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1 Introduction

Symmetry protected topological (SPT) phases are symmetric gapped phases whose ground

states are unique on any closed manifold. In the low energy limit, SPT phases are ex-

pected to be described by invertible quantum field theories, which are classified by using

bordism groups [1–4]. In particular, in 1+1 dimensions, the low energy limit of SPT phases

is believed to become topological quantum field theories (TQFTs). Therefore, the classi-

fication of 1+1d SPT phases with symmetry G reduces to the classification of invertible

G-equivariant TQFTs. When G is an internal symmetry, the low energy TQFTs are defined

on oriented manifolds. Such TQFTs are called oriented TQFTs. The algebraic descriptions

of oriented G-equivariant TQFTs enable us to show that 1+1d bosonic SPT phases with

finite internal symmetry G are classified by group cohomology H2(G,U(1)) [5–8]. On the

other hand, when G involves time-reversal symmetry, the low energy limit is described

by unoriented TQFTs, which can be defined on unoriented manifolds. The algebraic de-

scriptions of unoriented G-equivariant TQFTs for finite groups G are given in [7, 9]. In

particular, it is shown that invertible unoriented G-equivariant TQFTs are classified by

twisted group cohomology H2(G,U(1)ρ) where the homomorphism ρ : G → Z2 determines

which elements reverse the orientation of time [7, 8].
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We can extend the classification of SPT phases along with the generalizations of the

notion of symmetry. In general, symmetries are characterized by the algebraic relations of

topological defects. For example, ordinary group symmetries are associated with invertible

topological defects with codimension 1. One possible generalization of the ordinary group

symmetries is symmetries generated by topological defects with higher codimensions. Such

generalized symmetries are called higher form symmetries [10]. Another generalization is to

consider non-invertible topological defects with codimension 1, which do not form a group.

In particular, in 1+1 dimensions, the algebraic relations of finite numbers of topological

defect lines including non-invertible ones are described by unitary fusion categories [11, 12].

The corresponding symmetries are called fusion category symmetries. As well as ordinary

group symmetries, we can discuss anomalies and gauging of them [11–19].

Fusion category symmetries have a long history in the study of two-dimensional rational

conformal field theories [12, 20–23]. We can also find fusion category symmetries in lattice

models such as anyonic chains [24–30]. The thermodynamic limit of anyonic chains is often

described by conformal field theories, whose energy spectra cannot be gapped without

breaking fusion category symmetries. There is also a way to construct two-dimensional

statistical mechanical models with general fusion category symmetries [31, 32]. These

models are naturally described in terms of three-dimensional topological field theories on a

manifold with boundaries. Similarly, fusion category symmetries on the boundary of 2+1d

topologically ordered states are investigated in [33]. Recently, fusion category symmetries

are also studied in the context of two-dimensional topological field theories [11, 19, 34, 35].

Remarkably, it is shown in [19, 34] that oriented bosonic TQFTs with fusion category

symmetry are classified by the module categories over the fusion category. This includes

the classification of bosonic fusion category SPT phases, which are gapped phases with

fusion category symmetry whose ground states are unique on a circle.

In this paper, we generalize the classification of bosonic fusion category SPT phases

to the case with time-reversal symmetry. Our approach is to axiomatize two-dimensional

unoriented TQFTs with fusion category symmetry and solve them under the condition that

the Hilbert space on a circle without topological defect is one-dimensional. Along the way,

we reproduce the classification of bosonic fusion category SPT phases without time-reversal

symmetry.

The rest of the paper is organized as follows. In section 2, we review fusion category

symmetries in two-dimensional quantum field theories. The contents of this section are not

restricted to TQFTs. In section 3, we classify bosonic fusion category SPT phases without

time-reversal symmetry. Section 3.1 is devoted to the review of oriented bosonic TQFTs

with fusion category symmetry. By solving the consistency conditions of oriented TQFTs

explicitly in section 3.2, we show that fusion category SPT phases without time-reversal

symmetry are classified by isomorphism classes of fiber functors.1 This agrees with the re-

sult in previous papers [19, 34], although the approach is slightly different. Our derivation

clarifies the physical interpretation of fiber functors. In section 4, we classify bosonic fusion

category SPT phases with time-reversal symmetry. We first formulate unoriented TQFTs

1A fiber functor is a tensor functor from a fusion category to the category of vector spaces.
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with fusion category symmetry in section 4.1 and then classify SPT phases by solving

the consistency conditions of unoriented TQFTs in section 4.2. We will see that bosonic

fusion category SPT phases with time-reversal symmetry are classified by the algebraic

data (Z,M, i, s, φ) where (Z,M, i) represents bosonic fusion category SPT phases without

time-reversal symmetry, s represents bosonic SPT phases only with time-reversal symme-

try, and φ represents the action of orientation-reversing symmetry. Finally, in section 4.3,

we discuss examples including the classification of SPT phases with duality symmetry. In

some cases, duality symmetries do not admit time-reversal invariant SPT phases, although

they admit SPT phases without time-reversal symmetry. This implies that these duality

symmetries constrain the IR phases of renormalization group flows as follows only in the

presence of time-reversal symmetry: the IR phases must be gapless or break the sym-

metry spontaneously. This may be thought of as an anomaly of the combination of the

duality symmetry and time-reversal symmetry.2 In particular, we may call this anomaly

a mixed anomaly because each of the duality symmetry and time-reversal symmetry is

non-anomalous, i.e. admits SPT phases. Throughout the paper, we assume that the total

symmetry splits into time-reversal symmetry and finite internal symmetry.

2 Preliminary: fusion category symmetries

In this section, we briefly review fusion category symmetries to fix the notation by fol-

lowing [11]. For details about fusion categories, see e.g. [36]. The basic ingredients of

fusion category symmetry are topological defect lines and topological point operators. A

topological defect line of a theory with fusion category symmetry C is labeled by an object

x of a unitary fusion category C. In particular, the trivial defect line corresponds to the

unit object 1, which is simple. A topological point operator that changes a topological

defect x to another topological defect y is labeled by a morphism f ∈ Hom(x, y), where

Hom(x, y) is a C-vector space of morphisms from x to y.3 Every topological point operator

f ∈ Hom(x, y) has the adjoint f † ∈ Hom(y, x).

When we have two topological defects x and y that run parallel with each other, we

can regard them as a single topological defect, which is labeled by the tensor product

x ⊗ y. We can also think of the tensor product x ⊗ y as the fusion of x and y. The

trivial defect 1 acts as the unit of the fusion: 1 ⊗ x ∼= x ⊗ 1 ∼= x. The isomorphisms

lx : 1 ⊗ x → x and rx : x⊗ 1 → x are called the left and right units respectively, which are

taken to be the identity morphism idx by identifying 1 ⊗ x and x ⊗ 1 with x. The order

of the fusion of three topological defects x, y, and z is changed by using the isomorphism

αxyz : (x ⊗ y) ⊗ z → x ⊗ (y ⊗ z) that is called the associator. The associators satisfy the

2This kind of anomalies for fusion category symmetries without time-reversal is discussed in [12, 19].
3We note that Hom(x, y) is a subspace of topological point operators between x and y. For example,

topological point operators on which a simple topological line ends are excluded because Hom(1, x) is empty

when x is simple.

– 3 –



J
H
E
P
0
5
(
2
0
2
1
)
2
0
4

Figure 1. The left and right (co)evaluation morphisms describe the operation of folding topological

defect lines to the left and right respectively. In the folded diagrams, topological point operators

corresponding to (co)evaluation morphisms are often implicit.

following commutative diagram called the pentagon equation:

(x⊗ y) ⊗ (z ⊗ w)

((x⊗ y) ⊗ z) ⊗ w x⊗ (y ⊗ (z ⊗ w))

(x⊗ (y ⊗ z)) ⊗ w x⊗ ((y ⊗ z) ⊗ w)

αx,y,z⊗wαx⊗y,z,w

αxyz⊗idw

αx,y⊗z,w

idx⊗αyzw

(2.1)

The orientation reversal of a topological defect x is labeled by the dual object x∗. In

particular, the topological defect x∗∗ whose orientation is reversed twice is equal to the

original topological defect x up to natural isomorphism ax : x → x∗∗ that is called the

pivotal structure. Folding x to the left is described by morphisms evL
x : x∗ ⊗ x → 1 and

coevL
x : 1 → x⊗x∗, which are called the left evaluation morphism and the left coevaluation

morphism respectively. Similarly, folding x to the right is described by the right evaluation

morphism evR
x : x ⊗ x∗ → 1 and the right coevaluation morphism coevR

x : 1 → x∗ ⊗ x,

which are given by the adjoints of the left evaluation and coevaluation morphisms

evR
x = (coevL

x )†, coevR
x = (evL

x )†. (2.2)

For a unitary fusion category, there is a canonical pivotal structure that is given by ax =

(idx∗∗ ⊗ evL
x ) ◦ ((evL

x∗)† ⊗ idx), see e.g. [37].4 We note that the left and right (co)evaluation

morphisms are related by the canonical pivotal structure as follows:

evL
x = evR

x∗ ◦ (idx∗ ⊗ ax), (ax ⊗ idx∗) ◦ coevL
x = coevR

x∗ . (2.3)

These evaluation and coevaluation morphisms are represented diagrammatically as shown

in figure 1. In particular, the zigzag-shaped defect constructed from these folding operations

cannot be distinguished from the straight defect:

= = . (2.4)

4The associator is omitted in this expression. In the subsequent sections, we will sometimes omit

associators to simplify the notation. One can restore them wherever needed.
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Figure 2. The vector space on a circle with multiple topological defects is the same as the vector

space on a circle with a single topological defect labeled by the tensor product of the topological

defects. To determine the order of the tensor product, we need to specify the base point on a circle,

which is represented by the cross mark in the above figure.

The loop diagram evaluates the quantum dimension

dim x = , (2.5)

which does not depend on whether the loop is clockwise or counterclockwise, i.e. dim x =

dim x∗.

We can also consider the sum x⊕y of topological defects x and y. When the topological

defect x ⊕ y is put on a path P , the correlation function is calculated as the sum of the

correlation functions in the presence of topological defects x and y on P :

〈· · · (x⊕ y)(P ) · · ·〉 = 〈· · ·x(P ) · · ·〉 + 〈· · · y(P ) · · ·〉 . (2.6)

3 Oriented TQFTs with fusion category symmetry

3.1 Consistency conditions of oriented TQFTs

In this section, we review two-dimensional bosonic oriented TQFTs with fusion category

symmetry C. We will enumerate the consistency conditions on transition amplitudes by

following [11]. We first assign a vector space Vx to a circle with a topological defect x.

When a topological defect is a direct sum x ⊕ y, the vector space Vx⊕y is given by the

direct sum of two vector spaces Vx and Vy. To define the vector space on a circle with

multiple topological defects, we need to specify the base point on the circle. Once we fix

the base point, the vector space on a circle with topological defects x, y, z, · · · is defined as

the vector space on a circle with a single topological defect labeled by the tensor product

((x⊗ y) ⊗ z) ⊗ · · · , see figure 2. The vector space on a disjoint union of circles is given by

the tensor product of the vector spaces on each circle.

Next, we consider transition amplitudes between the vector spaces. Let us begin with

the transition amplitude for a cylinder. There are two types of cylinder amplitudes as

shown in figure 3: one is the transition amplitude corresponding to a topological point

operator f ∈ Hom(x, x′), and the other is the transition amplitude corresponding to a

change of the base point. The former is denoted by Z(f) : Vx → Vx′ . In particular, the

identity morphism idx corresponds to the identity map idVx . The latter is denoted by

– 5 –
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Figure 3. There are two types of transition amplitudes for a cylinder. The left figure represents the

transition amplitude Z(f) : Vx → Vx′ corresponding to a topological point operator f ∈ Hom(x, x′).

The right figure represents the transition amplitude Xxy : Vx⊗y → Vy⊗x corresponding to a change

of the base point.

Figure 4. The transition amplitude Z(g ◦f) corresponding to the composition of topological point

operators agrees with the composition Z(g) ◦ Z(f) of the transition amplitudes corresponding to

each topological point operator. This is because putting a topological point operator g ◦ f can be

regarded as putting two topological point operators f and g successively.

Xxy : Vx⊗y → Vy⊗x when the base point on a circle with two topological defects x and y

is moved from the left of x to the right of x. We call the trajectory of the base point the

auxiliary line.

To make the cylinder amplitude well-defined, we require that the composition of mor-

phisms f and g gives rise to the composition of the transition amplitudes Z(f) and Z(g),

see figure 4:

Z(g ◦ f) = Z(g) ◦ Z(f). (3.1)

This makes Z a functor from C to Vec where Z(x) is defined as the vector space Vx for

every object x of C. We demand that this functor is C-linear in morphisms because a

linear combination of topological point operators f, f ′ ∈ Hom(x, x′) results in a linear

combination of transition amplitudes, see figure 5:

Z(αf + α′f ′) = αZ(f) + α′Z(f ′), ∀α, α′ ∈ C. (3.2)

Furthermore, we require that the transition amplitudes do not depend on the shape of the

auxiliary line if we fix the base points on the initial and final circles. In particular, the

transition amplitudes are invariant under winding the auxiliary line around a cylinder, see

figure 6. This implies that the linear map Xxy : Vx⊗y → Vy⊗x is an isomorphism, whose

inverse is given by Xyx:

Xxy = X−1
yx . (3.3)

– 6 –
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Figure 5. The functor Z : C → Vec is C-linear in morphisms.

Figure 6. Winding the auxiliary line around a circle is equivalent to moving the auxiliary line back

and forth, both of which are equivalent to doing nothing. This implies that Xyx is the inverse of

Xxy. In particular, Xxy : Vx⊗y → Vy⊗x is an isomorphism.

Figure 7. The change of the base point Xxy commutes with a topological point operator on x

because we can prevent the auxiliary line from intersecting with the topological defect x by changing

the path of the auxiliary line as shown in the middle figure. This means that the auxiliary line

is transparent to a topological point operator on x. The auxiliary line is also transparent to a

topological point operator on y for the same reason.

We also require that a change of the base point commutes with morphisms f ∈ Hom(x, x′)

and g ∈ Hom(y, y′) as shown in figure 7:

Z(idy ⊗ f) ◦Xxy = Xx′y ◦ Z(f ⊗ idy),

Z(g ⊗ idx) ◦Xxy = Xxy′ ◦ Z(idx ⊗ g).
(3.4)

These equations indicate that the auxiliary line is transparent to topological point opera-

tors. The last constraint on the cylinder amplitude is that moving a base point across the

topological defects x and y at the same time is equivalent to moving a base point across x

and y successively. This leads to the following consistency condition:

Xy,z⊗x ◦ Z(αyzx) ◦Xx,y⊗z ◦ Z(αxyz) = Z(α−1
zxy) ◦Xx⊗y,z. (3.5)

In particular, if we choose x = y = 1, we obtain X1,x = idVx , which means that moving the

base point across a trivial defect does not affect the transition amplitude.5 This completes

the consistency conditions on the cylinder amplitude.

5We recall that the left and right units are chosen to be the identity morphism.
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Figure 8. The above figures represent the basic elements of the transition amplitude for a general

surface: from left to right, the unit, the counit, the multiplication, and the comultiplication.

For later convenience, we define the generalized associator Ap→p′ : Vp → Vp′ as a

composition of isomorphisms X and Z(α), where p is a tensor product of any number of

objects and p′ is a cyclic permutation of p with arbitrary parentheses. For example, the

generalized associator A(x⊗y)⊗z→(z⊗x)⊗y is given by both sides of eq. (3.5). In general,

there are many ways to construct an isomorphism from Vp to Vp′ only from X and Z(α).

However, they give rise to the same isomorphism due to eq. (3.5). This means that the

generalized associator Ap→p′ is unique, although it has many distinct-looking expressions.

The transition amplitude for a general surface can be constructed from the cylinder

amplitude and the following four basic elements: the unit i : C → V1, the counit ǫ : V1 → C,

the multiplication Mxy : Vx ⊗ Vy → Vx⊗y, and the comultiplication ∆xy : Vx⊗y → Vx ⊗ Vy,

see also figure 8 for diagrammatic representations. For unitary quantum field theories, the

counit ǫ and the comultiplication ∆xy are the adjoints of the unit i and the multiplication

Mxy respectively (with respect to the non-degenerate pairing (3.6)):

ǫ = i†, ∆xy = M †
xy.

More generally, a transition amplitude changes to its adjoint when the corresponding sur-

face is turned upside down, or equivalently when the time direction is reversed.

Any two-dimensional surface Σ can be obtained by successively gluing cylinders and

the basic elements shown in figure 8. The transition amplitude for a surface Σ is defined as

the composition of the linear maps corresponding to cylinders and the basic elements that

appear in the decomposition of Σ. However, the way to decompose Σ is not unique in gen-

eral. Therefore, we need to impose consistency conditions so that the transition amplitudes

do not depend on a decomposition. Such consistency conditions can be listed as follows [11]:

Non-degenerate pairing (figure 9)

The pairing ǫ ◦ Z(evL
x ) ◦Mx∗,x : Vx∗ ⊗ Vx → C is non-degenerate. (3.6)

This non-degenerate pairing is related to the inner product of the Hilbert space via

CPT conjugation [7, 38].

Unit constraint (figure 10)

The unit i acts as the unit of the multiplication M :

M1x(i(1) ⊗ vx) = Mx1(vx ⊗ i(1)) = vx, ∀vx ∈ Vx. (3.7)

– 8 –
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Figure 9. The composition of the multiplication and the counit defines a non-degenerate pairing,

which can be used to regard Vx∗ as the dual vector space of Vx.

Figure 10. The multiplication M has the unit i(1) ∈ V1.

Figure 11. The multiplication M is associative up to associator. The topological point operators

corresponding to associators are omitted in the above figure.

Associativity (figure 11)

The multiplication M is associative up to associator:

Z(αxyz) ◦Mx⊗y,z ◦ (Mxy ⊗ idVz ) = Mx,y⊗z ◦ (idVx ⊗Myz) ◦ αVec
VxVyVz

, (3.8)

where αVec
VxVyVz

is the associator of the category of vector spaces Vec, which is chosen

to be the identity map αVec
VxVyVz

= idVx⊗Vy⊗Vz by identifying (Vx ⊗ Vy) ⊗ Vz with

Vx ⊗ (Vy ⊗ Vz).

Twisted commutativity (figure 12)

The multiplication M is commutative up to the change of the base point:

Myx ◦ cVxVy = Xxy ◦Mxy, (3.9)

where cVxVy : Vx ⊗ Vy → Vy ⊗ Vx is the symmetric braiding of Vec, which is defined

by cVxVy (vx ⊗ vy) := vy ⊗ vx for any vx ∈ Vx and vy ∈ Vy.

– 9 –
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Figure 12. The multiplication M is commutative up to isomorphism Xxy.

Figure 13. The transition amplitude does not depend on whether a topological point operator f ∈
Hom(x, x′) is inserted before or after the multiplication Mxy. The same holds for g ∈ Hom(y, y′).

Figure 14. The auxiliary line does not intersect with topological defects on the left-hand side,

while it intersects with topological defect z three times on the right-hand side. They give the same

transition amplitude.

Commutativity of topological point operators and the multiplication (figure 13)

Topological point operators commute with the multiplication M :

Mx′y ◦ (Z(f) ⊗ idVy ) = Z(f ⊗ idy) ◦Mxy, ∀f ∈ Hom(x, x′),

Mxy′ ◦ (idVx ⊗ Z(g)) = Z(idx ⊗ g) ◦Mxy, ∀g ∈ Hom(y, y′).
(3.10)

The uniqueness of the multiplication (figure 14)

The multiplication M uniquely determines a map for topologically equivalent config-

urations of topological defects on the pants diagram:

Z((idx ⊗ evL
z ) ⊗ idy∗) ◦ A(x⊗z∗)⊗(z⊗y∗)→(x⊗(z∗⊗z))⊗y∗ ◦Mx⊗z∗,z⊗y∗ (3.11)

= Z(idx⊗y∗ ⊗ evR
z ) ◦ A(z∗⊗x)⊗(y∗⊗z)→(x⊗y∗)⊗(z⊗z∗) ◦Mz∗⊗x,y∗⊗z ◦ (Xx,z∗ ⊗Xz,y∗).

– 10 –
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Figure 15. The transition amplitude for a twice-punctured torus does not depend on a time

function on it. The blue lines represent the initial time-slice and the red lines represent the final

time-slice. A time-slice at an intermediate time, which consists of two disjoint circles, is represented

by the green lines. Two different ways to split the initial circle into the intermediate circles give

rise to the same transition amplitude. The auxiliary lines are omitted in the above figure.

Consistency on the torus (figure 15)

Different ways to decompose a twice-punctured torus give the same transition ampli-

tude:

A(y⊗x)⊗(w⊗z)→(x⊗w)⊗(z⊗y) ◦My⊗x,w⊗z ◦ (Xxy ⊗Xzw) ◦ ∆x⊗y,z⊗w

= Mx⊗w,z⊗y ◦ (Xwx ⊗Xyz) ◦ ∆w⊗x,y⊗z ◦ A(x⊗y)⊗(z⊗w)→(w⊗x)⊗(y⊗z).
(3.12)

In summary, a two-dimensional bosonic oriented TQFT with fusion category symmetry is

given by a quadruple (Z,X,M, i) that satisfies the consistency conditions (3.1)–(3.12).6

3.2 Bosonic fusion category SPT phases without time-reversal symmetry

In this section, we classify bosonic SPT phases with fusion category symmetry C by solv-

ing the consistency conditions (3.1)–(3.12). To focus on the solutions that describe SPT

phases, we further impose the condition that the ground state is unique on a circle without

topological defects, i.e. dim V1 = 1. More generally, the dimension of the vector space Vx

for an SPT phase is equal to the quantum dimension of the object x

dim Vx = dim x, (3.13)

which can be seen from modular invariance of the partition function on a torus [12].

For SPT phases, the unit i : C → V1 is an isomorphism because it is a non-zero linear

map between one-dimensional vector spaces. In particular, i is unitary if the partition

function on a sphere is unity:

i† ◦ i = 1. (3.14)

In the following, we assume that this condition is satisfied. Furthermore, we assume that

the multiplication Mxy : Vx ⊗ Vy → Vx⊗y is also unitary:

M †
xy = M−1

xy ⇔ = . (3.15)

6In [11], there is an additional consistency condition called the cyclic symmetry of the multiplication.

However, this condition turns out to be satisfied as a consequence of (3.6) and (3.8).
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This equation reduces to eq. (3.13) if we form a loop of x by choosing y = x∗ and close the

punctures with a cap and its adjoint.

Now, we solve the consistency conditions (3.1)–(3.12) under the constraints (3.14)

and (3.15). We first notice that Z : C → Vec is a functor by (3.1), where an object x is

mapped to a vector space Vx and a morphism f ∈ Hom(x, y) is mapped to a linear map

Z(f) : Vx → Vy. We recall that the functor Z is additive in objects in the sense that the

direct sum of objects x and y is mapped to the direct sum of vector spaces Vx and Vy. This

functor is also C-linear in morphisms due to (3.2). Furthermore, (3.7) and (3.8) indicate

that the triple (Z,M, i) is a monoidal functor where the naturality of the isomorphism

Mxy follows from (3.10). Thus, (Z,M, i) is a tensor functor from C to Vec, namely a

fiber functor. In this way, we can extract the data of a fiber functor from an SPT phase

with fusion category symmetry. Conversely, we can show that the data of a fiber functor

(Z,M, i) is sufficient to construct a solution of (3.1)–(3.12) as we will see below. In other

words, the other consistency conditions are automatically satisfied when (Z,M, i) is a fiber

functor.

Since Mxy is unitary (3.15), the isomorphism Xxy is determined by (3.9) as

Xxy = Myx ◦ cVxVy ◦M−1
xy . (3.16)

This satisfies (3.3) because cVxVy is the symmetric braiding of Vec. Furthermore, the

naturality of Mxy and cVxVy implies that Xxy is also natural (3.4). The non-degeneracy of

the pairing (3.6) is guaranteed by the equality

= , (3.17)

which follows from the Frobenius relation represented by the following commutative dia-

gram:

V1 ⊗ Vx V1⊗x Vx Vx⊗1 Vx ⊗ V1

Vx⊗x∗⊗x

Vx⊗x∗ ⊗ Vx Vx ⊗ Vx∗ ⊗ Vx Vx ⊗ Vx∗⊗x

M1x

Z(coevL
x )

Z(lx)

Z(coevL
x ⊗idx)

Z(r−1
x ) M−1

x1

Z(idx⊗evL
x )

Mx⊗x∗,x

M−1

x,x∗
Mx∗,x

Mx,x∗⊗x

Z(evL
x ) (3.18)

To proceed further, we notice that a linear map from Vx1⊗y1⊗··· ⊗ Vx2⊗y2⊗··· ⊗ · · · to

Vx′
1
⊗y′

1
⊗··· ⊗ Vx′

2
⊗y′

2
⊗··· ⊗ · · · that consists only of M and c is uniquely determined by the

permutation of the topological defect (x1, y1, · · · , x2, y2, · · · ) → (x′
1, y

′
1, · · · , x′

2, y
′
2, · · · ) and

the change of the parentheses. The same holds for a linear map that consists only of M ,

c, Z(α), and X because Z(α) and X can be expressed in terms of M and c due to (3.8)

and (3.9). This shows (3.5) and (3.12). This also reduces the consistency condition (3.11)
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to the following commutative diagram:

V1

Vz∗⊗z C Vz⊗z∗

Vz∗ ⊗ Vz Vz ⊗ Vz∗

Z(evL
z )

i
Z(evR

z )

Mz∗,z

evL
Vz

cVz∗ Vz

evR
Vz

Mz,z∗

(3.19)

The commutativity of the left square in the above diagram defines the evaluation morphism

evL
Vz

: Vz∗ ⊗Vz → C, which is the non-degenerate pairing (3.6). Accordingly, we can consider

Vz∗ as the dual vector space of Vz. If we denote a basis of Vz as {ei | i = 1, 2, · · · ,dim Vz},

the dual basis {ei | i = 1, 2, · · · ,dim Vz∗ = dim Vz} of Vz∗ is defined by

evL
Vz

(ei ⊗ ej) = δi
j , (3.20)

where δi
j is the Kronecker delta. Equation (2.4) implies that the coevaluation morphism

coevL
Vz

: C → Vz ⊗ Vz∗ is given by the embedding

coevL
Vz

(1) =
dim Vz∑

i=1

ei ⊗ ei, (3.21)

whose adjoint agrees with the right evaluation morphism evR
Vz

defined by the commutativity

of the right square in the diagram (3.19):

evR
Vz

(ei ⊗ ej) = δj
i . (3.22)

From eqs. (3.20) and (3.22), we find that the bottom triangle in (3.19) is commutative.

In summary, the solutions of the consistency conditions (3.1)–(3.12) for fusion category

SPT phases are in one-to-one correspondence with fiber functors of the fusion category C.

To classify fusion category SPT phases, we regard naturally isomorphic fiber functors as

the same SPT phase because a natural isomorphism between fiber functors corresponds

to a change of the bases of the vector spaces. Therefore, bosonic SPT phases with fusion

category symmetry C are classified by isomorphism classes of fiber functors of C.

4 Unoriented TQFTs with fusion category symmetry

4.1 Consistency conditions of unoriented TQFTs

A two-dimensional unoriented TQFT with finite group symmetry is formulated in [7, 9]

as a set of consistency conditions on algebraic data.7 In this section, we reformulate 2d

unoriented TQFTs to incorporate fusion category symmetries. We assume that the total

symmetry splits into time-reversal symmetry and finite internal symmetry. In this case,

we can treat orientation-reversing defects and symmetry defects separately.

The algebraic data of an unoriented TQFT consist of the following linear maps in

addition to the algebraic data of an oriented TQFT: the orientation-reversing isomorphism

φx : Vx → Vx∗ and the cross-cap amplitude θx,y : Vx⊗y → Vx∗⊗y, see also figure 16. In

7A two-dimensional unoriented TQFT without internal symmetry is formulated in [39]. Quantum field

theories on unoriented manifolds are of interest in recent studies on topological phases of matter [40–54].
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Figure 16. Every unoriented surface can be decomposed into oriented surfaces and the above

two unoriented surfaces. The left diagram represents the orientation-reversing diffeomorphism of

a circle, which induces an isomorphism between the vector spaces Vx and Vx∗ . The right diagram

represents a cylinder with a cross-cap, which induces a linear map from Vx⊗y to Vx∗⊗y.

Figure 17. The transition amplitude for the above cylinder with a cross-cap is a linear map from

V(x⊗y)⊗z to V(x⊗y∗)⊗z, which is given by Ay∗⊗(z⊗x)→(x⊗y∗)⊗z ◦ θy,z⊗x ◦ A(x⊗y)⊗z→y⊗(z⊗x).

particular, φ represents the linear action of CP symmetry, which we assume to be unitary,

rather than the anti-linear action of time-reversal symmetry. We can avoid anti-linear maps

by using CPT symmetry [7]. A variant of the cross-cap amplitude as shown in figure 17 can

be computed by composing the cross-cap amplitude θ and the generalized associators A.

A general unoriented surface can be decomposed into the following building blocks

and their adjoints: a cylinder, a cap, a pair of pants, and a cylinder with a cross-cap.

Correspondingly, the transition amplitude for a general unoriented surface is given by the

composition of the transition amplitudes for these elements that appear in the decomposi-

tion. However, the decomposition is not unique in general. Therefore, we need to impose

consistency conditions so that the transition amplitude does not depend on a decomposi-

tion. In the following, we list the consistency conditions that involve φ and θ.

Invariance of the unit

The unit i : C → V1 is invariant under the action of the orientation-reversing isomor-

phism

= . (4.1)
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Involution

The orientation-reversing isomorphism is involutive up to pivotal structure ax : x →
x∗∗

= . (4.2)

Commutativity of the orientation reversal and the change of the base point

The orientation-reversing isomorphism commutes with the change of the base point:

= . (4.3)

Orientation reversal of a topological point operator

The orientation-reversing symmetry acts on a topological point operator f ∈
Hom(x, y) and turn it into another topological point operator f ∈ Hom(x∗, y∗) such

that

= , = . (4.4)

Cross-cap on a folded topological defect

We can move the position of a cross-cap along a folded topological defect line:

= . (4.5)

Deformation of a topological defect through a cross-cap

A topological defect that passes a cross-cap twice can avoid the cross-cap by a defor-

mation:

= , = . (4.6)

We also have similar equations for the diagrams flipped horizontally.
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Commutativity of the cross-cap and the orientation reversal

The orientation-reversing isomorphism commutes with the cross-cap amplitude:

= . (4.7)

Möbius identity

Two different ways to compute the transition amplitude for the punctured Möbius

strip lead to the same result:

= . (4.8)

Equivariance of the multiplication

The multiplication is equivariant with respect to the orientation-reversing isomor-

phism:

= . (4.9)

Compatibility of the cross-cap amplitude and the multiplication

We can move the position of a cross-cap through the pants diagram:

= , = . (4.10)
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Klein identity

Two different decompositions of the twice-punctured Klein bottle give rise to the

same transition amplitude:

= . (4.11)

We need to check the consistency of the assignment of the transition amplitudes. There

are three types of consistency as follows:

1. consistency under changes of the time function,

2. consistency under deformations of topological defects on each basic element, and

3. consistency under the composition of the orientation-reversing isomorphism.

Let us begin with the consistency of type 1. The transition amplitudes must be invariant

under changes of the time function. As discussed in the appendix of [7], we have two

consistency conditions of this type for unoriented surfaces: one is the consistency on a pair

of pants with a cross-cap and the other is the consistency on a twice-punctured Klein bottle.

These consistency conditions are given by (4.10) and (4.11) respectively. Next, we consider

the consistency of type 2. Topologically equivalent configurations of topological defects on

a basic element give rise to the same transition amplitude. For this type of consistency

conditions, it suffices to consider the consistency on a cylinder with a cross-cap because

the consistency on the other basic elements is already considered in oriented TQFTs. The

consistency on a cylinder with a cross-cap is given by (4.5) and (4.6). Finally, we have

the consistency conditions of type 3 for each basic element as follows: (4.2) and (4.3) for a

cylinder, (4.1) for a cap, (4.9) for a pair of pants, and (4.7) and (4.8) for a cylinder with a

cross-cap. The remaining equation (4.4) is the consistency of topological point operators.

This completes the consistency conditions on transition amplitudes for unoriented surfaces.

Therefore, a two-dimensional bosonic unoriented TQFT with fusion category symmetry C
is described by a sextuple (Z,X,M, i, φ, θ) that satisfies (3.1)–(3.12) and (4.1)–(4.11). As

we will see in appendix A, this reduces to an unoriented equivariant TQFT when the

symmetry is given by a finite group Z
T
2 ×G.

4.2 Bosonic fusion category SPT phases with time-reversal symmetry

In this section, we classify fusion category SPT phases with time-reversal symmetry by

solving the consistency conditions (4.1)–(4.11) under the constraints (3.14) and (3.15). We

first recall that the triple (Z,M, i) : C → Vec is a fiber functor and X is given by eq. (3.16).
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In particular, the multiplication Mx,y is unitary. Therefore, the cross-cap amplitude θx,y

is determined by θx,1 via eq. (4.10) as follows:

= . (4.12)

Conversely, the consistency condition (4.10) follows from the above equation. Furthermore,

the Klein identity (4.11) reduces to

= . (4.13)

This implies that the cross-cap amplitude θx,y is an isomorphism. By using eqs. (4.12)

and (4.13), the equivariance (4.9) can be simplified as follows:

= ⇔ = ⇔ = .

(4.14)

More generally, we obtain

= , (4.15)

from (4.2). The above equations indicate that the orientation-reversing isomorphism acts

trivially on the vector space V1, which shows (4.1).

As we will see below, it turns out that the remaining consistency conditions (4.3)–(4.8)

follow from eqs. (4.12), (4.13), (4.15) and the consistency conditions of oriented TQFTs.

We first notice that (4.3), (4.4), (4.7), and (4.8) immediately follow from eqs. (4.12), (4.13),

and (4.15). To show the consistency condition (4.5), it is convenient to compose the cross-

cap amplitude to both sides:

= (4.16)
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This equation is equivalent to (4.5) because the cross-cap amplitude is an isomorphism.

The left-hand side can be written as

(LHS) = = , (4.17)

where the second equality follows from the relation (2.3) between the left and right coeval-

uation morphisms. On the other hand, the right-hand side can be computed as

(RHS) = = = = (LHS). (4.18)

The second equality follows from the fact that the orientation reversal of the right coeval-

uation morphism coevR
x is given by coevR

x = coevL
x∗ , which can be seen from the unitarity

of φx and the first equation of (4.4). Indeed, when φx is unitary, the orientation reversal

of the coevaluation morphism defined by the first equation of (4.4) satisfies

= , (4.19)

which implies coevR
x = coevL

x∗ and coevL
x = coevR

x∗ . We note that this shows the first

equation of (4.6). Finally, we consider the second equation of (4.6). The left-hand side and

the right-hand side can be written as

(LHS) = , (RHS) = . (4.20)

– 19 –



J
H
E
P
0
5
(
2
0
2
1
)
2
0
4

We notice that both the left-hand side and the right-hand side have the orientation-

reversing isomorphism and the cross-cap amplitude in common, which can be eliminated

from the equality (LHS) = (RHS) because they are isomorphisms. Hence, this equation

reduces to the equality of the transition amplitudes for oriented surfaces. By considering

the commutativity of diagrams that consist only of M , c, Z(α), and X as we discussed

in section 3.2, we find that the second equation of (4.6) is equivalent to the following

commutative diagram:

Vx⊗y Vy⊗x

Vx⊗y⊗y∗⊗y

Vy∗⊗y⊗x⊗y Vy⊗y∗⊗y⊗x

Xx,y

Z(coevR
y )

Z(coevR
y )

Xx,y⊗y∗⊗y

Xy∗⊗y⊗x,y

Xy∗⊗y,x⊗y

Z(evR
y ) (4.21)

The transition amplitudes for the surfaces flipped horizontally satisfy a similar equation.

Thus, the solution of the consistency conditions (3.1)–(3.12) and (4.1)–(4.11) for an

SPT phase with symmetry Z
T
2 × C is given by a quintuple (Z,M, i, φ, θ) such that the

triple (Z,M, i) is a fiber functor of C, the isomorphism θx,y : Vx⊗y → Vx∗⊗y is given

by θx,y = Mx∗,y ◦ (θx,1 ⊗ idVy ) ◦ M−1
x,y where θx,1 satisfies θx∗,1 ◦ θx,1 = Z(ax), and the

isomorphism φx : Vx → Vx∗ is given by φx⊗y = θy,x∗ ◦Xx∗,y ◦ θx,y where Xx,y is defined by

eq. (3.16). The quintuple (Z,M, i, φ, θ) that satisfies the above conditions is equivalent to

the following algebraic data (Z,M, i, s, φ):

• a fiber functor (Z,M, i) : C → Vec,

• a sign s ∈ Z2 = {±1},

• an isomorphism φx : Vx → Vx∗ that is involutive up to pivotal structure ax and

commutes with the multiplication M up to isomorphism X defined by eq. (3.16):

φx∗ ◦ φx = Z(ax), Xx∗,y∗ ◦Mx∗,y∗ ◦ (φx ⊗ φy) = φx⊗y ◦Mx,y. (4.22)

When we have a quintuple (Z,M, i, φ, θ), the sign s ∈ Z2 and the isomorphism that satisfies

eq. (4.22) are given by θ1,1 and φ respectively. Conversely, when we have a quintuple

(Z,M, i, s, φ), we can define the cross-cap amplitude as θx,y := Mx∗,y ◦ (θx,1 ⊗ idVy ) ◦M−1
x,y

where θx,1 := sφx.

The quintuples (Z,M, i, s, φ) and (Z ′,M ′, i′, s′, φ′) correspond to the same SPT phase

if they are related by a change of the bases of the vector spaces. The change of the bases

is described by a tensor natural isomorphism η : Z → Z ′, which guarantees that the

transition amplitudes for oriented surfaces transform appropriately under the change of

the bases. For the classification of SPT phases with time-reversal symmetry, we need to

impose an additional condition on the tensor natural isomorphism η so that the transition

amplitudes for unoriented surfaces also transform appropriately. Specifically, we require
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that the following diagram commutes:

Z(x) Z(x∗)

Z ′(x) Z ′(x∗)

φx

ηx ηx∗

φ′
x

(4.23)

The quintuples (Z,M, i, s, φ) and (Z ′,M ′, i′, s′, φ′) are said to be equivalent when they are

related by a tensor natural isomorphism η that satisfies the above commutative diagram.

Therefore, bosonic fusion category SPT phases with time-reversal symmetry are classified

by equivalence classes of quintuples (Z,M, i, s, φ).

4.3 Examples

4.3.1 Finite group symmetry

1+1d bosonic SPT phases with finite group symmetry Z
T
2 ×G are classified by the group

cohomology H2(ZT
2 ×G,UT (1)) where UT (1) is U(1) on which time-reversal symmetry Z

T
2

acts as the complex conjugation [7, 8]. By using a Künneth formula, we can factorize the

group cohomology H2(ZT
2 ×G,UT (1)) as

H2(ZT
2 ×G,UT (1)) = Z2 ×H1(G,U(1))/2H1(G,U(1)) × 2H

2(G,U(1)), (4.24)

where 2H1(G,U(1)) is the group of even elements of H1(G,U(1)) and 2H
2(G,U(1)) is the

2-torsion subgroup of H2(G,U(1)), which consists of elements x ∈ H2(G,U(1)) such that

2x = 0. We note that the first factor Z2 captures the classification of 1+1d bosonic SPT

phases only with time-reversal symmetry.

In the following, we will reproduce this classification as a special case of the classifica-

tion of fusion category SPT phases. We begin with noticing that the sign s ∈ Z2 gives the

first term on the right-hand side of eq. (4.24). Furthermore, for a finite group symmetry G,8

fiber functors (Z,M, i) are classified by the group cohomology H2(G,U(1)). However, some

elements of H2(G,U(1)) are not allowed when the time-reversal symmetry is taken into ac-

count. We will see shortly that H2(G,U(1)) reduces to its 2-torsion subgroup 2H
2(G,U(1))

in the presence of time-reversal symmetry. The remaining term H1(G,U(1))/2H1(G,U(1))

comes from the classification of isomorphisms φ that satisfy eq. (4.22).

Once we fix a basis bg of each vector space Vg, the isomorphism φg : Vg → Vg−1 can

be represented by a phase factor φ(g) as φg(bg) = φ(g)bg−1 . For this choice of the basis,

equation (4.22) can be written as

φ(g−1)φ(g) = 1, φ(g)φ(h) =
ν(g, h)

ν(h−1, g−1)
φ(gh), (4.25)

where a 2-cocycle ν ∈ Z2(G,U(1)) represents the multiplication Mg,h(bg ⊗ bh) = ν(g, h)bgh

with respect to the basis {bg}. If we choose the basis so that ν(g, h) = ν(h−1, g−1)−1, the

8As a fusion category symmetry, a finite group symmetry G is described by the category of G-graded

vector spaces VecG.

– 21 –



J
H
E
P
0
5
(
2
0
2
1
)
2
0
4

second equation indicates that the cohomology class of ν2 vanishes. This means that ν

takes values in 2H
2(G,U(1)), which gives the last term on the right-hand side of eq. (4.24).

Given a 2-cocycle ν, the solutions of eq. (4.25) are in one-to-one correspondence with

the first group cohomology H1(G,U(1)). To see this, we suppose that φ1 and φ2 are

solutions of eq. (4.25). The ratio Φ := φ1/φ2 satisfies

Φ(g)Φ(h) = Φ(gh), (4.26)

which indicates that Φ is a homomorphism from G to U(1). Therefore, if eq. (4.25) has

a solution, the solutions of eq. (4.25) are in one-to-one correspondence with the set of

homomorphisms from G to U(1), which is the first group cohomology H1(G,U(1)). The

existence of a solution can be seen by explicitly constructing a solution in the following

way [7]. Let ν̃ ∈ Z2(ZT
2 ×G,UT (1)) be a group 2-cocycle that agrees with ν ∈ Z2(G,U(1))

on the orientation-preserving subgroup G, i.e. ν̃(g, h) = ν(g, h) for all g, h ∈ G. If we define

φ0(g) :=
ν̃(T, g−1)ν̃(Tg−1, T )ν̃(g, g−1)

ν̃(T, T )
(4.27)

where T is the generator of time-reversal symmetry Z
T
2 , we find that φ0 satisfies (4.25).

Thus, the set of the orientation-reversing isomorphisms are in one-to-one correspondence

with H1(G,U(1)).

The pairs (ν, φ) and (ν ′, φ′) are equivalent if they are related by a change of the basis

bg → b′
g := µ(g)bg where µ is a U(1)-valued function on G. Under this change of the basis,

ν and φ transform as

ν(g, h) → ν ′(g, h) =
µ(g)µ(h)

µ(gh)
ν(g, h), φ(g) → φ′(g) =

µ(g)

µ(g−1)
φ(g). (4.28)

To classify the solutions φ of eq. (4.25) for a fixed ν, we demand that the multiplication ν

is invariant under the change of the basis. This means that µ is a group homomorphism

from G to U(1). Thus, equivalent solutions φ and φ′ are related by the multiplication

of a squared group homomorphism µ(g)/µ(g−1) = µ(g)2, which forms an abelian group

2H1(G,U(1)).

Therefore, orientation-reversing isomorphisms are classified up to change of the basis

by the quotient group H1(G,U(1))/2H1(G,U(1)), which gives the second term on the

right-hand side of (4.24). This completes the classification of 1+1d bosonic SPT phases

with symmetry Z
T
2 ×G.

4.3.2 Duality symmetry

The invariance of a theory under gauging a finite abelian group symmetry A is called duality

symmetry. A theory with duality symmetry is said to be self-dual. The duality symmetry

is described by a Tambara-Yamagami category TY(A,χ, ǫ) where χ : A × A → U(1) is a

non-degenerate symmetric bicharacter of A and ǫ ∈ {±1} is a sign [55]. The set of simple

objects of TY(A,χ, ǫ) consists of group-like objects a ∈ A and the duality object m, whose

fusion rules are given by

a⊗ b = ab, m⊗ a = a⊗m = m, m⊗m =
⊕

a∈A

a. (4.29)
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From the above fusion rules, we find that the quantum dimensions of a group-like object

a and the duality object m are given by dim a = 1 and dimm =
√

|A| respectively. The

nontrivial associators of TY(A,χ, ǫ) are summarized as follows:

αamb = χ(a, b)idm, αmam =
⊕

b∈A

χ(a, b)idb, (αmmm)ab =
ǫ√
|A|

χ(a, b)−1idm. (4.30)

The last equation means that the associator αmmm consists of the morphisms

ǫχ(a, b)−1idm/
√

|A| from the ath component of the source object
⊕
m to the bth com-

ponent of the target object
⊕
m.

In the following, we classify bosonic self-dual SPT phases with time-reversal symme-

try by group-theoretical data. We first review the classification of fiber functors of the

Tambara-Yamagami category TY(A,χ, ǫ) [56]. To simplify the notation, we denote the

isomorphisms Mxy : Vx ⊗ Vy → Vx⊗y for simple objects x and y as

vavb := Mab(va ⊗ vb), (4.31)

va · w := Mam(va ⊗ w), (4.32)

w · va := Mma(w ⊗ va), (4.33)

[w,w′] := Mmm(w ⊗ w′), (4.34)

where va ∈ Va, vb ∈ Vb, and w,w′ ∈ Vm. The first equation (4.31) gives an associative

multiplication on V =
⊕
Va. In general, this multiplication is twisted by a group 2-cocycle

ξ ∈ Z2(A,U(1))

uaub = ξ(a, b)uab, (4.35)

where ua is a basis of Va. The second equation (4.32) and the third equation (4.33) give

the left and right actions of V on Vm respectively. The left and right actions are related

by an involutive anti-automorphism f : V → V as follows:

w · va = f(va) · w. (4.36)

The involutive anti-automorphism f on V induces an involutive automorphism σ on A as

f(ua) = ν(a)uσ(a), (4.37)

where ν(a) is a complex number with absolute value 1.

We can show that a fiber functor of the Tambara-Yamagami category TY(A,χ, ǫ) is

characterized by a triple (σ, ξ, ν) such that

χ(a, b) = ξ(a, σ(b))/ξ(σ(b), a), (4.38)

ν(a)ν(b)/ν(ab) = ξ(a, b)/ξ(σ(b), σ(a)), (4.39)

ν(a)ν(σ(a)) = 1, (4.40)
∑

a∈A s.t. σ(a)=a

ν(a) = ǫ
√

|A|. (4.41)

We note that the cohomology class of ξ must be nontrivial due to the non-degeneracy of χ.
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If we change the basis of Va from ua to u′
a := ψ(a)ua, the triple (σ, ξ, ν) changes to

σ′ = σ, ξ′(a, b) =
ψ(a)ψ(b)

ψ(ab)
ξ(a, b), ν ′(a) =

ψ(a)

ψ(σ(a))
ν(a). (4.42)

Thus, the fiber functors characterized by the triples (σ, ξ, ν) and (σ′, ξ′, ν ′) are naturally

isomorphic if they are related by eq. (4.42). Such triples are said to be equivalent to

each other. Therefore, 1+1d bosonic SPT phases with duality symmetry are classified by

equivalence classes of triples (σ, ξ, ν) that satisfy eqs. (4.38)–(4.41).

To classify self-dual SPT phases with time-reversal symmetry, we also need to consider

the orientation-reversing isomorphisms φx : Vx → Vx∗ that satisfy eq. (4.22). Considering

that the pivotal structure of the duality object m is given by am = ǫ idm (see e.g. [57]), we

find that eq. (4.22) for the Tambara-Yamagami category TY(A,χ, ǫ) reduces to

φa−1(φa(va)) = va, (4.43)

φm(φm(w)) = ǫw, (4.44)

φb(vb)φa(va) = φab(vavb), (4.45)

φm(w) · φa(va) = φm(va · w), (4.46)

φa(va) · φm(w) = φm(w · va), (4.47)

[φm(w′), φm(w)]a = φa−1([w,w′]a−1). (4.48)

The subscript a on the left-hand side of the last equation indicates the a-twisted sector Va

in Vm ⊗ Vm =
⊕
Va. By choosing a basis ua ∈ Va, we can represent φa by a phase factor

φ(a) as φa(ua) = φ(a)ua−1 . Similarly, by choosing a basis of Vm, we can represent φm by

a
√

|A| ×
√

|A| unitary matrix Φ as φm(w) = Φw. In terms of φ(a) and Φ, eqs. (4.43)

and (4.44) can be written as

φ(a)φ(a−1) = 1, (4.49)

Φ2 = ǫ. (4.50)

If we recall that the multiplication on V =
⊕
Va is twisted by a 2-cocycle ξ, we can write

eq. (4.45) as

φ(a)φ(b)ξ(b−1, a−1) = φ(ab)ξ(a, b), (4.51)

which includes eq. (4.49) as a special case. Equation (4.46) is equivalent to f(φa(ua)) ·
φm(w) = φm(ua · w), whose matrix representation is given by

φ(a)ν(a−1)Uσ(a−1)Φ = ΦUa (4.52)

where Ua is the matrix representation of the left action of ua. We note that Ua obeys

the same algebra as ua, i.e. UaUb = ξ(a, b)Uab. Equation (4.52) means that the unitary

transformation Ua 7→ ΦUaΦ−1 induced by the orientation-reversing isomorphism Φ on Vm

agrees with f ◦ φ : Ua 7→ φ(a)ν(a−1)Uσ(a−1). Put differently, the linear map f ◦ φ is

represented by the unitary matrix Φ, which gives the orientation-reversing isomorphism on
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Vm. Similarly, eq. (4.47) gives rise to the same equation (4.52). Furthermore, as we will

see in appendix B, eq. (4.48) reduces to

c(σ(a))ν(σ(a)) = c(a) (4.53)

where c(a) is the Ua-component of Φ, i.e. Φ =
∑

a∈A c(a)Ua. This expansion is always

possible because {Ua} spans the vector space of all
√

|A| ×
√

|A| matrices, which will also

be shown in appendix B.

Therefore, a self-dual SPT phase with time-reversal symmetry is given by the alge-

braic data (σ, ξ, ν, s, φ,Φ) where s ∈ Z2 is a sign and (σ, ξ, ν, φ,Φ) satisfies (4.38)–(4.41)

and (4.50)–(4.53). If we change the bases of Va and Vm by a phase factor ψ(a) and a

unitary matrix U respectively, (σ, ξ, ν) transforms as eq. (4.42) and (s, φ,Φ) transforms as

s′ = s, φ′(a) =
ψ(a)

ψ(a−1)
φ(a), Φ′ = UΦU−1. (4.54)

The sextuples (σ, ξ, ν, s, φ,Φ) and (σ′, ξ′, ν ′, s′, φ′,Φ′) are equivalent if they are related by

the change of the bases (4.42) and (4.54). Thus, time-reversal invariant bosonic SPT phases

with duality symmetry TY(A,χ, ǫ) are classified by equivalence classes of (σ, ξ, ν, s, φ,Φ).

As a concrete example, we explicitly compute the classification of self-dual SPT phases

when A = Z2 × Z2 = {(0, 0), (1, 0), (0, 1), (1, 1)}. In this case, we have four different

Tambara-Yamagami categories TY(Z2 × Z2, χ±,±1) where the non-degenerate symmetric

bicharacters χ± are given by [55]

χ+((1, 0), (1, 0)) = χ+((0, 1), (0, 1)) = +1, χ+((1, 0), (0, 1)) = −1, (4.55)

χ−((1, 0), (1, 0)) = χ−((0, 1), (0, 1)) = −1, χ−((1, 0), (0, 1)) = +1. (4.56)

The involutive automorphism σ is uniquely determined by eq. (4.38) where ξ is a repre-

sentative of the nontrivial cohomology class in H2(Z2 × Z2,U(1)) = Z2. Specifically, σ

is equal to the identity map when χ = χ+, while σ is a nontrivial involution that maps

(1, 0) to (0, 1) when χ = χ−. Here, we choose a group 2-cocycle ξ as ξ(a, b) = (−1)a1b2

where a = (a1, a2) and b = (b1, b2). For this choice of ξ, the two-dimensional projective

representation of Z2 × Z2 is given by using the Pauli matrices as follows:

U(0,0) = 1, U(1,0) = σx, U(0,1) = σz, U(1,1) = iσy. (4.57)

Furthermore, the solutions φ of eq. (4.51) are classified by H1(Z2 × Z2,U(1))/2H1(Z2 ×
Z2,U(1)) = Z2 × Z2 as we discussed in the previous subsection. If we denote φ as φ =

(φ(0, 0), φ(1, 0), φ(0, 1), φ(1, 1)), the solutions of (4.51) are explicitly written as

φ1 = (1,−1, 1, 1), φ2 = (1, 1,−1, 1), φ3 = (1, 1, 1,−1), φ4 = (1,−1,−1,−1). (4.58)

These solutions do not necessarily give rise to time-reversal invariant self-dual SPT phases

due to eqs. (4.52) and (4.53). In the following, we classify SPT phases (σ, ξ, ν, s, φ,Φ) for

each Z2 × Z2 Tambara-Yamagami category. Since the classification of (σ, ξ, ν) is already

known [19, 56], it suffices to consider the classification of (s, φ,Φ). In particular, TY(Z2 ×
Z2, χ−,−1) does not admit SPT phases because eqs. (4.38)–(4.41) do not have any solution.
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ǫ = +1 ǫ = −1

χ = χ+ 3 1

χ = χ− 1 0

Table 1. The number of Z2 ×Z2 self-dual SPT

phases without time-reversal symmetry.

ǫ = +1 ǫ = −1

χ = χ+ 24 4

χ = χ− 2 0

Table 2. The number of Z2 ×Z2 self-dual SPT

phases with time-reversal symmetry.

For TY(Z2 ×Z2, χ+,+1), we have three inequivalent ν, which we denote by ν1, ν2, and

ν3:

ν1(1, 0) = −1, ν1(0, 0) = ν1(0, 1) = ν1(1, 1) = 1, (4.59)

ν2(0, 1) = −1, ν2(0, 0) = ν2(1, 0) = ν2(1, 1) = 1, (4.60)

ν3(1, 1) = −1, ν3(0, 0) = ν3(1, 0) = ν3(0, 1) = 1. (4.61)

We find that there are four equivalence classes of the solutions of (4.50)–(4.53) for each ν:9

ν = ν1 ⇒ (φ,Φ) = (φ1,+1), (φ1,−1), (φ2, σy), (φ3, σz), (4.62)

ν = ν2 ⇒ (φ,Φ) = (φ1, σy), (φ2,+1), (φ2,−1), (φ3, σx), (4.63)

ν = ν3 ⇒ (φ,Φ) = (φ1, σz), (φ2, σx), (φ3,+1), (φ3,−1). (4.64)

If we take into account the choice of a sign s ∈ Z2, we obtain 24 different SPT phases in

total.

For TY(Z2 × Z2, χ+,−1), we have a single ν: ν(0, 0) = 1, ν(1, 0) = ν(0, 1) = ν(1, 1) =

−1. The solutions of (4.50)–(4.53) are given by (φ,Φ) = (φ4,+i), (φ4,−i), which are not

equivalent to each other. Since the classification of SPT phases also depends on the choice

of a sign s ∈ Z2, the bosonic SPT phase with duality symmetry TY(Z2 ×Z2, χ+,−1) splits

into four different SPT phases in the presence of time-reversal symmetry.

For TY(Z2 × Z2, χ−,+1), we have one equivalence class of ν, whose representative is

given by ν(a) = 1 for all a ∈ Z2 ×Z2. The solutions of (4.50)–(4.53) are in the equivalence

class of (φ,Φ) = (φ3, (σx + σz)/
√

2). Therefore, the bosonic SPT phase with duality

symmetry TY(Z2 ×Z2, χ−,+1) splits into two different time-reversal invariant SPT phases,

which are distinguished by the choice of a sign s ∈ Z2. The number of bosonic SPT phases

for each duality symmetry TY(Z2 × Z2, χ, ǫ) is summarized in tables 1 and 2.

Finally, we notice that some duality symmetries do not admit time-reversal invariant

SPT phases even if they admit SPT phases without time-reversal symmetry. For example, a

Z2n+1×Z2n+1 self-duality TY(Z2n+1×Z2n+1, χ,+1) admits an SPT phase in the absence of

time-reversal symmetry due to Proposition 4.2 of [56]. Here, the non-degenerate symmetric

bicharacter χ is given by

χ(a, a) = χ(b, b) = 1, χ(a, b) = e2πi/(2n+1), (4.65)

where a and b are the generators of Z2n+1 ×Z2n+1. However, this self-duality does not ad-

mit time-reversal invariant SPT phases because the 2-torsion subgroup of H2(Z2n+1 ×
9Any solution of eqs. (4.50)–(4.53) is equivalent to one of the solutions listed in eqs. (4.62)–(4.64). For

example, we have a solution (ν, φ, Φ) = (ν1, φ2, −σy), which is equivalent to (ν1, φ2, σy).
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Z2n+1,U(1)) = Z2n+1 is trivial and hence there is no nontrivial cocycle ξ that satis-

fies eqs. (4.38) and (4.51) simultaneously. This means that the combination of time-

reversal symmetry and the duality symmetry TY(Z2n+1 × Z2n+1, χ,+1) does not allow

non-degenerate gapped phases in the IR of renormalization group flows, although each

of them does. Thus, this may be regarded as a mixed anomaly between time-reversal

symmetry and the duality symmetry.

5 Conclusion

In this paper, we discussed the classification of 1+1d bosonic fusion category SPT phases

with and without time-reversal symmetry. We showed that bosonic fusion category SPT

phases without time-reversal symmetry are classified by isomorphism classes of fiber func-

tors, which agrees with the previous result [19, 34]. We obtained this result by explicitly

solving the consistency conditions of oriented TQFTs with fusion category symmetry for-

mulated in [11]. Our derivation revealed that the data of a fiber functor naturally appear in

the low energy limit of SPT phases. We also classified bosonic fusion category SPT phases

with time-reversal symmetry when the total symmetry splits into time-reversal symmetry

and fusion category symmetry. To accomplish the classification, we axiomatized unori-

ented TQFTs with fusion category symmetry by generalizing the oriented case. We found

that unoriented TQFTs for SPT phases are in one-to-one correspondence with equivalence

classes of quintuples (Z,M, i, s, φ) where (Z,M, i) is a fiber functor, s is a sign, and φ is a

collection of isomorphisms that satisfy eq. (4.22). As an application, we specified the group-

theoretical data that classify bosonic self-dual SPT phases with time-reversal symmetry

and found that some duality symmetries do not have SPT phases only when time-reversal

symmetry is imposed. This implies that renormalization group flows of a system with such

a duality symmetry and time-reversal symmetry must end in either gapless or symmetry-

broken phases, while the duality symmetry alone cannot rule out non-degenerate gapped

phases. This may be a consequence of a mixed anomaly between the duality symmetry

and time-reversal symmetry.

There are several future directions. One is to generalize our result to the case where

the total symmetry does not split into time-reversal and fusion category symmetries. For a

finite group symmetry that is not necessarily a direct product of time-reversal and internal

symmetries, the axioms of unoriented equivariant TQFTs are given in [7]. In particular,

invertible unoriented equivariant TQFTs are shown to be classified by twisted group coho-

mology. It would be interesting to extend this to more general fusion category symmetries.

Another future direction is the classification of fermionic fusion category SPT phases.

For fermionic theories, fusion category symmetry can further be generalized to superfusion

categories, which incorporate the information of Majorana fermions that reside on topolog-

ical defect lines [34, 58–65]. Moreover, fermionic topological field theories, which describe

the low energy limit of fermionic SPT phases, depend on a choice of a variant of spin struc-

ture. It would be interesting to formulate fermionic topological field theories with superfu-

sion category symmetry and solve them to classify fermionic fusion category SPT phases.

– 27 –



J
H
E
P
0
5
(
2
0
2
1
)
2
0
4

Acknowledgments

The author thanks Ryohei Kobayashi and Masaki Oshikawa for comments on the

manuscript. The author is supported by FoPM, WINGS Program, the University of Tokyo.

A Unoriented equivariant TQFTs

In this appendix, we show that the consistency conditions (3.1)–(3.12) and (4.1)–(4.11)

of unoriented TQFTs with fusion category symmetry reduce to the consistency conditions

of unoriented equivariant TQFTs when the symmetry is given by a finite group Z
T
2 × G.

We begin with recalling the algebraic data of oriented equivariant TQFTs. We first assign

a vector space Vg to a circle with a topological defect g ∈ G. The symmetry action

α : G → Aut(V ) on the vector space V =
⊕

g∈G Vg is a homomorphism where αh is

a linear map from Vg to Vhgh−1 . The vector space V has an associative multiplication

Mg,h : Vg ⊗ Vh → Vgh, which is simply denoted by Mg,h(ψg ⊗ ψh) = ψgψh for all ψg ∈ Vg

and ψh ∈ Vh. Furthermore, we have a G-invariant linear map ǫ : V1 → C such that the

pairing ǫ ◦Mg−1,g is non-degenerate. The adjoint of ǫ with respect to this non-degenerate

pairing gives the unit of the multiplication. Due to this non-degenerate pairing, the vector

space Vg−1 is regarded as the dual vector space of Vg. The dual bases of Vg and Vg−1 are

denoted by {ξg
i } and {ξi

g} respectively. For oriented equivariant TQFTs, the consistency

conditions on these algebraic data are summarized as follows: [6]

αg|Vg
= idVg , (A.1)

αh(ψg)ψh = ψhψg, ∀ψg ∈ Vg,∀ψh ∈ Vh, (A.2)
∑

i

αh(ξg
i )ξi

g =
∑

i

ξh
i αg(ξi

h). (A.3)

For unoriented equivariant TQFTs, we also have the following additional data: the

cross-cap state Θg ∈ Vg2 and an involutive anti-automorphism αT : V → V that maps

Vg to Vg−1 . The involutive anti-automorphism αT represents the action of orientation-

reversing symmetry, which preserves the unit and is compatible with internal symmetry

αT ◦ αg = αg ◦ αT . The consistency conditions on these algebraic data are given by [7]

αh(Θg) = Θhgh−1 , (A.4)

αT (Θg) = Θg−1 , (A.5)

Θgψh = αg(αT (ψh))Θgh, ∀ψh ∈ Vh, (A.6)
∑

i

αg(αT (ξi
gh))ξgh

i = ΘgΘh. (A.7)

Now, let us reproduce the above consistency conditions from (3.1)–(3.12) and (4.1)–

(4.11). First of all, the vector space V =
⊕

g∈G Vg is a unital associative algebra with a

non-degenerate pairing due to (3.6), (3.7), and (3.8). The symmetry action on this vector

space is given by the change of the base point

Xg,h = αh|Vgh
(A.8)
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because moving the base point from the left of g to the left of h is equivalent to wind-

ing the topological defect h around a cylinder. Under this identification of the symmetry

action and the change of the base point, we find that α : G → Aut(V ) becomes a ho-

momorphism as a consequence of (3.3), (3.5), and (3.11). Furthermore, the consistency

condition (3.3) reduces to eq. (A.1). Equations (A.2) and (A.3) follows from the twisted

commutativity (3.9) and the consistency on the torus (3.12) respectively. This completes

the consistency conditions of oriented equivariant TQFTs. We note that we used all the

consistency conditions (3.1)–(3.12) except for the conditions on topological point operators.

We can also check the consistency conditions of unoriented equivariant TQFTs in a

similar way. The orientation-reversing isomorphism φ is identified with the action αT of

orientation-reversing symmetry, which is an involutive anti-automorphism due to (4.2)

and (4.9). Moreover, the consistency conditions (4.1) and (4.3) indicate that αT preserves

the unit and is compatible with internal symmetry. The cross-cap state Θg ∈ Vg2 is

defined as

Θg := , (A.9)

which depends only on the topology of the diagram on the right-hand side due to (4.5)

and (4.10). The consistency condition (4.6) implies that the action αh of internal

symmetry h ∈ G maps the cross-cap state Θg to another cross-cap state Θhgh−1 , which

shows eq. (A.4). Similarly, the consistency condition (4.7) indicates that the action αT of

orientation-reversing symmetry maps Θg to Θg−1 , which shows eq. (A.5). The remaining

equations (A.6) and (A.7) follows from the Möbius identity (4.8) and the Klein iden-

tity (4.11) respectively. Thus, the consistency conditions of unoriented TQFTs with fusion

category symmetry reduce to those of unoriented equivariant TQFTs when the symmetry

is given by a finite group Z
T
2 × G. We again notice that we used all the consistency

conditions (4.1)–(4.11) except for (4.4), which is a condition on topological point operators.

B Derivation of equation (4.53)

In this appendix, we derive eq. (4.53). For this purpose, it is convenient to represent the

multiplication of Vm by a non-degenerate pairing γ as [56]

[w,w′]1 = γ(w,w′)u1, (B.1)

where the basis u1 ∈ V1 is the multiplicative unit of V =
⊕
Va. The other components

of [w,w′] ∈ V are given by [w,w′]a = γ(ua−1 · w,w′)u−1
a−1 . The non-degenerate pairing

γ is symmetric or anti-symmetric γ(w,w′) = ǫγ(w′, w) depending on whether ǫ = +1 or

−1. By choosing a basis of Vm, γ can be represented by a symmetric or anti-symmetric

non-degenerate matrix Γ as

γ(w,w′) = wT Γw′. (B.2)
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The matrix representation of f(ua) is also given in terms of Γ as Γ−1UT
a Γ. In particular,

eq. (4.37) can be written as

Γ−1UT
a Γ = ν(a)Uσ(a). (B.3)

For this matrix representation, eq. (4.48) is expressed as

ΦTUT
a−1ΓΦ = φ(a−1)ΓTUa. (B.4)

When a is the identity element, this equation indicates that ΓΦ is a symmetric or anti-

symmetric matrix

(ΓΦ)T = ǫΓΦ. (B.5)

Equation (B.4) for general a ∈ A follows from eqs. (4.50), (4.52), (B.3), and (B.5).

Therefore, it suffices to consider eq. (B.5). If we expand the unitary matrix Φ as

Φ =
∑

a∈A c(a)Ua, which can always be done without ambiguity because {Ua} is a ba-

sis of
√

|A| ×
√

|A| matrices as we will see below, eq. (B.5) reduces to

c(σ(a))ν(σ(a)) = c(a). (B.6)

This completes the derivation of eq. (4.53).

Finally, we show that {Ua} is a basis of
√

|A| ×
√

|A| matrices as we mentioned above.

If we assume that {Ua} is not linearly independent, there exists a ∈ A such that Ua is

expanded by the other matrices {Ub | b 6= a}. By multiplying U−1
a to both sides of this

expansion, we find that the identity matrix U1 = I is not linearly independent from the

other matrices. If we denote the linearly independent subset of {Ua | a 6= 1} as {Ua | a ∈ Ã},

we can uniquely express the identity matrix I as a linear combination

I =
∑

a∈Ã

cI(a)Ua. (B.7)

By multiplying Ub from the left, we obtain Ub =
∑
cI(a)ξ(b, a)Uab where the summation

is taken over a ∈ Ã. On the other hand, if we multiply Ub from the right, we have

Ub =
∑
cI(a)ξ(a, b)Uab. These equations indicate that ξ(a, b) = ξ(b, a) for all b ∈ A because

{Uab | a ∈ Ã} is linearly independent. This implies that a = 1 due to the non-degeneracy of

ξ(a, b)/ξ(b, a) = χ(a, σ(b)), see eq. (4.38). However, the set Ã does not contain the identity

element 1 by definition. This is a contradiction. Therefore, we find that {Ua | a ∈ A} is

linearly independent. Furthermore, since the number of elements in {Ua | a ∈ A} is |A| =√
|A| ×

√
|A|, the set {Ua | a ∈ A} spans the whole vector space of

√
|A| ×

√
|A| matrices.
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