ν2′
of the two reconstructed WFS μ̂k

T 1′
u

(t) and μ̂k

T 2′
u

(t). We then

measure the statistical significance of L2(ν
1, ν2) between the PLs by comparing

it with the distribution of the L2(ν
1′
, ν2′

). Two phases of a signal are said to be
topologically invariant in the statistical sense if the difference between their PLs
is not statistically significant.

In Section 4, we test out the performance of the proposed framework with re-
spect to simulated ground truth. In Section 5, we use the proposed permutation test
to study how statistical topological invariance manifests in and out of the epilepto-
genic zone in a single-trial epileptic EEG dataset.

3.3. Baseline comparison. In Sections 4.2 and 5, we compare the proposed
inference framework with the following baseline statistical tests on standard EEG
features.

Paired t-test on local variance. Local variance is a simplistic statistical ap-
proach that has given surprisingly accurate results in epileptogenic analysis
[McSharry, Smith and Tarassenko (2003), Mohseni, Maghsoudi and Shamsollahi
(2006)]. It is defined as

σ 2 = 〈
x2〉 − 〈x〉2,

where x is a signal at one channel and 〈·〉 is the average taken over a time window
of a certain size. For inference, we split up the range into before and during seizure
phases. Then we perform paired t-test on the local variances in the two phases of
each channel.

Paired t-test on spectrogram. We first performed the discrete short-time
Fourier transform (DSTFT) to obtain the windowed Fourier coefficients

Xj,� = (aj,�, bj,�)

before and during seizure:

aj,� =
L−1∑
n=0

w(n)f (x�+n) cos(2πjn/L)),(23)

bj,� =
L−1∑
n=0

w(n)f (x�+n) sin(2πjn/L)),(24)
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where j = 1, . . . , k (k is the degree of the discrete Fourier transform for a win-
dowed segment), � is the number of time points by which the initial time points
of consecutive segments differ and L is the pre-specified window size. The win-
dow functions w(n) are meant to smooth out discontinuities at boundaries. The
most popular windows in practice are Hamming, Hanning, Kaiser and Gaussian
[Oppenheim and Schafer (1989)]. Here we used the Hamming window of pre-
specified length L:

w(n) = 0.54 − 0.46 cos(2πn/L), 0 ≤ n ≤ L − 1.

A signal is driven through the window in individual segments; each segment is
multiplied pointwise to the window function. The power spectral density (PSD)
estimates are given by

(25) |Xj,�|2 = a2
j,� + b2

j,�.

4. Simulations. The proposed inference framework tests whether the two
phases of a single-trial EEG signal have different PLs. We conduct a permuta-
tion test on the PLs of replicates of the EEG signal in the time domain obtained
through resampling in the frequency domain (by shuffling the respective Fourier
coefficients of the signal in two phases, the procedure reconstructs two new signals
in the time domain out of the permuted Fourier coefficients). The complexity of
the framework calls for validation in two aspects: (1) reliability of this frequency
resampling step at the presence of noise; and (2) the robustness and sensitivity of
the topological permutation test under certain transformations of the underlying
signal. In this section, we use two independent sets of simulation studies to assess
the performance of the frequency resampling method and topological permutation
test.

4.1. Performance of frequency resampling method. This set of simulations is
meant to demonstrate that the frequency resampling approach preserves signal
similarity and difference in the time domain. We simulate two signals f1(ti) and
f2(ti) with −5 ≤ t1, . . . , t500 ≤ 5 by

f1(ti) =
k∑

j=0

e−(jπ/5)2σ (
c1j cos(jπti/5) + d1j sin(jπti/5)

)
,(26)

f2(ti) =
k∑

j=0

e−(jπ/5)2σ (
c2j cos(jπti/5) + d2j sin(jπti/5)

)
,(27)

where in each simulation

cij = aij + N
(
0, σ 2

c

)
,(28)

dij = bij + N
(
0, σ 2

d

)
,(29)

with fixed aij ∼ N(0, σ 2
a ) and bij ∼ N(0, σ 2

b ) for all simulations.
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We model the simulated signals f1 and f2 with

f1(t) = μ1(t) + ε1(t) and f2(t) = μ2(t) + ε2(t), −5 ≤ t ≤ 5,

and then test the null hypothesis

H0 : μ1(t) = μ2(t) ∀ − 5 ≤ t ≤ 5.

The first step is to estimate μ1 and μ2 with the WFS μ̂k
T 1

u
(t) and μ̂k

T 2
u
(t) in (13)

and (14) (k = 499, σ = 0.001). We then resample in the frequency domain by
randomly exchanging the thresholded Fourier coefficients in μ̂k

T 1
u
(t) and μ̂k

T 2
u
(t).

We compute the difference between the WFS μ̂k
T 1

u
(t) and μ̂k

T 2
u
(t) using the L2

distance

(30) L2
(
μ̂k

T 1
u
, μ̂k

T 2
u

) =
(∫ 5

−5

∣∣μ̂k
T 1

u
(t) − μ̂k

T 2
u
(t)

∣∣2 dt

)1/2
.

With each random exchange of Fourier coefficients, we compute the L2 dis-
tance L2(μ̂

k′
T 1

u
, μ̂k′

T 2
u
) between the reconstructed WFS μ̂k′

T 1
u
(t) and μ̂k′

T 2
u
(t) in (20)

and (21). The p-value for each simulation is calculated as the proportion of the
L2(μ̂

k′
T 1

u
, μ̂k′

T 2
u
) that exceed L2(μ̂

k
T 1

u
, μ̂k

T 2
u
). Note that the WFS estimation and fre-

quency resampling in the testing procedure are identical to the test on PLs de-
scribed in Section 3.2.

As a performance measure, we collect the p-values in 1000 simulations and
compute the percentages of those below 0.05. Due to different magnitudes of vari-
ance, we expect the percentages in Study 1 and Study 2 to be small and large
respectively.

Study 1. In this setting, the noise components are generated with

σa = σb = 1, σc = 0.00001, σd = 0.00001

for signals constructed at k = 99 and σ = 0. The percentage of p-values below
0.05 is 1%.

Study 2. In this setting, the noise components are generated with

σa = 1, σb = 10, σc = 0.00001, σd = 0.00001

for signals constructed at k = 99 and σ = 0. The percentages of p-values below
0.05 is 100%.

Discussion of results. The results demonstrate that the frequency resampling
approach preserves signal similarity and difference in the time domain under rea-
sonable noise contamination.

4.2. Performance of topological permutation test. The TDA inference frame-
work proposed in Section 3.2 tests the difference between the PLs of two signals.
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We want to set a topological criterion to evaluate the performance of the test in
simulation studies. A standard performance measure for a statistical test is the
false positive rate. Here, we want to control the rate of “topological false posi-
tives”; in other words, we require the proposed test on PLs to stay robust when
the underlying signals have identical PH. We know from algebraic topology that
the homology of a topological space is preserved under continuous transformation
(without tearing or glueing) of the space [Hatcher (2002), Turner, Mukherjee and
Boyer (2014)]. Yet, continuity alone in signal transformation does not guarantee
preservation of PH in the sublevel set of the signal. To preserve PH, signal trans-
formations also need to respect the pairing of birth and death times of connected
components in the sublevel sets—we call these topology-preserving transforma-
tions of a signal. In Study 1.1, 1.2 and 1.3, we check the false positive rates of
the proposed test under the most basic topology-preserving transformations of sig-
nals: amplitude translation and scaling, and frequency scaling. Defining general
topology-preserving transformations is part of our ongoing research. On the other
hand, there are indefinitely many ways of defining transformations that destroy the
PH in the sublevel set of a signal. For the purpose of performance evaluation, we
define tearing of a signal as a transformation that pointwise multiplies the sig-
nal by a step function with all piecewise time intervals containing at least one but
not all critical points of the signal. Note that tearing a signal results in disconti-
nuities, but all signals undergo WFS-denoising in the proposed framework, which
ensures the smoothness of the denoised signal with reduced Gibbs phenomenon.
In Study 2, we test the power of the proposed test on tearing-transformed signals.

In each study, we also compare the proposed TDA framework with two baseline
methods on the signals.

Study 1. Topological invariance. In each study, we first simulate a signal g(t)

with unique critical points. The second signal is simulated in three settings with
respect to three basic types of topology-preserving transformations of g(t):

1. amplitude translation:

h(t) = g(t) + a, a ∈ R;
2. amplitude scaling:

h(t) = cg(t);
for c > 1 (c < 1), the function is stretched (squeezed) in the amplitude.

3. frequency scaling:

h(t) = g(ωt);
for ω < 1 (ω > 1), the function is stretched (squeezed) in the direction of t .

For each parameter setting of a study, 1000 datasets are simulated. In each
dataset, two blocks of signals are generated according to the topologically invari-
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ant transformations. Independent Gaussian noises are added to each signal at the
time points where the signal is generated. We test the null hypothesis of equality
between PLs

H0 : ν1 = ν2.

The testing procedure is as described in Section 3.2. Percentages out of the 1000
simulations are then computed for p-values below 0.05. Percentages below 5% are
considered as good performance in robustness.

Study 1.1. Amplitude translation. We simulate four pairs of signals y1(ti) and
y2(ti), at regular time intervals 0 ≤ t1, . . . , t500 ≤ 2π :

y1(ti) = ti cos(ωti),

y2(ti) = ti cos(ωti) + 10,
(31)

where ω takes on four values: (1) ω = 1; (2) ω = 2; (3) ω = 5; (4) ω = 10. In
each simulation, independent Gaussian noises N(0,22) are added to the signals
at 0 ≤ t1, . . . , t500 ≤ 2π :

y1(ti) = ti cos(ωti) + ε1i ,

y2(ti) = ti cos(ωti) + 10 + ε2i ,

where ε1i , ε2i ∼ N(0,22). Figure 4 shows examples of noisy signals in each
simulation.

FIG. 4. Study 1.1—amplitude translation—examples of noisy translated signals generated from
(31). Tests are performed between each pair of curves with independent Gaussian noises in each
simulation.
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TABLE 1
Study 1.1—amplitude translation—percentages of p-values < 0.05 in 1000 simulated datasets by

baseline methods and the topological permutation test

Percentages of p-value < 0.05 ω = 1 ω = 2 ω = 5 ω = 10

Paired t-test on local variance 27.2% 25% 19.8% 16.7%
Paired t-test on PSD estimates 100% 100% 100% 100%
Topological permutation test 0.7% 0.3% 0.2% 0.3%

Results of percentages of p-values below 0.05 by baseline methods and the
proposed topological permutation test are summarized in Table 1. The results
show that the paired t-tests on local variance and PSD estimates are sensitive to
translation, whereas the topological permutation test is robust to the topology-
preserving transformation.

Study 1.2. Amplitude scaling. We simulate four pairs of signals y1(ti) and y2(ti),
at regular time intervals 0 ≤ t1, . . . , t500 ≤ 2π :

y1(ti) = ti cos(ωti),

y2(ti) = 2ti cos(ωti),
(32)

where ω takes on four values: (1) ω = 1; (2) ω = 2; (3) ω = 5; (4) ω = 10. In
each simulation, independent Gaussian noises N(0,22) are added to the signals
at 0 ≤ t1, . . . , t500 ≤ 2π :

y1(ti) = ti cos(ωti) + ε1i ,

y2(ti) = 2ti cos(ωti) + ε2i ,

where ε1i , ε2i ∼ N(0,22). Figure 5 shows examples of noisy signals.
Results of percentages of p-values below 0.05 by baseline methods and the
topological permutation test are summarized in Table 2. The results show that
the paired t-tests on local variance and PSD estimates are sensitive to ampli-
tude scaling, whereas the topological permutation test is robust to the topology-
preserving transformation.

Study 1.3. Frequency scaling. We simulate four signals y(ti) at regular time inter-
vals 0 ≤ t1, . . . , t500 ≤ 2π :

(33) y(ti) = ti cos(ωti),

where ω takes on four values: (1) ω = 1; (2) ω = 2; (3) ω = 5; (4) ω = 10. In
each simulation, independent Gaussian noise N(0,22) are added to the signals
at 0 ≤ t1, . . . , t500 ≤ 2π :

y(ti) = ti cos(ωti) + εi,
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FIG. 5. Study 1.2—amplitude scaling—examples of noisy scaled signals generated from (32). Tests
are performed between each pair of curves with independent Gaussian noises in each simulation.

TABLE 2
Study 1.2—amplitude scaling—percentages of p-values < 0.05 in 1000 simulated datasets by

baseline methods and the topological permutation test

Percentages of p-value < 0.05 ω = 1 ω = 2 ω = 5 ω = 10

Paired t-test on local variance 33.7% 63.1% 100% 100%
Paired t-test on PSD estimates 100% 100% 100% 100%
Topological permutation test 0% 0% 0% 0%

where εi ∼ N(0,22). Figure 6 shows an example of the four signals without and
with noise in each simulation.
Results of percentages of p-values below 0.05 are summarized in Table 3. The
results show that the paired t-test on local variance is sensitive to frequency scal-
ing, whereas the paired t-test on PSD estimates and the topological permutation
test are robust to the topology-preserving transformation.

Study 2. Topological difference. We simulate four pairs of signals y1(ti) and
y2(ti), at regular time intervals 0 ≤ t1, . . . , t500 ≤ 2π :

y1(ti) = t cos(ωti),

y2(ti) =

⎧⎪⎪⎨⎪⎪⎩
y1(ti), 0 ≤ ti ≤ 0.4π,1.6π < ti ≤ 2π;
y1(ti) − 200, 0.4π < ti ≤ 0.96π,1.04π < ti ≤ 1.6π,

y1(ti) + 200, 0.96π < ti ≤ 1.04π,

(34)
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FIG. 6. Study 1.3—frequency scaling—examples of noisy signals generated from (33). Tests are
performed between the four curves with independent Gaussian noises in each simulation.

TABLE 3
Study 1.3—frequency scaling—percentages of p-values < 0.05 in 1000 simulated datasets by

baseline methods and the topological permutation test

Percentages of p-value < 0.05 ω = 1 vs ω = 2 ω = 1 vs ω = 5 ω = 1 vs ω = 10

Paired t-test on local variance 14.7% 79.8% 99.9%
Paired t-test on PSD estimates 0% 0% 1.8%
Topological permutation test 0% 0% 0.1%

where ω takes on one of four values: (1) ω = 1; (2) ω = 2; (3) ω = 5; (4) ω = 10.
In each simulation, independent Gaussian noise N(0,502) are added to the signals
at 0 ≤ t1, . . . , t500 ≤ 2π (Figure 7). We test whether y1 and y2 have different PLs.

Percentages of p-values below 0.05 by different tests are summarized in Table 4.
The results show that all three tests are fairly sensitive to the topological difference
in the signals at a threshold of 95%.

Discussion. In all four simulation studies, the performance of the topological
permutation test shows low rates of detecting false topological difference and high
power in detecting true topological difference. The results are also far more stable
than those of the two baseline methods.

5. Application to epileptic EEGs. In this section, we use the proposed per-
mutation test to study how topological invariance manifests in and out of the
epileptogenic zone in a single-trial epileptic EEG dataset.
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FIG. 7. Examples of the four signals given by (34) with noise. Tests are performed on each pair of
curves with independent Gaussian noises in each simulation.

TABLE 4
Study 2—percentages of p-values < 0.05 in 1000 simulated datasets by baseline methods and the

topological permutation test

Percentages of p-value < 0.05 ω = 1 ω = 2 ω = 5 ω = 10

Paired t-test on local variance 91.7% 91.5% 91.2% 90.8%
Paired t-test on PSD estimates 100% 100% 100% 100%
Topological permutation test 90% 100% 93% 100%

5.1. Description of the EEG data. EEG signals are sampled at the rate of
100 Hz (1 sample per 10 millisecond) from channels C3,C4,Cz,P3,P4,T3,T4,T5
in the central, parietal and temporal brain regions (Figure 8) of a female patient
of Dr. Malow, an attending neurologist at the University of Michigan. Due to a
lesion located on the cortical surface of the patient below the T3 channel, epileptic
seizures are more likely to initiate from the left temporal lobe and abnormal elec-
trical fluctuations are expected in EEG signals from channels around T3. During
the entire EEG recording of 32,680 time points, a seizure initiates approximately
halfway at the left temporal site (T3 channel). Visual inspection of Figure 9 (left)
shows the signals before seizure to be more stable (more stationary, lower varia-
tion, smaller magnitude of the waveforms) than the later period. Highly volatile
oscillations in the seizure period also seem to be concentrated in channels located
near the T3 channel.

In subsequent analysis, the first and second phases of 16,340 time points in the
EEG recording are designated as “before” and “during” seizure.
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FIG. 8. EEG channels in accordance with the international 10–20 system; T = temporal, P =
parietal, C = central; odd (even) numbers indicate the left (right) hemisphere. Image source:
https://en.wikipedia.org/wiki/10-20_system_(EEG).

5.2. Topological data analysis. We first analyze the eight EEG signals by the
proposed topological permutation test. As detailed in Section 3, each signal in
the dataset undergoes denoising by a thresholded WFS (Figure 9 (right)). Sine or
cosine waveforms are included in the representation if the corresponding ampli-
tudes exceed some threshold. PLs are then constructed on each of the denoised
signals (Figure 10). In the topological permutation test, the p-values are computed
by counting the proportion of frequency-resampled PLs having L2 distances ex-
ceeding that of the observed PLs before and during seizure. The results obtained
through 10,000 resamples with respect to multiple combinations of WFS degrees
and bandwidths are summarized in Table 5. Our approach here was to be very con-
servative and thus we imposed a Bonferroni corrected 5% significance level for
the eight simultaneous topological permutation tests.

FIG. 9. Left: EEG recording with a sampling rate of 100 Hz over 163.4 s; time 0 indicates the
start of the seizure attack. Right: thresholded WFS denoising with degree k = 499 and bandwidth
σ = 0.0001.

https://en.wikipedia.org/wiki/10-20_system_%28EEG%29
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FIG. 10. Persistence landscapes at all channels before and during seizure for signals denoised with
WFS of degree k = 499 and bandwidth σ = 0.0001.
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TABLE 5
Summary of p-values computed with the proposed topological method with respect to different
combination of thresholded WFS degrees and bandwidths. The p-values above the Bonferroni

threshold of 0.05/8 = 0.0063 are shaded in gray. We observe that T3, T4 and T5 consistently show
up as topologically invariant before and during seizure according to the Bonferroni threshold

k = 99 k = 499 k = 999

σ = 0.0005 C3 0.0001 0.0001 0.0001
C4 0.0009 0.0014 0.0026
Cz 0.0001 0.0001 0.0001
P3 0.0072 0.0020 0.0022
P4 0.0003 0.0001 0.0003
T3 0.1975 0.0960 0.0934
T4 0.0255 0.0228 0.0464
T5 0.0435 0.1522 0.1723

σ = 0.0001 C3 0.0057 0.0010 0.0006
C4 0.0054 0.0639 0.0445
Cz 0.0001 0.0001 0.0001
P3 0.0029 0.0001 0.0001
P4 0.0001 0.3238 0.2848
T3 0.0661 0.0406 0.0682
T4 0.0162 0.1286 0.1397
T5 0.1044 0.3065 0.2608

An EEG channel is said to have topological invariance before and during
seizure if the p-value of the proposed permutation test at the channel is insignif-
icant at the Bonferroni corrected 5% significance level. We observe that T3, T4
and T5 consistently show topological invariance (i.e., the topology before seizure
is highly similar to that during seizure) after the Bonferroni correction. In partic-
ular, T3 and T5 have the least significant difference between PLs compared with
T4. The observation coincides with the diagnosis of the left temporal lobe being
the epileptogenic zone. It suggests that EEG signals in the epileptogenic zone even
before a seizure attack already have similar topological patterns as those during
the seizure. There is a strong likelihood that the seizure originates from a neigh-
borhood around the left temporal and left central regions (as suggested by the
method) but due to volume conduction in EEGs, one cannot precisely pinpoint the
location of the seizure. The fact that T4, which is symmetric to T3, shows up as
vaguely topologically invariant suggests the seizure is spreading from the left tem-
poral region. Neuroscientific research has shown evidence that the path followed
by spontaneous seizure activity in spreading to other structures is a feature peculiar
to each individual [Brazier (1972)]. It is interesting that the proposed method was
able to capture these features of the EEG signals which were overlooked by other
methods that previously analyzed this same dataset.
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To investigate the robustness of our method, additional analysis was also per-
formed on the middle 24,000 and 30,000 instead of the full 32,680 time points of
each of the eight EEG signals denoised with WFS of degree k = 499 and band-
widths σ = 0.0005 and σ = 0.0001. Channels with p-values above the Bonferroni
threshold 0.05/8 = 0.0063 are again considered as topologically invariant. For the
bandwidth σ = 0.0001, the spatial patten of channel topological invariance re-
mains the same for the two datasets of shorter lengths; for σ = 0.0005, the pattern
varies while T5 remains topologically invariant.

5.3. Baseline comparison. As described in Section 3.3, we compare the re-
sults of the proposed inference procedure with two baseline statistical tests of
standard EEG features.

Paired t-test on local variance. Table 6 summarizes the results of p-values of
the paired t-tests on local variances of raw signals. The results are not informative
as all the p-values are uniformly too small.

Paired t-test on spectrogram. Table 7 summarizes the results of p-values of
the paired t-tests on PSD estimates of raw signals. The results are not informative
as all the p-values are uniformly too small.

Results on denoised signals. The same methods were applied to signals de-
noised with WFS at degree 99 and bandwidth 0.001. Table 8 summarizes the re-
sults of p-values of the paired t-tests on local variances and PSD estimates of
signals denoised with WFS. Although the overall conclusions remain the same,
we can see that denoising raises the p-values dramatically.

TABLE 6
Summary of p-values of the paired t-tests

on local variances of raw signals

Channel p-values (in 10−45)

C3 0.0001
C4 0.0001
Cz 0.0001
P3 0.0001
P4 0.0001
T3 0.6721
T4 0.0001
T5 0.0001
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TABLE 7
Summary of p-values of the paired t-tests

on PSD estimates of raw signals

Channel p-values (in 10−18)

C3 0.0001
C4 0.1112
Cz 0.0001
P3 0.0001
P4 0.0001
T3 0.0001
T4 0.0001
T5 0.0001

6. Discussion. This work explores the topological information in epileptic
EEGs through the evolution of connected components in the signals. The novelty
and contribution of the proposed procedure are unique in several aspects. Denois-
ing univariate EEG signals by a thresholded WFS helps stabilize the subsequent
analysis of connected components in the signals. The frequency resampling proce-
dure based on the WFS serves the purpose of preserving waveforms characteristic
of epileptic discharges.

The data application shows topological invariance (topological difference) be-
fore and during seizure in (out of) the epileptogenic zone—sites close to the brain
lesion causing the epileptic seizures. The analysis adds new insight on epilepto-
genicity as existing neurophysiological research shows only that the seizure onset
zone has isolated electric patterns from other brain sites at the onset of a seizure
[Lange et al. (1983), Van Quyen et al. (2001), Burns et al. (2014)], and previous
analysis on the same epileptic EEG data shows only the evolution of the spec-
tral power and coherence during the seizure episode but does not identify seizure

TABLE 8
Summary of p-values of the paired t-tests on local variances of signals

denoised with WFS of degree 99 and bandwidth 0.001

Channel Local variance (in 10−7) PSD estimates (in 10−7)

C3 0.0001 0.0012
C4 0.0001 0.2013
Cz 0.0001 0.0472
P3 0.0001 0.0192
P4 0.0001 0.0245
T3 0.0001 0.0004
T4 0.4691 0.2884
T5 0.0001 0.2701
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location [Ombao et al. (2001), Ombao, von Sachs and Guo (2005)]. More impor-
tantly, our method is shown to be reliable in detecting true topological changes
with noise. As shown by simulation studies in Section 4.2, results from a baseline
statistical test on local variance and spectrogram is sensitive to amplitude and fre-
quency changes even when they do not correspond to topological changes, such as
translation and scaling of signals. In contrast, the proposed inference framework
stays robust to nontopological changes and sensitive to true topological changes.

In the current application, we demonstrate the robustness of the proposed pro-
cedure by testing it out for various combinations of large degree k and small band-
width σ . A data-driven automatic selection of these parameters is beyond the scope
of this paper. We recommend practitioners base their applications with respect to
a reasonable range of k and σ . For future methodological extension, a direction
worth pursuing is to weigh PLs across a range of k and σ to obtain a topological
overview over the parameter space.

It is important to note that the purpose of the current application is to demon-
strate the potential utility of the proposed TDA framework in epileptogenic studies
per individual patients. Neurologists may use this tool to guide them to investigate
further the regions in a patient’s brain that show topological invariance before and
during the seizure episode. However, conclusions on the clinical population of
epilepsy patients should be avoided [Maris (2012)]. As part of our ongoing work,
we are testing the proposed framework on large samples of multi-trial EEG record-
ings.
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