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Abstract. We shall define a topological degree for multi-valued solution mappings

of functional differential equations with finite delay including ordinary differential

equations. Earlier, we introduced a degree of ordinary differential equations which is

different from that given in this article. We show that these two definitions are equivalent

for ordinary differential equations.

1. Introduction. We denote by C\a, ft] the Banach space of all R "-valued con-

tinuous functions defined on a compact interval [α, ft] with supremum norm | |. We

shall use the same symbol | | as a norm in Rn without any fear of confusion. Let r >0

be a given constant and denote by X the Banach space C[ —r, 0]. For any continuous

function x: [α — r, ft] -»/?", let xt be the function defined by xt(s) = x(t 4- s) for s e [ — r, 0].

Then xt belongs to X and is continuous in t for te [α, ft].

Suppose that Γ>0 is a given constant and / : [0, Γ] xX^>R" is a continuous

mapping. We consider an initial value problem

(1) x'(t)=f(t,xt), xo = φ,

where a prime denotes differentiation with respect to ί, φ belongs to X and / is assumed

to satisfy the following condition:

(A) There exist two positive constants a and ft such that | /(ί, φ) | < a + b\ φ | for (t, φ) e

[0, Γ\xX.

This assumption ensures that every solution of (1) is extendable to be continuous up

to t = Tΐor any φ e X(see Remark 2.1). Let Γ(φ) be the cross section with the hyperplane

t = T of the set of solution curves to (1) in [0, T] x X, namely,

(2) Γ(φ): = {xτ; x is a solution of (1) defined on [ — r, 7]} .

Then we obtain a multi-valued mapping Γ from X into itself. Our purpose is to define

a topological degree for the mapping Γ.

When r = 0, (1) is reduced to an initial value problem for an ordinary differential

equation. In this case, we have already defined the topological degree for Γ in [4] by

constructing a sequence {yk} of single-valued continuous mappings which approximates

Γ in some sense. In order to construct such a sequence, we approximated / by a sequence
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{fk} of continuous functions which are Lipschitz continuous with respect to the second

variable, and defined yk by using solutions of (1) in which / is replaced by fk. This meth-

od is also applicable to a semilinear parabolic partial differential equation (see [5]).

However, when r > 0, it is impossible to find such a sequence {fk} because the domain

of / is an infinite dimensional space. In Section 2, we shall introduce an approximate

sequence of Γ different from that in [4]. Further in Section 3, the topological degree

of Γ will be defined. The result given in Section 3 is also valid in the case where r = 0,

and consequently, we have two different definitions of the degree for Γ if we restrict

ourselves to ordinary differential equations. In Section 4, we shall show that these two

definitions are equivalent.

2. Construction of approximate solutions. For any 0 < ε < 1 and ( p e l , we define

two functions φ and ξ by

~. x f φ ( — r ) ft>r — r — l < ί < — r ,

\φ(t) for - r < ί < 0

and

{ φ(ή for -r-l<ί<0,

P
<P(O)+ f(s,ξs-ε)ds for 0 < ί < 7 \

Jo
LEMMA 2.1. The function ξ given by (3) belongs to C[ — r— 1, T~\ and satisfies an

inequality \ ξt | < {(1 + εb) | φ \ + aT}ebT for 0 < t < T.
PROOF. It follows from (A) that, for 0 < t < T,

ί
<\φ\+aT+

Jo

<\φ\ + aT+εb\φ\+b \ \ξs\ds = :Ψ(t).
Jo

Since Ψ(t) is nondecreasing, we can easily prove that \ξt\< Ψ(t) for 0 < t < Γ, and hence

the assertion follows from GronwalPs inequality (see, e.g., [7, p. 82]). •

REMARK 2.1. For any solution x of (1), the same argument as in the proof of

Lemma 2.1 gives an estimate | x(t) | < (| φ \ + at)ebt for t > 0 as long as it exists. Therefore,

by the fundamental theorems for solutions of (1) (see, e.g., [2]), every solution of (1)

is extendable to be continuous up to t=Tand satisfies the above inequality on [0, T],

We shall denote by S(ε, φ) and 7the function ξ given in (3) and the space C[ - r — 1, Γ] ,
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respectively. Then we obtain a mapping S: (0, 1] x X-+ Y.

LEMMA 2.2. The mapping S: (0, 1] x X-> Y is continuous.

PROOF. Let {(εk, φk)} be a sequence converging to (ε, φ) in (0, 1] x X, and denote

S(εk, φk) and S(ε, φ) by ξk and ξ, respectively. It suffices to show that {ξk} converges

to ξ uniformly on [ —r— 1, T\. Since {φk} converges to φ in X, the set Φ: =

{φk\keN}\j{φ} is compact in C[ — r—1,0] and {£*} converges to ξ uniformly on

[ - r - 1 , 0 ] . It follows from Lemma 2.1 that {ξk;keN, f e [ - l , T\) is bounded in X,

which implies the existence of a constant M > 0 satisfying | /( ί , £ f_ e)|<Af and

|/(ί , ξ*_ β k ) |<M for any A:GΛ^ and f e[0, Γ]. It is clear from Ascoli-Arzela's theorem

that

L={ηG Y; η\[_r_1 0 ] e Φ and η is M-Lipschitz continuous on [0, T]}

is compact in Y, where η | [_ r_ t 0 ] denotes the restriction of 77 to the interval [ — r — 1,0].

Since the mapping F x [— 1, Γ] 3(η, t)\-^ηteX is continuous, the set E={ηt;ηeL9te

[—1, Γ]} is also compact in A", and hence / is uniformly continuous on [0, T\ x E.

For 0<t<T, we have

I ξ(t)-ξ\t) I < I φ -φk I + f I /(s, ξ s- ε)-/(s, ^k-ε) |Λ + f * \ f(s9 ξlε)-/(s, ^-

It is clear that | φ — φk |->0 as k-+co. Since ξkeL, the family {ξk} is equicontinuous on

[ — r — 1 , Γ], which ensures that \im^σ_τ\^o\ξk — ξk\=0 uniformly for keN and for

σ, τ e [ — 1, Γ] . It then follows from the uniform continuity of / on [0, T] xE that

αk->0 as k->oo.

Now we shall show that {Fk} converges to 0 uniformly on [0, T\. For 0 < ί < ε , we

have an estimate

0 < Fk(t) < f ° I /(5 + β, ξs) -Rs + ε, ξs

k) | ώ .

Since {ξk} converges to ξ uniformly on [ — r - 1 , 0 ] , it follows from the above estimate

that {Fk(ή} converges to 0 uniformly on [0, ε], which implies that {ξk} converges to ξ

uniformly on [ — r— 1, ε]. Similarly, for ε<t<2ε, we have

0 <Fk(t) < ί£ I f{s + ε, ξs) -f(s + ε, ξk) \ds .
J -ε

This estimate and the uniform convergence of {ξk} on [ — r— 1, ε] imply that {Fk(0}

converges to 0 uniformly on [0, 2ε], and consequently, {ξk} converges to ξ uniformly

on [ —r — 1, 2ε]. Repeating this process, we arrive at the desired assertion. •

LEMMA 2.3. Let {εk} be a sequence in (0, 1] converging to 0, and let {φk} be a
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sequence converging to φ in X. Then {S(εk, φk)} contains a subsequence which converges

to some ξ in Y, and furthermore, ξ | [ _ r T] is a solution of (I).

PROOF. For each keN, we denote the function S(εk,φ
k) by ξk. By the same

argument as in the proof of Lemma 2.2, it follows that {ξk} is equicontinuous on

[ —r— 1, T], and hence we may assume that {ξk} converges to some ξ in Y by taking

a subsequence if necessary. Since ξk satisfies ξo = φk and

φ \ f(s,ξϊ-Jds for 0<t<T,
Jo

we obtain ξ0 = φ and

{(0 = φ(0) + I ' f(s, ξs)ds for 0 < t < T,
JJo

because \ξk-εk-ξs\<\ ξϊ-8ic-ξϊ\ + \ξϊ-ξ8\^O as *->oo uniformly for s e [0, Γ]. Q

3. Topological degree of solution mappings. Throughout this section, we assume

that r< T. Let / = [0, 1] and let / denote the identity mapping on X= C([-r, 0]).

It is easy to see that Γ(φ) is a compact subset of X for each φeX, where Γ(φ) is

the set given in (2). Hence we obtain a mapping Γ: X^K(X), where K(X) denotes the

family of all nonempty compact subsets of X. For a point φeX and a subset G of X,

let ιl/-G: = {φ-η;ηeG}. We define a mapping /-Γ by (I-Γ)(ψ) = ψ-Γ(ψ\ while

we let (I-Γ)(G): = [jψeG(I-Γ)(φ).

Suppose that D is a bounded and open subset of X and choose a point

(4) peX\(I-Γ)(dD)9

where δ/) denotes the boundary of D. For the above D and p, we shall define the

topological degree as deg(7—Γ, D,p). It is well known that the degree can be defined

for a compact and convex set-valued, completely continuous and upper semicontinuous

mapping (see, e.g., [6]). We can readily verify that Γ is completely continuous and

upper semicontinuous. Although the set Γ(φ) is connected (see [3]), it is not always

convex. Therefore, known results are not applicable to Γ.

Let {εk} be any fixed sequence in (0, 1] converging to 0, and let yk\ X^X be a

mapping defined by

yk(φ): = S(εk, φ)τ for φ e X.

By virtue of Lemma 2.2, γk is a continuous mapping. Moreover, it follows from Lemma

2.1 and the argument used in the proof of Lemma 2.2 that yk is completely continuous

because r<T.

We now show that deg(/-yfc, D,p) is defined and is independent of k for large k,

where deg(7— γk, D,p) denotes the Leray-Schauder degree (see [1] or [6]). For any
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(/c, 1,Θ)ENXNXJ, let ykUΘ: X-+X denote the mapping defined by

for φeX. Then, by Lemma 2.2, ykχθ(φ) is continuous in (θ, φ)eJx X for fixed k and

/. Similarly to yk, we find that yKUΘ is continuous and completely continuous, and

furthermore, we have ykχ0 = yk and ykjΛ=yι.

LEMMA 3.1. There exists an integer n0 such that pφ(I—yklθ)(dD) holds for any

pair of integers k, l>n0 and any θeJ.

PROOF. Suppose the contrary. Then, for each meN, there exist integers km>m,

/m>m, 0 m e / a n d φmedD such that

(5) <Pm-ykrn,im,eS(Pm)=P for rneN.

Denoting 5((1 -θm)εkrn + θmεlm, φm) by ξ m , we have ykrn,ιm,θm(φm) = ξΐ. Since {φm} is

bounded and r < T, the sequence {ξ™} is bounded and equicontinuous in X, and hence

we may assume that {ξ™} converges to some η in X. It then follows from (5) that {φm}

converges to η +p = : φ which belongs to dD because dD is closed.

Since (1 — θm)εkm + 0mείm->>O and φm^κp as m->oo, we may assume, by Lemma 2.3,

that {ξm} converges to some ξ in 7and that ξ | [ _ r r ] is a solution of (1). Therefore, Γ(φ) 3

ξτ = η = φ—p, which yieldspeφ — Γ(φ) = (I—Γ)(φ). This contradicts (4), since φedD.

D

Using this lemma, we can conclude that l im^^degί/— yk, D,p) exists. Further-

more, it is easy to see that the limit does not depend on the choice of the sequence {εfc}.

Thus, we can define deg(/—Γ, D,p) by

(6) deg(7- Γ, A p) = lim deg(7- γk9 D, p).

THEOREM 3.1. If deg(7—Γ, D,p)^0, then there exists a point φeD such that

(I-Γ)(φ)BP.

PROOF. Let {εfc} be any sequence in (0, 1] which converges to 0. We may assume

that deg(7—yk, D,p) Φ0 for each keN, and hence it follows that D contains a φk

satisfying φk — yk(φk)=p such that yk(φk) = ζτ> where ξk denotes the function S(εk, φk).

By using the same argument as in the proof of Lemma 3.1, the sequences {φk} and

{ξk} contain subsequences which converge to some φeD and ξeY, respectively.

Moreover, by Lemma 2.3, we see that φ-p = ξτGΓ(φ), namely, pε(7-Γ)(φ). By this

and (4), we are done. •

4. Topological degree in ordinary differential equations. In this section, we

compare two definitions of the topological degree for a solution mapping to an initial

value problem
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(7) *'=/(*, X),

where ueRn and / : [0, T\ xRn^Rn is a continuous mapping satisfying the following
assumption:
(Ao) There exist two positive constants a and b such that \f(t,x)\<a + b\x\ for

(t,x)e[0,Γ]x/r.
For every we/?", similarly to (2), we denote Γ(u): = {x(T); x is a solution of (7)}.

Then we obtain a mapping Γ:Rn-+K(Rn), where Jφf") denotes the family of all
nonempty compact subsets of Rn.

Let D be a bounded and open subset of Rn and let

(8) peRn\Γ(dD).

As a special case of Section 3, we can define deg(Γ, D,p) in the sense of (6). On the
other hand, we have another definition of the degree introduced in [4]. Although the
assumption imposed on p in [4] is somewhat stronger than (8), it can be relaxed to (8)
by the same consideration as in [5]. In this connection, we shall improve the result
given in [4] along the line of [5], and, as a consequence, prove that these two definitions
are equivalent. In order to do so, we first summarize the two definitions.

The result in Section 3 is reduced to the following. For any ueRn and any kεN,
let v(t) = υk(t ύ) denote the function

for ί e [ - l , 0 ] ,

-\ f(s,v(s ))ds for ίe[0,Γ],

Jo V V kJJ
and define a mapping yk: Rn-+Rn by γk(u) = vk(T;u). Then the arguments used in Section
3 ensure that deg(yλ, D, p) is defined and is independent of k for large k, where
deg(yfc, D,p) is the Brouwer degree (see [1], [6]). We denote limk^^ dQg(yk, D,p) by
d(Γ, D, p) instead of deg(Γ, D, />), namely,

(9) d(Γ,D,p)=]im dεg(yk9 D9p).

Now, we improve the result given in [4]. For the function / satisfying (Ao), there
exists a sequence {fk(t, x)} of continuous functions on [0, T\ x Rn with the following
two properties:
(Pj) {fk} converges to / uniformly on every compact set in [0, T] x /?", and every fk

satisfies (Ao) in which / is replaced by fk.
(P2) For each keN, fk(t, x) is locally Lipschitz continuous in x, namely, for any M > 0,

there exists a positive constant L(k, M) such that

\fk(t,x)-fk(t,y)\<L(k,M)\x-y\

for te[0, T] andx, yeR" with \x\<M and \y\<M.
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Although the function / is assumed to be bounded in [4], we can easily prove the
existence of such a sequence {fk} by using mollifier under the assumption (Ao).

Let wk(t ύ) be the unique solution of

and let λk: R
n^Rn be the mapping defined by λk(u): = wk(T; u). In [4], we showed that

deg(λfc, D, p) is defined and is independent of k for large k when p satisfies

(10) peRn\Γ*(dD)

instead of (8), where Γ*(u) = coΓ(u) denotes the convex hull of Γ(u). The reason why
we assumed (10) is due to the construction of a homotopy connecting λk and λt. The
homotopy used in [4] is given by {\—θ)λk + θλι for ΘeJ. Instead, we consider a
homotopy λkl: JxRn^Rn defined by

where w u (ί; 0, u) denotes the unique solution of

x' = (1 -0)/k(t, x) + 0/i(t, x), x(0) = u .

Then even if the condition (10) is weakened to (8), we can obtain the following lemma
which is easily proved in a manner similar to Lemma 3.1 (or see [5; Lemma 3.2]).

LEMMA 4.1. If p is a point satisfying (8), then there exists an integer nί such that
λkl(J, dD) does not contain p for all k, l>nv

Since λkJ(0, ') = λk and Au(l, ) = λι hold, Lemma 4.1 ensures that deg(Λ,k, D,p) is
defined and is independent of k for large k. Let us denote

(11) p / )
fc-00

In what follows, we shall prove

(12) d{Γ,D,p)=p{Γ,D,p).

For any (k, l)eNx N, ΘeJ and ueR", let y(t)=ykΛ(t; θ, u) denote the unique solution
of

y(i) = u for ί e [ - l , 0 ] ,

yV) = θf(t,y(t-j)\ + (l-θ)fk(t,y(ή) for /e[0,Γ],

or equivalently,
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for fe[- l ,O]

for t e ί 0 J 1
(13) y(ή=

Here, we notice that y(t) is uniquely determined for u and that relations yκι(t;O, ύ) =
wk(t; u) and .yu(ί; 1, u) = vι(t; u) hold.

LEMMA 4.2. Lei & <zm/ / be fixed positive integers. Then yktl(t; θ, u) is continuous
in (θ, u)eJxRnfor each te[0, Γ\.

PROOF. Let {(θm, um)} be a sequence converging to (θ, u) in JxRn. We denote
yktι(t; θm, um) and yktl(t; 0, u) by >̂ m(ί) and y(t), respectively. It suffices to show that
ym(t)^y(t) as m->oo for each ί e [0, T~\. Since {wm} is a convergent sequence, there exists
an M x > 0 such that |w m |<M 1 for all meN. It then follows from (Ao), (PJ and the
argument used in the proof of Lemma 2.1 that there exists an M2 > 0 satisfying | y(t) | < M2

and \ym{t)\<M2 formeTVand ί e [ - l , Γ].

ds

Using (13), we have, for 0<t<T,

- " l + f

ds

I (1 -θm)fk(s, ym(s))-(l-θ)fk(s, yjs)) \ds

ΓI (1 -
Jo

, ym(s)) - (1 -

<\um-u\+2\θm-θ\MT+ f[ 5, —yJJ-/ί S, yl S-j ds

where M=a + bM2. Here, we notice that JQ | /(S, ym(s— l//))-/(s, y(j— 1//)) |ίfc is non-
decreasing in te[0, T], and hence GronwalΓs inequality [7, p. 82] gives the following
estimate:

(14)

where cm = | wm — w| + 2|θm — Θ\MT. It is obvious that cm->0 as m->oo.
For O^/^/" 1, (14) shows that l ^ ί O - X O H O uniformly on [0, Z"1] as m-^oo

because ym(s-Γ 1) = um and Xs-/" x) = u hold for 0<s< t<Γι. From this, we see that
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J Ί n C - ί " 1 ) - ^ - / " 1 ) uniformly for te^Γ1,2Γ1], and hence (14) implies that

ym(t)->y(t) uniformly on [0, 2/~ *] as ra-> oo. We reach the required assertion by repeating

the above process. •

Let μkl: JxRn-+Rn be the mapping defined by

μktl(θ, u)=yktl(T; 0, u) for (0, u)eJxRn.

By virtue of Lemma 4.2, μkl is a continuous mapping for each (k,l)eNxN. Since

μ*.z(O> u)=ykJ(T; 0, w) = wk(Γ, u) = λk(u) and μfc>/(l, « )=Λ f Z (Γ; 1, u) = vt(T9 u) = yι(u)

hold, the mapping μ u is a homotopy connecting λfc and yz.

LEMMA 4.3. If p is a point satisfying (8), then there exists an integer n2 such that

μktι(J, dD) does not contain p for all k, l>n2.

This lemma is easily proved by the same argument as in the proof of Lemma 3.1.

By Lemma 4.3, deg(/lk, D,p) = deg(yh D,p) for /c, l>n2, which, together with (9) and

(11), implies (12).
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