Topological Euler numbers in a semi-stable degeneration of surfaces

By Yongnam Lee

Department of Mathematics, Sogang University, Sinsu-dong, Mapo-gu, Seoul 121-742, Korea (Communicated by Shigefumi Mori, M. J. A., Feb. 12, 2003)

Abstract: The object of this paper is to study topological Euler numbers in a semi-stable degeneration of surfaces by using the semi-stable minimal model program. As its application, we find some restrictions of singularities in a semi-stable degeneration of surfaces with general fiber a minimal $\kappa = 0$ surface.

Key words: Algebraic surface; semi-stable degeneration; topological Euler number.

Introduction. Let $\mathcal{X} \to \Delta$ be a one parameter flat family of projective surfaces over a small disk in \mathbf{C} . We assume that a general fiber X_t for $t \in \Delta - \{0\}$ has nef canonical bundle. Then via log resolution, base change, normalization and special resolution of toric singularities one can obtain a new family $\mathcal{X} \to \Delta$ with smooth \mathcal{X} and simple normal crossing X_0 , called a semi-stable reduction [3]. Given a semi-stable reduction family of projective surfaces over Δ whose canonical bundle of a general fiber is nef, the following holds by semi-stable minimal model program of threefolds (cf. [5]).

Theorem A. Semi-stable minimal model program (it may need base change) leads a degeneration $\pi: \mathcal{X} \to \Delta$ with the following properties:

- 1. \mathcal{X} has **Q**-factorial terminal singularities,
- 2. X_0 is a reduced Cartier divisor and is numerically zero relative to π ,
- 3. $\pi: \mathcal{X} \to \Delta$ is dlt $((\mathcal{X}, \pi^{-1}(t)))$ is dlt for all $t \in \Delta$),
 - 4. $K_{\mathcal{X}/\Delta}$ is π -nef.

Let $\pi: \mathcal{X} \to \Delta$ be a semi-stable degeneration (in the sense of the minimal model program) of surfaces whose canonical bundle is relatively nef. Let (V, D_V) be a pair of a component and its double curve in the central fiber. Then (V, D_V) is a dlt pair with D_V a reduced Weil divisor (cf. [5]). The second Chern class of a dlt pair can be defined as an orbifold Euler number (cf. [12, 19]). Define $\mathrm{Sing}(V, D_V)$ to be the set of singular points of V outside D_V . Then

$$c_2(V, D_V) = e_{top}(V) - e_{top}(D_V)$$
$$- \sum_{p \in Sing(V, D_V)} (1 - 1/r(p))$$

 $2000 \; {\rm Mathematics \, Subject \, Classification. \, 14D06, \, 14J28.}$

where r(p) is the local orbifold fundamental group. Bogomolov-Miyaoka-Yau inequality can be generalized to a dlt pair (cf. [11, 12, 19]), and therefore the following holds.

Theorem B. Let $\mathcal{X} \to \Delta$ be a semi-stable degeneration (in the sense of the minimal model program) of surfaces whose canonical bundle is relatively nef. Let (V, D_V) be a pair of a component and its double curve in the central fiber. Then the following holds:

- 1. $c_2(V, D_V) \ge 1/3(K_V + D_V)^2$,
- 2. $e_{top}(V) e_{top}(D_V) \ge 0$, and it is strictly positive if it has a singular point outside double curves.

In the paper, our concern is to study the relation between $\sum_{V} e_{\text{top}}(V) - e_{\text{top}}(D_{V})$ and $c_{2}(X_{t})$ in a semi-stable degeneration of surfaces. Precisely, we prove the following by using the semi-stable minimal model program:

Theorem. Let $\pi: \mathcal{X} \to \Delta$ be a semi-stable degeneration (in the sense of the minimal model program) of surfaces whose canonical bundle is relatively nef. Let (V, D_V) be a pair of a component and its double curve in the central fiber.

Then
$$c_2(X_t) \ge \sum_V e_{\text{top}}(V) - e_{\text{top}}(D_V)$$
.

For a semi-stable reduction family of surfaces $\mathcal{X} \to \Delta$, we have the equality

$$c_2(X_t) = \sum_{V} e_{\text{top}}(V) - e_{\text{top}}(D_V)$$

by topological argument [15]. Theorem can be applied to the bounds of the number of components and to the restriction of singularities on the central fiber of semi-stable degeneration of surfaces. It is proved in [9] under the suitable condition (semi-stable degeneration with permissible singularities), and it can be generalized to stable log surfaces [10].

П

1. Preliminaries. The notion of discrepancy is the fundamental measure of the singularities of (X, D) (cf. [4] or [5]).

Definition. Let X be a normal variety and $D = \sum d_i D_i$ an effective **Q**-divisor such that $K_X + D$ is **Q**-Cartier. Let $f: Y \to X$ be a proper birational morphism from a normal variety Y. Then we can write

$$K_Y + f_*^{-1}(D) \equiv f^*(K_X + D) + \sum a(E, D)E$$

where $f_*^{-1}(D)$ is the proper transform of D, the sum runs over distinct prime divisors $E \subset Y$, and $a(E,D) \in \mathbf{Q}$. This a(E,D) is called the *discrepancy* of E with respect to (X,D); it only depends on the divisor E, and not on the partial resolution Y.

We define $\operatorname{discrep}(X, D)$

= $\inf_{E} \{ a(E, D) \mid E \text{ is exceptional, Center}_{X}(E) \neq \emptyset \}$. And we say that (X, D), or $K_{X} + D$ is

terminal canonical purely log terminal log canonical
$$\begin{cases} > 0, \\ \ge 0, \\ > -1, \\ \ge -1. \end{cases}$$

Moreover, (X, D) is Kawamata log terminal (klt) if (X, D) is purely log terminal and $d_i < 1$ for every i; and (X, D) is divisorial log terminal (dlt) if there exists a log resolution such that the exceptional locus consists of divisors with all a(E, D) > -1.

We work throughout over the complex number field ${\bf C}$. The notation here follows Hartshorne's Algebraic Geometry.

2. Proof of Theorem.

Theorem. Let $\pi: \mathcal{X} \to \Delta$ be a semi-stable degeneration (in the sense of the minimal model program) of surfaces whose canonical bundle is relatively nef. Let (V, D_V) be a pair of a component and its double curve in the central fiber. Then $c_2(X_t) \geq \sum_V e_{\text{top}}(V) - e_{\text{top}}(D_V)$.

Proof. We change a semi-stable degeneration $\mathcal{X} \to \Delta$ to another semi-stable degeneration $\mathcal{Y} \to \Delta'$ (relatively minimal permissible model, cf. [2, 9]) which admits a semi-stable model (in the sense of the semi-stable reduction theorem). Let the central fiber $Y_0 = \sum (W, D_W)$ of \mathcal{Y} . By this process, we can compare the second Chern class of the central fiber with that of a general fiber, the proof is given in [9]:

$$c_2(Y_t) = \sum_{W} e_{\text{top}}(W) - e_{\text{top}}(D_W).$$

When we change $\mathcal{X} \to \Delta$ to $\mathcal{Y} \to \Delta'$ there is no

change of type of a singularity on the double curves of the central fiber, i.e., $\sum_{V} e_{\text{top}}(V) - e_{\text{top}}(D_{V}) =$ $\sum_{W} e_{\text{top}}(W) - e_{\text{top}}(D_{W})$ if there is no singular point outside double curves. The possible type of a singularity on the central fiber of ${\mathcal X}$ outside double curves is a rational double point or a quotient singularity of the form $1/(r^2s)(1, dsr - 1)$ where d is prime to r (cf. [6]). The possible type of a singularity on the central fiber of \mathcal{Y} is a quotient singularity of the form $1/(r^2)(1, dr-1)$ where d is prime to r (cf. [2]). For the Milnor fiber F of a **Q**-Gorenstein smoothing of a singularity of the form $1/(r^2s)(1, dsr - 1)$ where d is prime to r, it holds $b_2(F) = s - 1$ (cf. [2, 6]). Since the change of $\mathcal{X} \to \Delta$ to $\mathcal{Y} \to \Delta'$ is obtained by some base change of Δ and simultaneous resolution of rational double points, the following inequality holds by decreasing the second Betti number of the central fiber via Milnor fiber:

$$c_2(X_t) = c_2(Y_t)$$

$$= \sum_{W} e_{\text{top}}(W) - e_{\text{top}}(D_W)$$

$$\geq \sum_{V} e_{\text{top}}(V) - e_{\text{top}}(D_V).$$

By Theorem B and Theorem, we have the following:

Corollary 1. Let $\pi: \mathcal{X} \to \Delta$ be a semi-stable degeneration (in the sense of the minimal model program) of surfaces whose canonical bundle is relatively nef. Let (V, D_V) be a pair of a component and its double curve in the central fiber. Then the number of components on the central fiber, with $(K_V + D_V)^2 > 0$ or with singular points outside double curves, is bounded by $c_2(X_t)$.

3. Application to a semi-stable degeneration of surfaces with $\kappa = 0$. Let $\pi : \mathcal{X} \to \Delta$ be a semi-stable degeneration (in the sense of the minimal model program) of surfaces with general fiber a minimal $\kappa = 0$ surface. Assume that $mK_{X_t} \sim 0$ for $t \in \Delta - \{0\}$. Then $mK_{X_0} \sim 0$ by semi-stable minimal model program (cf. [5]). Before the minimal model program, the similar results were obtained by Kulikov, Morrison, Persson, Pinkham and others via elementary modifications [7, 8, 13, 16].

Therefore the index of \mathcal{X} is bounded by the number m which is the smallest number such that $mK_{X_t} \sim 0$ for $t \in \Delta - \{0\}$. So on a semi-stable degeneration of K3 surfaces or abelian surfaces, $K_{\mathcal{X}/\Delta}$

is Cartier divisor. And on a semi-stable degeneration of Enriques surfaces, the example with the singular points of the index 2 outside double curves was given by Persson [15]. The examples with the singular points of the index 2 on the double curves can be constructed easily by using the involution action on the special degenerations of K3 surfaces (cf. [13, 17]). Also on semi-stable degenerations of hyperelliptic surfaces, the examples with the singular points of the index 2, 3, 4, 6 on the double curves can be constructed easily by using the action on the special degenerations of abelian surfaces (cf. [18]).

Let $\mathcal{X} \to \Delta$ be a semi-stable degeneration of hyperelliptic surfaces. Then the central fiber X_0 has no singular point outside double curves by Theorem B, and Theorem. So our concern is to study a semi-stable degeneration of Enrique surfaces.

Corollary 2. Let $\mathcal{X} \to \Delta$ be a semi-stable degeneration (in the sense of the minimal model program) of surfaces. Assume that a general fiber is a minimal Enriques surface. Then the number of singular points outside double curves on the central fiber X_0 is bounded by 16. If X_0 is normal then this number is bounded by 10.

Proof. Let (V, D_V) be a pair of a component and its double curve in the central fiber and let $\operatorname{Sing}(V, D_V)$ be the set of singular points of V outside D_V . Then (V, D_V) is a dlt pair with D_V a reduced Weil divisor (cf. [5]). The second Chern class of a dlt pair can be defined as an orbifold Euler number (cf. [12, 19]). Let r(p) be the local orbifold fundamental group of a singular point $p \in \operatorname{Sing}(V, D_V)$.

The first statement holds directly by Theorem B and Theorem:

$$12 = c_2(X_t)$$

$$\geq \sum_{V} e_{\text{top}}(V) - e_{\text{top}}(D_V)$$

$$\geq \sum_{V} \sum_{p \in S_V} (1 - 1/r(p)) + \sum_{V} \sharp R_V$$

where the set of singular points

 $R_V = \{ \text{rational double points in } Sing(V, D_V) \}$

and the set of singular points $S_V = \operatorname{Sing}(V, D_V) - R_V$. Note that $r(p) \geq 4$ if $p \in S_V$.

Assume that X_0 is normal. We consider the global index one cover \mathcal{Z} of \mathcal{X} (cf. [5]). Then $\mathcal{Z} \to \Delta$ gives a semi-stable degeneration of K3 surfaces (in the sense of the minimal model program) and the

central fiber Z_0 of \mathcal{Z} is normal with at most rational double points. For the Milnor fiber F of a rational double point or a quotient singularity of the form $1/(r^2s)(1, dsr - 1)$ for s > 1 where d is prime to r, it holds $b_2(F) \geq 1$ (cf. [2, 6]). Note that $b_2(X_t) = 10$.

If there is a rational double point or a quotient singularity of the form $1/(r^2s)(1, dsr - 1)$ for s > 1 where d is prime to r, each point decreases topological Euler number by more than or equal to 1. Therefore we may assume that singularities are of the form $1/(r^2)(1, dr - 1)$ where d is prime to r. Since the index of singularity is only 2, the form of a singularity is 1/4(1,1). And the corresponding singular point on Z_0 is an ordinary double point.

The involution σ induces a quotient $Z_0 \to X_0$. Let Z be the minimal resolution of Z_0 . Consider the topological Lefschetz formula and the holomorphic Lefschetz formula [1]:

$$e_{\text{top}}(Z^{\sigma}) = \sum (-1)^{i} \operatorname{Tr}(\sigma^{*} : H^{i}(Z, \mathbf{Z}))$$
$$\sum (-1)^{i} \operatorname{Tr}(\sigma^{*} : H^{i}(Z, \mathcal{O}_{Z})) = 0.$$

Therefore σ^* acts on $H^2(Z, \mathcal{O}_Z)$ as -1 by the holomorphic Lefshetz formula, and it holds that 2 (the number of (-2) curves) = $e_{\text{top}}(Z^{\sigma}) \leq 20$.

Oguiso and Zhang [14] constructed an Enriques surface with a singularity of the form $1/(2^210)(1, 19)$. This example is the extremal case of a singularity of the form $1/(r^2s)(1, sdr - 1)$ where d is prime to r. The index one cover of this singularity is the form $xy = z^{20}$ (A_{19} -singularity). By some base change of Δ it can be changed to 10 ordinary double points, therefore it produces 10 singularities of the form 1/4(1, 1) in an Enriques surface.

Acknowledgement. The work was supported by Korea Research Foundation Grant (KRF–2002-070-C00003).

References

- [1] Atiyah, M., and Singer, I.: The index of elliptic operators: III. Ann. of Math. (2), 87, 546–604 (1968).
- [2] Kawamata, Y.: Moderate degenerations of algebraic surfaces. Complex Algebraic Varieties Bayreuth 1990. Lecture Notes in Math. vol. 1507, Springer-Verlag, Berlin-Heidelberg-New York, pp. 113–132 (1992).

- [3] Kempf, G., Knudsen, F., Mumford, D., and Saint-Donat, B.: Toroidal Embeddings. Lecture Notes in Math. vol. 339, Springer-Verlag, Berlin-Heidelberg-New York (1973).
- [4] Kollár, J. et al.: Flips and abundance for algebraic threefolds. Astérisque, 211, pp. 1–272 (1992).
- [5] Kollár, J., and Mori, S.: Birational geometry of algebraic varieties. Cambridge Tracts in Math., 134, (1998).
- [6] Kollár, J., and Shepherd-Barron, N.I.: Threefolds and deformations of surface singularities. Invent. Math., 91, 299–338 (1988).
- [7] Kulikov, V.: Degenerations of K3 surfaces and Enriques surfaces. Math. USSR Izvestija, 11, 957–989 (1977).
- [8] Kulikov, V.: On modifications of degenerations of surfaces with $\kappa=0$. Math. USSR Izvestija, 17, 339–342 (1981).
- [9] Lee, Y.: Numerical bounds for degenerations of surfaces of general type. Internat. J. Math., 10, 79–92 (1999).
- [10] Lee, Y.: Bounds and Q-Gorenstein smoothings of smoothable stable log surfaces. Symposium in honor of C. H. Clemens. Contemp. Math., 312, 153–162 (2002).
- [11] Megyesi, G.: Generalisation of the Bogomolov-Miyaoka-Yau inequality to singular surfaces. Proc. London Math. Soc., 78 (3), 241–282 (1999).

- [12] Miyaoka, Y.: The maximal number of quotient singularities on surfaces with given numerical invariants. Math. Ann., 268, 159–171 (1984).
- [13] Morrison, D.: Semistable degenerations of Enriques and hyperelliptic surfaces. Duke Math. J., 48, 197–249 (1981).
- [14] Oguiso, K., and Zhang, D.: On the most algebraic K3 surfaces and the most extremal log Enriques surfaces. Amer. J., 118, 1277–1297 (1996).
- [15] Persson, U.: Degenerations of algebraic surfaces. Mem. Amer. Math. Soc., 11 (189), pp. 1–144 (1977).
- [16] Persson, U., and Pinkham, H.: Degeneration of surfaces with trivial canonical bundle. Ann. of Math. (2), 113, 45–66 (1981).
- [17] Shah, J.: Projective degenerations of Enriques' surfaces. Math. Ann., **256**, 475–495 (1981).
- [18] Tsuchihashi, H.: Compactifications of the moduli spaces of hyperelliptic surfaces. Tôhoku Math. J., 31, 319–347 (1979).
- [19] Wahl, J.: Miyaoka-Yau inequality for normal surfaces and local analogues. Contemp. Math., 162, 381–402 (1994).