TOPOLOGICAL ENTROPY OF BLOCK MAPS

ETHAN M. COVEN

ABSTRACT. We show that $h(f_{\infty}) = \log 2$ where f_{∞} is the map on the space of sequences of zeros and ones induced by the block map $f(x_0, \ldots, x_k) = x_0 + \prod_{i=1}^{k} (x_i + b_i)$ where k > 2 and the k-block $b_1 \ldots b_k$ is aperiodic.

1. Introduction. Topological entropy, a conjugacy invariant of continuous selfmaps of compact Hausdorff spaces, was introduced in [AKM] in 1965. Over the years it has become an important concept in both topological and differentiable dynamics. For any excellent account of its place in present-day dynamics, see [B3].

Exact computations of topological entropy, other than for maps with zero entropy, appear to be rare. Exceptions are the Chebyshev polynomials [AM], endomorphisms of Lie groups [B2], Axiom A diffeomorphisms [B1], and a number of classes of subshifts. More common are results giving bounds for entropy, e.g., the results dealing with Shub's "entropy conjecture" [B3, Chapter 5], the recent results for maps of the interval [BF], [JR].

In this paper we will compute the topological entropy of a class of shift-commuting maps of the space X of one-sided sequences of zeros and ones. In particular, we will prove the following.

THEOREM. Let $f(x_0, \ldots, x_k) = x_0 + \prod_{i=1}^k (x_i + b_i)$, where $k \ge 2$ and the k-block $B = b_1 \ldots b_k$ is aperiodic. Then $h(f_{\infty}) = \log 2$.

Here the arithmetic is to be done in GF(2), $f_{\infty}: X \to X$ is defined by $[f_{\infty}(x)]_i = f(x_i, \ldots, x_{i+k})$ and B is aperiodic means that there is no p, $1 \le p \le k - 1$, such that $b_i = b_{i+p}$ for $1 \le i \le k - p$.

It is rather surprising that, despite the finite nature of these maps [H, Theorem 3.4], there have been no previous entropy computations for shift-commuting maps.

2. Preliminaries. We assume the reader is familiar with the elementary properties of topological entropy, denoted h().

Let X denote the set of all sequences $x = x_0 x_1 x_2 \dots$ where each $x_i = 0$ or 1. Thus $X = \prod_0^{\infty} \{0, 1\}$. We give $\{0, 1\}$ the discrete topology and X the product topology. Then X is a compact, metrizable space, homeomorphic to the Cantor set. A neighborhood base at $x \in X$ consists of all sets of the form $\{y \in X | y_0 \dots y_n = x_0 \dots x_n\}$ where $n \ge 0$.

AMS (MOS) subject classifications (1970). Primary 54H20.

© 1980 American Mathematical Society 0002-9939/80/0000-0177/\$02.25

Received by the editors October 16, 1978.

An *n*-block is a concatenation of *n* zeros and ones, i.e., a member of $\{0, 1\}^n$. An *n*-block map is a function $f: \{0, 1\}^n \rightarrow \{0, 1\}$. Such a function also maps (n + 1)-blocks to 2-blocks by

$$f(x_0, \ldots, x_n) = (f(x_0, \ldots, x_{n-1}), f(x_1, \ldots, x_n)).$$

Similarly, f maps (n + 2)-blocks to 3-blocks, etc., and f induces a continuous map $f_{\infty}: X \to X$ defined by $[f_{\infty}(x)]_i = f(x_i, \ldots, x_{i+n-1})$. The shift $\sigma: X \to X$, defined by $[\sigma(x)]_i = x_{i+1}$, is induced by the 2-block map $s(x_0, x_1) = x_1$. It is well known that $h(\sigma) = \log 2$. The set of continuous, shift-commuting maps of X to itself coincides with $\{f_{\infty} | f \text{ is an } n\text{-block map}, n \ge 1\}$ [H, Theorem 3.4].

For the purposes of evaluating block maps, it is convenient to think of the symbol set $\{0, 1\}$ as GF(2), the field with two elements. The set of *n*-block maps coincides with the set of polynomials in *n* variables over GF(2) of degree at most one in each variable [H, Theorem 19.1].

Composition of block maps is defined so that $(g \circ f)_{\infty} = g_{\infty} \circ f_{\infty}$. For example, if f is a (k + 1)-block map, then f^2 is the (2k + 1)-block map defined by

$$f^{2}(x_{0}, \ldots, x_{2k}) = f(f(x_{0}, \ldots, x_{k}), \ldots, f(x_{k}, \ldots, x_{2k})).$$

Let f be a (k + 1)-block map such that $f(x_0, \ldots, x_k) = g(x_0, \ldots, x_{k-1}) + x_k$ for some k-block map g. Then f_{∞} is conjugate to σ^k , the conjugacy being given by $[\psi(x)]_{nk+j} = f^n(x_j, \ldots, x_{nk+j})$. Hence in this case $h(f_{\infty}) = k \log 2$. In fact, it can be shown that for any (k + 1)-block map f, $h(f_{\infty}) \leq k \log 2$ with equality if and only if $f(x_0, \ldots, x_k) = g(x_0, \ldots, x_{k-1}) + x_k$ for some k-block map g.

3. The result. Let f be a (k + 1)-block map of the form

$$f(x_0, \ldots, x_k) = x_0 + \prod_{i=1}^k (x_i + b_i + 1)$$

where $k \ge 2$ and the k-block $B = b_1 \dots b_k$ is aperiodic, i.e., there is no p, $1 \le p \le k - 1$, such that $b_i = b_{i+p}$ for $1 \le i \le k - p$. We will prove that $h(f_{\infty}) = \log 2$.

These block maps were studied by the author and G. A. Hedlund in [CH] where they were used as feedback functions for nonlinear shift registers. The maps f_{∞} under consideration are continuous, finite-to-one [H, Theorem 5.5], map X onto X [H, Theorem 6.6] and commute with the shift. However they are not transitive, i.e., there is no point $x \in X$ with a dense f_{∞} -orbit.

In the sequel, we will use juxtaposition of blocks to denote concatenation, omitting parentheses and commas. For example, we will write an expression such as f(CD) = E when C, D and E are k-blocks.

The following notation from [CH] will prove helpful. Let $\tilde{0} = 1$, $\tilde{1} = 0$ and for an *n*-block $A = a_1 \dots a_n$ with $n \ge 2$, let $\tilde{A} = a_1 \dots a_{n-1}\tilde{a}_n$. Then by [CH, Lemma 6]

(i) B is not an "interior block" for any of BB, $B\tilde{B}$, $\tilde{B}B$ or $\tilde{B}\tilde{B}$.

We collect together below some useful facts about the block map f. See [CH, Lemmas 7 and 9].

(ii) If f(CD) = B, then C = B or \hat{B} .

(iii) $f(CD) = \tilde{C}$ if and only if D = B.

(iv) $f(CB) = \tilde{B}$ if and only if C = B.

(v) f(CB) = B if and only if $C = \tilde{B}$.

(vi) If B is not an interior block of CD, then f(CD) = C or \tilde{C} .

Let $X_B = \{x \in X | \text{ each } x_{ik} \dots x_{ik+k-1} = B \text{ or } \tilde{B}\}$, the set of concatenations of *B*'s and \tilde{B} 's. Then X_B is closed and it follows from (i) and (vi) that f_{∞} maps X_B to itself. Furthermore, $f_{\infty}|X_B$ is conjugate to g_{∞} where $g(x_0, x_1) = x_0 + x_1$, the conjugacy being given by

$$\left[\varphi(x)\right]_{i} = \begin{cases} 1 & \text{if } x_{ik} \dots x_{ik+k-1} = B, \\ 0 & \text{if } x_{ik} \dots x_{ik+k-1} = \tilde{B}. \end{cases}$$

Since g_{∞} is conjugate to the shift σ , it follows that $h(f_{\infty}|X_B) = \log 2$ and hence that $h(f_{\infty}) \ge \log 2$. We will show that $h(f_{\infty}) \le \log 2$ by showing that for each $x \in X$, $h(f_{\infty}|c| \ \mathfrak{O}(x)) \le \log 2$, where $\mathfrak{O}(x)$ denotes the f_{∞} -orbit of x, $\{f_{\infty}^n(x)|n=0, 1, \ldots\}$. The result then follows from [G, Corollary 1].

Case 1. $x \in X_B$. Then $h(f_{\infty}|c| \mathfrak{O}(x)) \leq h(f_{\infty}|X_B) = \log 2$.

Case 2. B appears infinitely often in x but $\sigma^n(x) \notin X_B$ for all $n \ge 0$. Write $x = A_1 C_1 A_2 C_2 \ldots$ using the following procedure. We illustrate the procedure for B = 011 and $x = 100110100101101101001101001100\ldots$

Step 1. Underline the occurrences of B in x.

$$x = 10011 01001011 011 0101010011 010011 00 \dots$$

Step 2. For each occurrence of B in x, underline the maximal concatenation of B's and \tilde{B} 's which ends in the indicated occurrence of B.

 $x = 10\,011\,01001\,011\,011\,0101\,010011\,010011\,00\ldots$

Step 3. For each concatenation in Step 2 which is not a subconcatenation of another concatenation in Step 2, underline the maximal concatenation of B's and \tilde{B} 's which can be obtained by extending to the right without overlapping the next concatenation.

 $x = 10011010 01011011010 1010011010011 00 \dots$

Step 4. Label the underlined concatenations of Step 3 by C_1, C_2, \ldots and label the nonunderlined block preceding C_i by A_i .

$$x = \underbrace{10}_{A_1} \underbrace{011010}_{C_1} \underbrace{01}_{A_2} \underbrace{011011010}_{C_2} \underbrace{1}_{A_3} \underbrace{010011010011}_{C_3} \underbrace{00}_{C_3} \cdots$$

Note that in our example, $C_1 = 011010 = B\tilde{B}$ is followed by $010 = \tilde{B}$, but that this \tilde{B} did not get underlined in Step 3, for otherwise C_1 and C_2 would overlap.

The decomposition $x = A_1 C_1 A_2 C_2 \dots$ has the following properties.

(1) $A_i \neq \emptyset$ if $i \ge 2$.

(2) B does not appear in A_i .

(3) A_i does not begin with \tilde{B} if $i \ge 2$.

(4) A_i does not end with B_i .

(5) C_i is a concatenation of B's and \tilde{B} 's.

Now write $f_{\infty}(x) = A_1^1 C_1^1 A_2^1 C_2^1 \dots$ where A_i^1 has the same length as A_i and C_i^1 has the same length as C_i . In this case we say that " A_i appears above A_i^1 ", etc. The

meaning of the phrase "D appears above E" in similar situations will be clear from context.

PROPOSITION. The decomposition $f_{\infty}(x) = A_1^1 C_1^1 A_2^1 C_2^1 \dots$ also has properties (1)–(5).

PROOF. Property (1) is clear.

(2) Suppose B appears in A_i^1 . Then by (iii), either B or \tilde{B} appears above B. Since B does not appear in A_i , \tilde{B} must appear above B. Then by (iii), the k-block in x immediately following this appearance of \tilde{B} is B. Thus $\tilde{B}B$ appears in A_i or in A_iC_i . Since B does not appear in A_i , this appearance of B must be entirely in C_i . Then A_i ends with \tilde{B} , contrary to (4).

(3) Let $i \ge 2$ and suppose A_i^1 begins with \tilde{B} . Let D be the k-block in x above this appearance of \tilde{B} and let E be the k-block in x immediately following this appearance of D. Then A_i begins with D and so, by (2), $D \ne B$ and, by (3), $D \ne \tilde{B}$. Then by (iv), B is an interior block of DE. This appearance of B must be entirely in C_i and hence A_i and C_i overlap. Thus A_i^1 does not begin with \tilde{B} .

(4) Suppose A_i^1 ends with \tilde{B} . Since C_i begins with B or \tilde{B} , by (iv) and (v), A_i ends with B or \tilde{B} , contrary to (2) or (4).

(5) Let $C_i = B_1 \dots B_m$ where each $B_j = B$ or \tilde{B} and let D be the initial k-block of $A_{i+1}C_{i+1}$. Then by (i) and (vi), $C_i^1 = B_1^1 \dots B_{m-1}^1 E$ where each $B_j^1 = B$ or \tilde{B} and $E = f(B_m D)$. But B is not an interior block of $B_m D$, for otherwise C_i and C_{i+1} would overlap. Then by (vi), $E = B_m$ or \tilde{B}_m , i.e., E = B or \tilde{B} .

Since the proof of the proposition involved only the properties of the original decomposition and not the procedure used to obtain them, it follows that for each $n \ge 1$, the decomposition $f_{\infty}^n(x) = A_1^n C_1^n A_2^n C_2^n \dots$, where A_i^n has the same length as A_i and C_i^n has the same length as C_i , also has properties (1)-(5).

Define $A_i^1 = A_i$ and $C_i^0 = C_i$. Let *i* be fixed and consider the sequences of blocks $\{A_i^0, A_i^1, \dots\}$ and $\{C_i^0, C_i^1, \dots\}$.

Let D^n be the terminal k-block of C_i^n and let E^n be the initial k-block of $A_{i+1}^n C_{i+1}^n$. Then B is not an interior block of $D^n E^n$, so by (vi), $D^{n+1} = D^n$ or \widetilde{D}^n . By (2), $E^n \neq B$, so by (iii), $D^{n+1} = D^n$. Thus the terminal k-block of C_i^n is the same for all n and therefore the sequence $\{C_i^0, C_i^1, \dots\}$ is periodic, say with period q_i .

Let F^n be the initial k-block of C_i^n . Since B does not appear in any A_i^n and B is not an interior block of $A_i^n F^n$, it follows from (vi) and (iii) that $A_i^{n+1} = A_i^n$ or $\widetilde{A_i^n}$. Therefore the sequence $\{A_i^0, A_i^1, \dots\}$ is periodic, with (not necessarily least) period $p_i = 2q_i$.

Define $D_i^n = A_i^n C_i^n$. Then the sequence of blocks $\{D_i^0, D_i^1, \dots\}$ is periodic with period p_i . Since $f_{\infty}^n(x) = D_1^n D_2^n \dots$ and D_i^n appears above D_i^{n+1} , it follows that $f_{\infty} | \text{cl } \emptyset(x)$ is conjugate to a rotation on the compact group $\mathbb{Z}_{p_1} \times \mathbb{Z}_{p_2} \times \cdots$ and hence $h(f_{\infty} | \text{cl } \emptyset(x)) = 0$.

Case 3. $x \notin X_B$ but $\sigma^n(x) \in X_B$ for some $n \ge 1$. Then, in a manner similar to Case 2, $f_{\infty}|c| \ \emptyset(x)$ is conjugate to the product of a rotation on a finite group and $f_{\infty}|c| \ \emptyset(y)$ for some $y \in X_B$. Hence $h(f_{\infty}|c| \ \emptyset(x)) = h(f_{\infty}|c| \ \emptyset(y)) \le \log 2$.

Case 4. B appears only finitely often in x. Then $f_{\infty}|c| \mathfrak{O}(x)$ is conjugate to a rotation on a finite group and hence $h(f_{\infty}|c| \mathfrak{O}(x)) = 0$.

Finally, by [G, Corollary 1], $h(f_{\infty}) = \sup_{x \in X} h(f_{\infty} | cl \ \mathcal{O}(x)) \le \log 2$, so $h(f_{\infty}) = \log 2$.

BIBLIOGRAPHY

[AKM] R. L. Adler, A. G. Konheim and M. H. McAndrew, *Topological entropy*, Trans. Amer. Math. Soc. 114 (1965), 309-313. MR 30 # 5291.

[AM] R. L. Adler and M. H. McAndrew, The entropy of Chebyshev polynomials, Trans. Amer. Math. Soc. 121 (1966), 236-241. MR 32 #6432.

[B1] R. Bowen, Markov partitions for Axiom A diffeomorphisms, Amer. J. Math. 92 (1970), 725-747. MR 43 #2740.

[B2] _____, Entropy for group endomorphisms and homogeneous spaces, Trans. Amer. Math. Soc. 153 (1971), 401-414. MR 43 # 469.

[B3] _____, On Axiom A diffeomorphisms, CBMS Regional Conf. Ser. in Math., no. 35, Amer. Math. Soc., Providence, R.I., 1978.

[BF] R. Bowen and J. Franks, The periodic points of maps of the disk and the interval, Topology 15 (1976), 337-342. MR 55 # 4283.

[CH] E. M. Coven and G. A. Hedlund, Periods of some nonlinear shift registers, J. Combinatorial Theory Ser. A 27 (1979), 186-197.

[G] T. N. T. Goodman, Relating topological entropy and measure entropy, Bull. London Math. Soc. 3 (1971), 176–180. MR 44 #6934.

[H] G. A. Hedlund, Endomorphisms and automorphisms of the shift dynamical system, Math. Systems Theory 3 (1969), 320-375. MR 41 #4510.

[JR] L. Jonker and D. Rand, A lower bound for the entropy of certain maps of the unit interval, University of Warwick, preprint, 1978.

DEPARTMENT OF MATHEMATICS, WESLEYAN UNIVERSITY, MIDDLETOWN, CONNECTICUT 06457