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The search for new states of matter

The search for new elements led to a golden age of chemistry.

The search for new particles led to the golden age of particle physics.

In condensed matter physics, we ask what are the fundamental states of matter?

In the classical world we have solid, liquid and gas. The same H,O molecules can
condense into ice, water or vapor.

In the quantum world we have metals, insulators, superconductors, magnets etc.

Most of these states are differentiated by the broken symmetry.

Crystal: Broken Magnet: Broken Superconductor: Broken
translational symmetry rotational symmetry gauge symmetry



The quantum Hall state, a topologlcally non- tr|V|aI

state of matter
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» Topological states of matter are
defined and described by topological
field theory:
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» Physically measurable topological - 5
properties are all contained in the _ °

topological field theory, e.g. QHE, - 10
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Electromagnetic response of an insulator

» Electromagnetic response of an DOODDDDDDD
insulator is described by an effective

e 1 ET $ BT¢

S . =— | d’xdt(eE* —— B*
@ 87zj { )

H SISISISISISISISISIS)
 However, another quadratic term is
also allowed: 4mrP=(e-1)E 4mM=(1-1/u)B
S, = j d’xdiE - B
27z T
_ _ . COOODDODDD
» Physically, this term describes the
magneto-electric effect. Under time ¢
reversal: B E
E=FE;B=-B 0660066066
0= -6

4mmP=0 0/2t B 4mmM=0 0/2t E



0 periodicity and time reversal N

» Consider an analog system of a period D = jdx A¥
: . Yz,
ring. The flux enters the partition

function as: /D,

« Therefore, the physics is completely €
invariant under the shift of ® = ®+27zn

« Under time reversal, ¢=>-¢, therefore, time reversal is recovered for two
special values of ¢, $=0 and ¢=mx.

« The ME term is a total derivative, independent of the bulk values of the fields:
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» Integrated over a spatially and temporally periodic system,
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* Its contribution to the partition function is given by e'’" . Therefore, the
partition function is invariant under the shift:

Q= 0+2mrn Time reversal symmetry is recovered at 0=0, O=n=x



Classification of all TRI insulators

- Consider the most general, periodic [G=001¢e"/h “m .
model of a TRI insulator, with strong 107 | Jlipersen | 3
interactions or disorders. Couple fermions S AN

to external EM gauge fields and integrate o '0°F H R T
out the fermions. All TRI insulators fall s ... |
into two distinct classes: 107 Gl T
6=0  Topologically trivial insulators L s ]
&=r  Topologically non-trivial insulators ) . x
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0 terms in condensed matter and particle physics

« Quantum spin chains: 5
q sl CsNiCl,
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0 term with open boundaries
1 2
* O=m implies QHE on the boundary with %25%
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» For a sample with boundary, it is only insulating when a

small T-breaking field is applied to the boundary. The T breaking
surface theory is a CS term, describing the half QH. ——>

» Each Dirac cone contributes o, = 1/2e2/h to the QH. @

Therefore, 0=n implies an odd number of Dirac cones on

the surface! - m
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» Surface of a Tl = 4 graphene




Topological stability of the surface states

« For a sample with boundary, physics is not periodic in 6. However, T-invariant
perturbations, like disorder, can induce plateau transitions with Ac, =1 e4/h, or
AB=2m. For Tl with 6=mr, the surface QH can never disappear, no matter how strong
the disorder! o, =1/2 e?/h => o, =-1/2 e?/h.

« States related by interger plateau transition defines an equivalence class. There
are only two classes!

* No-go theorem: it is not possible to construct a 2D model with an odd number of
Dirac cones, in a system with T?=-1 TR symmetry. Surface states of a Tl with 6=n
is a holographic liquid! Wu, Bernevig & Zhang, Nielsen & Ninomiya

« Tl surface states can not rust away by surface chemistry.




The Topological Magneto-Electric (TME) effect

« Equations of axion electrodynamics predict the robust TME effect.
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Wilzcek, axion electrodynamics

- P,=0/2n is the electro-magnetic polarization, microscopically given by the CS term

over the momentum space. Change of P,=2"9 Chern number!
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1 y 1
16ﬂlfd3keg”k Tr{(ﬁj—g[ai,aj]) -ak}



Seeing the magnetic monopole thru the mirror of a TME
insulator

TME insulator
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higher order

(for u=p’, e=¢’) feed back Magnitude of B:
similar to Witten’s dyon effect 106V/m — 0.25¢




An electron-monopole dyon becomes an anyon!




Low frequency Faraday/ Kerr rotation
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Dimensional reduction
« From 4D QHE to the 3D topological insulator
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Chiral (QHE) and helical (QSHE) liquids in D=1
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The QHE state spatially separates the two The QSHE state spatially separates the

chiral states of a spinless 1D liquid four chiral states of a spinful 1D liquid
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No go theorems: chiral and helical states can never be constructed microscopically
from a purely 1D model Wu, Bernevig, Zhang; Nielsen, Ninomiya



Fractional charge in the QSH state, E&M duality!

« Since the mass is proportional to the magnetization, a magnetization
domain wall leads to a mass domain wall on the edge.
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« The fractional charge e/2 can be measured by a Coulomb blockade
experiment, one at the time! Qi, Hughes & Zhang
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Band Structure of HgTe
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Quantum Well Sub-bands
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Effective tight-binding model

Square lattice with 4-orbitals per site:
5.5 (p,+ip, T~ (p, —ip,). )

Nearest neighbor hopping integrals. Mixing matrix
elements between the s and the p states must be

odd in k.

h(k) 0
Heﬁ(kx’ky): *
0 h(-k)
m(k) A(sink_ —isink )
h(k)= ' l=d (k)
(k) A(sink, +isink,) — m(k) (KT
m Ak, —ik,)
Ak, +ik,) —m

Relativistic Dirac equation in 2+ 1 dimensions, with a mass term tunable by the
sample thickness d! m<0 for d>d..



Mass domain wall

Cutting the Hall bar along the y-direction we see a domain-wall structure in the
band structure mass term. This leads to states localized on the domain wall
which still disperse along the x-direction.
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Topologlcal insulators at room temperature
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Effective model
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Summary: the search for new states of matter

Crystal Magnet s-wave superconductor

Conductance
channel with
up-spin charge
carriers

Conductance
channel with
Quantum down-spin

well charge carriers

Quantum Hall

Quantum Spin Hall
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