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TOPOLOGICAL ENTROPY FOR NONCOMPACT SETS

BY

RUFUSBOWENi1)

ABSTRACT.   For f:X—*X continuous and Y CX a topological entropy

h(f, Y) is defined.   For X compact one obtains results generalizing known

theorems about entropy for compact  Y and about Hausdorff dimension for

certain  Y C X = S .   A notion of entropy-conjugacy is proposed for hotneo-

morphisms.

The topological entropy of a continuous map on a compact space was defined

by Adler, Konheim and McAndrew [l].  In the present paper we will define entropy

for subsets of compact spaces in a way which resembles Hausdorff dimension.

This will be used to genetalize known results about the Hausdorff dimension of

the quasiregular points of certain measures and to define a notion of conjugacy

that is a cross between the topological and measure theoretic ones.

In [5] we gave a definition of entropy for uniformly continuous maps on metric

spaces.   That definition was motivated by different examples (linear maps on R"

and calculating entropy on T") and it sometimes differs from the definition given

here.

We wish to thank Karl Sigmund who pointed us in the direction this paper

takes and Ben Weiss who helped us formulate §4.

1.   The definition.   Let /: X —» X be continuous and Y C X.   The topological

entropy h(f, Y) will be defined much like Hausdorff dimension, with the "size"

of a set reflecting how / acts on it rather than its diameter.   Let Cf be a finite

open cover of X.    We write E •< Cf if E  is contained in some member of (I and

|E.i  -< Cf if every E . -<  Cf.   Let n .fí(E) be the biggest nonnegative integer

such that

fkE<&   for all k e[0, n/c,(E));

nf&iE) = 0 if E   -A   3 and n/Q(E) = + 00 if all fkE < 3.  Now set

DaiE) = expi-nfaiE))    and    Dfl(e, A) = S Dfl(E .)*
i=l

Received by the editors November 15, 1972.

AMS(MOS) subject classifications (1970).   Primary 54H20, 28A65.
Key words and phrases.   Entropy, Hausdorff dimension, invariant measure, generic

points.

(1) Partially supported by NSF Grant GP-14519-
Copyright © 1974, American Mathematical Society

125

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



126 RUFUS BOWEN

for ë = |F.|~     and X £ R.   We define a measure to g ^   by

W6?,A(y) = ]im   inf{°a(ê> M- UE.DY and Dfl(F .) < À.

Notice that m^ X(Y) < m g X<(Y) for X > X'   and m^ X(V) ^ ¡0, +oo| for at most

one X.   Define

ha(f, Y) = inf 1A: mQ   ÍY) = 01    and finally    hif, Y) = sup hQif, Y)

where Cl ranges over all finite open covers of X.   For Y = X we write b(j) =

h(f, X).
Remark.   The number h(f, Y) = hAf, Y) depends very much on which space

X we consider the domain of /.   For instance, f(x) = x + 1 defines a homeomor-

phism of R which can be extended to a homeomorphism of S .   By Proposition 1

below h   .(/, S ) is just the usual entropy of the homeomorphism /: S    —» S    and

thus equals 0 [l, p. 315]; for Y CSl we have 0 <b    (/, Y) < h    if, Sl) and so

hs xif, Y) = 0.   On the other hand suppose  Y = U^-«,^ + ^ where A C (0» X)

is a Cantor set.   Since V is closed in R, one can prove hAf, Y) = hAf, Y).   For

any homeomorphism g: A —♦ A,  ir. Y —» A defined by rAn + a) = g"ia) displays

g as a quotient of f\Y.   From this one can conclude that hig) < è(/| Y); as

big) can be made large, hif\ Y) = + oo.   Then hRif, Y) = + oo but ¿sl(/, Y) = 0.

This example was suggested to us by L. Goodwyn.

Proposition 1.   // X is compact, then hip equals the usual topological

entropy.

Proof.   First let us recall the usual definition of entropy for compact X [l].

Let a,    =U,nn/-1A,-   n ...n /~" + 1A1-       : A.    £ Q\ for an open cover fl
zffl 0 nTl      '* a»

of X.   If Af(Jo) denotes the smallest cardinality of any subcover of the open Jo,

then

bif, ä)-lim    ilogN((î,)
n—oo   72 '•

exists and the topological entropy is defined by

hif) = sup hif, (?)
a

where Q runs over all finite open covers of X.   Letting ë    be a subcover with

Nid.   ) members

and

Da(&n,X)<Ni(if¡n)e-»>

TOfl.(X)<   lim   lexpi-X + n-1 log Af(fl.   ))]".
U,A „—oo ''"
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TOPOLOGICAL ENTROPY FOR NONCOMPACT SETS 127

For \>b_(f. Cf) we get zzzax(X) =0.   Hence hQ if, X) < A (/, 3).

We ptove hs(f, X)>h_(f, 3) by showing bjf, 3) < X whenever mQ A(X) = 0.

For such a A there is a countable covering ê = \E{\ of X so that Da(ë, A) < 1,

If nf^(Et) < oo, we may assume E¿  is open (there is an open F .^>E. with

DgiP',-) = DßiE.)).   The E¿'s with 72^ a(E¿) = oo may be replaced by open sets so

that Dgi&, X) is still less than 1 (though it may increase).   As X is compact, the

open cover ë now has a finite subcover 3) = |D,,..., D   !.   Then
1 771

°° OO

£        Z      exp(-A»/fl(D. ,...,D. ))- £   Da(3),A)*<oo

where »^(D,^.V"ï'-l"/.«U,'r)*
Let

C(D .,•••, D . ) = |x e X: / rx £ D .   fot each r £ [l, s]
' 1 's 'r

where  <r = n. ff(D .)+••• + t?. fl(D .      )!•

Then C(D, , ... , D,: ) < 3.     for 72 < 72     (D, ,...,£)•).   If M = max  n, -(D),
'1 's '•" ~   /'U        1 s '    /-u     z

then |C(D, , ... , D, ): s > 1, «. „(D    , .. • , D, ) £ [n, n + M)\ is a cover of X
'1 _ 's ~ Z'U 1 s

subordinate to Cf.     .   Hence

NiQl   )e-X" '

<e/v,xLiexp(-A72,„(D. ,•••, D. )):t2. JD. , .... D. ) e[n, « + zVl)lx.
/.a    7j is      t.a    7, ;s

As the right side is bounded in n,  h(f, 3) < X.

This proof is almost identical with Furstenberg [lO, Proposition III.l] and

resembles the proof of a well-known theorem of information theory [191.

We now state (without proof) some basic facts.

Proposition 2.  (a)   // /.: Xj —» X{ and f2: X2 —» X2 are topologically con-

jugate (i.e., there is a homeomorphism  rr: X. —» X     with rtf. = /,77), then

b(fv Yx) = b(f2,rAyx)) for Y{ C Xx.

(b) h(f. f(Y)) = h(f, Y).
(c) hif, U7=1V,.) = suPi.A(/, V.),
(d) hif", Y) = mhif, Y) for m > 0.

We now give an example which motivated this paper.   Define f: S    —» S    by

f(z) = z".   If Y CSX  is closed and f(Y) C V then the Hausdorff dimension of Y

satisfies hd(Y) = h(f\ V)/log 72.   This was proved by Furstenberg [10, Proposition

III.l].   For an ergodic /-invariant probability measure p on S , it is known that

(Colebrook [7]; see also [3] and [9]) hd(G(p)) = b   (f)/log 72 where G(p) denotes
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128 RUFUS BOWEN

the set of generic points of p.   The above two formulas suggest that one might

have h   if) = hif, Gip)) if the right side is correctly defined for the noncompact

set Gip).   The intermediate Hausdorff dimension of course motivated our definition

of entropy; Theorem 3 shows that the hoped for formula holds for any continuous

map on a compact metric space.   We mention that another aspect of Colebrook's

paper [7] has been generalized by K. Sigmund [20],

2.   Goodwyn's  theorem.   In this section we will generalize a theoremof

Goodwyn [13].   For a continuous map /: X     > X let Mif) be the set of all f-

invariant Borel probability measures on X.   We refer the reader to [4] or [14] for

the definition of h   if).

Theorem 1.   Let f: X —> X be a continuous map of a compact metric space

and p e Mif).   If Y C X and piY) = 1, then hßif) < hif, Y).

Lemma 1.   Let a be a finite Borel partition of X such that every x e X is

in the closures of at most M sets of a.   Then

h(\f, a) < hif, Y) + log M.

Proof.   For each x £ X let / (x) = - log piA) where A e a.     contains x.

The Shannon-McMillian-Breiman theorem [14] says that for some p-integrable

function ¡ix) one has ¡nix)/n —» /(x) a.e. and a = J7(x)ap = h  if, a).   For 8 > 0

the set Y j = jy e Y: /(y) >a - 8\ has positive measure.   By Egorov's theorem

there is an N  so that

yS,N = b £ YS: ¡„W» > a - 25 Vt7 > Af¡

has positive measure.

Let & be a finite open cover of X each member of which intersects at most

M members of a.  Suppose ê = {E.j covers Y and D^iE ) <e~N.   If ß e

a.        ,E j intersects Y g N, then piß) < exp((- a + 28)n   g(E()).   Since E. n

Y g N is covered by at most AI ■•tt    '   such ß's,

piE. f. Ys N) < expinfQiE .Xlog M - a + 28)).

For X = - log Al + a - 2/5 we have

DQië,X)= ¿Zexpi-X»faiE))> ¿TpiE. nYs_N)>pÍYs¡N).
I Z

Letting ë vary, mQ X(Y) > piY g N) > 0.   Hence hif, Y) > h^if, Y) > X = - log M +

a — 28.   Letting 8 —» 0 we have our result.

Lemma 2.   Ler Q be a finite open cover of X.   For each n > 0 there is a

finite Borel partition a   of X such that fka   ■< U for all k £ [0, n) and at

most n card (l sets in a   can have a point in all their closures.
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TOPOLOGICAL ENTROPY FOR NONCOMPACT SETS 129

Proof.   This idea for this lemma is from Goodwyn U3] and the statement as

above is in [15].   Let u = {Aj, ... , A   ¡ and gj» • • • » g     be a partition of unity

subordinate to u.   Then G = (g,, • • • , g  ): X —> s      . C Rm where s      .  is an
1 777 771—1 772      1

m - 1 dimensional simplex.   Now  {U,, ..., U   ¡ is an open cover of s_   .  where* 1 772 - 777—1

U. = {x es      ,:x.>0} and G~ U.CA.,   As (s      ,)" is nm-n dimensional,
2 — 777-1 l 2 2 772-1 '

there is a finite Borel partition a* of sn _ j with at most nm members having a

point in all their closures and such that each member of a* lies in some !/,• x

. ..XE, .   Then a   = L~la* works where L = (G, G°f,>--, G°fn~l): X -» sn    ..
'„ n 72 ' ' 772-1

Lemma 3.   Given a finite Borel partition ß  and € > 0 there is an open cover

U so that H Aß\ a) <f whenever a is a finite Borel partition with a -< U.

Proof.  Let ß = {B x, ... , B   \.  There is a 5 > 0 so that the following is

true:

Hpiß | a.) < e if there is a Borel partition {C., • • •, C   i

with each C. a union of members of a and  5Z F(B. D C) < 8
7T-        *      A
'/'

(see [4, Theorem 6.2]).  Choose compact sets K. C B . so that piB \K) < 8/m.

Let Û. be an open cover each member of which intersects at most one K..   For

a < Ö put A £ a in C. if A n K.¿ 0, and in any C. if A n \J.K. = 0.  Then

C. n K. = 0 fot i ^ j and so

D Pis,, n c;.) < 2 f(b,\k.) < S.
2>y

Proof of Theorem 1.   Let ß be a finite Borel partition of X and t > 0.   Let

U be as in Lemma 3 and a    as in Lemma 2.   Then
72

y/i ß) = «- « yr, /3/>n) < n- \(r, an) + „-'e^K)

72-1

< «-   [*(/", Y) + log (B card Ö)] + a"J   Z HArkß I a )
*=o

72-1

< *(/, Y) + n~1 log in card fl) + «" *    £   H (0 | /*a )
*=0     M'

<*(/. Y) + b~1 log (b card fl) + «.

Here we used Lemmas 1 and 2 and some general facts:
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130 RUFUS BOWEN

h¿f.rv<h¿f.O + H¿n\0,

p

Proofs of these are in [4] and [14],   Finally; let w —» °° and then let f —» 0.   The

proof is finished.

3.   Generic points.   For X a compact metric space, the set M(X) of all Borel

probability measures on X with the weak topology is a compact metrizable space

[18],  p   —, p implies that for VOX with V open and K compact one has

lim inf p (V) > p(X).   For x £ X let p    denote the unit measure concentrated on

x.   If a continuous /: X —♦ X ¡s given, define

rVn = *~Vx + /V + -"+rVl   *"
/ x

Let V ix) be the set of all limit points in zVI(X) of the sequence p     .   Then

V ix) ¿ 0 and one checks that V ix) C Mif).   x is a generic point fot p. ii

V ix) = [p\.   Our main result is that A(/, G(p)) = A if) for p ergodic where G(p)

is the set of generic points for p.

p = ip., • • • , pA is an N-distribution if 2 { p. = 1  and p . > 0; we set W(p) =

-2.p. log p..  Ii a = («j, ... , z2   ) e |1, . • • , zV!m, then dist « = (p x, ••- » pN)

where p. = ttj-1 (number of /'  with a. = i).   Ii p and q ate N-distt¡butions, then

|p-<?| = max.|p. -q.\.

Lemma 4.   Let

RiN, 772, t) = \a eil.N\m: Hidist a) < t\.

Then, fixing N and t.

lim sup - log card RÍN, m, t) < t.
722—oo

Proof.   For an N-distribution q and a e (0, l) consider Rmiq) = \a e

{1, ... , N\m: \q - dist a\ < aj.   Let p be the measure on 2N = {1, ... , z\j

for the Bernoulli shift with distribution q' = (l - a)q + ail/N, ... , 1/zV).   Each

a e R   iq) corresponds to a cylinder set C^ C 2N.   Since \q - dist a\ < a, the

number of i's occurring in a is at most iqi + a)m.   As the symbol i has proba-

bility  q'.  = (l - d)q. + a/N,

,r\.    T-t      >(q.+a-)m
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TOPOLOGICAL ENTROPY FOR NONCOMPACT SETS 131

Since the C's ate disjoint and have total p-measure at most 1,

1 > card Rmiq) \\ ?,-   '
2

Taking logarithms we get

- log card R   (a) < £ - (a. + a) log a'
m 777 II

<E(a')+  Sd^-îil + ̂ l10«^!*
2

As a!1 > a/N,  |log a.' | < iog N - log a; also \q. - q.\ = \a/N - aq.\ .< la.  So

rn~l log card Rjq) < Hiq') + 3a/V(log N - log a).

Now Hiq) is uniformly continuous in a and log a —» 0 as a —» 0.  Hence given

any e > 0, for small a one has

to-1 log card Rmiq) < Hiq) + e

for all to and q.

Once an a is chosen one can find a finite set ö öf N-distributions so that

(a) Hiq) <t for a £ Q and

(b) if Hiq*) < t, then \q*- q\ < a for some q e Q.

Then RiN, to, i) C (J ,n R   (a).
^ c y       772

w"1 log card RiN, m, t) <m~l log card Q + it + ().

Letting to —» oo and then e—»0 we get our result.

Now suppose ß - {B., .. • , BN\ is a cover of X.   An n-choice for x (with

respect to ß and /) is a B = (B, . • • • , B,      ) £ j8" with fkix) e B¡    for k e

[0, b).   An 72-choice gives an N-distribution qi§) = dist(zQ, ■•• , i _j).   The set

of such distributions for the various B-choices for x we denote by Disto(x, b).

Lemma 5. Suppose f: X —* X is a continuous map of a topological space,

Jo an open cover of X, ß a finite cover of X and iM a positive integer so that

fkß -< ÍB for all k e [0, M).   For í > 0 define

Qit, ß) = fx e X: lim inf (inf {Hiq) : q £ Dist^x, n)\) < t\.
I 72   -OO j

Then h%if, Qit, ß)) < t/M.

Proof.   Let N = card ß and f > 0.   By Lemma 4 there is an to   so that

card RiN, m, t + () < emU+2t)

for all to > m(.   As Disto(x, b) depends only slightly on the last few fix) when

n is large and Hiq) is continuous in q, one has
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132 RUFUS BOWEN

lim inf (inf \H(q): q e DistoU, mM)\) < t
77I—00 P

for x £ Q(t, ß).   Let B (x) = (B •,..., B        ) be an rz-ehoice with distribution
" 0 77-1

q(x, n) minimizing H(q) over Dist Ax, n).   For k £ [0, M) define

qk(x, m) = distlzfc+rM: r e [0, m)}.

Then qix, mM) =il/M)2kqfe(x, ttz).   By the concavity of Hiq) in q one has

Hiqkix, m)) < Hiqix, mM)) for some k (depending on x and m).

Fix now any m. >m  ,  For m > ttz   and k £ [O, M) define

Sim, k) = \x £ X: Hiqkix, m)) < t + e\.

Then Qit, ß) C \J\S(m, k): m>m0,  k £ [0, zM)!.   Assume x £ S(m, k); a(x) =

(B,■ . B;    „,.••, B,.)   is in R(N, m, t + e).  Define
* *+/Vl *+(m-l)M

Ak(x, m) = \y £ X: f'y £ B.     for    / £ [0, k) and';'

fk+rM    eB for    r e [0, m){.
'k+rm

Now pAAx, m) is contained in some member of ß for each ; e [0, mM).   Hence

D%Akix, m) <e~mM.  Let e>imQ) = {A¿ (x, ttz): x e 5(m, ¿). m>mQ, k e [0, M)j.

Then ¿¡(ttt.) covers Qit, ß).   Since there are at most (card ß)   •

card RiN, m, t + e) different Afe(x, nj) with x e c(r7Z, &),

D i&imA, (t + lc)/M) <       £      (card ß)k card R(zV, ttz, / + f)e-"l('+3e)

fei[o,M)

^(cardß^-1      E    e-mí.
777^777/.

As this quantity approaches 0 as mQ —» oo, ttz   (i  3fwM (ö('> /S)) = 0 and

¿8(/. ö('. /3)) < it + 3f)/M.   Now let e -» 0.

Theorem 2.   Le/ /: X —» X be a continuous map on a compact metric space.

Set

QRit) = ix e X: 3p e V^x)    with    hßif) < il.

Then hif, QRit)) < t.

Proof.   Let S be a finite open cover of X and a a Borel partition of X

with the closures of members of a contained in members of ÍB.   Fix e > 0 and

let
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TOPOLOGICAL ENTROPY FOR NONCOMPACT SETS 133

W£iM) = Ix £ X: 3p £ Vfix)    with   il/U)H ßiaf>M) < t + e].

If h if) < /, then

implies that i\/M)H^o.f M) < t + f tot some Ai.   Hence QR(z) C UMWf(M).

Now fix an AI and let a. M = [E , • • • , E^j.   Pick U. DE¿ open so that

fkU. < S for * £ [0, Af); set 0 - ft/j, .. • , UN\.   We will show W((M) C

Q(AI(i + 2f), ß).   Consider x £ Wf(M) and p e V ,(x)   with il/M)HiaffA < t + (.

Let a' = (p(E ), . • • , p(E )) and pick 8 > 0 so that

|a-a'|<5    implies    E(a) < Mit + 2f).

Now choose compact K.CE. so that piE \K.) <8/2N and disjoint open K.'s

with E  3K.DK..   Let ß (x) £ ß" be an «-choice for x so that B,   =E. when-

ever / x £ V..   Since p e V,(x), px>n  —, p for some n. —» oo.   For large ;' one

has

for all  i.   If a;' =. dist B„ (x) = («', ... , q'N), it follows that qi > p(K.) - S/2/V

> p(E.) - ¿5//V.   We get \q' - q>\ < 8 and E(?') < M(t + 2e).  Hence x e

Q(M(t'+ 2e), ß).

Lemma 5 now gives us hAf, W iM)) < t + 2e.   By Proposition 2(d) we get

ht^if, QRit)) <t + 2e.   Letting e —» 0   and varying 53 we are done.

Corollary.   Let f: X —♦ X be a continuous map of a compact metric space.

Then

hif)=    sup   hif).
ßeM(f)

Proof.   Let t = sup^h^if).   As Vfix) /, 0  for x £ X, XCQRit) and hif) =

¿>(/. X) < /.   On the other hand hif) > / by Goodwyn's theorem (Theorem 1).

Remark.   This result is already known; see [8] for the finite dimensional

metric case and [12] for compact Hausdorff spaces.

Theorem 3.   Let f be a continuous map on a compact metric space and

p e Mif) be ergodic.   Let Gip) be the set of generic points of p, i.e.,

Gip) = ix: Vfix) = ipii.

Then hif, Gip)) = h^if).

Proof.   By the ergodic theorem, one has p(G(p)) = 1. Theorem 1 then gives

H(f, G(p)) > h  if).   As Gip) C QR(h  (/)), Theorem 2 gives the reverse inequality.
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134 RU FUS BOWEN

4. A type of conjugacy.    We will call two homeomorphisms f: X —» X and

g: Y —» Y entropy conjugate if there are X   C X and   Y' C Y   such that

(i)  X   and Y   ate Borel sets,

(ii) /(x')cx', g(y') cy',

(iii)  h(f, X\X') < hif), big, Y\Y') < big), and

(iv) f\X   andg|V   are topologically conjugate.

Unfortunately this does not seem to be an equivalence relation.

Proposition 3.   // / and g are entropy-conjugate homeomorphisms of compact

metric spaces, then hif) = big).

Proof.   Suppose p £ Mif) and h   if) > hif, X\X').   Since p  is /-invariant and

fiX') C X', one can find B C x\x' with p(B) = p(x\x') and /(B) = B.   By

Theorem 1, piB) < 1.   Define px,(F) = p(F H X')/p(X').   Then px, = p (if p(X')

= l) or p = p(X )pxi + piB)pß.   In the second case px,, pB £ Mif) and

A/i(/) = p(x')A^((/) + p(ß)A/iß(/).

By Theorem 1 we have h „if) < hif, X\x') < h iß and so A„     (/) > h if).   If

pxi =p, we of course also have h^    if) > h if).   Since pxiiX ) = 1, the topo-

logical conjugacy of /1 X   and g | Y   gives us a measure v on Y   with (g, iy)

conjugate to (/, pxi); in particular

Kis)-^x(f)>hß(f).

By Goodwyn's theorem A(g) > h (/).   Using the Dinaburg-Goodman theorem

(corollary to Theorem 2) one can make ¿>u(/) arbitrarily close to h(f) (and so

satisfy A (/) > A(/, X\X')).   One gets A(g) > h(f).   By symmetry one likewise has

h(g) < hif).

There is a natural class of homeomorphisms for which the converse of

Proposition 3 may hold.  Let 2   = IIZ{1, ••• , n\ and define the shift a : 2

-S„by

a    is a homeomorphism of the compact metrizable space 2 .   For A an 72 x n

matrix of O's and l's define

2niA) = \iXi)£2n:Axx      -1V.1.
I   z+l

Then o   \ 2 iA) is a homeomorphism of a compact space.

Conjecture.   Suppose o   | 2 (A) and ff    | 2   (B)   are topologically mixing

and have the same topological entropy.   Then they are entropy conjugate.

This conjecture is related to the symbolic dynamics of diffeomorphisms [2],
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[l6], [6],   From [6] it follows that the nonwandering set of an Axiom A diffeo-

morphism is entropy conjugate to some 2„(/l) (called a subshift of finite type).

The codings of [2] show that the conjecture is true for the subshifts of finite type

that arise from hyperbolic automorphisms of T .   The codings were used in [2] to

prove that entropy classifies such maps on T    up to measure theoreticconjugacy;

Friedman and Ornstein [11] now supplant these codes for this purpose.   The notion

of entropy conjugacy attempts to clarify the topological content of the Adler-Weiss

codings (see problem 3 of [2l]).

Proposition 4.   Suppose f and g are entropy-conjugate homeomorphisms of

compact metric spaces.   Then j is intrinsically ergodic iff g is.

Proof.   Intrinsic ergodicity [17] means there is a unique p £ Al(/) with

hif) = hif).   The proof is like that of Proposition 3.

REFERENCES

1. R. L. Adler, A. G. Konheim and M. H. McAndrew, Topological entropy, Trans. Amer.

Math. Soc. 114(1965), 309-319.     MR 30 #5291.

2. R. L. Adler and B. Weiss, Similarity of automorphisms of the torus, Mem. Amer.

Math. Soc. No. 98 (1970).      MR 41 #1966.

3. P. Billingsley, Hausdorff dimension in probability theory, Illinois J. Math. 4(1960),

187-209.      MR 24 #A1750.

4.   -, Ergodic theory and information, Wiley, New York, 1965.    MR 33 #254.

5. R. Bowen, Entropy for group endo-morphisms and homogeneous spaces, Trans.

Amer. Math. Soc. 153(1971), 401-414.      MR 43 #469.

6.   -, Markov partitions for Axiom A diffeomorphisms, Amer. J. Math. 92 (1970),

725-747.      MR 43 #2740.

7. C. M. Colebrook, The Hausdorff dimension of certain sets of non-normal numbers,

Michigan Math. J. 17 (1970), 103-116.     MR 41 #5321.

8. E. I. Dinaburg, The relation between topological entropy and metric entropy,

Dokl. Akad. Nauk SSSR 190 (1970), 19-22 = Soviet Math. Dokl. 11 (1970), 13-16.

MR 41 #425.

9. H. G. Eggleston, The fractional dimension of a set defined by decimal properties,

Quart. J. Math. Oxford Ser 20 ( 1949), 31-36.     MR 11, 88.

10. H. Furstenberg, Disjointness in ergodic theory, minimal sets and a problem in

Diophantine approximation, Math. Systems Theory 1(1967), 1-4&.     MR 35 #4369.

11. N. A. Friedman and D. S. Ornstein, On isomorphism of Weak Bernoulli trans-

formations, Advances in Math. 5 (1970), 365-394.    MR 43 #478c.

12. T. N. T. Goodman, Relating topological entropy and measure entropy, Bull.

London Math. Soc. 3(1971), 176-180.     MR 44 #6934.

13. L. W. Goodwyn, Topological entropy bounds measure theoretic entropy, Proc.

Amer. Math. Soc. 23 (1969), 679-688.     MR 40 #299.

14. W. Parry, Entropy and generators in ergodic theory, Benjamin, New York, 1969.

MR 41 #7071.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



136 RUFUS BO WEN

15. D. Ruelle, Statistical mechanics on a compact set with Z    action satisfying

expansiveness and specification (preprint).

16. Ja. G. Sinai, Markov partitions and Y-diffeomorphisms, Funkcional. Anal, i

PriloSen.   2(1968), no. 1, 64-89 = Functional Anal. Appl. 2(1968), 61-82.  MR 38 #1361.

17. B. Weiss, Intrinsically ergodic systems. Bull. Amer. Math. Soc. 76 (1970), 1266 —

1269.      MR 42 #1978.

18. K. Parathasarathy, Probability measures on metric spaces, Academic Press, New

York, 1967.

19. R- Ash, Information theory, Interscience Tracts ¡n Pure and Appl. Math., no. 19,

Interscience, New York, 1965. pp. 35-36.     MR 37 #50-©.

20. K. Sigmund, On dynamical systems with the specification property (to appear).

21. B. Weiss, The isomorphism problem in ergodic theory, Bull. Amer. Math. Soc.

78(1972), 668-684

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF C/\LIFORNIA, BERKELEY, CALIFORNIA

94720

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use


