TOPOLOGICAL ENTROPY OF BLOCK MAPS

ETHAN M. COVEN

Abstract

We show that $h\left(f_{\infty}\right)=\log 2$ where f_{∞} is the map on the space of sequences of zeros and ones induced by the block map $f\left(x_{0}, \ldots, x_{k}\right)=x_{0}+$ $\Pi_{i=1}^{k}\left(x_{i}+b_{i}\right)$ where $k>2$ and the k-block $b_{1} \ldots b_{k}$ is aperiodic.

1. Introduction. Topological entropy, a conjugacy invariant of continuous selfmaps of compact Hausdorff spaces, was introduced in [AKM] in 1965. Over the years it has become an important concept in both topological and differentiable dynamics. For any excellent account of its place in present-day dynamics, see [B3].

Exact computations of topological entropy, other than for maps with zero entropy, appear to be rare. Exceptions are the Chebyshev polynomials [AM], endomorphisms of Lie groups [B2], Axiom A diffeomorphisms [B1], and a number of classes of subshifts. More common are results giving bounds for entropy, e.g., the results dealing with Shub's "entropy conjecture" [B3, Chapter 5], the recent results for maps of the interval [BF], [JR].

In this paper we will compute the topological entropy of a class of shift-commuting maps of the space X of one-sided sequences of zeros and ones. In particular, we will prove the following.

Theorem. Let $f\left(x_{0}, \ldots, x_{k}\right)=x_{0}+\prod_{i=1}^{k}\left(x_{i}+b_{i}\right)$, where $k \geqslant 2$ and the k-block $B=b_{1} \ldots b_{k}$ is aperiodic. Then $h\left(f_{\infty}\right)=\log 2$.

Here the arithmetic is to be done in $\mathrm{GF}(2), f_{\infty}: X \rightarrow X$ is defined by $\left[f_{\infty}(x)\right]_{i}=$ $f\left(x_{i}, \ldots, x_{i+k}\right)$ and B is aperiodic means that there is no $p, 1 \leqslant p \leqslant k-1$, such that $b_{i}=b_{i+p}$ for $1 \leqslant i \leqslant k-p$.

It is rather surprising that, despite the finite nature of these maps $[\mathbf{H}$, Theorem 3.4], there have been no previous entropy computations for shift-commuting maps.
2. Preliminaries. We assume the reader is familiar with the elementary properties of topological entropy, denoted $h($).

Let X denote the set of all sequences $x=x_{0} x_{1} x_{2} \ldots$ where each $x_{i}=0$ or 1 . Thus $X=\Pi_{0}^{\infty}\{0,1\}$. We give $\{0,1\}$ the discrete topology and X the product topology. Then X is a compact, metrizable space, homeomorphic to the Cantor set. A neighborhood base at $x \in X$ consists of all sets of the form $\left\{y \in X \mid y_{0} \ldots y_{n}=\right.$ $\left.x_{0} \ldots x_{n}\right\}$ where $n \geqslant 0$.

[^0]An n-block is a concatenation of n zeros and ones, i.e., a member of $\{0,1\}^{n}$. An n-block map is a function $f:\{0,1\}^{n} \rightarrow\{0,1\}$. Such a function also maps $(n+1)$ blocks to 2-blocks by

$$
f\left(x_{0}, \ldots, x_{n}\right)=\left(f\left(x_{0}, \ldots, x_{n-1}\right), f\left(x_{1}, \ldots, x_{n}\right)\right)
$$

Similarly, f maps ($n+2$)-blocks to 3-blocks, etc., and f induces a continuous map $f_{\infty}: X \rightarrow X$ defined by $\left[f_{\infty}(x)\right]_{i}=f\left(x_{i}, \ldots, x_{i+n-1}\right)$. The shift $\sigma: X \rightarrow X$, defined by $[\sigma(x)]_{i}=x_{i+1}$, is induced by the 2-block map $s\left(x_{0}, x_{1}\right)=x_{1}$. It is well known that $h(\sigma)=\log 2$. The set of continuous, shift-commuting maps of X to itself coincides with $\left\{f_{\infty} \mid f\right.$ is an n-block map, $\left.n \geqslant 1\right\}[\mathbf{H}$, Theorem 3.4].

For the purposes of evaluating block maps, it is convenient to think of the symbol set $\{0,1\}$ as $\operatorname{GF}(2)$, the field with two elements. The set of n-block maps coincides with the set of polynomials in n variables over GF(2) of degree at most one in each variable [\mathbf{H}, Theorem 19.1].

Composition of block maps is defined so that $(g \circ f)_{\infty}=g_{\infty} \circ f_{\infty}$. For example, if f is a $(k+1)$-block map, then f^{2} is the $(2 k+1)$-block map defined by

$$
f^{2}\left(x_{0}, \ldots, x_{2 k}\right)=f\left(f\left(x_{0}, \ldots, x_{k}\right), \ldots, f\left(x_{k}, \ldots, x_{2 k}\right)\right)
$$

Let f be a $(k+1)$-block map such that $f\left(x_{0}, \ldots, x_{k}\right)=g\left(x_{0}, \ldots, x_{k-1}\right)+x_{k}$ for some k-block map g. Then f_{∞} is conjugate to σ^{k}, the conjugacy being given by $[\psi(x)]_{n k+j}=f^{n}\left(x_{j}, \ldots, x_{n k+j}\right)$. Hence in this case $h\left(f_{\infty}\right)=k \log 2$. In fact, it can be shown that for any $(k+1)$-block map $f, h\left(f_{\infty}\right) \leqslant k \log 2$ with equality if and only if $f\left(x_{0}, \ldots, x_{k}\right)=g\left(x_{0}, \ldots, x_{k-1}\right)+x_{k}$ for some k-block map g.
3. The result. Let f be a $(k+1)$-block map of the form

$$
f\left(x_{0}, \ldots, x_{k}\right)=x_{0}+\prod_{i=1}^{k}\left(x_{i}+b_{i}+1\right)
$$

where $k \geqslant 2$ and the k-block $B=b_{1} \ldots b_{k}$ is aperiodic, i.e., there is no p, $1 \leqslant p \leqslant k-1$, such that $b_{i}=b_{i+p}$ for $1 \leqslant i \leqslant k-p$. We will prove that $h\left(f_{\infty}\right)=$ $\log 2$.

These block maps were studied by the author and G. A. Hedlund in [CH] where they were used as feedback functions for nonlinear shift registers. The maps f_{∞} under consideration are continuous, finite-to-one [H, Theorem 5.5], map X onto X [H, Theorem 6.6] and commute with the shift. However they are not transitive, i.e., there is no point $x \in X$ with a dense f_{∞}-orbit.
In the sequel, we will use juxtaposition of blocks to denote concatenation, omitting parentheses and commas. For example, we will write an expression such as $f(C D)=E$ when C, D and E are k-blocks.
The following notation from $[\mathbf{C H}]$ will prove helpful. Let $\tilde{0}=1, \tilde{1}=0$ and for an n-block $A=a_{1} \ldots a_{n}$ with $n \geqslant 2$, let $\tilde{A}=a_{1} \ldots a_{n-1} \tilde{a}_{\tilde{\tilde{B}}}$. Then by [CH, Lemma 6]
(i) B is not an "interior block" for any of $B B, B \tilde{B}, \tilde{B} B$ or $\tilde{B} \tilde{B}$.

We collect together below some useful facts about the block map f. See [CH, Lemmas 7 and 9].
(ii) If $f(C D)=B$, then $C=B$ or \tilde{B}.
(iii) $f(C D)=\tilde{C}$ if and only if $D=B$.
(iv) $f(C B)=\tilde{B}$ if and only if $C=B$.
(v) $f(C B)=B$ if and only if $C=\tilde{B}$.
(vi) If B is not an interior block of $C D$, then $f(C D)=C$ or \tilde{C}.

Let $X_{B}=\left\{x \in X \mid\right.$ each $x_{i k} \ldots x_{i k+k-1}=B$ or $\left.\tilde{B}\right\}$, the set of concatenations of B 's and \tilde{B} 's. Then X_{B} is closed and it follows from (i) and (vi) that f_{∞} maps X_{B} to itself. Furthermore, $f_{\infty} \mid X_{B}$ is conjugate to g_{∞} where $g\left(x_{0}, x_{1}\right)=x_{0}+x_{1}$, the conjugacy being given by

$$
[\varphi(x)]_{i}= \begin{cases}1 & \text { if } x_{i k} \ldots x_{i k+k-1}=B \\ 0 & \text { if } x_{i k} \ldots x_{i k+k-1}=\tilde{B}\end{cases}
$$

Since g_{∞} is conjugate to the shift σ, it follows that $h\left(f_{\infty} \mid X_{B}\right)=\log 2$ and hence that $h\left(f_{\infty}\right) \geqslant \log 2$. We will show that $h\left(f_{\infty}\right) \leqslant \log 2$ by showing that for each $x \in X$, $h\left(f_{\infty} \mid c l \mathcal{O}(x)\right) \leqslant \log 2$, where $\mathcal{O}(x)$ denotes the f_{∞}-orbit of $x,\left\{f_{\infty}^{n}(x) \mid n=\right.$ $0,1, \ldots\}$. The result then follows from [G, Corollary 1].

Case 1. $x \in X_{B}$. Then $h\left(f_{\infty} \mid \operatorname{cl} \mathcal{O}(x)\right) \leqslant h\left(f_{\infty} \mid X_{B}\right)=\log 2$.
Case 2. B appears infinitely often in x but $\sigma^{n}(x) \notin X_{B}$ for all $n \geqslant 0$. Write $x=A_{1} C_{1} A_{2} C_{2} \ldots$ using the following procedure. We illustrate the procedure for $B=011$ and $x=1001101001011011010101001101001100 \ldots$

Step 1. Underline the occurrences of B in x.

$$
x=10 \underline{011} 01001 \underline{011} \underline{011} 0101010 \underline{011} 010 \underline{011} 00 \ldots
$$

Step 2. For each occurrence of B in x, underline the maximal concatenation of B 's and \tilde{B} 's which ends in the indicated occurrence of B.

$$
x=1001101001 \underline{\underline{011} 0110101 \underline{010011} 01001100 \ldots . \ldots . . . ~}
$$

Step 3. For each concatenation in Step 2 which is not a subconcatenation of another concatenation in Step 2, underline the maximal concatenation of B 's and \tilde{B} 's which can be obtained by extending to the right without overlapping the next concatenation.

$$
x=10 \underline{011010} 01 \underline{011011010} 1 \underline{010011010011} 00 \ldots
$$

Step 4. Label the underlined concatenations of Step 3 by C_{1}, C_{2}, \ldots and label the nonunderlined block preceding C_{i} by A_{i}.

$$
x=\underset{A_{1}}{\frac{10}{A_{1}}} \underset{C_{1}}{011010} \underset{C_{2}}{\stackrel{01}{A_{2}}} \xrightarrow[C_{3}]{011011010} \underset{A_{3}}{1} \underset{C_{3}}{010011010011} 00 \ldots
$$

Note that in our example, $C_{1}=011010=B \tilde{B}$ is followed by $010=\tilde{B}$, but that this \tilde{B} did not get underlined in Step 3, for otherwise C_{1} and C_{2} would overlap.

The decomposition $x=A_{1} C_{1} A_{2} C_{2} \ldots$ has the following properties.
(1) $A_{i} \neq \varnothing$ if $i \geqslant 2$.
(2) B does not appear in A_{i}.
(3) A_{i} does not begin with \tilde{B} if $i \geqslant 2$.
(4) A_{i} does not end with \tilde{B}.
(5) C_{i} is a concatenation of B 's and \tilde{B} 's.

Now write $f_{\infty}(x)=A_{1}^{1} C_{1}{ }^{1} A_{2}^{1} C_{2}^{1} \ldots$ where $A_{i}{ }^{1}$ has the same length as A_{i} and C_{i}^{1} has the same length as C_{i}. In this case we say that " A_{i} appears above $A_{i}{ }^{1}$ ", etc. The
meaning of the phrase " D appears above E " in similar situations will be clear from context.

Proposition. The decomposition $f_{\infty}(x)=A_{1}^{1} C_{1}^{1} A_{2}^{1} C_{2}^{1} \ldots$ also has properties (1)-(5).

Proof. Property (1) is clear.
(2) Suppose B appears in $A_{i}{ }^{1}$. Then by (iii), either B or \tilde{B} appears above B. Since B does not appear in A_{i}, \tilde{B} must appear above B. Then by (iii), the k-block in x immediately following this appearance of \tilde{B} is B. Thus $\tilde{B} B$ appears in A_{i} or in $A_{i} C_{i}$. Since B does not appear in A_{i}, this appearance of B must be entirely in C_{i}. Then A_{i} ends with \tilde{B}, contrary to (4).
(3) Let $i \geqslant 2$ and suppose A_{i}^{1} begins with \tilde{B}. Let D be the k-block in x above this appearance of \tilde{B} and let E be the k-block in x immediately following this appearance of D. Then A_{i} begins with D and so, by (2), $D \neq B$ and, by (3), $D \neq \tilde{B}$. Then by (iv), B is an interior block of $D E$. This appearance of B must be entirely in C_{i} and hence A_{i} and C_{i} overlap. Thus A_{i}^{1} does not begin with \tilde{B}.
(4) Suppose $A_{i}{ }^{1}$ ends with \tilde{B}. Since C_{i} begins with B or \tilde{B}, by (iv) and (v), A_{i} ends with B or \tilde{B}, contrary to (2) or (4).
(5) Let $C_{i}=B_{1} \ldots B_{m}$ where each $B_{j}=B$ or \tilde{B} and let D be the initial k-block of $A_{i+1} C_{i+1}$. Then by (i) and (vi), $C_{i}^{1}=B_{1}^{1} \ldots B_{m-1}^{1} E$ where each $B_{j}^{1}=B$ or \tilde{B} and $E=f\left(B_{m} D\right)$. But B is not an interior block of $B_{m} D$, for otherwise C_{i} and C_{i+1} would overlap. Then by (vi), $E=B_{m}$ or \tilde{B}_{m}, i.e., $E=B$ or $\tilde{\boldsymbol{B}}$.

Since the proof of the proposition involved only the properties of the original decomposition and not the procedure used to obtain them, it follows that for each $n \geqslant 1$, the decomposition $f_{\infty}^{n}(x)=A_{1}^{n} C_{1}^{n} A_{2}^{n} C_{2}^{n} \ldots$, where A_{i}^{n} has the same length as A_{i} and C_{i}^{n} has the same length as C_{i}, also has properties (1)-(5).

Define $A_{i}^{1}=A_{i}$ and $C_{i}^{0}=C_{i}$. Let i be fixed and consider the sequences of blocks $\left\{A_{i}^{0}, A_{i}{ }^{1}, \ldots\right\}$ and $\left\{C_{i}^{0}, C_{i}^{1}, \ldots\right\}$.

Let D^{n} be the terminal k-block of C_{i}^{n} and let E^{n} be the initial k-block of $A_{i+1}^{n} C_{i+1}^{n}$. Then B is not an interior block of $D^{n} E^{n}$, so by (vi), $D^{n+1}=D^{n}$ or $\widetilde{D^{n}}$. By (2), $E^{n} \neq B$, so by (iii), $D^{n+1}=D^{n}$. Thus the terminal k-block of C_{i}^{n} is the same for all n and therefore the sequence $\left\{C_{i}^{0}, C_{i}{ }^{1}, \ldots\right\}$ is periodic, say with period q_{i}.

Let F^{n} be the initial k-block of C_{i}^{n}. Since B does not appear in any A_{i}^{n} and B is not an interior block of $A_{i}{ }^{n} F^{n}$, it follows from (vi) and (iii) that $A_{i}^{n+1}=A_{i}^{n}$ or $\widetilde{A_{i}^{n}}$. Therefore the sequence $\left\{A_{i}^{0}, A_{i}^{1}, \ldots\right\}$ is periodic, with (not necessarily least) period $p_{i}=2 q_{i}$.

Define $D_{i}^{n}=A_{i}^{n} C_{i}^{n}$. Then the sequence of blocks $\left\{D_{i}^{0}, D_{i}{ }^{1}, \ldots\right\}$ is periodic with period p_{i}. Since $f_{\infty}^{n}(x)=D_{1}^{n} D_{2}^{n} \ldots$ and D_{i}^{n} appears above D_{i}^{n+1}, it follows that $f_{\infty} \mid \mathrm{cl} \mathcal{O}(x)$ is conjugate to a rotation on the compact group $\mathbf{Z}_{p_{1}} \times \mathbf{Z}_{p_{2}} \times \cdots$ and hence $h\left(f_{\infty} \mid \operatorname{cl} \mathcal{O}(x)\right)=0$.

Case 3. $x \notin X_{B}$ but $\sigma^{n}(x) \in X_{B}$ for some $n \geqslant 1$. Then, in a manner similar to Case $2, f_{\infty} \mid \mathrm{cl} \theta(x)$ is conjugate to the product of a rotation on a finite group and $f_{\infty} \mid \mathrm{cl} \mathcal{O}(y)$ for some $y \in X_{B}$. Hence $h\left(f_{\infty} \mid c \mathrm{cl}(x)\right)=h\left(f_{\infty} \mid c l \mathcal{O}(y)\right) \leqslant \log 2$.

Case 4. B appears only finitely often in x. Then $f_{\infty} \mid \mathrm{cl} \theta(x)$ is conjugate to a rotation on a finite group and hence $h\left(f_{\infty} \mid \mathrm{cl} \mathcal{O}(x)\right)=0$.

Finally, by [G, Corollary 1], $h\left(f_{\infty}\right)=\sup _{x \in X} h\left(f_{\infty} \mid c l(\theta)\right) \leqslant \log 2$, so $h\left(f_{\infty}\right)=$ $\log 2$.

Bibliography

[AKM] R. L. Adler, A. G. Konheim and M. H. McAndrew, Topological entropy, Trans. Amer. Math. Soc. 114 (1965), 309-313. MR 30 \# 5291.
[AM] R. L. Adler and M. H. McAndrew, The entropy of Chebyshev polynomials, Trans. Amer. Math. Soc. 121 (1966), 236-241. MR 32 \#6432.
[B1] R. Bowen, Markov partitions for Axiom A diffeomorphisms, Amer. J. Math. 92 (1970), 725-747. MR 43 \# 2740.
[B2] \qquad , Entropy for group endomorphisms and homogeneous spaces, Trans. Amer. Math. Soc. 153 (1971), 401-414. MR 43 \# 469.
[B3] \qquad , On Axiom A diffeomorphisms, CBMS Regional Conf. Ser. in Math., no. 35, Amer. Math. Soc., Providence, R.I., 1978.
[BF] R. Bowen and J. Franks, The periodic points of maps of the disk and the interval, Topology 15 (1976), 337-342. MR 55 \# 4283.
[CH] E. M. Coven and G. A. Hedlund, Periods of some nonlinear shift registers, J. Combinatorial Theory Ser. A 27 (1979), 186-197.
[G] T. N. T. Goodman, Relating topological entropy and measure entropy, Bull. London Math. Soc. 3 (1971), 176-180. MR 44 \# 6934.
[H] G. A. Hedlund, Endomorphisms and automorphisms of the shift dynamical system, Math. Systems Theory 3 (1969), 320-375. MR 41 \#4510.
[JR] L. Jonker and D. Rand, A lower bound for the entropy of certain maps of the unit interval, University of Warwick, preprint, 1978.

Department of Mathematics, Wesleyan University, Middletown, Connecticut 06457

[^0]: Received by the editors October 16, 1978.
 AMS (MOS) subject classifications (1970). Primary 54H20.

