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The last decade has witnessed continuously growing

interest in the investigation of spin degrees of freedom

in various systems in solid-state physics, atomic physics,

optics, and acoustics. The dynamics of spin (or quasi-spin)

becomes especially intriguing when it interacts with other

degrees of freedom. A well-known example of such inter-

action is the coupling between spinor and translational

degrees of freedom, known as spin-orbit coupling. One

of the most spectacular manifestations of the spin-orbit

coupling is the appearance of in-gap topological edge

states at the boundaries or interfaces between periodic

structures. Such topological edge states are particularly

robust because they are immune to weak disorder and

to absence of backscattering by surface defects. Novel

prospects for the exploration of the physics of topological

edge states and insulators open in systems of neutral

atoms placed in periodic potentials, where diverse gauge

potentials can be artificially created. Here, we suggest

a new platform, where topological edge states emerge

due to the interplay between spin-orbit coupling and a

Zeeman lattice, characterized by opposite signs for the

spinor components. We illustrate strong effect of different

components of spin-orbit coupling on the emergence of

the topological states. We also obtain nonlinear edge

states and study their instabilities in the presence of inter-

atomic interaction in spin-orbit coupled Bose-Einstein

condensates.

Discrete and continuous lattices exhibit degeneracies in the

eigenmode spectrum when the corresponding Hamiltonian is

characterized by suitable spatial symmetries and time-reversal

invariance [1]. Graphene, as the paradigm of a honeycomb lat-

tice [2], is one of the best-known examples of structures where

energy bands touch at Dirac points. If the underlying sym-

metries are broken, a gap may open at the Dirac points thus

leading to a transition to either a conventional or a topological

insulator phase, depending on which symmetry is broken [1].

When such a lattice is located in contact with a material hav-

ing distinct topological properties, topological states with en-

ergies falling into the gap and localized at the edge between

two materials may appear. An outstanding perturbation that

leads to the appearance of topological edge states is spin-orbit

coupling (SOC), which in electronic systems gives rise to the

quantum spin Hall effect [3, 4].

Interest in topological edge states is constantly growing [4,

5] and to date the concept of topological insulation has been

extended to several areas of physics, where SOC can be em-

ulated by coupling the translational and the internal spinor

degrees of freedom, the latter often referred as pseudo-spin.

Topological insulators have been realized in acoustic [6] and

mechanical systems [7], as well as in optical and optoelec-

tronic systems [8], including gyromagnetic photonic crys-

tals [9–11], semiconductor quantum wells [12], arrays of cou-

pled resonators [13, 14], metamaterial superlattices [15], heli-

cal waveguide arrays [16–18], systems with driving fields con-

taining vortex lattices [19], and in polaritonic systems, where

SOC originating in splitting of energy levels for different po-

larization states leads to topological effects [20–22]. Simula-

tion of quantum spin Hall effect with atoms in optical lattices

subject to the field gradient was proposed in [23].

A synthetic SOC can be simulated in atomic systems [24–

27], where proper superpositions of hyperfine atomic states,

which are described by two– (or multi–) component wave-

functions, have spinor character, and therefore mimic spin.

Such states are considered to bear a pseudo-spin. In atomic

systems with the SOC induced by an homogeneous field, the

spin Hall effect was observed experimentally [28].

In this paper we show that one can realize topological

edge states in systems of cold pseudo-spin-1/2 SOC atoms

and SOC Bose-Einstein condensates (SO-BEC) [24, 25]

embedded in a Zeeman lattice. Our proposal employs

periodically-varying Zeeman splitting induced by the external

fields thus leading to the formation of a lattice. Such lattices

having opposite signs for two spinor components may obey a

desirable symmetry [29] and are feasible experimentally [30].

The peculiarity of Zeeman lattice is that when spinor com-

ponents are decoupled, one of them is localized in deep

potential wells which can be described by the tight-binding

approximation, while the second component is in the ”almost-

free-electron” limit. SOC links spinor components, i.e. it

couples two atomic states with practically opposite dynamical

properties. Such setting affords the exploration of the effect

of different types of SOC, which are tunable in atomic

systems [25], where nearly arbitrary gauge potentials can be
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created [26, 27]. In particular, one can explore the interplay

of the Rashba [31] and Dresselhaus [32] mechanisms in the

formation of topological edge states. When considering SO-

BEC, the nonlinearity stemming from two-body interactions,

becomes relevant. The effect of two-body interactions can be

twofold. On the one hand, it can affect the mode structure,

even facilitating emergence of topological states, as it was

recently reported in [33] for harmonically trapped spin-one

spinor BEC in a honeycomb lattice. On the other hand, the

nonlinearity couples all modes, including topological ones,

that can lead to different kinds of dynamical instabilities of

the states obtained in stationary analysis. Since the scattering

length of the two-body interactions in a BEC can be both

positive and negative, one can explore the behavior and sta-

bility of topological edge states in different nonlinear regimes.

Results

Model. We address a SOC atom described by the spinor

ψ = (ψ1, ψ2)
T (T stands for the transpose), whose evolution

is governed by the Schrödinger equation (we use units where

m = ~ = 1)

i
∂ψ

∂t
= Ĥψ, Ĥ = Ĥ0 + ĤSOC. (1)

Here,

Ĥ0 = (k̂2x + k̂2y)/2 + Û(r), (2)

with k̂x = −i∂x and k̂y = −i∂y , describes the spinor in the

external potential Û(r). The SOC is described by the Hamil-

tonian

ĤSOC = βyσxk̂y − βxσyk̂x (3)

where the positive constants βx,y , are determined by the inter-

play between Rashba SOC and Dresselhaus SOC, and σx,y,z
are the Pauli matrices. The case βx = βy = βR corresponds

to the pure Rashba SOC βR(σxk̂y−σyk̂x) [31]. Similar gauge

potentials were previously used in atomic systems [34, 35],

where they are created by the external coupling of hyperfine

states. This flexibility is a crucial difference between atomic

systems and their solid-state counterparts, where the particular

form of SOC depends on the symmetry of the crystalline lat-

tice [36, 37]. Independently engineered Zeeman lattice [30], is

created to have identical functional shapes, but opposite signs

for two different spinor components. It is modeled by the po-

tential Û(r) = −R(x, y)σz , where

R(x, y) = ρ
∑

m,n

e−[(x−xm)2+(y−yn)
2]/d2

(4)

describes a honeycomb structure with the amplitude ρ, char-

acteristic width, d, of lattice sites at the nodes (xm, yn) of the

discrete honeycomb grid. The distance between neighboring

sites is a. In these notations −R(x, y) and +R(x, y) are the

potentials for the components ψ1 and ψ2, respectively. Thus,

the spatial domains, where ψ1 tends to have maxima are the

regions with strongest expulsion for ψ2. This leads to non-

trivial competition between Zeeman lattice and SOC, since

the latter tends to create nonzero density in ψ2 component in

the vicinity of density maxima of ψ1 component, i.e. around

maxima of potential for ψ2.

We assume that the Zeeman lattice is infinite along the

y-axis and is truncated along the x-axis. The truncation is

such that the lattice has two different edges, where topological

states can appear: zigzag (left) and bearded (right) ones. Such

truncation allows us to compare directly the properties of the

modes excited at the edges of different types. The top row of

Fig. 1 shows representative lattice shape used in the simula-

tions. The modes of such truncated lattice are Bloch waves of

the form ψ(x, y) = eiky−iε(k)tφ(x, y), where ε(k) is the en-

ergy, k ∈ [0,K] is the Bloch momentum along the y-axis, φ

is the periodic spinor function with a period L = 31/2a along

the y-axis, and K = 2π/L is the width of the Brillouin zone.

FIG. 1. Linear edge states. Upper panel: the Zeeman lattice with

zigzag (left) and bearded (right) edges used in simulations (three unit

cells are shown). Lower panels: examples of edge states for different

Bloch momenta indicated in the panels. Only |ψ1| is shown. In all

cases βx = βy = 1.5.

Linear topological edge states. In the absence of SOC, i.e.

when βx = βy = 0, the spinor component ψj (j = 1, 2)

solves the stationary Schrödinger equation with the potential

(−1)jR(x, y). Since the potential −R(x, y) < 0 represents

an array of narrow wells, the ground state of the ψ1 compo-

nent has negative energy. The potential +R(x, y) is positive

and corresponding energy spectrum for ψ2 is located at ε > 0.

This peculiarity of the Zeeman lattice has several important

consequences. First, in the presence of weak SOC the open-

ing of the lowest topological gap is expected at those (neg-

ative) energy levels, where degeneracies in the form of Dirac

points are encountered in the spectrum of ψ1 when it is decou-

pled from ψ2. Second, in this lowest topological gap all states

are characterized by dominating ψ1 component. Finally, for

a deep lattice, like the one used here within the framework

of the full continuous model, the decoupled component ψ1 is

well described by the tight-binding approximation [38].

One of our central findings is that the type of SOC, or more

precisely the relation between SOC strengths βx and βy , is

a decisive factor that determines whether topological modes

can be created. Indeed, let us first consider the case when one

of the SOC components is nonzero, but small enough to be

considered as a perturbation of the Hamiltonian Ĥ0 of the in-

finite lattice. Let T be the time reversal operator that changes

k̂ → −k̂ and performs complex conjugation of the wavefunc-

tion: T ψ(r) = ψ∗(r). The gap in the spectrum of the infinite

lattice can open only in the vicinity of the Dirac points under

the action of perturbations. However for a pair of Dirac points
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with coordinates [0,±2K/3] in the reciprocal lattice, the SOC

component βxσykx, which does not break time-reversal sym-

metry T , becomes exactly zero, since in these points kx = 0.

Thus, total gap cannot be opened by such a perturbation. On

the other hand, perturbation introduced by other SOC compo-

nent βyσxky that acquires nonzero value βyσx(2K/3) in the

above mentioned Dirac points, does open the gap. We have

verified these properties numerically not only for small values

of SOC strengths, but also for βx ∼ 1 and βy ∼ 1 (keeping

βy = 0 or βx = 0, respectively). Even though βyσxk̂y per-

turbation opens the gap around Dirac points of Ĥ0 and even

though it is neither T - nor P-symmetric (where P is the op-

erator of spatial inversion), it cannot lead to appearance of

topological states, when it acts alone. The reason behind this

is that unperturbed Hamiltonian Ĥ0 obeys additional time re-

versal symmetry T ′ = σzT that is equivalent to introduction

of unessential phase factor ψ2 → eiπψ2 into ψ2 component

that is decoupled from ψ1 component in the absence of SOC.

Since [T ′, βyσxk̂y] = 0, the SOC component βyσxk̂y does

not break newly defined time reversal symmetry T ′ and can-

not lead to topological effects.

The symmetry considerations for infinite lattice have direct

implications for the formation of edge states in the truncated

lattice illustrated in Fig. 2. Without SOC, βx = βy = 0,

one observes two bands touching in Dirac points at k = K/3
and k = 2K/3 that are remnants of the Dirac points of the

bulk lattice. Two nontopological edge states arise at zigzag

(red curve) and bearded (green curve) edges. When βx = 0
the SOC component ∼ βy opens a gap that is nontopological

in accordance with above considerations. In this gap one en-

counters only one nontopological edge state, whose energy is

located in the gap (i.e. it does not connect two bands). In-

clusion of weak SOC component ∼ βx cannot immediately

lead to appearance of topological edge states (second panel of

Fig. 2): since nontopological gap already exists, it should first

close under the action of βx component (this occurs around

βx = 0.85, third panel of Fig. 2) and then reopen in the form

of topological gap at βx > 0.85 (fourth panel, Fig. 2), where

two topological modes connecting different bands appear.

A different scenario is observed when βx is large and one

gradually increases βy contribution. At βy = 0 no gap exists

in the spectrum even if βx ∼ 1, as was explained above. By

adding even weak βyσxk̂y term into Hamiltonian, one breaks

the time-reversal symmetry T and, hence, a topological gap

appears (the Hamiltoian with βx > 0 does not obey T ′ sym-

metry). The width of this gap monotonically increases with

βy , and unidirectional edge states exist at different edges, as

shown in fifth and sixth panels of Fig. 2.

These results imply that both βx and βy SOC components

are required for the existence of topological states. The largest

topological gap was achieved for pure Rashba coupling, when

βx = βy (sixth panel of Fig. 2). Results presented in this

figure constitute the central result of this paper: the emergence

of topological edge states due to interplay of SOC and Zeeman

lattice, induced by the inhomogeneous magnetic field.

Further we concentrate on the case of Rashba coupling

βx = βy . Sixth panel of Fig. 2 indicates that edge states

corresponding to zigzag (red branches) and bearded (green

branches) edges may coexist for small intervals of Bloch mo-

mentum, but in general, they occupy different domains in k,

that is similar to findings reported for single-component mod-

els [39]. Representative examples of topological edge states

from zigzag and bearded edges are shown in Fig. 1. The best

localization of the edge estate is achieved when energy ε falls

into the center of topological gap. When energy approaches

lower or upper allowed bands, the mode strongly expands to-

wards the center of the lattice.

Dispersive properties of the edge states are summarized in

Fig. 3 where k-dependencies of derivatives ε′ ≡ ∂ε/∂k and

ε′′ ≡ ∂ε/∂k are shown. Topological insulator usually sup-

ports unidirectional edge states, i.e. states at a given inter-

face can move only in one direction, up or down. A peculiar

property of our system is that edge states are not necessarily

moving, i.e. the group velocity ε′ ≡ ∂ε/∂k can be zero for

the zigzag edge modes and can even have two zero points for

the bearded edge modes, as shown in Fig. 3(a). For quan-

tum spin Hall states such zero group velocity modes on a con-

ventional graphene lattices were observed in [40]. Thus, by

changing Bloch momentum one can control the direction of

the surface current. An unusual situation is possible when

the Bloch number is in the vicinity of k = K/2, where the

states at the opposite edges move in the same direction (the

red and green curves closely approach). Also, Fig. 3(b) sug-

gests that second-order dispersion may vanish for some edge

states. When broad envelope is superimposed on such a state,

the latter moves along the interface over hundreds of lattice

sites, representing linear quasi-non-dispersing wavepacket.

The example of topologically protected spinor surface

current is shown in Fig. 4. We consider a triangular

lattice with zigzag edges, with each edge containing 30
periods of the honeycomb structure. The initial state

ψ(x, y) = φ(x, y)eikye−y2/w2

at t = 0 was prepared using

edge state φ corresponding to Bloch momentum k = 0.4K
with envelope of width w = 20. Such a state can traverse

several corners of triangular lattice returning to its original

location. Although the triangular shape of the lattice is less

favorable for persistent circular currents because of relatively

strong scattering of edge states into the bulk modes at the

corners, an almost complete round trip of the wave-packet

still occurs.

Nonlinear edge states in SO-BEC. If atoms experience two-

body interactions and one deals with a SO-BEC in a Zeeman

lattice, the evolution of two-component (spinor) order param-

eter ψ, is governed by the coupled Gross-Pitaevski equations:

i
∂ψ

∂t
=

1

2

(

1

i
∇+A

)2

ψ + Û(r)ψ + g
(

ψ†ψ
)

ψ. (5)

Here A = −iβxσy + jβyσx is the non-Abelian gauge po-

tential, g characterizes inter- and intra-species interactions,

which are considered equal [24]. The sign of g coincides

with the sign of scattering length for two-body interactions

and is considered relatively small, such that the BEC is in

the superfluid phase for the chosen Zeeman lattice. Here we

are interested in the impact of the nonlinearity on the proper-
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FIG. 2. Band-gap structures. Energy of linear states versus Bloch momentum k in truncated Zeeman lattice with zigzag-bearded edges for

different SOC strengths βx and βy . Black curves correspond to bulk modes, while red (green) curves correspond to edge states residing on the

left zigzag (right bearded) edge. The lattice parameters are ρ = 8, a = 1.4, and d = 0.5. The Chern numbers C1,2 of the two lowest bands of

the respective bulk lattice are shown in the panels (see Methods).

FIG. 3. Group velocity and Group velocity dispersion. Group

velocity ε′ (a) and dispersion ε′′ (b) vs Bloch momentum k for edge

states from zigzag (red) and bearded (green) edges at βx = βy =

1.5. Dashed lines indicate ε′ = 0 or ε′′ = 0 level.

FIG. 4. example of persistent topologically protected spinor sur-

face current. Honeycomb lattice with zigzag edges and |ψ1| dis-

tributions at different moments of time illustrating circulation of the

edge state with broad envelope at k = 0.40K, βx = βy = 1.5.

ties of topological edge states, considered above for the linear

case. Topological states now are searched as nonlinear Bloch

modes parameterized by the chemical potential µ and Bloch

momentum k: ψ(x, y) = eiky−iµtφ(x, y). Bifurcations of

such states from the linear edge states with µ = ε at the zigzag

boundary are depicted in Fig. 5, where we plot the peak ampli-

tudes a1,2 of the spinor components and the number of atoms

N =
∫∞

−∞
dx

∫ L

0
dyψ†ψ per y-period, as functions of the

chemical potential.

FIG. 5. Properties of the nonlinear edge states. Amplitudes of the

components (a) and number of atoms per y−period (b) of nonlinear

edge states at the zigzag edge versus chemical potential µ for βx =

βy = 1.5. Black (red) curves correspond to g = −1 (g = +1).

Vertical dashed lines indicate borders of the topological gap. Red

dots correspond to linear edge states.

We considered positive, g > 0, and negative, g < 0, scat-

tering lengths and found that amplitudes and norms of the

nonlinear edge states monotonically increase toward the gap

edges. They vanish in the point where they bifurcate from the

linear edge state (red dots in Fig. 5). In all cases the first spinor

component dominates. The ratio of the peak amplitudes a1/a2
slightly decreases towards upper edge of the topological gap.

Both attractive and repulsive interactions lead to delocaliza-

tion of the nonlinear edge states and their strong expansion

into bulk of the lattice when the chemical potential approaches

one of the topological gap edges.

Rigorously, nonlinear edge states in Zeeman lattices were

found to be unstable. However, these instabilities may de-

velop at very large evolution times, therefore in practice the

states may be seen as metastable. For a topological edge state,

instability is determined by the number of atoms N and by

the point of bifurcation of a nonlinear mode from the linear

limit (the red dot in Fig. 5). Typical time scale of instability

is larger for nonlinear modes bifurcating from the center of

the gap and it decreases with N , when the chemical potential

approaches a gap edge. For g < 0 and g > 0 instabilities are

qualitatively different, as illustrated in Fig. 6 and Fig. 7, re-

spectively. For selected value of k = 0.4K the effective mass
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FIG. 6. Evolution of the nonlinear edge state. Evolution of the

perturbed nonlinear edge state from zigzag edge at µ = −3.43, k =

0.40K, βx = βy = 1.5, and g = −1.

∼ 1/ε′′ along the y-axis is negative. For g < 0 this implies

that no modulational instability can develop in the y-direction

along the interface. Indeed, no splitting into regular fragments

along the edge is observed in Fig. 6 and instability shows up

as a dispersion of the edge state into the bulk. In the case of

g > 0 the development of modulational instability is possible

for negative effective mass and one can clearly see fragmen-

tation of the wave into periodic pattern in Fig. 7. This can be

considered as a precursor to the formation of edge solitons.

FIG. 7. Evolution of the nonlinear edge state. Evolution of the

perturbed nonlinear edge state from zigzag edge at µ = −3.34, k =

0.40K, βx = βy = 1.5, and g = +1.

Returning to the example of topologically protected spinor

surface current illustrated in Fig. 4 for triangular structure,

we verified that one round trip, similar to that depicted in

Fig. 4, still occurs for moderate attractive and repulsive

nonlinearities that only lead to increase of the bulk radiation.

Discussion

The reported results reveal the existence of topological edge

states in atomic systems with SOC loaded in a honeycomb

Zeeman lattice. We explored a wide range of parameters char-

acterizing orthogonal components of the SOC and found that

they play fundamentally different roles in the gap opening and

edge state formation. The obtained states demonstrate per-

sistent spinor surface currents in finite-size Zeeman lattices.

When two-body interactions are included and the atomic sys-

tem becomes a spin-orbit coupled BEC, nonlinear metastable

topological edge states can exist.

While we report on the first ever example of topological

edge states for atoms and BECs in Zeeman lattices, main

ingredients required for observation of such states (spin-

orbit coupling with controllable Dresselhaus and Rashba

contributions and Zeeman lattice) are already available

and were realized in laboratories. Taking into account that

atomic systems are widely recognized as excellent quantum

simulators for diverse physical phenomena, we believe that

the platform that we put forward opens an important new

approach for realization of topological insulators in linear

and nonlinear atomic systems. Therefore, our results allow

for direct extension to other types of gauge fields which can

be used to manipulate topological states.

Methods

The topological phase transition shown in Fig. 2 is con-

firmed by computing the Chern numbers of the respective

bands [41, 42]:

Cn = 1/(2π)

∫

BZ

[∂xAny(k)− ∂yAnx(k)] d
2k,

where Anα = i〈ψnk|∂kα
|ψnk〉 is the Berry connection, ψnk

is the Bloch function of n−th band, α = x, y, and the in-

tegral is over the first Brillouin zone. Before the gap clos-

ing in Fig. 2, the lowest bands have equal Chern numbers

C1,2 = 0. After gap reopening the bands acquire Chern num-

bers C1 = −1 and C2 = 1. According to bulk-edge corre-

spondence this corresponds to a single topological edge state

in the truncated lattice.

Data availability. The datasets generated during and/or

analyzed during the current study are available from the

corresponding author on reasonable request.
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servation of unidirectional backscattering-immune topological

electromagnetic states. Nature 461, 772 (2009).

[12] Lindner, N. H., Refael, G. & Galitski, V. Floquet topological

insulator in semiconductor quantum wells. Nat. Phys. 7, 490

(2011).

[13] Hafezi, M., Demler, E. A., Lukin, M. D. & Taylor, J. M. Robust

optical delay lines with topological protection. Nat. Phys. 7, 907

(2011).

[14] Umucalilar, O. & Carusotto, I. Fractional quantum Hall states

of photons in an array of dissipative coupled cavities, Phys. Rev.

Lett. 108, 206809 (2012).

[15] Khanikaev, A. B. et al. Photonic topological insulators. Nat.

Mater. 12, 233 (2012).

[16] Rechtsman, M. C. et al. Photonic Floquet topological insula-

tors. Nature 496, 196 (2013).

[17] Maczewsky, L. J., Zeuner, J. M., Nolte, S. & Szameit, A. Ob-

servation of photonic anomalous Floquet topological insulators.

Nat. Commun. 8, 13756 (2017).

[18] Mukherjee, S. et al. Experimental observation of anomalous

topological edge modes in a slowly driven photonic lattice. Nat.

Commun. 8, 13918 (2017).

[19] Bardyn, C.-E., Karzig, T., Refael, G. & Liew, T. C. H. Chi-

ral Bogoliubov excitations in nonlinear bosonic systems. Phys.

Rev. B 93, 020502(R) (2016).

[20] Nalitov, V., Solnyshkov, D. D. & Malpuech, G. Polariton Z

topological insulator. Phys. Rev. Lett. 114, 116401 (2015).

[21] Karzig, T., Bardyn, C.-E., Lindner, N. H. & Refael, G. Topo-

logical polaritons. Phys. Rev. X 5, 031001 (2015).

[22] Kartashov, Y. V. & Skryabin, D. V. Modulational instability

and solitary waves in polariton topological insulators. Optica

3, 1228 (2016).

[23] Kennedy, C. J. et al. Spin-Orbit Coupling and Quantum Spin

Hall Effect for Neutral Atoms without Spin Flips, Phys. Rev.

Lett. 111, 225301 (2013).
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