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Abstract: Many abelian gauge theories in three dimensions flow to interacting conformal

field theories in the infrared. We define a new class of local operators in these conformal field

theories which are not polynomial in the fundamental fields and create topological disorder.

They can be regarded as higher-dimensional analogues of twist and winding-state opera-

tors in free 2d CFTs. We call them monopole operators for reasons explained in the text.

The importance of monopole operators is that in the Higgs phase, they create Abrikosov-

Nielsen-Olesen vortices. We study properties of these operators in three-dimensional QED

using large Nf expansion. In particular, we show that monopole operators belong to rep-

resentations of the conformal group whose primaries have dimension of order Nf . We also

show that monopole operators transform non-trivially under the flavor symmetry group,

with the precise representation depending on the value of the Chern-Simons coupling.
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1. Introduction

One of the most fascinating problems in quantum field theory is understanding non-

perturbative equivalences (“dualities”) between superficially very different theories. A

classic example is the quantum equivalence of the massive Thirring and sine-Gordon mod-

els [1, 2]. More recently, a number of dualities has been conjectured for supersymmetric

gauge theories in three and four dimensions. The earliest proposal of this sort is the S-

duality of N = 4 d = 4 super-Yang-Mills theory [3, 4, 5]. A decade and a half later,

N. Seiberg proposed a dual description for the 4d CFT which arises as the infrared limit

of N = 1 d = 4 super-QCD [6]. The dual theory is again the infrared limit of an N = 1

d = 4 gauge theory. This proposal generated tremendous excitement, and soon many other

candidate dualities have been found (see refs. [7, 8] for a review). Later it was realized that

many field-theoretic dualities follow from string theory dualities.

Until now, all dualities in dimensions higher than two remain conjectural, and the

physical reason for their existence is not completely understood. On the other hand, 2d

dualities have a rather transparent physical meaning. For example, the sine-Gordon model

has topological solitons (kinks), and it can be shown that a certain local operator which

creates a kink satisfies the equations of motion of the massive Thirring model [2]. It is

believed that many higher-dimensional dualities arise in a similar manner, by “rewriting”

the theory in terms of operators which create topological disorder. But it proved very hard

to make this idea precise.

– 1 –
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There are several related difficulties that one encounters in dimension higher than two.

First of all, interesting higher-dimensional dualities involve gauge theories. This implies

that in order to write down an operator describing the dual degrees of freedom, one has

to work in an enlarged state space which includes the unphysical degrees of freedom of

both the original and the dual gauge fields. It is not known how to construct such an

enlarged space. Fortunately, there are non-trivial examples of dualities in three dimensions

(so called 3d mirror pairs [9]) for some of which the dual theory has a trivial gauge group.

In this case one can hope to construct the operators describing the dual degrees of freedom

directly in the state space of the original gauge theory.

The second difficulty is that it is hard to construct topological disorder operators in

interacting fields theories. For example, it is believed that 3d mirror symmetry arises

when one rewrites three-dimensional supersymmetric QED in terms of local operators

which create Abrikosov-Nielsen-Olesen vortices [10]. This means that such operators are

monopoles. However, it was never clear how to define monopole operators in SUSY QED.

A proposal in this direction was made by M. J. Strassler and one of the authors [11], but

it was only partially successful.

In this paper we will address the second issue in a simple toy model: three-dimensional

QED with Nf flavors of fermions. This theory is believed to flow to an interacting conformal

fixed point for large enough Nf (this is discussed in more detail in the next section). The

theory is not supersymmetric and is not expected to possess a simple dual. Nevertheless,

we believe it is a useful exercise to define monopole operators in this simple model and

learn to work with them. Besides, monopole operators are rather interesting beasts even

in the non-supersymmetric case. First of all, these are the first examples of local operators

in a three-dimensional CFT which are not polynomial in the fundamental fields. Thus our

construction can be regarded as a generalization of the vertex operator construction from

free 2d CFT to an interacting 3d CFT. Second, we show that because of fermionic zero

modes monopole operators transform in a non-trivial representation of the flavor group

whose size depends on the Chern-Simons coupling. Monopole operators in supersymmetric

QED and their role in mirror symmetry will be discussed in a forthcoming publication.

2. Review of three-dimensional QED

The action of three-dimensional QED in the euclidean space is given by

LQED =

∫

d3x

(

1

4e2
FµνFµν + ψ†

j (σ · iDA) ψj

)

.

Here A is the U(1) gauge field, F = dA is the field-strength 2-form, DA is the corresponding

covariant derivative, and ψj is a complex two-component spinor. The index j runs from 1

to Nf .

In three dimensions one can add to the action a Chern-Simons term

LCS =
ik

4π

∫

d3x ǫµνρAµ∂νAρ .

– 2 –
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Such a term breaks parity invariance of the theory. We will assume that the gauge group

is compact (i.e. U(1) rather than R). Naively, this requires the Chern-Simons coupling k

to be an integer, to avoid global anomalies. The real story is slightly more complicated.

When Nf is odd, the fermionic path integral is anomalous. The anomaly is the same as the

anomaly due to a Chern-Simons term with k = 1/2. Thus cancellation of global anomalies

requires

k − Nf

2
∈ Z .

In particular, for odd Nf the Chern-Simons coupling must be non-zero, and parity is

broken. This is known as parity anomaly [12].

The gauge coupling e has dimension m1/2. Thus the theory is super-renormalizable

and free in the ultraviolet. In fact, its UV behavior is so good that no renormalization

of the lagrangian is required. Contrariwise, 3d QED is strongly coupled in the infrared

(perturbative expansion is really an expansion in powers of e2/p, where p is the momentum

scale). It is natural to assume that the low-energy limit of this theory is a non-trivial CFT,

but this has not been conclusively demonstrated. However, the statement holds to all

orders in 1/Nf expansion [13]–[16]. In fact, in the limit Nf → ∞ the infrared theory

becomes weakly coupled, and conformal dimensions of all fields can be computed order by

order in 1/Nf . For example, the IR dimension of ψj is canonical (i.e. the same as the UV

dimension) up to corrections of order 1/Nf .

More interestingly, the IR dimension of Fµν is 2 to all orders in 1/Nf . To understand

why this is the case, consider a current

Jµ = ǫµνρFνρ .

It is identically conserved by virtue of the Bianchi identity. A priori, this current could

either be a primary field, or a descendant of the primary field. In the UV, the latter

possibility is realized, since we can write

Jµ = ∂µσ , (2.1)

where σ is a free scalar field. The scalar σ is usually referred to as the dual photon. It has

dimension 1/2 (as befits a free scalar in three dimensions), while J µ and Fµν have dimension

3/2. On the other hand, in the IR an equation like eq. (2.1) cannot hold. Indeed, eq. (2.1)

implies that Fµν obeys the free Maxwell equation, which clashes with the assumption that

there are massless charged particles in the infrared. (We assume here that the fermions do

not get a mass due to some non-perturbative effect, see a discussion below.) This strongly

suggests that in the IR limit Jµ is a primary field. It is well known that in a unitary 3d

CFT a conserved primary current has dimension 2. Hence the IR dimension of J µ and Fµν

is 2. This conclusion can also be reached by directly studying the perturbative expansion

in powers of 1/Nf [16].

Note that the difference between the UV and IR dimensions of F is of order 1, and

therefore the IR fixed point is far from the UV fixed point, even in the limit Nf → ∞. In

this respect, the situation is very different from the Banks-Zaks-type theories in four-

dimensions [17], where the IR dimensions of all operators are very close to their UV

dimensions.

– 3 –
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The physics of 3d QED at finite Nf remains controversial. The conventional approach

is to study the system of Schwinger-Dyson equations truncated in some way and look for

symmetry-breaking solutions. For simplicity, let us focus on the case of zero Chern-Simons

coupling and even Nf . It has been claimed that at finite Nf flavor symmetry and parity

are spontaneously broken by a dynamical mass for the fermions, and the infrared limit is a

free theory of photons [18]. The majority of such studies indicate that this happens for Nf

smaller than a certain critical value of order 6 or 7 (see e.g. [19, 20, 21]). There are also

claims that dynamical mass generation takes place for all Nf but is exponentially small for

large Nf and therefore invisible in 1/Nf expansion [18, 22, 23]. It must be stressed that the

results of such studies depend on the way one truncates an infinite system of Schwinger-

Dyson equations, a procedure which cannot be fully justified. Lattice simulations of 3d

QED have been inconclusive so far.

In this paper we will be interested in the large Nf limit, and therefore the behavior at

finite Nf will be unimportant. Note also that in the N = 2 and N = 4 supersymmetric

cases the situation is better, in the sense that one can argue the existence of a non-trivial

CFT at the origin of the quantum moduli space for all Nf .

3. Defining monopole operators

3.1 A preliminary definition

As mentioned above, three-dimensional QED possesses an interesting conserved current,

the dual of the field strength:

Jµ =
1

4π
ǫµνρFνρ .

Its conservation is equivalent to the Bianchi identity dF = 0. The corresponding charge is

called the vortex charge, because in the Higgs phase it is carried by the Abrikosov-Nielsen-

Olesen (ANO) vortices. The vortex charge is integral if the gauge field A is a well-defined

connection on a U(1) principal bundle. Loosely speaking, we would like to construct a

vortex-creating operator. But in an interacting conformal field theory, it does not make

sense to say that an operator is creating a particle. A vortex-creating operator will be

defined as an operator with a unit vortex charge. This means that the OPE of such an

operator with Jµ has the form

Jµ(x)O(0) ∼ 1

4π

xµ

|x|3 O(0) + less singular terms .

Such operators can be organized in the representations of the conformal group. In a

unitary theory local operators must transform according to lowest-weight representations,

i.e. those representations in which the dimension of operators is bounded from below. The

operator with the lowest dimension is called a conformal primary. It is standard to label a

representation by the spin and dimension of its primary. Our problem can be formulated

as follows: determine the spin, dimension, and other quantum numbers of primaries with

a given vortex charge.

– 4 –
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In the path integral language, an insertion of an operator with vortex charge n at a

point p is equivalent to integrating over gauge fields which have a singularity at x = p such

that the magnetic flux through a 2-sphere surrounding x = p is n. To be consistent, one

must regard charged matter fields as sections of a non-trivial line bundle on the punctured

R
3. Thus an insertion of a vortex-creating operator causes a change in the topology of fields

near the insertion point. In what follows we will use the terms “vortex-creating operator”

and “monopole operator” interchangeably.

This way of defining topological disorder operators is familiar from 2d CFT. For ex-

ample, a twist operator for a free fermion in 2d is defined by the condition that the fermion

field changes sign as one goes around the insertion point [24]. Another example is af-

forded by the theory of a periodic free boson in 2d. This theory has winding states, and

the corresponding operators create a logarithmic singularity for the boson field. Thus our

monopole operators can be regarded as three-dimensional analogues of twist operators or

winding-state operators.

In the two-dimensional case one can loosely say that a winding-state operator creates

a kink. The precise meaning of this statement is the following. Consider a perturbation of

the free boson theory by a periodic potential, say, a sine-Gordon potential. The resulting

massive theory has multiple vacua and topological excitations (kinks) interpolating between

neighboring vacua. The operator which carries winding number one has non-zero matrix

elements between the vacuum and the one-kink state.

Similarly, one can loosely say that a monopole operator creates an ANO vortex. To

make this statement precise, one has to go to the Higgs phase (for example, by adding

charged scalars with an appropriate potential). In the Higgs phase, the magnetic flux

emanating from the insertion point of the monopole operator is squeezed into a thin tube.

This tube is the world-line of a vortex.

3.2 A more precise definition

The definition of monopole operators given above is not yet complete. In effect, we have

defined an insertion of a monopole operator by requiring that the gauge field strength have

a particular singularity at the insertion point. However, we did not specify the behavior of

the matter fields near the insertion point. In fact, we expect that there are many operators

which carry the same vortex charge, and they differ precisely by the behavior of fields at

the insertion point. Another difficulty is that the IR theory is strongly coupled, and it

seems hard to compute correlators involving monopole operators.

The first difficulty can be circumvented using radial quantization. It is a general

feature of CFT in any dimension that local operators are in one-to-one correspondence

with states in the Hilbert space of the radially quantized theory. This follows from the

fact that one can use a conformal transformation to map an insertion point of an operator

to infinity. In this way one trades a local operator for an incoming or out-going state. In

the case of monopole operators, such a mapping takes an operator with vortex charge n

to a state on S2 × R with a magnetic flux n through S2. Here R is regarded as the time

direction. Classifying states of a CFT on S2 × R with a given vortex charge is certainly a

well-defined problem. Furthermore, the radially quantized picture is the most convenient

– 5 –
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one for computing correlators which involve two monopole operators with opposite vortex

charges and an arbitrary number of ordinary operators. By mapping the insertion of a

monopole operator to an in-going state and the insertion of an anti-monopole operator

to an out-going state, one reduces the problem to computing a particular matrix element

of a product of several ordinary operators. A particularly important special case is the

three-point function which involves a monopole operator, an anti-monopole operator, and

a conserved current. Knowledge of such correlators allows one to read off the quantum

numbers of a monopole operator. For example, in order to determine the dimension of

an operator, one has to compute the expectation value of the stress-energy tensor in the

corresponding state. This approach is familiar from 2d CFT, where it is used to compute

the quantum numbers of twist operators (see e.g. ref. [24]).

Of course, if one desires to compute four-point functions of monopole operators, map-

ping two of the insertion points to infinity does not help very much. In the case of 2d

CFT, one has to use tricks special to the theory in question in order to compute four-point

functions of topological disorder operators. In this paper, we will be content with studying

the OPE of monopole operators with conserved currents, and leave the study of four-point

functions to future work.

The second difficulty can be avoided by working in the large Nf limit. It is a general

feature of this limit that the gauge field does not fluctuate, and can be treated classically [13,

14, 16]. This can be seen as follows. The infrared limit in 3d QED is simply the limit

e → ∞. This is literally true, because no renormalization of the lagrangian is required.

Thus one can simply drop the kinetic term for the gauge field. Integrating out the fermions

then gives an effective action for the gauge field of order Nf . For example, when expanded

around a trivial background, this action looks like

Nf

∫

(

Fµν ✷
−1/2Fµν + higher−order terms

)

d3x .

Thus the effective Planck constant is of order 1/Nf , and in the large Nf limit the size of

gauge-field fluctuations is order 1/Nf . Moreover, if we absorb a factor of N
1/2
f into F, we

see that self-interactions of F are suppressed in the large Nf limit. In other words, N
1/2
f F

is a gaussian field in the large Nf limit. It is this line of reasoning that allows one to show

that the infrared CFT is weakly coupled in the large Nf limit. The argument also applies

to CFT on S2×R with a flux. Thus we can regard the gauge field as a classical background.

It is very plausible that the saddle point of the effective action for F on S2 × R is

rotationally symmetric. Therefore we can assume that the classical background is simply

a constant magnetic flux on S2.

The above discussion reduced our problem to studying free fermions on S2 × R in the

presence of a constant magnetic flux. This is almost a textbook problem, and everything

of interest can be computed. For example, finding the dimension of a monopole operator

is equivalent to computing the Casimir energy of free fermions on S2 with a flux. It is a

priori clear that this energy scales like Nf . There are corrections to this result, which can

be computed by taking into account the fluctuations of the gauge field. However, such

effects are suppressed by powers of 1/Nf .

– 6 –
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The above discussion contains a gap as regards gauge invariance of monopole operators.

Gauge-invariance of a local operator is equivalent to gauge-invariance of the corresponding

state in the radially quantized picture. In other words, the state must satisfy the Gauss’

law. Gauss’ law in QED on S2 × R comes from varying the action with respect to the

“time-like” component of the gauge field A. In the limit e → ∞ it simply reads

ρ(x)|Φ〉 = 0 ,

where

ρ(x) =
∑

j

ψ†
j(x)ψj(x)

is the electric charge density operator. In particular, the total electric charge of a gauge-

invariant state must be zero. The latter is a standard fact about gauge theory on a compact

space, valid irrespective of the value of e. The definition of the electric charge operator

involves normal-ordering ambiguities, which will be dealt with below. Note also that the

inclusion of the Chern-Simons term in the action modifies the Gauss’ law constraint into
(

ρ +
k

4π
ǫijFij

)

|Φ〉 = 0 .

In particular, the total electric charge of the matter modes must be equal to −k times the

vortex charge. In this way (and only in this way) the Chern-Simons term will affect the

physics at large Nf .

4. Properties of monopole operators

4.1 Radial quantization in the presence of a flux

As explained in the previous section, at large Nf all properties of monopole operators

can be deduced from the properties of free fermions on S2 × R in a constant background

magnetic flux. In this subsection we summarize the physics of this system, with detailed

derivations relegated to appendix A.

The spectrum of the Dirac hamiltonian on S2 × R with n units of magnetic flux is

given by

Ep = ±
√

p2 + p|n| , p = 0, 1, 2 , . . . .

The degeneracy of the p-th eigenvalue is 2jp + 1, where

jp =
1

2
(|n| − 1) + p .

These 2jp + 1 states transform as an irreducible representation of the rotation group

SU(2)rot.

The presence of n states with zero energy is particularly important. The existence of

at least n zero modes is dictated by the Atiyah-Singer index theorem applied to the Dirac

operator on S2 coupled to the magnetic field.

In the case of a unit magnetic flux (|n| = 1), we have a single fermionic zero mode

with zero spin. Thus a spinor is converted into a scalar due to the non-trivial topology of

the magnetic monopole. This scalar-spinor transmutation is well known in other contexts;

– 7 –
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in particular it plays an important role in the conjectured S-duality of N = 4 d = 4

super-Yang-Mills. For general n, the fermionic zero modes transform in an irreducible

representation of SU(2)rot with spin j = (|n|−1)/2. We will discuss in detail the case when

n = ±1, and then comment on the higher-n case.

Let us denote the fermionic annihilation operators by ci
pm, where i = 1, . . . ,Nf is the

flavor index, p = 1, 2, . . . , labels the energy eigenspaces as above, and m = −jp,−jp +

1, . . . , jp, labels the states within the p-th energy eigenspace. The fermion annihilation

operators corresponding to p = 0 will be denoted simply by ci
0. The Hilbert space of the

theory is the tensor product of the Hilbert space of zero modes and the Hilbert space of

all other modes. The latter is simply a fermionic Fock space with a unique vacuum |vac〉+

which satisfies

ci
pm|vac〉+ = 0 , p > 0,∀i,m .

This vacuum state is rotationally invariant.

The Hilbert space of zero modes is also a Fock space of dimension 2Nf , with the vacuum

vector which we denote |vac〉0. It is spanned by the vectors

|vac〉0 , ci†
0 |vac〉0 , ci1†

0 ci2†
0 |vac〉0 , . . . , ci1†

0 ci2†
0 . . . c

iNf
†

0 |vac〉0 .

All these states are degenerate in energy, and none is a preferred vacuum. Since the zero

modes have spin zero, all the ground states are rotationally invariant. We conclude that

the radially-quantized theory of free fermions has a 2Nf -fold degenerate ground state.

However, we still need to impose the Gauss’ law. The charge density operator receives

contributions from both zero and non-zero modes. The part due to non-zero modes can

be defined using the obvious normal-ordering prescription. If we put all non-zero modes in

the vacuum state, then the charge density due to non-zero modes vanishes. It remains to

analyze the contribution from zero modes. Naively, it seems that the Fock vacuum must be

assigned zero electric charge. If this were the case, then the states obtained by acting on

the vacuum with zero mode creation operators would have positive charge, and therefore

would not be gauge-invariant. But because of normal-ordering ambiguities, the situation

is more interesting.

As stressed above, the Fock vacuum for the zero modes is not that special. The

completely filled state appears to be an equally good candidate for a state with vanishing

electric charge. The two just differ by a change in the normal ordering prescription. A

statement which is independent of the normal-ordering prescription is that the electric

charge of the filled state exceeds the charge of the vacuum by Nf . If one wants to be

“democratic”, one has to assign charge − 1
2Nf to the vacuum and charge 1

2Nf to the filled

state. A similar symmetric charge assignment has been advocated by Jackiw and Rebbi in

their pioneering study of fermions bound to solitons, on the grounds on charge-conjugation

symmetry [25].

The precise argument for the symmetric charge assignment goes as follows. Charge

conjugation maps a monopole to an anti-monopole and by itself does not tell us anything.

But CP transformation maps a monopole to itself. If we want to quantize in a CP-invariant

manner, we must assign opposite electric charges to states related by CP. Since CP takes

– 8 –
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annihilation operators into creation operators, the filled state and the vacuum are related

by CP, and their electric charges must be opposite.

The invocation of CP invariance assumes that the theory we started with is CP-

invariant. This means that the symmetric charge assignment is valid for a vanishing Chern-

Simons coupling. But we know that turning on the Chern-Simons coupling k is equivalent

to shifting the electric charge by k times the vortex charge. Therefore we conclude that in

the presence of the Chern-Simons coupling the Fock vacuum has electric charge

−Nf

2
+ k ,

while the filled state has charge
Nf

2
+ k .

Note that because of the parity anomaly, the electric charge is all always integer-

valued, whether Nf is even or odd. This a manifestation of the close relationship between

the existence of parity anomaly and the induced vacuum charge [26].

Now we can analyze the consequences of the Gauss’ law constraint. If all non-zero

modes are in their ground state, the constraint simply says that the total electric charge of

the state must be zero. For k = 0 this implies that a physical state is obtained by acting

with Nf/2 zero modes on the vacuum. The number of such states is

(

Nf
1
2Nf

)

,

and they transform as an anti-symmetric tensor of SU(Nf ) with Nf/2 indices. Note that

cancellation of global anomalies requires Nf to be even when k = 0, so this result makes

sense. For k between −Nf/2 and Nf/2 the physical states are obtained by acting with

Nf/2 − k zero modes on the vacuum. The corresponding states transform as an anti-

symmetric tensor of SU(Nf ) with Nf/2 − k indices. Again global anomaly cancellation

ensures that Nf/2 − k is an integer. For |k| > Nf/2 there are no gauge-invariant states

with unit vortex charge and all non-zero modes in their ground state.

If one does not assume that positive-energy modes are in their ground state, then one

can construct many other states which satisfy the Gauss’ law and have unit vortex charge.

However, such states will have higher energy than the ones discussed above.

Now let us consider the more complicated case of n = 2. For simplicity we will set the

Chern-Simons coupling to zero and take Nf to be even. In the case n = 2 each fermion

has two zero modes which transform as a spin-1/2 representation of SU(2)rot. Reasoning

based on CP-invariance tell us that the Fock vacuum has electric charge −Nf . Physical

states must have zero electric charge and are obtained by acting with Nf zero modes (out

of a total number of 2Nf ) on the vacuum. But physical states must also be annihilated by

the electric charge density operator. This is not automatic anymore, because the fermionic

zero modes are not rotationally invariant. A short computation shows that the electric

charge density operator for the zero modes ρ0(x) has a piece which transforms as a singlet

of SU(2)rot and a piece which transforms as a triplet of SU(2)rot. The former is simply
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the average of ρ0(x) over the sphere and is proportional to the total electric charge. The

spin-triplet piece of ρ0(x) is proportional to the total spin, simply because this is the only

spin-triplet one can make out of two spin-1/2 fermions. Thus the Gauss’ law constraint

is equivalent to the requirement that the total electric charge as well as the total spin be

zero.

For example, for Nf = 2, there are six states with zero total electric charge, which

are obtained by acting on the Fock vacuum with two zero modes out of the available four.

Three of these states transform as a vector of SU(2)rot and as singlets of the flavor group

SU(2)f and do not satisfy the Gauss’ law constraint. The remaining three transform as

singlets of SU(2)rot and as a triplet of SU(2)f . These three states are gauge-invariant. Note

that in this case gauge-invariant states transform as an irreducible representation of the

flavor group. For Nf > 2 this is no longer true, as one can easily check.

4.2 Quantum numbers of the monopole operators

In this section we determine the quantum numbers of the simplest monopole operators, the

ones with the lowest conformal dimension for a given vortex charge. On general grounds,

such an operator lives in a lowest-weight representation of the conformal group, and its

conformal dimension is defined as the conformal dimension of the lowest-weight vector, or,

if we pass to the radially quantized picture, as the energy of the corresponding state.

Let us begin with the case n = 1. As explained above, gauge-invariant states with

lowest energy are obtained by putting all non-zero modes in their ground states and acting

by Nf/2−k zero mode creation operators on the vacuum. Obviously such states transform

as an anti-symmetric representation of SU(Nf ) with Nf/2 − k indices. It is interesting to

note that the usual gauge-invariant operators which are polynomials in the fundamental

fields transform trivially under the center of SU(Nf ). Indeed, free fermions have flavor

symmetry group U(Nf ), and since we are gauging its U(1) subgroup, the flavor symmetry

of QED appears to be U(Nf )/U(1) = P U(Nf ) = SU(Nf )/ZNf
. But monopole opera-

tors transform non-trivially under ZNf
(except for k = ±Nf/2). A very similar effect

occurs in N = 2 d = 4 super-QCD, where all perturbative states transform as tensor rep-

resentations of the flavor group SO(2Nf ), while magnetically charge states transform as

spinors [27].

Other quantum numbers of interest are spin and conformal dimension. Since the Fock

vacuum and the zero modes are rotationally invariant, the spin of our monopole operator

is zero. The dimension is proportional to the energy of the state. As usual, the definition

of the energy is plagued by ordering ambiguities. However, we have a simple cure: we

can normalize the energy by requiring that the unit operator have zero dimension. This

means that the energy of the ground state on S2 with zero magnetic flux is defined to

be zero. The energy of any other state can be defined by introducing a UV regulator,

subtracting the regularized energy of the state corresponding to the unit operator, and

then removing the regulator. This procedure gives a finite answer, which is not sensitive

to the precise choice of the regulator, provided the regulator preserves the symmetries of

the problem.
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In order to make precise the relation between the Casimir energy and the dimension,

recall that the OPE of a spin-zero primary field and the stress-energy tensor reads:

Tµν(x)O(y) ∼ h

8π

(

∂

∂xµ

∂

∂xν

1

|x − y|

)

O(y) + . . . ,

where h is the conformal dimension. If the stress-energy tensor of free fermions is defined

by

Tµν = − i

4
ψ̄ (γµDν + γνDµ)ψ +

i

4

(

Dν ψ̄γµ + Dµψ̄γν

)

ψ − gµνL ,

then hψ = hψ̄ = 1, the standard normalization. This implies that in the radially-quantized

picture the expectation value of the stress-energy tensor in the state |O〉 is given by

〈Tµνdxµ ⊗ dxν〉O =
h

4π

(

dτ2 − 1

2

(

dθ2 + sin θ2dφ2
)

)

.

Thus h is simply the energy of |O〉 with respect to the Killing vector ∂
∂τ . In our case, this

means that the conformal dimension of the monopole operator is the Casimir energy of Nf

free fermions on S2 with a magnetic flux. This Casimir energy for any n is computed in

the appendix B. For n = 1 the result is

h1 = Nf · 0.265 . . . .

By charge-conjugation symmetry, monopole operator with n = −1 has the same conformal

dimension and spin and transforms in the conjugate representation of the flavor group

SU(Nf ).

It is easy to extend the discussion to n = ±2. As explained in the previous sec-

tion, Gauss’ law constraint is equivalent to the requirement of zero spin and zero electric

charge. The states with zero electric charge are obtained by acting with Nf zero modes

(out of total number of 2Nf zero modes) on the Fock vacuum. These states transform

as an anti-symmetric tensor of SU(2Nf ) with Nf indices. Gauge-invariant states are ob-

tained by decomposing this representation with respect to the SU(2)rot×SU(Nf ) subgroup

and separating out SU(2)rot-singlets. In general, gauge-invariant states transform as a re-

ducible representation of SU(Nf ). One can easily show that the dimension of this reducible

representation is
(1

2N2
f + Nf − 1

1
2Nf

)

The conformal dimension of the corresponding monopole operators is the Casimir energy

of free fermions in a background magnetic field. Numerically, it is given by

h2 = Nf · 0.673 . . . .

It is interesting to note that 2h1 < h2 (at least for large Nf ). Therefore the OPE of two

monopole operators with n = 1 and the lowest conformal dimension contains only terms

with positive powers of |x1 − x2|.
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5. Discussion

In this paper we have constructed local operators in an interacting 3d CFT which carry

vortex charge and therefore create Abrikosov-Nielsen-Olesen vortices in the Higgs phase.

We have shown that for large Nf such operators have conformal dimensions of order Nf .

For the case of unit vortex charge, we showed that the operator with the lowest possible

dimension has zero spin and transforms in a non-trivial representation of the flavor group.

An important tool in this analysis is 1/Nf expansion.

The idea that vortex-creation operators can be studied in the large Nf limit has been

previously proposed in ref. [11]. The approach taken there was to integrate out the matter

fields, and then perform a duality transformation on the effective action for the gauge field.

Then the vortex-creation operator is defined as the exponential of the dual photon. One

drawback of this approach is that it is easy to miss fermionic zero modes, and consequently

to misidentify the quantum numbers of the vortex-creating operator. It is preferable to

keep the matter fields, and to identify a vortex-creating operator by the property that its

insertion causes a change in the topology of the gauge field. As we have seen above, this

definition can be made concrete by using radial quantization and large Nf expansion.

Our main motivation for studying vortex-creation operators was the hope that this

would enable us to give a constructive proof of 3d mirror symmetry. It is straightforward

to apply the methods of this paper to 3d gauge theories with N = 2 and N = 4 super-

symmetry. The results and their implications for mirror symmetry will be reported in a

forthcoming publication.

It is natural to wonder if our approach to the construction of topological disorder

operators has an analogue in four dimensions. In three dimensions, we defined the vortex

charge of a local operator as the first Chern class of the gauge bundle evaluated on an

S2 surrounding the insertion point. In four dimensions, we have S3 instead of S2, and

since characteristic classes of vector bundles are even-dimensional, it appears impossible

to define a similar topological charge for local operators. On the other hand, a B-field

on an S3 can have non-trivial topology, since its field-strength is a 3-form. Thus, if there

were an interacting 4d CFT involving a B-field, one could define local operators which

create topological disorder. In order for this to work, the field-strength 3-form must have

dimension 3, so that its dual is a conserved primary current. Note that in the theory of

a free B-field, the field-strength has dimension 2. In this case the dual current, although

conserved, is not a primary, but a gradient of a free scalar. Thus in order to define a

conformally-invariant topological charge, the 4d CFT must be interacting. Unfortunately,

no such theory is known at present. Perhaps there exists a duality-symmetric reformulation

of N = 4 d = 4 super-Yang-Mills which involves B-fields, and in which both W-bosons and

dual W-bosons are described by topological disorder operators.

After the first version of this paper was posted on the arXive, we learned that topolog-

ical disorder operators in 3d have been previously considered by G. Murthy and S. Sachdev

[28]. The model considered there was the CP
N model in three dimensions. This theory is

not renormalizable and requires an ultraviolet cut-off. It has a critical point separating the

ordered phase, where the sigma-model field has an expectation value, and the disordered
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phase, where the correlators decay exponentially. Unlike in 3d QED, there are dynamical

topological defects in the CP
N model (so-called hedgehogs). But at the critical point and in

the limit of large-N their density vanishes, and the situation becomes very similar to that

in 3d QED. In particular, the critical exponents computed in ref. [28] can be interpreted

as scaling dimensions of hedgehog operators. It is interesting to note that the approach

to computing these scaling dimensions taken by Murthy and Sachdev is rather different

from ours. Instead of evaluating the expectation value of the stress-energy tensor in the

presence of topological disorder operators, they in essence compute the 2-point function

of these operators. This is somewhat obscured by the fact that Murthy and Sachdev map

both operator insertions to infinity. As a result, the distance dependence of the 2-point

function is traded for an anomalous dependence of the partition function on the ratio of

the ultraviolet cut-off Λ and the infrared cut-off ∆. This method could be used in 3d

QED as well. In fact, M. J. Strassler and one of the authors of the present paper (A.K.)

have contemplated such a route to computing scaling dimensions of monopole operators in

3d QED and SQED, but were discouraged by apparent technical difficulties. It would be

interesting to rederive the results of the present paper using the approach of ref. [28].

A. Monopole harmonics

To solve for the energy spectrum of free fermions on S2 with a magnetic flux, we will use

the fact that this system is related by a conformal transformation to the Dirac equation

on R
3 in the monopole background. This allows us to use the machinery of “monopole

harmonics” developed by Wu and Yang [29].

The three-dimensional Dirac operator on flat R
3 is given by

iD = −~σ · ~π ,

where σx, σy, and σz are the Pauli matrices, and ~π = ~p + ~A, with ~p being the momentum

operator. Following ref. [29], let us define the generalized orbital angular momentum

operator as

~L = ~r × ~π − q~r

r

with q = −eg = n/2. It is straightforward to check that ~L defined this way satisfies the

angular momentum algebra:

[Lj , xk] = iǫjkmxm ,

[Lj, πk] = iǫjkmπm ,

[Lj, Lk] = iǫjkmLm .

We define the total angular momentum as

~J = ~L +
~σ

2
.

We can take r, ~L2, ~J2, and Jz as a complete set of observables (it is easy to check that

they commute and are all self-adjoint with respect to the usual inner product). It can be
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checked that [ ~J, iD = 0, but [~L2, iD] 6= 0. However, this is good enough, because as we

will see later, to find the eigenvalues of iD we only need to diagonalize an operator in a

two-dimensional space.

The monopole harmonics Yq,l,m(θ, φ) constructed in ref. [29] satisfy

~L2Yq,l,m = l(l + 1)Yq,l,m , LzYq,l,m = mYq,l,m ,

l = |q|, |q| + 1, |q| + 2, . . . , m = −l, . . . , l .

The simultaneous eigenfunctions of
{

~L2, ~J2, Jz

}

will be denoted by φljmj
and are given by

φljmj
=





√

l+m+1
2l+1 Yq,l,m

√

l−m
2l+1Yq,l,m+1



 for j = l +
1

2

(

mj = m +
1

2

)

,

φljmj
=





−
√

l−m
2l+1Yq,l,m

√

l+m+1
2l+1 Yq,l,m+1



 for j = l − 1

2

(

l 6= 0,mj = m +
1

2

)

.

They satisfy

~L2φljmj
= l(l + 1)φljmj

,

~J2φljmj
= j(j + 1)φljmj

,

Jzφljmj
= mjφljmj

.

We can summarize the possible value of l, j,mj as follows:

• j = |q| − 1

2
, |q| + 1

2
, |q| + 3

2
, |q| + 5

2
, . . .

(

for q = 0, j = |q| − 1

2
is not allowed

)

;

• if j = |q| − 1

2
, then l = j +

1

2
= |q| , otherwise l = j ± 1

2
;

• mj = −j,−(j − 1), . . . , j − 1, j .

Any wave-function can be expanded as

ψ(~r) =
∑

l,j,mj

Rljmj
(r)φljmj

(θ, φ) .

Note that while φljmj
is a two-component spinor, Rljmj

is just a scalar.

Now we may write iD in terms of the angular momenta. Define σr as

σr =
~σ · ~r

r
.

One can show that

σr(iD) = i
∂

∂r
− i

1

r
~σ · ~L − iq

σr

r
,
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where we made use of the fact that
(

~σ · ~G
) (

~σ · ~K
)

= ~G · ~K + i~σ ·
(

~G × ~K
)

for any ~G and ~K that commute with ~σ. Now using the fact that σr
2 = 1, we have

iD = σrσr(iD) = iσr
∂

∂r
− i

σr

r
~σ · ~L − iq

1

r

= iσr
∂

∂r
− i

σr

r
( ~J2 − ~L2 − 3

4
) − iq

1

r
.

Thus the Dirac lagrangian on R
3 in the presence of a monopole can be written as

LR3 =
i

r
ψ̄σr

(

r
∂

∂r
−

(

~J2 − ~L2 − 3

4

)

− qσr

)

ψ.

Setting r = eτ and performing a Weyl rescaling

gµν → e−2τgµν , ψ, ψ̄ → e−τψ, e−τ ψ̄ , ~A → ~A ,

we obtain the lagrangian on S2 × R:

LS2×R = iψ̄σr

(

∂

∂τ
−

(

~J2 − ~L2 +
1

4

)

− qσr

)

ψ .

Note that the norm ∫

S2

r2 dΩ ψ̄σrψ

on R
3 is transformed to the norm ∫

S2

ψ̄σrψ

on S2 × R.

Taking into account the above results, the euclidean equation of motion for ψ is

dRljmj
(τ)

dτ
−

(

j(j + 1) − l(l + 1) +
1

4

)

Rljmj
(τ) −

∑

l′j′m′

j

qRl′j′m′

j
(τ)〈ljmj |σr|l′j′m′

j〉 = 0 ,

where we have used 〈ljmj |σr|l′j′m′
j〉 to denote

∫

dΩφ†
ljmj

σrφl′j′m′

j
.

Now the identity
[

~J, σr

]

= 0 tells us that

〈ljmj |σr|l′j′m′
j〉 = δjj′δmjm′

j
〈ljmj |σr|l′jmj〉 ,

and thus the eigenvalue equation becomes, for any given j,mj ,

dRljmj
(τ)

dτ
−

(

j(j + 1) − l(l + 1) +
1

4

)

Rljmj
(τ) −

∑

l′

qRl′jmj
(τ)〈ljmj |σr|l′jmj〉 = 0 .

Let us suppress the j,mj indices, and denote R(l=j− 1

2
)jmj

by Ra, |l = j − 1/2, jmj〉 by |a〉,
R(l=j+ 1

2
)jmj

by Rb, |l = j+1/2, jmj〉 by |b〉, 〈a|σr|a〉 by σaa, 〈a|σr|b〉 by σab, 〈b|σr|a〉 by σba,
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and 〈b|σr|b〉 by σbb. Then for any given j,mj , we have two coupled first-order differential

equations:

dRa(τ)

dτ
=

(

j +
1

2

)

Ra(τ) + q
(

σaaR
a(τ) + σabR

b(τ)
)

,

dRb(τ)

dτ
= −

(

j +
1

2

)

Rb(τ) + q
(

σbbR
b(τ) + σbaR

a(τ)
)

.

A straightforward calculation of the matrix elements σaa, σab, and σbb gives

σaa =
−q

j + 1
2

, σbb =
q

j + 1
2

, σab = −

√

√

√

√1 −
(

q

j + 1
2

)2

,

and of course σba = σ∗
ab = σab.

B. Energy spectrum and Casimir energy for fermions on S2

The energy spectrum can be read off from the behavior of the solutions as a function of τ :

a solution with energy E behaves as e−Eτ . The results are as follows.

• Case (i): q = 0.

The two equations decouple, and we find

Ra(τ) = Cae(j+ 1

2
)τ , Rb(τ) = Cbe−(j+ 1

2
)τ ,

where Ca and Cb are integration constants, and j = 1
2 , 3

2 , 5
2 . . . There are no zero-

energy solutions.

• Case (ii): q 6= 0, j = |q| − 1
2 .

In this case, there is no such thing as Ra (because l cannot be j − 1
2 = |q| − 1). So

the first equation is absent, and the second equation gives:

Rb(τ) = C ,

with an arbitrary constant C. This solution has zero energy and degeneracy 2j +1 =

2|q|.

• Case (iii): q 6= 0 and j = |q| − 1
2 + p > |q| − 1

2 , p = 1, 2, . . . .

In this case, the two equations are coupled but easy to solve by eliminating one of

the two unknowns. The result is

Ra(τ) = qC1e
τ
√

(j+ 1

2
)
2
−q2

+ qC2e
−τ

√

(j+ 1

2
)
2
−q2

,

Rb(τ) =





√

(

j +
1

2

)2

− q2 −
(

j +
1

2

)



C1e
τ
√

(j+ 1

2
)
2
−q2

+

+





√

(

j +
1

2

)2

− q2 +

(

j +
1

2

)



 C2e
−τ

√

(j+ 1

2
)
2
−q2

,
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where C1 and C2 are integration constants. The corresponding energies are

Ep = ±

√

(

j +
1

2

)2

− q2 = ±
√

2|q|p + p2 ,

with degeneracies 2j + 1 = 2|q| + 2p. Note that the spectrum is symmetric under

q → −q.

The regularized Casimir energy is given by

Ereg(β) = −
∞
∑

p=0

(2p + |n|)
√

p2 + p|n| e−β
√

p2+p|n| .

We renormalize it by requiring that the Casimir energy of the vacuum with n = 0 be

zero. That is, we subtract from the above sum a similar sum with n = 0, and then

take the limit β → 0. Using the Abel-Plana summation formula

∞
∑

p=0

F (p) =
1

2
F (0) +

∫ ∞

0
dxF (x) + i

∫ ∞

0
dt

F (it) − F (−it)

e2πt − 1
,

we obtain a finite answer for the Casimir energy:

ECasimir =
1

6

√

1 + |n| (|n| − 2) +

+4 Im

∫ ∞

0
dt





(

it +
|n|
2

+ 1

)

√

(

it +
|n|
2

+ 1

)2

− n2

4





1

e2πt − 1
.

Here one needs to take the branch of the square root which is positive on the positive

real axis. The integral cannot be expressed in terms of elementary functions, but can

be easily evaluated numerically for any n.
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