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Let T be a homeomorphism from a compact space A onto itself

and let p be a P-invariant probability measure on the Borel sets of

A. It was conjectured in [l] that the measure-theoretic entropy of

P with respect to u is less than or equal to the topological entropy of

P. The purpose of this paper is to show, under the assumption that A

is metric, that the inequality holds when T is assumed only to be a

continuous map from A into itself.

We shall first prove the inequality under the assumption that A is

a closed subset of the Hilbert cube which is invaraint under a certain

type of shift operator, and P is the restriction of the operator to A.

The generalization will be obtained by considering representations of

T as such shifts.

By a flow we mean a pair (A, P), where A is a compact metric

space and T is a continuous map from A into itself. Throughout the

paper, (A, P) and (F, S) will denote arbitrary flows. A continuous

map <p: A—> F will be called a homomorphism from (A, T) into (F, S)

iid)oT = Sod>. Ii a is any finite cover of A, we let N(a) be the number

of members in a subcover of a of minimal cardinality. As in [l], we

write aVj8= { UCW: P£a, F£|3} and we write a>fi to mean that

a is a refinement of fi, though this is contrary to the notation of

many authors. As in [l], it follows from the fact that N(a\/fi)

^N(a)-N(fi), that the limit exists in the following definition:

h(a, T) =   lim — log N ( V   T-ia),
»-,»   n \ t-o /

for any finite cover a of A. Finally, we note that if a>fi, then N(a)

^ A(/3), and h(a, T) = ^(j3, T). The topological entropy of T is defined
as

h(T) = sup h(a, T),

where the supremum is taken over all finite open covers of A.

It is easily seen that if 0 is a homomorphism from (A, P) onto

(F, S) and if a is a finite cover of F, then h(<p-l(a), T)=h(a, S). It

follows that h(S)£h(T).
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Let M(X, T) denote the set of all P-invariant probability measures

on the Borel sets of X. For a finite measurable partition a of X, we

write, as in [2],

H,(a) = - Z p(A) logp(A),

and

hu(a, T) =   lim — HM (   V   T-'a ) .
r.-»»   ra        \ ,=o /

The measure-theoretic entropy of T is defined as

ha(T) = sup hu(a, T),

where the supremum is taken over all finite measurable partitions of

X.
For every cover a of X, we write

w(a) = (J {ur\V: U,V Ea;U ^V}.

If p is a measure on the Borel sets of X, we say that a cover a is p-

disjoint whenever p(w(a))=0. For pEM(X, T), it is easy to show

that if a is ^-disjoint then so is \Z?Io T~*a. It follows that hu(a, T)

is defined for any finite measurable ju-disjoint cover a of X.

By an essential member of a cover a we mean a member U such

that a— { U} is not a cover.

Proposition 1. Let pEM(X, T) and let a be a finite measurable

p-disjoint cover of X. Then

K(a, T) g h(a, T).

Proof. Fix a positive integer ra and let B be the set of members of

ViZo T~(a which have positive measure. Let k be the number of

members of B. It follows from the fact that V"7o T~*a is ^-disjoint

that each set of B is essential to V?r0' T~fa, so that k^ A(V?7o T^a).

On the other hand, it follows from the convexity of the function

t log I that Hn(&)^\o<g k. (See [4, p. 4].) We can conclude that

hJ\   T-<p\ = Hn(fi) ̂ log AM   V   P-*aV

We now divide by ra and let ra tend to infinity, obtaining the result.

To make use of Proposition 1 we must be able to compare h(a, T)

with h(T) for a p-disjoint cover a of X. We let p(a) denote the order

of a, the largest number of distinct members of a with a nonempty

intersection.
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Proposition 2. If a is a finite closed cover of X, then

h(a, T) ^ h(T) + log p(a).

Proof. For x£A, let St (a, x) denote the union of the members of

a which contain x, and let St(a)={St(a, x):x£A}. Let n be a

positive integer. We claim that

n( V   T-'a) = n( V    r-*St(a)J -p(a)\

For let 7 be a subcover of V^o1 P-,St(a) of minimal cardinality. Then

each member F of y is of the form

f = F0 n t-'Fx r\- • • n r-»+iF„_i,

where F,- £ St(a),    i = 0, •••,» — 1.

Now each F,- is a union of at most p(a) members of a, so F is a union

of at most p(a)n members of V?ro T~*a. Hence, from y we obtain a

subcover of VjTo T~la with at most

n( V   r-'StWj -p(a)"

members. This proves the above inequality. If we now take the loga-

rithm of both sides of the inequality, divide by n and let n tend to

infinity, we obtain

h(a, T) = h(St(a), T) + log p(a).

We next claim that for each x£A, x is an interior point of St(a, x).

This follows from the fact that the intersection of the complements

of the sets of a which do not contain x is an open subset of St(a, x).

It now follows that St(a) has an open refinement, so that h(St(a), T)

Sh(T), and the proposition is proved.

It should be remarked that a finite closed cover can yield entropy

strictly greater than the topological entropy. (See [3, p. 45].)

The following theorem will be used to obtain AM(P) in terms of the

entropy of finite, p-disjoint closed covers of A. The theorem is due

to Rohlin, [4]; it appears in this form in [2, p. 87].

Theorem. Let uEM(X, T), and let a0<«i< • • • be a sequence of

finite u-disjoint measurable covers of X such that the smallest sigma-
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algebra containing U,1i U£,i T~*ak is the algebra of all Borel sets of X.

Then

hu.(T) —   lim hu(ak, T).
1—+ oo

Our next step will be to show that for certain subsets of the Hilbert

cube we can obtain a sequence a0<«i< • • • of covers to which we

can apply Propositions 1 and 2, and Rohlin's Theorem.

Throughout the paper, Z+ will denote the set of nonnegative inte-

gers.

Let I" denote the ra-cube,

J* = {u = (u0, Mi, ••■ , ra„_i): 0 g m ^ 1 for i = 0, • • • , ra — l}.

We shall find it useful to let In have the metric d defined as follows:

d (u, v) =      max      | m — Vi \ for p, v £ I".
<=0,-..,n-l

For each positive integer ra we define Bn to be the set of all sequences

x=(x(0), x(l) • • • ) of points in In; that is, Bn=(In)Z+. We let B„

have the metric p defined as follows:

00

p(x, y) = J2 2-md(x(m), y(m)).

We let ffn'-Bn—*B„ be the shift transformation on B„ defined by:

a„(x)(m) =x(m + l) for mEN, x£5n. Finally, we let 7r„: P„—>/„ be

the projection:

ir„(x) = x(0)        for x £ Bn.

Proposition 3. (B„, <r„) is isomorphic to (Bi, <rj) for any positive

integer w.

Proof. Define/:Pi—>P„ as follows:

(f(x)(m))i = x(nm + i),       for 0 g i < ra, m £ Z+.

It is straightforward to show that/ is an isomorphism.

By mesh (a) we mean the supremum of the diameters of the sets

in a.

Proposition 4. Let a be a cover of I". If m is a positive integer, then

/m—l     _. \ —m+l

mesh I   V  o-n\V„ (a)) J ^ wmesh(a) + 2

The proof is straightforward.
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Theorem 1. Let v be a finite measure on the Borel sets of In. Then

there is a sequence fi0<fix<. ■ ■ ■ of closed v-disjoint covers of I" such

that

(1) mesh(Bt)-*0.

(2) p(Pi)^n+lforiEZ+.

Before proving Theorem 1, we look at some corollaries. (Recall

that p(B() is the order of fit.)

Corollary 1. Let (A, T) be a subflow of (Bn, <xn); i.e., X is a closed

on-invariant subset of Bn and F = <7B|A. Let uEM(X, T). Then

K(T)£h(T)+log(n+l).

Proof. Let fi0<fix< ■ ■ ■ be a sequence obtained from Theorem

1, where v is defined by the rule

v(A) = u(ir„~ (A) r\ X)        for every Borel set A of f.

Let aK- {irn~l(F)r\X:FEPk}, ior &£A. Then each a* is a closed

p-disjoint cover of A. We claim that {a*} satisfies the hypothesis

of Rohlin's Theorem. For let x£A and let U he a neighborhood of

x in A. Choose e>0 so small that p(x, y) <e implies y£ U, for y£A.

By Proposition 4, we can choose k, mEZ+ such that

mesh ( V   P-*W ) < e.

Hence, there is a set FE^T~o T~'ak such that x£F£U. This shows

that every open set is a union of sets in the countable collection

U/l0 ll™.! Vjlo T~*aj. We now apply Rohlin's theorem and obtain

h„(T) =linu_„, h^aic, T). An application of Propositions 1 and 2 now

completes the proof of the corollary.

Corollary 2. Let (A, P) be a subflow of (Bn, <r„) and let

uEM(X, T). Thenh„(T)^h(T).

Proof. Let m be a positive integer. By Proposition 3, (A, Tm) is

isomorphic to a subflow of (Pi, o-\m) which is isomorphic to (Bnm, o-nm).

Hence, by Corollary 1, h„(Tm)—h(Tm)^log(nm + l). Now recalling

that h>(Tm)=mhr(T) and h(Tm)=mh(T), we have h„(T)-h(T)

= (l/m)(hll(Tm) — h(Tm))^(l/m) log(ww-fT). We now observe that

as m tends to infinity, (1/m) log(ww + l) tends to zero.

The proof of Theorem 1 proceeds by a series of lemmas. We let v

be a given finite measure on the Borel sets of P.

By an M-rectangle we mean a subset R of 7° of the form

R = {x = (x0, • • • , x„_i) £ In: at• g x,- ̂  b{, i = 0, • • • , n - l\,
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where a,-, &,- are numbers such that 0^o<<6,gl for i = 0, • • • ra—1.

The i-mesh of R is defined to be bt — ai.

By a rectangular cover of I" we mean a finite cover of I" consisting

of ra-rectangles. If a is a rectangular cover of In, we can write

a = {Rx, • ■ ■ , Rq},    where

(*) n ■

Rj = {x E I : at g x,- ̂  biy i = 0, • ■ • , ra — 1}

for j = 1, ■ ■ ■ , q.

Definition. Let a be a rectangular cover of /" represented by (*).

We define the i-mesh of a to be

Li(a) =     max    (bi — al).
3=1.- • -.9

Note that max<=0,...n-i L{(a) is the mesh of a with respect to the

metric we defined on I".

Definition. Let a be a rectangular cover of I" represented by (*).

For x£P*, we define

£(a, x) = the number of integers i £ {0, • ■ • , n — lj

such that there is a j£ {1, • • •, q} with x< = of or xi = bit. We say that

a is uneven if

p(a, x) ^ £(a, x) + 1        for all x £ /",

where p(a, x) is the number of distinct members of a containing x.

Lemma 1. Let a be an uneven v-disjoint rectangular cover of In. Fix

REot and fix i£{0, • • • ra —l}. Then there is a decomposition of R,

R = R' W R" such that a' = {R', R"} VJ {P £ a: F ^ R}

is an uneven v-disjoint rectangular refinement of a, and such that the

i-mesh of R' and R" are both ^ f the i-mesh of R.

Proof. Let a be represented by (*), where R = Rx. For c£(oJ, b\)

we define Hc= {x£7":xj = c}. We now choose

/2a) + b)   a)+ 2b\
C0e{-^-'~3~)

such thatv(HC0) =0and such thatc07^and 007*%for allj = 2, • • •, q.

This can be done because the interval mentioned above is uncount-

able, while v(Hc)>0 can occur for at most a countable number of

points c in the interval. We now define

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1969] topological entropy bounds 685

R' = {xERi: Oi< Xi^co)    and   R" = {x£ P2: c0 ̂  x< = b]}.

Now the Pmesh of R' is c0 — a] and the t'o-mesh of R" is &J— c0, and

both of these numbers are Ssf (b$— a]). It is straightforward to show

that w(a')Ew(a)\JHClj, so that a' is ^-disjoint. To show that a' is

uneven, let x£7n. We must show that p(a', x)^%(a', x) +1. If

x£77C0> then £(«', x) =£(a, x) + l, and it follows that

p(a, X) = p(a, x) + 1 = {(«, x) + 2 = {(a7, x) + 1.

If, on the other hand, x£/7Co, then x is not in RT\R", so

p(a', x) = p(a, x) = £(«, x) + 1 = £(«', x) + 1.

This completes the proof of Lemma 1.

Lemma 2. Let a be an uneven v-disjoint rectangular cover of 7". Fix

iE{0, ■ ■ •, n — 1}. Then there is an uneven v-disjoint rectangular re-

finement fi of a such that

Li(fi) = §7,(a).

The proof is a successive application of Lemma 1 to the members

Roia.

Lemma 3. Let a be an uneven v-disjoint rectangular cover of 7„. Then

there is an uneven v-disjoint rectangular refinement y of a such that

mesh(y) ^ fmesh(a).

The proof of Lemma 3 is a successive application of Lemma 2,

starting with i = 0, and continuing to i = n — 1.

Proof of Theorem 1. We let fi0- {ln}, and let fix be an uneven

p-disjoint rectangular refinement of fi0 obtained from Lemma 3. We

continue applying Lemma 3 successively, obtaining fi0<fix< ■ ■ ■ ,

uneven p-disjoint rectangular covers, such that mesh fik^ (f)*. Now

£(/3A, x) is always ^n, so by unevenness, p(f3k) ^n + 1. This completes

the proof of Theorem 1.

We now turn to the problem of showing that h,,(T)^h(T) in

general.

By a representation of (A, P) we mean a homomorphism from

(A, T) into some sequence flow (Bn, <r„). If / is a continuous map

from A into 7n, we can define a representation/* of (A, P) in (B„, a„)

as follows:

f*(x)(n) = f(T"x)        ior n £ N, x £ A.
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It is easily seen that all representations can be obtained this way. If

4> is a representation of (X, T) in (Bn, <r„), we write T^, = an\(p(X), so

that (<p(X), T4) is a homomorphic image of (X, T). Let R(X, T) be

the set of all representations of (X, T). We include the following

theorem for completeness, though it will not be used in the proof of

our main result.

Theorem 2. h(T) =sup{h(T4,):d>ER(X, T)}.

Proof. Let a= { Uo, ■ • •, Un-x\ be an open cover of X. Define

/:X—»7" as follows:

f(x)i = d(x, X - UD/8       for t = 0, • • • , ra - 1,

where 5 is the diameter of X. Let <p=f*. For i = 0, - - •, n—l, let

F,-= {yEBn: y(0),->0},

and let 8 = { F<Pi</)(X): i = 0, • • • , w-1}. It is clear that 8 is an

open cover of <p(X) and that <p~1(B)=a. Hence h(a, T)=h(8, T$)

fkh(T$). Now since a was an arbitrary finite open cover of X, h(T)

^sup{h(T<p):(j>ER(X, T)}. The reverse inequality follows from

general properties of topological entropy.

To prove an analogous result for measure theoretic entropy, we

need the following

Proposition 5. Let a be a finite open cover of X and let pEM(X, T).

Then a has a finite closed p-disjoint refinement.

Proof. We can assume that each member of a is essential. Write

a = { Uo, • • • , U„-x}. Choose a closed cover {P0, • - - , P„_i} such

that FiEUt for i = 0, ■ ■ ■ , n — l, and let /,■ be a continuous real-

valued function on X which is zero on P< and one on X — Ui. For

fixed iE{0, ■ • ■ , ra —l}, notice that {/i_1(r): 0<r<l} is an un-

countable pairwise disjoint collection of closed sets of X, and hence

the sets/i_1(r) cannot all have positive measure. Choose r,£(0, 1)

such thatp(/r1(r,))=0. Let

F,-= {xEX:fi(x) <n},

and let 8= { Vo, • ■ •, F„_i}. It is clear that 8 is an open cover and

that/3={Fo, • • -,F„_i} is a refinement of a. Furthermore, p(Fi—F<)

= 0 for i = 0, • • •, ra —1. We now define Go, ■ ■ •, G„_i as follows:

G0 = F0;        Gx=Vx — Vo] in general,

Gi=Vi-\Jj<iVjiori = 0, ■ ■ -ra-1. It is clear that (3= {G0, • • -,G„_i}
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is a closed refinement of a. The fact that j3 is p-disjoint follows from

the inclusion GjP\Gj£Fi—F,-, for j<i. This completes the proof.

If 4>:(X, T)—*(Y, S) is a homomorphism and if p£M(A, P), we

can define a measure <p(p)EM(Y, S) as follows:

<b(u)(A) = mO-'C'O)

for every Borel set AE Y.

Theorem 3. If uEM(X, T), then

h,(T) = supfwr,): <t>eR(x, T)}.

Proof. For each positive integer m, choose an open cover am of A

with mesh^l/m. Now by Proposition 5 there is a finite closed p-

disjoint refinement fim of am. Let 7m=j8iV/32V • • • V)3m. It is clear

that ym is also a finite closed p-disjoint refinement of am. As in the

proof of Corollary 1, we can show that the sigma-algebra generated

by Um_i ym is the algebra of Borel sets of A. We can now apply

Rohlin's theorem and obtain

h„(T) =   lim hn(ym, T).
m—* oo

We now fix m and write ym— { Po, • • •, Pn-i} • We define/: A—>7" as

follows:

f(x)i = d(x, Ui)/8       for i = 0, • • • , n — 1,

where 5 is the diameter of A. We let </> =/*. Next, we let

Yi ={yE Bn: y(0)i = 0}        for • = 0, •••,«- 1,

and y'm= { ViC\<p(X):i = 0, • • •, n — l}. It is clear that y'm is a closed

cover of 0(A) and that d>~1(y'n^)=ym. It follows that y^, is <p(p)-dis-

joint and hence we have

K(ym, T) = h$w(y„[, T$) g hw(T*).

We now let m tend to infinity and obtain

K(T) = sup{ Wr,): 0 £ P(A, 7)}.

The reverse inequality follows from general properties of entropy.

Theorem 4. If uEM(X, T), then *,(D^*(r).

The proof is an application of Theorem 3 and Corollary 2.

The author would like to thank Roy L. Smith for correcting the

proof of Proposition 5.
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