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Abstract

This is the first part of a work on generalized variational inequalities and their appli-
cations in optimization. It proposes a general theoretical framework for the solvability
of variational inequalities with possibly non-convex constraints and objectives.
The framework consists of a generic constrained nonlinear inequality (∃û ∈ �(û),
∃ŷ ∈ �(û), with ϕ(û, ŷ, û) ≤ ϕ(û, ŷ, v), ∀v ∈ �(û)) derived from new topological fixed
point theorems for set-valued maps in the absence of convexity. Simple homotopical
and approximation methods are used to extend the Kakutani fixed point theorem
to upper semicontinuous compact approachable set-valued maps defined on
a large class of non-convex spaces having non-trivial Euler-Poincaré characteristic and
modeled on locally finite polyhedra. The constrained nonlinear inequality provides
an umbrella unifying and extending a number of known results and approaches in
the theory of generalized variational inequalities. Various applications to optimization
problems will be presented in the second part to this work to be published ulteriorly.
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1 Introduction

The theory of variational inequalities was initiated to study equilibrium problems in con-

tactmechanics. Fichera’s treatment of the existence and uniqueness for the Signorini prob-

lem in - is viewed as the birth of the theory (see [] for a first hand historical ac-

count). In that problem, at equilibrium, contact points between an elastic body and a rigid

surface must satisfy the equilibrium equations in addition to a set of boundary conditions

expressed as equalities (on the free boundary of the elastic body) together with inequali-

ties involving displacement and tension along tangent and normal directions to the con-

tact boundary of the body. The analyses of the problem by both Signorini and Fichera were

based on a crucial variational argument, namely that the solution of the equilibrium prob-

lem ought to be the displacement configuration û minimizing the total elastic potential

energy functional I(u) amongst admissible displacements u. Naturally, such a minimizer

must solve the variational inequality d
dt
I(u + tv)|t= ≥  for all admissible directions v.a
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The directional variation d
dt
I(u+ tv)|t= takes on the form of a superposition a(u, v) – F(v)

of a bilinear form and a linear functional defined on admissible displacements in an ap-

propriate Hilbert space (namely a Sobolev space H). The functional analytic framework

for the use of variational inequalities as a tool for solving boundary value problems owes

much to the pioneering work of Stampacchia. The celebrated existence and uniqueness

theorem of Stampacchia () remains a corner stone of the theory in normed spaces of

any dimension (see []). It intimately links variational inequalities to the minimization of

energy functionals and states as follows: given a closed convex subset X of a reflexive (real,

for simplicity) Banach space E and a continuous coercive bilinear form a(·, ·) on E×E, then

∀p ∈ E′,∃!û ∈ X, a(û, v – û) – p(v – û) ≥ , ∀v ∈ X. ()

If in addition a(·, ·) is symmetric, then û is characterized by I(û) = minv∈X I(v), where

I(v) = 

a(v, v) – p(v).

For the Signorini problem, the variational inequality () corresponds to the Euler-

Lagrange necessary condition expressing stationarity in the Hamilton principle for the

minimization of the energy I(v). Fixed point arguments are at the heart of () in more than

one respect. On one hand, it can be derived from the Banach contraction principle (see,

e.g., []). Indeed, the bilinear continuous and coerciveb bilinear form a(·, ·) defines an in-

ner product whose norm ‖u‖a = a(u,u)/ is equivalent to the original norm on E. By the

Riesz-Fréchet representation theorem, we may write p(v – û) = a(p, v – û) with p ∈ E and

view () as ∀p ∈ E, ∃!û ∈ X, a(λp – λû + û – û, v – û) ≤ , ∀v ∈ X for any given scalar λ > .

This formulation is equivalent to a fixed point problem û = PX(λp + ( – λ)IdX)(û) for the

orthogonal projection PX onto X. The operator T(v) = PX(λp + ( – λ)v) is a contraction

whenever the scalar λ is chosen so that  < λ < α/C. The Banach contraction principle

applies to yield the solution’s existence and uniqueness. This point of view highlights the

intimate relationship between variational inequalities andminimization problems. For ap-

plications of contraction principles to variational relations, the reader is referred to [].

On the other hand, onemay adopt an alternate fixed point approach via set-valued anal-

ysis - ultimately calling upon the Brouwer theorem or some of its topological generaliza-

tions.c This is the approach adopted in this work in order to study variational inequalities

in the presence of non-convexity.

To set the tone, let us note that () could alternately and quite easily be obtained as a

consequence of two distinct fundamental topological fixed point principles for set-valued

maps. The first approach uses theBrowder-Ky Fan fixed point theorem (which is equivalent

to theKnaster-Kuratowski-Mazurkiewicz-Ky Fan principle)much as in [] and relies heav-

ily on convexity. Here, the point-to-setmap� : X ⇒ X,�(u) := {v : a(u, v–u)–p(v–u) < }

turns out to be a so-called Ky Fan map without fixed points on a bounded closed con-

vex subset of X.d It must have a ‘maximal element’ û with �(û) = ∅, i.e., û solves () (the

uniqueness follows at once from the additivity and the coercivity of the form a). The reader

is referred to the early work byMinty [], to Dugundji-Granas [] for pioneering the KKM

maps approach,e to Allen [] for an early concise account and to Lassonde [] for a com-

prehensive treatment based on KKM theory.

The second approach is based on a generalization of the Kakutani fixed point theorem

much as in Ben-El-Mechaiekh-Isac []. This is the point of view we shall focus on here.

In geometric terms of convex analysis, () can be written as an orthogonality property

p – û ∈ NX(û), where NX(û) is the normal cone to X at û in the sense of convex analysis.
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Indeed, viewing E as a Hilbert space with inner product a(·, ·), () amounts to p – û ∈

(X – û)– the negative polar cone of X – û. But (X – û)– = (
⋃

t>

t
(X – û))– = TX(û)

– =NX(û),

where TX(û) = cl(
⋃

t>

t
(X – û)) is the tangent cone to X at û. Thus, () can be seen as a

set-valued fixed point problem û ∈ �p(û) := p –NX(û) or, equivalently, as an equilibrium

(or a zero) problem

 ∈ �p(û) ()

for the set-valued map �p : X ⇒ E defined as �p(u) := p– (u+NX(u)). Observe first that if

p /∈ X, then û = PX(p) verifies a(p– û, v– û) ≤ , ∀v ∈ X, i.e., p– û ∈ (X – û)– =NX(û) which

amounts to  ∈ p– û–NX(û) = �p(û) and () is solved. If p ∈ X, then p ∈ u+TX(u), ∀u ∈ X,

thus p–u = p–u+E ∈ (p–u–NX(u))∩TX(u). Generalizations to infinite dimensions of

the Bolzano-Poincaré intermediate value theorem (see, e.g., Ben-El-Mechaiekh []) can

be used to solve () as the map �p has closed convex values, is upper semicontinuous,

and satisfies the tangency boundary condition �(u) ∩ TX(u) �= ∅, ∀u ∈ X. This approach

lends itself to the treatment of non-convex problems through the consideration of natural

and appropriate topological substitutes to convexity as well as corresponding notions of

tangency from non-smooth analysis.

We have briefly described above the intimate relationships between the Stampacchia

variational inequality (), minimization problems, general nonlinear inclusions, and fixed

point principles. The theory of variational inequalities is playing an increasingly central

role in the study of problems not only in mechanics, physics, and engineering but also

in optimization, game theory, finance, economics, population dynamics, etc. The theory

has vastly expanded in the past five decades with the intensive production of literature

on numerous functional analytic, qualitative, and computational aspects. The interested

reader is referred to the books by Baiocchi and Capelo [], Kinderlehrer and Stampacchia

[], Nagurney [], Granas [], Cottle et al. [], Isac [],Murty [], Facchinei and Pang

[], Konnov [], Ansari et al. [], as well as the papers by Gwinner [], Blum andOettli

[], Agarwal and O’Regan [] and recently the survey paper by Ansari [].

This paper is the first part of a work devoted to the study of generalized variational

inequalities on non-convex sets. It describes the constrained inequalities umbrella frame-

work for variational and quasi-variational inequalities. The main existence results on

general systems of constrained inequalities (Theorems ,  below) are derived from

new topological generalizations of the fixed point theorem of Kakutani without convexity

(Theorems  and ). The domains considered are spaces modeled on locally finite poly-

hedra having non-trivial Euler-Poincaré characteristic which are not necessarily compact.

Rather, compactness is imposed on the maps. Solvability of generalized variational in-

equalities expressed as co-equilibria problems for non-self non-convex set-valued maps

defined on Lipschitzian retracts is established in the last section (Theorem  and Corol-

lary ). The paper also illustrates how the general results apply to particular situations in

the theories of variational inequalities, complementarity, and optimal control.

2 A general constrained nonlinear inequality

We assume that vector spaces are over the real number field and topological vector spaces

are Hausdorff. Set-valued maps (simply called maps) are denoted by capital letters and

double arrows⇒.
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Given two non-empty sets X, Y , two maps � : X ⇒ X, � : X ⇒ Y , and a proper real

function ϕ : X × Y ×X → (–∞, +∞], consider the constrained nonlinear inequality

⎧

⎨

⎩

∃û ∈ �(û),∃ŷ ∈ �(û), with

ϕ(û, ŷ, û) ≤ ϕ(û, ŷ, v),∀v ∈ �(û).
(CNI)

The solvability results for CNI will be discussed in Section . For now, let us make clear

that the CNI framework includes several types of variational inequalities.

• Generalized quasi-variational inequalities

Given a vector space E and a dual pair 〈F∗,F〉 of vector spaces,f given two non-empty

subsets X ⊆ E, Y ⊆ F and two maps � : X ⇒ X, � : X ⇒ Y , given two mappings θ : X ×

Y → F∗, η : X × X → F and a functional φ : X → R, the generalized quasi-variational

inequality problem QVI associated to the data (X,Y ,� ,�, θ ,η,φ) is

⎧

⎨

⎩

∃û ∈ �(û),∃ŷ ∈ �(û) with

〈θ (û, ŷ),η(v, û)〉 ≥ φ(û) – φ(v),∀v ∈ �(û).
(QVI)

Obviously, the existence part in the variational inequality () is a very particular case of

QVI - hence of CNI - whereby E = F is a reflexive Banach space that is Hilbertisable by the

bilinear continuous and coercive form a(·, ·) [thus E identifies with its topological dual E′,

the dual pairing being obviously 〈p,u〉 = a(p,u)], and X = Y ⊆ E, �(u) = �(u) = X for all u

are constant maps, θ (u, y) = u for all y, η(v,u) = v – u, and φ = –p.

In fact, quite clearly, QVI contains the so-called variational-like inequalities of the Stam-

pacchia type: given a dual pair of vector spaces 〈E,F〉, a non-empty closed subset X ⊆ E,

a set-valued map � : X ⇒ F , and a mapping η : X ×X → E,

∃û ∈ �(û),∃ŷ ∈ �(û) with
〈

ŷ,η(v, û)
〉

≥ ,∀v ∈ X. (VIS)

This problem is clearly equivalent to the equilibrium problem

 ∈ �(û) + η(X, û)–, ()

where η(X,u)– = {y ∈ F : 〈ŷ,η(v,u)〉 ≤  for all v ∈ X} is a negative polar cone.

In case η(v,u) = v – u, then η(X,u)– = (X – u)– = (
⋃

t>

t
(X – û))–. If in addition E is

equipped with the weak topology σ (E,F) - or with any topology for which the linear forms

x �→ 〈y,x〉, y ∈ F , are continuous on E - then η(X,u)– = NR
X (û) = TR

X (û)
–, where TR

X (u) =

cl(
⋃

t>

t
(X – û)) is the radial cone (which is simply the tangent cone of convex analysis

TX(û) whenever X is locally convex at û). Thus, () writes

 ∈ �(û) +NR
X (û). ()

The latter inclusion, referred to as a generalized variational inequality, covers () when-

ever E = F and �(u) = –p + u is single-valued. This case strongly relates to the minimiza-

tion of functionals as described next.

• Quasiconvex programming

It is well established that for a proper Gâteaux-differentiable (on its effective domain, as-

sumed to be open and convex) function f : E → (–∞, +∞] of a topological vector space E,

quasi-convexityg is equivalent to the proposition [given u, v ∈ X = dom(f ), 〈∇f (u), v– u〉 >
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 �⇒ f (u) ≤ f (v)] - see, e.g., Proposition . in []. Thus, the stricth variational inequality

∃û ∈ X, 〈∇f (û), v – û〉 >  implies that f (û) = minX f (v).

This characterization of quasi-convexity extends to a non-smooth function. Indeed, if

f is only lower semicontinuous (not necessarily differentiable) on its effective domain X,

and if the space E is a Banach space with a Gâteaux differentiable (equivalent) norm, then

quasi-convexity is equivalent to

∃p ∈ ∂f (u) such that 〈p, v – u〉 >  �⇒ f (w) ≤ f (v), ∀w ∈ [u, v[,

where ∂f (u) is the lower Dini subdifferential of f at u. Obviously, if the special instance of

(VIS)

∃û ∈ X,∃p̂ ∈ ∂f (û) such that 〈p̂, v – û〉 > , ∀v ∈ X,

holds for a quasiconvex and lower semicontinuous function f , then f (û) = minX f (v).

As pointed out by Aussel [], a better adapted approach to quasiconvex programming

relies on the so-called adjusted normal cone to sublevel sets. Consider the sublevel set

operators Sf <,Sf≤ : X ⇒ X defined by Sf≤(u) := {y ∈ X : f (y) ≤ f (u)} and Sf < := {y ∈ X :

f (y) < f (u)}, where X is the effective domain of f : E → (–∞, +∞], E being a metrizable

topological vector space. Clearly, Sf < has non-empty values at points u ∈ X\ arg min f and

is a selector of Sf≤. Let ρu = d(u,Sf <(u)) and consider, for each u ∈ X, the adjusted level set

Saf (u) :=

⎧

⎨

⎩

Sf≤(u)∩ B̄(Sf <(u),ρu) if u /∈ arg minX f ,

Sf≤(u) else.

Always, Sf <(u) ⊆ Saf (u)⊆ Sf≤(u) for all u ∈ X; if f is l.s.c., then Sf <(u) ⊆ cl(Sf <(u))⊆ Saf (u) ⊆

Sf≤(u) and at pointsuwith ρu = ,wehave cl(Sf <(u)) = Saf (u). All four sublevel set operators

Sf <(·), cl(Sf <(·)), S
a
f (·), and Sf≤(·) have convex values if and only if f is quasiconvex. The

adjusted normal cone operator Na
f : X ⇒ E′ is defined as the polar cone:

Na
f (u) :=

⎧

⎨

⎩

(Saf (u) – u)– if u ∈ X\ arg minX f ,

(Sf≤(u) – u)– if f (u) = minX f .

Denoting the negative polar cones of Sf <(u) –u and Sf≤(u) –u by Nf <(u) and Nf≤(u), re-

spectively, we haveNf≤(u)⊆ Na
f (u) ⊆Nf <(u) for all u ∈ X, with all sets being closed convex

cones. If f is quasiconvex, then for all u ∈ X \ arg minX f , the set N
a
f (u) has non-trivial ele-

ments. Proposition . in [] provides a sufficient optimality condition for quasiconvex

programming: for a quasiconvex function f : E → (–∞, +∞] radially continuous on its ef-

fective domain X, given a (not necessarily convex) subset C ⊆ int(X), if a special instance

of (VIS) is solvable overC with� =Na
f \{} (orNf < \{}, obviously) and η(v,u) = v–u, i.e.,

if ∃û ∈ C, ∃ŷ ∈ Na
f (û) \ {} such that 〈ŷ, v – û〉 ≥  for all v ∈ C, then f (û) = infC f . Taking

() into account, we have

∃û ∈ C with  ∈
(

Na
f (û) \ {}

)

+NR
C(û) �⇒ f (û) = inf

C
f . ()

Conversely, if C is a closed convex subset of the effective domain of a semistrictly quasi-

convexi continuous function f : E → (–∞, +∞] such that f (û) = infC f and int(Sf≤(û)) �= ∅,

then  ∈ (Na
f (û) \ {}) +NR

C(û) (here, N
R
C is the normal cone of convex analysis).
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• Multivalued complementarity problems

Multivalued complementarity problems are also very particular cases of QVI. Recall

that given a dual pair of vector spaces 〈F ,E〉 and a cone X ⊂ E with dual cone X∗ = {y ∈

F ; 〈y,x〉 ≥ ,∀x ∈ X}, and given a set-valued map � : X ⇒ F , a mapping f : X × F → F

and a functional φ : X → R, the multivalued complementarity problem (associated to

(X,�, f ,φ)) is

⎧

⎨

⎩

∃û ∈ X,∃ŷ ∈ �(û)∩X∗ such that

f (û, ŷ) ∈ X∗ and 〈f (û, ŷ), û〉 = φ(û).
(MCP)

The classical generalized multivalued complementarity problem corresponds to φ(u)

being identically zero and f (u, y) = y (see, e.g., []).

• A general optimal control problem

Let I = interval in R, X closed ⊂ E separable Banach space, F : I ×X ⇒ E, SF (u) = solu-

tions viable in X for the Cauchy problem

⎧

⎨

⎩

y′(t) ∈ F(t, y(t)),

y(t) = u ∈ X,
t ∈ I, y(t) ∈ X ()

(assuming such solutions exist). Starting at a point u ∈ X, consider the journey along a

trajectory y(t) of () followed by a path to a point v in a return set �(u). Assume that a cost

ϕ(u, y, v) is associated to this journey (e.g., ϕ(u, y, v) = ϕ(u, y) + ϕ(y, v)). We will discuss in

Section  the case of the particular instance of CNI, namely the general optimal control

problem

⎧

⎨

⎩

∃û ∈ X, û ∈ �(û),∃ŷ ∈ SF (û) such that

ϕ(û, ŷ, û) = infv∈�(û) ϕ(û, ŷ, v).
(GOCP)

3 Fixed points without convexity

The main general existence results for constrained nonlinear inequalities of this paper

(Theorems ,  below) derive from new fixed point theorems for approachable set-

valued maps in the sense on Ben-El-Mechaiekh-Deguire ([]; see also []) defined on

spaces modeled over locally finite polyhedra, in particular ANRs (Theorems ,  and

Corollaries , ). Before getting to the fixed point and equilibrium results, we briefly

recall fundamental topological concepts used as a substitute for convexity together with

the definition, examples, and properties of approachable maps.

3.1 Approachable maps on ANRs

Definition  ([]) Let (X,U ) and (Y ,V) be two topological spaces with compatible uni-

formity structures U and V . A map � : X ⇒ Y is said to be approachable if and only if, for

each entourage W of the product uniformity U × V on X × Y , there exists a continuous

single-valued mapping s : X → Y satisfying the inclusion graph(s) ⊂W [graph(�)].

Thus, approachable maps are those maps admitting arbitrarily close single-valued con-

tinuous graph approximations, also known as continuous approximative selections. In-

deed, it is easy to see that � is approachable if and only if ∀U ∈ U , ∀V ∈ V , � admits
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a continuous (U ,V )-approximative selection, i.e., a continuous single-valued function

s : X → Y verifying

s(x) ∈ V
[

�
(

U[x]
)]

, ∀x ∈ X. ()

This continuous graph approximation property turns out to be, in presence of some

compactness, a by-product of the upper semi-continuity of the map � together with

a qualitative topological/geometric property of its values. The classical convex example

(which can be traced back to von Neumann’s proof of its famous minimax theorem) is a

case in point.

Example  (Convex case, []) Let X be a paracompact topological space equipped with

a compatible uniformity U , and let Y be a convex subset of a locally convex topological

vector space F . Let � : X ⇒ Y be an upper semicontinuousj (u.s.c. for short) map with

non-empty convex values. Then � is approachable.

This landmark result has been extended to natural topological notions extending con-

vexity which we consider in this work. Recall that a topological space X is said to be

contractible (in itself ) if there exist a fixed element x ∈ X and a continuous homotopy

h : X × [, ] → X such that h(x, ) = x and h(x, ) = x, ∀x ∈ X. Clearly, every convex and,

more generally, every star-shaped subset of a topological vector space is contractible.

Absolute retracts are important examples of contractible spaces and occupy a central

place in topological fixed point theory as initiated by Karol Borsuk. We recall here basic

facts on retracts that are crucial for the sequel. For a detailed exposition on absolute re-

tracts and absolute neighborhood retracts (ARs and ANRs for short), we refer to the book

of Jan Van Mill [].

Definition 

(i) A subspace A of a topological space X is a neighborhood retract of X if some open

neighborhood of A in X can be continuously retracted into A, i.e., there exist an

open neighborhood V of A in X and a continuous mapping r : V → A such that

r(a) = a for all a ∈ A. If V = X , A is simply said to be a retract of X .k

(ii) A metric space A is an absolute (neighborhood) retract - written A ∈ AR (A ∈ ANR,

resp.) - if and only if A is an absolute (neighborhood) retract of every metric space

in which it is imbedded.

(iii) A metric space A is an approximative absolute neighborhood retract (A ∈ AANR

for short) if and only if A is an approximative neighborhood retract of any metric

space (X,d) in which it is imbedded as a closed subspace; i.e., for any ǫ > , there

exists an open neighborhood V of A in X and a continuous mapping r : V → A

such that d(r(a),a) < ǫ for all a ∈ A.

Note that AR ⊂ ANR ⊂ AANR.l Observe also that if A is a retract of a topological space

X with retraction r : X → A, then any continuous mapping f : A → Y into any topologi-

cal space Y extends to the continuous mapping f = r ◦ f : X → A → Y . Thus, retracts and

neighborhood retracts are characterized by extension properties. In effect, every AR is an

absolute extensor for metric spaces. This implies that each AR is contractible in itself.m

Also, every AR is a retract of some convex subspace of a normed linear space. Conversely,
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theDugundji extension theorem (see, e.g., [] or []) asserts that convex sets in locally con-

vex spaces are absolute extensors for metric spaces. Hence, any metrizable retract of a

convex subset of a locally convex topological linear space is an AR. Every infinite polyhe-

dron endowed with a metrizable topology is an AR. Similarly, every ANR is an absolute

neighborhood extensor of metric spaces. Even more precisely, ANRs are characterized

as retracts of open subsets of convex subspaces of normed linear spaces. The class ANR

include all compact polyhedra. Every Fréchet manifold is an ANR. The union of a finite

collection of overlapping closed convex subsets in a locally convex space is an ANR pro-

vided it is metrizable (see []). AANRs as characterized as metrizable spaces that are

homeomorphic to approximative neighborhood retracts of normed spaces.

We now state some extensions of Example  to maps with non-convex values. We start

with the contractible case.

Example  (Contractible case, [, , ]) Given two ANRs X and Y with X compact,

every u.s.c.map � : X ⇒ Y with compact contractible values is approachable.

Contractibility is not sufficient to describe qualitative properties of solution sets to some

differential or integral equations and inclusions. A seminal result of Aronszajn [] es-

tablishes that such solution sets satisfy a more general proximal contractibility property

tantamount to being contractible in each of their open neighborhoods (sets with trivial

shape and Rδ sets
n). To be more precise, let us consider the following notion.

Definition  (Dugundji []) A subspace Z of a topological space Y is said to be ∞-

proximally connected in Y if for each open neighborhood U of Z in Y , there exists an

open neighborhood V of Z in Y contained and contractible in U .

Example 

(i) The set {(t, sin( 
t
));  < t ≤ } ∪ ({} × [–, ]) is not contractible in itself, but it is

contractible in each of its open neighborhoods in R
.

(ii) If a subspace Z of an ANR Y has trivial shape in Y (that is, Z is contractible in each

of its neighborhoods in Y ), then Z is ∞-proximally connected in Y (see []).

(iii) Let {Zi}
∞
i= be a decreasing sequence of compact spaces having trivial shape in an

ANR Y . Then Z =
⋂∞

i=Zi is ∞-proximally connected in Y (see []). In particular,

every Rδ set in an ANR Y is ∞-proximally connected in Y .

We now state extensions of Example  to maps with non-contractible values.

Example  (Non-contractible cases)

(i) (Compact domains, [, ]) Let X be a compact AANR and let Y be a uniform

space. Then every u.s.c.map � : X ⇒ Y with non-empty compact ∞-proximally

connected values in Y is approachable.

(ii) (Non-compact domains, []) Let X be an ANR and let Y be a metric space. Then

every u.s.c.map � : X ⇒ Y with non-empty compact ∞-proximally connected

values in Y is approachable.

Case (i) is a particular version of a result in [] (see Corollary . there or Corollary .

in []), where the non-metrizable case - X is an approximative absolute neighborhood
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extension space (AANES) for compact topological spaces - is considered (compactAANRs

are AANES for compact spaces). In the special case where X and Y are ANRs with X

compact, this result first appeared in [].

Examples , , and  indicate that some compactness of the domain plays a key role in the

approachability of a map (ANRs are paracompact spaces). Compactness can be weakened

by simply requesting approachability on finite polyhedra. More precisely:

Proposition  Let X be an ANR, (Y ,V) be a uniform topological space, and let � : X ⇒

Y be a u.s.c. map with non-empty values. If the restriction of � to any finite polyhedron

P ⊂ X is approachable on P, then the restriction of � to any compact subset K of X is also

approachable on K .

Proof We only sketch the proof. Recall that given an open subset U of a normed space

and a compact subset K ofU , there exists a compact ANR C such that K ⊂ C ⊂U (Girolo

[]). Since X can be seen as a retract of an open set in a normed space (namely, the space

of bounded continuous real functions onX), one concludes that ifK is any compact subset

of X, then there exists a compact ANR C such that K ⊂ C ⊂ X. Since compact ANRs are

dominated by finite polyhedra and since the enlargement of classes of topological spaces

by domination of domain preserves approachability (see Proposition . in []), it follows

that the restriction �|C of � to C is also approachable. Invoking the fact that restrictions

of approachablemaps to compact subsets are also approachable (Proposition . in [] or

Proposition . in []), it follows that the restriction�|K of� toK is also approachable.�

We now formulate (without proofs) two stability properties for approachable maps es-

sential to the proofs of the main results in Section . below.

Proposition  (See []) Given three topological spaces equipped with compatible unifor-

mity structures (X,U ), (Y ,V) and (Z,W), let � : X ⇒ Y be a u.s.c. approachable map with

non-empty compact values, and let � : Y ⇒ Z be a u.s.c. map with non-empty values such

that the restriction of � to the set �(X) is approachable. Then the composition product

�� : X ⇒ Z is u.s.c. and approachable provided the space X is compact.

This implies the following.

Example  Let � : X ⇒ Xn be a map that admits a decomposition �(x) = (�n ◦ · · · ◦

�)(x), where each map �i : Xi– ⇒ Xi is u.s.c. with ∞-proximally connected in an ANR

Xi for all i = , . . . ,n. Then the restriction of� to each compact subspace ofX is approach-

able.

3.2 Fixed point theorems

The general nonlinear inequality presented in Section  below is based on Theorem 

which is a generalization of the Borsuk and the Eilenberg-Montgomery fixed point theo-

rems to approachable compact set-valued maps defined on spaces dominated by locally

finite polyhedra and having non-zero Euler-Poincaré characteristic.

The following observation by the second author [] provides the essence of the passage

from ‘almost fixed point’ to fixed point for u.s.c.maps.
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Lemma  (Lemma . in []) Let X be a regular topological space and Ŵ : X ⇒ X be a

u.s.c. map with non-empty closed values. Assume that there exists a cofinal family {ω} of

open (in X) covers of K = cl(Ŵ(X)) such that Ŵ has an ω-fixed pointo for each open cover ω.

Then Ŵ has a fixed point.

The case of convex domains is much simpler as the next generalization of the fixed point

theorems of Ky Fan [] and Himmelberg [] to approachable maps shows.

Theorem  Let X be a non-empty convex subset of a Hausdorff locally convex space E

and Ŵ : X ⇒ X be a u.s.c. map with non-empty closed values such that:

(i) Ŵ is a compact map, i.e., K = cl(Ŵ(X)) is compact in X ;

(ii) for each finite subset N of K , the restriction of the map Ŵ to the convex hull conv{N}

of N is approachable.

Then Ŵ has a fixed point.

Given any open convex symmetric neighborhood U of the origin in E, the compact set

K can be covered by
⋃n

i=(yi +U) ∩ X, N = {yi ∈ K : i = , . . . ,n}. The Schauder projection

associated to U , πU :
⋃n

i=(yi +U)∩X → conv{N}, verifies

πU (y) – y ∈U , ∀y ∈

n
⋃

i=

(yi +U)∩X

(note that πU (y) =


∑n
i= μi(y)

∑n
i= μi(y)yi, where μi(y) := max{,  – pU (y– yi)}, pU being the

Minkowski functional associated to U , is a convex combination). By hypothesis (ii) and

Proposition , the composition product ŴU = πU ◦ Ŵ|conv{N} : conv{N} ⇒
⋃n

i=(yi + U) ∩

X → conv{N} is approachable. (Note that since Ŵ(X)⊂ K , any suitable continuous (V ,V )-

approximative f selection of Ŵ|conv{N} (V ⊂ U) has values in the uniform open neighbor-

hood K +U of K ; thus πU f is a continuous approximative selection of ŴU .) By the exten-

sion of Kakutani fixed point theorem to approachablemaps (see []),ŴU has a fixed point

x̄U which is a U-fixed point for Ŵ. As K is compact and Ŵ is u.s.c. with compact values,

Lemma  ends the proof.

Note that if Ŵ is approachable, then its restriction to any compact subset of its domain

is also approachable (Proposition . in [] for the case of topological vector spaces and

Proposition . in [] for the general case); thus (ii) always holds true in case Ŵ is ap-

proachable.

We turn our attention to the case of the domain being an ANR. It is well established

that for any given ANR X and any open cover ω of X, the geometric nerve |N(ω)| of the

cover ω-homotopy dominates X in the following sense: there exist continuous mappings

s : X → |N(ω)| and r : |N(ω)| → X such that r ◦ s and idX are ω-homotopic.p Since ANRs

are paracompact, the polyhedron |N(ω)| is locally finite. This motivates the following def-

inition.

Definition 

(i) Given an open cover ω of a topological space X and a topological space P, we say

that the space P ω-dominates X (ωH -dominates X , respectively) if there are

continuous mappings s : X → P and r : P → X such that r ◦ s and idX are ω-near

(ω-homotopic, respectively).
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(ii) Given a class of topological spaces P , the classes D(P) and DH (P) of topological

spaces dominated and homotopy dominated by P are defined as: X ∈D(P)

(X ∈DH (P), respectively) if and only if ∀ω open cover of X,∃P ∈P such that P

ω-dominates X (ωH -dominates X , respectively).

Clearly DH (P) ⊂ D(P). It is well established that ANRs ⊂ DH (P), where P is the class

of polyhedra endowed with the CW-topology (see, e.g., Example , Section . in []).

Compact ANRs as well as C-convex subsets of locally C-convex metrizable topological

spaces (where C is a convexity structure (linear or topological) are dominated by finite

polyhedra (see [])).

We will require the following specialization of the property of domination by locally

finite polyhedra for spaces with non-trivial Euler-Poincaré characteristic.

Lemma LetP be the class of polyhedra and let X ∈D(P) be a paracompact space with a

well-defined non-trivial Euler-Poincaré characteristic E(X).q Given any open cover ω of X,

then there exists a locally finite polyhedron P such that:

(i) P ω-homotopy dominates X , and

(ii) E(P) is well defined and non-trivial.

Proof Let ω be any given locally finite open cover of X and let |N(ω)| be its geometric

nerve. By Lemma. in [], since |N(ω)| is a locally finite polyhedron (thus anANR), there

exists an open cover α of |N(ω)| such that any two continuous mappings f , g : Z → |N(ω)|

of a space Z that are α-near are homotopic. By a theorem of Withehead (see, e.g., p.

in []), there exists a triangulation τ of |N(ω)| finer than the cover α. Let us choose a

(possibly iterated) star refinement ω∗ of ω, the locally finite polyhedron P = |N(ω∗)| and

continuous mappings s : X → P, r : P → X such that r ◦ s and idX are ω∗-homotopic,

and let us consider the cover α∗ = r– (ω∗) of P. All of the above can be chosen in such a

way that:

() P = |N(α∗)| is a subpolyhedron (with the same set of vertices) of P which is in turn

a subpolyhedron of (|N(ω)|, τ ), and

() there are mappings s : P → P, r : P → P with r ◦ s and idP being

α∗-homotopic, and finally,

() the cover α′ = r– (α∗) of P refines the trace of the cover α on P.

Let P = P. It is clear that P ω-homotopy dominates X, and that the mappings idP, s ◦

s ◦ r ◦ r : P → P being α′-near are homotopic. Note that by construction, the mappings

r ◦r ◦ s ◦ s and idX are homotopic. By the homotopy invariance of the Lefschetz number,

E(X) = λ(idX) = λ(r ◦ r ◦ s ◦ s) and E(P) = λ(idP) = λ(s ◦ s ◦ r ◦ r). It is well known

(see, e.g., []) that, when defined for a pair of mappings f and g , the Lefschetz numbers

λ(f ◦ g) and λ(g ◦ f ) are equal. Hence E(X) = λ(r ◦ r ◦ s ◦ s) = λ(s ◦ s ◦ r ◦ r) = E(P).

�

Lemmas  and , together with the definition of approachability (Definition ) imply

the first purely topological fixed point property.

Theorem  Let P be the class of polyhedra, X ∈ D(P) be a paracompact space with

E(X) �=  and Ŵ : X ⇒ X be a u.s.c. approachable map with non-empty closed values. If

Ŵ is compact, then it has a fixed point.
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Proof By Lemma , for an arbitrarily chosen open cover ω of X, there exists a locally

finite polyhedron Pwith non-trivial Euler-Poincaré characteristic and a pair of continuous

mappings X
s

→ P
r

→ X such that, for each x ∈ X, (r ◦ s)(x) and x are ω-near. Consider the

following commutative diagram:

rsŴ

X
Ŵ

⇒ X
s

→ P

⇈ ւ r ⇈

X⇒
Ŵ

X→
s
P

sŴr. ()

We show that the u.s.c. compact-valued map sŴr : P ⇒ P is approachable in a stronger

sense, sufficient for the existence of a fixed point. Being a compact subset of P, the set

K ′ = cl((sŴr)(P)) admits a cofinal family of open covers {ϑ}. Any given arbitrary open cover

ϑ of K ′, has a uniform refinement of the form {W [pi] : pi ∈ K ′, i = , . . . ,n}, whereW is an

entourage of a uniformity structure generating a topology equivalent to the initial CW-

topology on P. In addition, the entourage W can be chosen small enough so as to satisfy

the following: W [K ′] ⊂ O, where O is an open neighborhood of a compact ANR C such

that K ′ ⊂ C ⊂ O ⊂ P provided by the main result (Theorem) in [], with neighborhood

retraction ρ :O → C.

The map s : cl(Ŵ(X)) → P being continuous on the compact set cl(Ŵ(X)) is uniformly

continuous. Thus, there exists amemberV of a uniform structureV defining an equivalent

topology on X such that s(V [x])⊂W [s(x)], ∀x ∈ cl(Ŵ(X)). By hypothesis, according to ()

there exists a continuous (V ,V )-approximative selection f : X → X of Ŵ, i.e.,

f (x) ∈ V
[

Ŵ
(

V [x]
)]

, ∀x ∈ X.

Thus, ∀p ∈ P,

s
(

f
(

r(p)
))

∈ s
(

V
[

Ŵ
(

V
[

r(p)
])])

⊂W
[

sŴ
(

V
[

r(p)
])]

.

The continuous mapping s ◦ f ◦ rmaps P into the tubular open neighborhoodW [K ′] in P.

Being a continuous compact single-valued mapping of a locally finite polyhedron with

non-zero Euler-Poincaré characteristic, ρ ◦s◦ f ◦r : P → C →֒ P has a fixed point pW = (ρ ◦

s◦ f ◦r)(pW ) ∈ ρ(W [sŴ(V [r(pW )])]). Hence, pW ∈W [sŴ(V [r(pW )])], i.e., pW ∈W [s(yW )]

with yW ∈ Ŵ(xW ), xW ∈ V [r(pW )]. By compactness, there exist nets {pW } converging to

some p̄ ∈ P, r(pW ) → r(p̄) = x̄ in X, xW → x̄ in X, yW → ȳ in cl(Ŵ(X)), s(yW ) → s(ȳ) in P.

Consequently, p̄ = s(ȳ) ∈ sŴ(x̄) = sŴr(p̄).

By commutativity of diagram (), the map rsŴ : X ⇒ X also has a fixed point xω = rs(yω),

yω ∈ Ŵ(xω) satisfying {xω, yω} are ω-near, i.e., xω is an ω-fixed point for Ŵ. Since cl(Ŵ(X))

is compact, Lemma  ends the proof. �

Thenovelty inTheorem  is that compactness is on themap rather than the domain and

in the use of simple homotopy and approximation methods (see, e.g., Theorem . in []

for the case where X is compact and P is the class of finite polyhedra). Surely, the theorem

could be obtained using Lefschetz theory and homologicalmethods, but themethods used

here are notably simpler.
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Corollary  Every compact u.s.c. approachable map with non-empty closed values Ŵ :

X ⇒ X of an ANR X with E(X) �=  has a fixed point.

Corollary  is a significant improvement on the Kakutani-Himmelberg fixed point the-

orem and on the Borsuk fixed point theorem for ARs. It holds true if the values of Ŵ are

∞-proximally connected in the ANR X (or Ŵ admits a decomposition as in Example ),

thus extending the main theorem in [] whereby X is a compact ANR.

4 Solvability results for CNI and applications

The main solvability results for the convex as well as the non-convex CNI problem are

presented in this section together with applications to QVI, MCP, and GOCP.

4.1 CNI with quasiconvex objectives

For simplicity, we start with CNI in the case of a convex domain and a convex-valued

constraint � by extending the main result in [] to non-compact domains.

Theorem  Let X, Y be non-empty convex subsets in locally convex spaces E, F and let:

(i) � : X ⇒ Y be a compact u.s.c. map with non-empty closed values such that the

restriction �|conv{N} is approachable for each finite subset N of X ;

(ii) � : X ⇒ X be a compact l.s.c. map with non-empty closed (hence compact) convex

values; and

(iii) ϕ : X × Y ×X → (–∞, +∞] be a continuous extended proper real function with

ϕ(u, y, ·) quasiconvex on �(u), ∀(u, y) ∈ X × Y .

Then CNI is solvable, i.e.,

⎧

⎨

⎩

∃û ∈ �(û),∃ŷ ∈ �(û), with

ϕ(û, ŷ, û) ≤ ϕ(û, ŷ, v),∀v ∈ �(û).

Proof Define the marginal mapM : X × Y ⇒ X by putting, for (u, y) ∈ X × Y ,

M(u, y) :=
{

v ∈ �(u);ϕ(u, y, v) = min
w∈�(u)

ϕ(u, y,w)
}

. ()

The compactness and convexity of the values of � , together with the lower semiconti-

nuity of ϕ and its quasi-convexity in the third argument when restricted to �(u), imply

that M has non-empty convex compact values. We verify that M is u.s.c. To do this, in

view of the fact that both � and � are compact maps, it suffices to verify that the graph of

M is closed (indeed, a compact map with closed graph is u.s.c.). To do this, let (uα , yα , vα)α

be a net in graph(M) converging to (u, y, v) ∈ X × Y ×X. Then,

ϕ(u, y, v) ≤ lim inf
α

ϕ(uα , yα , vα) = lim inf
α

inf
w∈�(uα )

ϕ(uα , yα ,w)

≤ lim sup
α

inf
w∈�(uα )

ϕ(uα , yα ,w) ≤ inf
w∈�(u)

ϕ(u, y,w),

where the first inequality above follows from the lower semicontinuity of ϕ and the last

inequality from the upper semicontinuity of themarginal functional infw∈�(·) ϕ(·, ·,w) (this

upper semicontinuity follows at once from the facts that ϕ is an upper semicontinuous

functional and � is an l.s.c. set-valued mapr). Hence, (u, y, v) ∈ graph(M).
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Cellina’s approximation theorem (Example  above) asserts that the restriction of the

map M to any compact subset of X × Y (in particular to finite convex polytopes) is ap-

proachable.

Define a map Ŵ : X × Y ⇒ X × Y by putting

Ŵ(u, y) :=M(u, y)× �(u), (u, y) ∈ X × Y .

Now as a productmap ofu.s.c. approachablemaps, themapŴ is alsou.s.c. and approach-

able on finite convex polytopes (and on compact subsets of its domain). It has non-empty

compact values. Moreover, Ŵ(X ×Y )⊂ �(X)× �(X)⊂ K a compact subset in X ×Y . All

conditions of Theorem  are thus satisfied. Therefore, Ŵ has a fixed point (û, ŷ) ∈ Ŵ(û, ŷ),

that is, û ∈ �(û), ŷ ∈ �(û) and ϕ(û, ŷ, û) ≤ ϕ(û, ŷ, v), ∀v ∈ �(û). �

Remark 

() Theorem . in [] corresponds to the case where, instead of the maps �, � being

compact, the space X is compact and � is both u.s.c. and l.s.c.

() If in addition, ∀u ∈ X with u ∈ �(u), ∀y ∈ �(u) one has ϕ(u, y,u) ≥ , then

ϕ(û, ŷ, v) ≥ , ∀v ∈ �(û).

() If �(u) = X , ∀u ∈ X , the continuity assumptions on ϕ can be slightly relaxed to ϕ is

l.s.c. and ϕ(·, ·,u) is u.s.c.; in which case, Theorem  extends Theorem  in [] to

infinite dimensional spaces and to the case where � is a composition of convex as

well as non-convex maps �.

The map � may be a non-compact non-self map. In such a case, a compactness coer-

civity condition of the Karamardian type can be used to solve CNI (see, e.g., [] for an

early use in the context of variational inequalities).

Given two subsets X and C in a topological space E, denote by ∂X(C) = cl(C)∩ cl(X \C)

the boundary of C relative to X, and by intX(C) = C ∩ (E \ ∂X(C)) the interior of C relative

to X.

Theorem  Let X, Y be non-empty convex subsets in locally convex spaces E, F , and C be

a non-empty compact convex subset of X.Let� : C ⇒ Y and� : C ⇒ X bemaps satisfying:

(i) � is u.s.c. with non-empty compact values and approachable on convex finite

polytopes in C;

(ii) the compression map �C : C ⇒ C defined by �C(x) :=�(x)∩C is l.s.c. with

non-empty compact convex values;

(iii) ϕ : C × Y ×X → (–∞, +∞] is an extended proper function continuous on

C × Y ×C and with ϕ(u, y, ·) convex on �(u),∀(u, y) ∈ X × Y ;

(iv) ∀u ∈ C with u ∈ ∂�(u)(�C(u)), ∃v ∈ int�(u)(�C(u)) with ϕ(u, y, v) ≤ ϕ(u, y,u),

∀y ∈ �(u).

Then CNI is solvable.

Proof By Theorem , ∃û ∈ �C(û), ∃ŷ ∈ �(û) such that ϕ(û, ŷ, v) ≥ ϕ(û, ŷ, û), ∀v ∈ �C(û).

Given v ∈ �(û) \C, two cases are possible.

Case : û ∈ int�(û)(�C(û)). One can choose  < λ <  small enough so that w = λv +

( – λ)û ∈ �C(û). Hence ϕ(û, ŷ, û) ≤ ϕ(û, ŷ,w), and by convexity of ϕ(û, ŷ, ·) it follows that

ϕ(û, ŷ, û) ≤ λϕ(û, ŷ, v) + ( – λ)ϕ(û, ŷ, û). Thus, ϕ(û, ŷ, û)≤ ϕ(û, ŷ, v).
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Case : û ∈ ∂�(û)(�C(û)). By (iv), ∃v̂ ∈ int�(û)(�C(û)) with ϕ(û, ŷ, v̂) ≤ ϕ(û, ŷ, û). One

can choose  < λ <  small enough so that w = λv + ( – λ)v̂ ∈ �C(û). Hence ϕ(û, ŷ, û) ≤

λϕ(û, ŷ, v) + ( –λ)ϕ(û, ŷ, v̂) ≤ λϕ(û, ŷ, v) + ( –λ)ϕ(û, ŷ, û), where the last inequality follows

from (iv). Thus, ϕ(û, ŷ, û) ≤ ϕ(û, ŷ, v) thus completing the proof. �

Remark  Again, if �(u) = X, ∀u ∈ C, the continuity assumptions on ϕ can be slightly

relaxed to ϕ is l.s.c. and ϕ(·, ·,w) is u.s.c., extending Theorem  in [].

4.2 CNI with non-convex objectives

Non-convexity occurs naturally in optimization. For example it is well known that Pareto-

optimal sets in multi-objective programming are not necessarily convex. Rather, under

suitable hypotheses on the objectives and constraints, they may be contractible retracts

of the feasible set (see, e.g., []). Topological properties of solution sets of vector opti-

mization have been extensively studied with central themes being compactness, (path)

connectedness, contractibility, retractability, etc. (see, e.g., the works by Benoist [] and

Huy [] and his group for a number of non-convex vector optimization settings).

Our goal in this section is to establish, based on the topological fixed point Theorem ,

topological solvability result for CNI involving functions whose sublevel sets are absolute

retracts. Such functions are not unusual in non-convex optimization, as the example by

Ricceri below suggests.

Example  ([]) Given a closed convex subset X in a Banach space E and two functions

φ, J : X →R such that:

(i) φ is l.s.c. convex such that ∃v ∈ X with φ(v) =  and α := infv∈X,v�=v
φ(v)

‖v–v‖
> ;

(ii) J is Lipschitzian with constant L < α.

Then each non-empty sublevel set of φ + J is an AR.

Indeed, given λ ∈R such that {v ∈ X : (φ+J)(v)≤ λ} is non-empty, define F : X
λ–J
→R

�
→ X

as F(v) :=�(λ – J(v)), where

�(t) =

⎧

⎨

⎩

φ–(]–∞, t]) if t ≥ ,

{v} if t < ,

and observe that {v ∈ X : (φ + J)(v) ≤ λ} = Fix(F). It is easy to verify that F is a set-valued

contraction with closed convex values. It is well known that the fixed point set of such

maps is an absolute retract. Similar arguments based on the topological structure of fixed

points sets of set-valuedmaps can be used to construct other examples of functions whose

level sets are retracts of sorts.

We shall now substantially weaken the convexity assumptions in Theorem . Note first

that if � and ϕ are as in Theorem  (e.g., � has convex values and ϕ is quasiconvex in its

third argument), then for all (u, y) ∈ X × Y , the subset arg min�(u) ϕ(u, y, ·) as well as the

sublevel sets of ϕ(u, y, ·) are convex sets, thus retracts of every convex set containing them,

in particular of �(u).

Theorem  Let X, Y be ANRs with E(X),E(Y ) �=  and let:

(i) � : X ⇒ Y be an approachable compact u.s.c. map with non-empty closed values;
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(ii) � : X ⇒ X be a compact l.s.c. map whose values are ARs;

(iii) ϕ : X × Y ×X → (–∞, +∞] be a continuous proper real function.

Assume that for all (u, y) ∈ X × Y any one of the following conditions holds:

(iv) arg min�(u) ϕ(u, y, ·) is a retract of �(u); or

(iv) for any n ∈ N large, the sublevel set S
(n)
ϕ(u,y,·)≤ := {v ∈ �(u) : ϕ(u, y, v) ≤

min�(u) ϕ(u, y, ·) + /n} is a retract of �(u); or

(iv) for any n ∈N large, for any ǫ > , there exists an ǫ-deformation

h : S
(n)
ϕ(u,y,·)≤ × [, ] → S

(n)
ϕ(u,y,·)≤ such that h(·, ) can be extended to �(u).

Then CNI has a solution.

Proof The proof goes along the lines of that of Theorem . The constrained marginal

map

M(u, y) :=
{

v ∈ �(u);ϕ(u, y, v) = min
w∈�(u)

ϕ(u, y,w)
}

,

(u, y) ∈ X × Y is u.s.c. with non-empty compact values for exactly the same reasons. Its

values are precisely the sets arg min�(u) ϕ(u, y, ·).

In case (iv) holds, being a retract of the compact absolute retract �(u), the set

arg min�(u) ϕ(u, y, ·) is also a compact AR, thus contractible. Therefore, the map M is ap-

proachable by Example .

If (iv) holds, then the set arg min�(u) ϕ(u, y, ·) can be written as a decreasing sequence

∞
⋂

n=n

{

v ∈ �(u) : ϕ(u, y, v)≤ min
�(u)

ϕ(u, y, ·) + /n
}

of compact sublevel sets that are retracts of �(u). Such level sets are therefore themselves

compact ARs, and the values arg min�(u) ϕ(u, y, ·) of the map M are compact Rδ-sets in

view of Example (iii) above. Thus,M is approachable on the AR X × Y by Example (ii).

As of (iv), by an important result in the theory of retracts, it is necessary and sufficient

for the closed subset S
(n)
ϕ(u,y,·)≤ of the absolute retract �(u) to be an AR as well (see, e.g.,

Lemma .. in []).

In all three cases, as in the proof of Theorem , themapŴ(u, y) :=M(u, y)×�(u), (u, y) ∈

X×Y , is u.s.c. and approachable. It has non-empty compact values.Moreover,Ŵ(X×Y ) ⊂

�(X) × �(X) ⊂ K a compact subset in X × Y . All conditions of Theorem  are thus

satisfied (note that E(X × Y ) = E(X) × E(Y ) �= ). Therefore, Ŵ has a fixed point and the

proof ends as in Theorem . �

Remark  Theorem  contains Theorem . of []. Indeed, recall that an ANR is con-

tractible if and only if it is an AR. A compact AR is acyclic and has the fixed point prop-

erty for single-valued continuous functions (Borsuk’s theorem). In addition, condition (i)

of Theorem . in [] is relaxed. On the other hand, if the values of the map � are ∞-

proximally connected (in particular contractible), then by Example  hypothesis (i) holds

true.

As a particular case of Theorem , we have the following.
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Corollary  Let X, Y , � , and ϕ be as in Theorem , and let � : X ⇒ Y be a map satis-

fying either one of the following conditions:

(a) � is a compact u.s.c. map with closed ∞-proximally connected values in Y .

(b) � admits a decomposition �(x) = (�n ◦ · · · ◦ �)(x), where each map �i : Xi– ⇒ Xi

is u.s.c. with ∞-proximally connected in an ANR Xi for all i = , . . . ,n, X = X ,

Xn = Y and X is compact.

Then problem CNI has a solution.

Proof It suffices to observe that since X is an ANR, then by Examples (ii) and , � is

approachable. The conclusion follows immediately from Theorem . �

The solvability results for CNI above apply to the various problems described in Sec-

tion : namely, generalized quasi-variational inequalities QVI, variational-like inequalities

of the Stampacchia type VIS, multivalued complementarity problemsMCP, or general op-

timal control problem GOCP. The remainder of the paper is devoted to illustrating a few

cases of applications. Space constraints impose limits on the discussion.

4.3 Solving quasi-variational inequalities

Consider QVI associated to the data (X,Y ,�,� , θ ,η,φ) as defined in Section :

⎧

⎨

⎩

∃û ∈ �(û),∃ŷ ∈ �(û) with

〈θ (û, ŷ),η(v, û)〉 ≥ φ(û) – φ(v),∀v ∈ �(û),

whereX ⊆ E, Y ⊆ F , E being a vector space, 〈F∗,F〉 a dual pair of vector spaces,� : X ⇒ X,

� : X ⇒ Y , θ : X × Y → F∗, η : X ×X → F and φ : X →R.

Particular instances of QVI were studied in [, , –], and many others. We refer

to [] and [] for comprehensive discussions on the various aspects as well as the many

applications of variational inequalities.

We shall apply nowCorollary (a) and Theorem  to the functional ϕ : X×Y ×X →R

given by ϕ(u, y, v) = 〈θ (u, y),η(v,u)〉 + φ(v) to obtain the following results.

Theorem  Given X a convex subset of the normed space E and Y an ANR with E(Y ) �= 

imbedded in the normed space F , let:

(i) � : X ⇒ Y be a compact u.s.c. map with closed ∞-proximally connected values in Y ;

(ii) � : X ⇒ X be a compact l.s.c. map with closed convex values;

(iii) φ be continuous and convex and verify ∀u ∈ X , ∃vu ∈ �(u) with φ(vu) =  and

αu = minv∈�(u),v�=vu
φ(v)

‖v–vu‖
> ;

(iv) η be continuous and ∀u ∈ X,η(·,u) be Lipschitzian with constant Lu > ;

(v) θ be continuous and ∀(u, y) ∈ X × Y , ‖θ (u, y)‖ < αu
Lu
.

Then QVI has a solution.

Proof Observe that ϕ(u, y, v) = J(v) + φ(v) with J(v) = 〈θ (u, y),η(v,u)〉 Lipschitzian with

constant ‖θ (u, y)‖Lu. By Example  applied to a convex compact (hence complete) set

�(u), the level sets of ϕ(u, y, ·) restricted to �(u) are absolute retracts. Thus, all hypothe-

ses of Theorem  including (iv) are satisfied (a convex set in a normed spaces is an AR

by the Dugundji’s extension theorem). This ends the proof as QVI is a particular case of

CNI. �
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Suppose now that X is a subset in a normed space E, and let, for a given ρ > , Xρ be

the set X ∩ Dρ , where Dρ is the closed disk of radius ρ centered at the origin in E. As-

suming that Xρ is non-empty, denote by �ρ the compression of � restricted to Xρ given

by �ρ(u) := �(u) ∩Dρ , u ∈ Xρ . An immediate application of Theorem  is the following

solvability result with a coercivity condition in lieu of the compactness of the set X.

Theorem Consider QVI for the data (X,Y ,�,� , θ ,η,φ)with X being a non-empty con-

vex subset of a normed space E and Y a non-empty convex subset of a locally convex space

F , and θ and η being continuous. Assume that:

(i) 〈θ (u, y),η(u,u)〉 ≥ , ∀(u, y) ∈ graph(�);

(ii) ∀(u,p) ∈ X × F∗, 〈p,η(·,u)〉 is convex on �(u).

Assume, furthermore, that ∃ρ >  such that ∀ρ ≥ ρ:

(iii) Xρ is compact non-empty and the map �ρ is l.s.c. and has non-empty compact

convex values on Xρ ;

(iv) the restriction of the map � to Xρ admits a decomposition as a finite composition of

u.s.c. maps with non-empty compact ∞-proximally connected values through a

sequence of ANRs;

(v) φ is convex and its restriction to Xρ is continuous;

(vi) ∀u ∈ �(u), ‖u‖ = ρ , ∃v ∈ �(u), ‖v‖ < ρ with

max
y∈�(u)

〈

θ (u, y),η(v,u)
〉

≤ φ(u) – φ(v).

Then problem QVI has a solution.

Proof Take C = Xρ = X ∩Dρ and ϕ(u, y, v) = 〈θ (u, y),η(v,u)〉 + φ(v) in Theorem . �

Remark 

() Let φ ≡ . If there exists v ∈
⋂

u∈X �(u) such that

lim
‖u‖→∞,u∈�(u)

max
y∈�(u)

〈

θ (u, y),η(v,u)
〉

< ,

then hypothesis (vi) is satisfied. We thus obtain a generalization of a result in [].

() It is easy to verify that an alternative coercivity condition to (vi) is:

(iv)′ there exists a non-empty compact convex subset C of X such that

∀u ∈ X \C,∃v ∈ X with max
y∈�(u)

〈

θ (u, y),η(v,u)
〉

< φ(u) – φ(v).

() If E = F and η(v,u) = v – u, then hypotheses (i)-(ii) are obviously satisfied. If

η(u,u) = , ∀u ∈ X , then (i) is obviously satisfied. However, it may happen that η is

not identically zero on the diagonal of X ×X and yet problem QVI has a solution

(see, e.g., []).

Note that given any subset X of a normed space E, Xρ = X ∩ Dρ is a retract of X (be-

cause Dρ is a retract of E). In our next result, we shall assume more, namely that Xρ is a

deformation retract of X (thus has the same homotopy type as X).
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Corollary  Assume that X and Y are ANRs in normed spaces with E(Y ) �= , and let

� : X ⇒ Y be a map admitting a decomposition as a finite composition of u.s.c. maps with

non-empty compact ∞-proximally connected values through a sequence of ANRs. Assume

also that θ and η are continuous and verify:

(i) 〈θ (x, y),η(x,x)〉 ≥ , ∀(x, y) ∈ graph(�).

Assume that ∃ρ >  such that ∀ρ ≥ ρ:

(ii) Xρ is a compact deformation retract of X and E(X) �=  (or more generally Xρ is

compact and E(Xρ) �= );

(iii) �ρ is continuous with non-empty compact values;

(iv) ∀(u, y) ∈ Xρ × Y , the marginal set

M(u, y) =
{

v ∈ �ρ(u);
〈

θ (u, y),η(v,u)
〉

= inf
w∈�ρ (u)

〈

θ (u, y),η(w,u)
〉

}

is ∞-proximally connected in Xρ .

Then:

() QVI associated to the data (Xρ ,Y ,�ρ ,�, θ ,η,φ) has a solution uρ , ∀ρ ≥ ρ;

() if the set {uρ}ρ≥ρ has a cluster point, then problem QVI has a solution.

Proof For ρ ≥ ρ, since Xρ is a deformation retract of the ANR X, it is a compact ANR

with E(Xρ) �=  (the Euler-Poincaré characteristic being a homotopy invariant). Conclu-

sion () readily follows from a general formulation of Theorem , whereby the marginal

mapM : Xρ ×Y ⇒ Xρ isu.s.c. and approachable (Example ). Assumenow that the set {uρ}

of solutions to the problems QVI(Xρ ,Y ,�ρ ,�, θ ,η) has a subsequence {uρn}n converging

to û ∈ X (an ANR is a closed set). For each n, uρn ∈ �ρn (uρn ) and for some yn ∈ �(uρn ),

〈θ (uρn , yn),η(v,uρn )〉 ≥ , ∀v ∈ �ρn (uρn ). Since for any large ρ , �ρ is u.s.c. with closed val-

ues, it follows that û ∈ �(û). Furthermore, the sequence {yn} being contained in the com-

pact set �({uρn} ∪ {û}) has a cluster point ŷ ∈ �(û). The continuity of θ and η implies that

〈θ (û, ŷ),η(v, û)〉 ≥ , ∀v ∈ �(û). �

Corollary  generalizes Theorem . of [] in several ways.

Theorems ,  and Corollary  for the solvability of QVI can be applied to generalize

results by Isac and the second author [] for QVIs involving monotone maps in a gen-

eralized sense defined on neighborhood retracts including Riemannian manifolds. This is

the object of a subsequent work.

4.4 Multivalued complementarity problem

Recall that given a dual pair of vector spaces 〈F ,E〉 and a cone X ⊂ E with dual cone X∗ =

{y ∈ F ; 〈y,x〉 ≥ ,∀x ∈ X}, and given a set-valued map � : X ⇒ F , a mapping f : X × F → F

and a functional φ : X → R, the multivalued complementarity problem MCP (associated

to (X,�, f ,φ)) is

⎧

⎨

⎩

∃û ∈ X,∃ŷ ∈ �(û)∩X∗ such that

f (û, ŷ) ∈ X∗ and 〈f (û, ŷ), û〉 = φ(û).

The classical generalized multivalued complementarity problem corresponds to φ(u)

being identically zero and f (u, y) = y (see, e.g., []).
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We formulate a typical existence result for MCP that generalizes to non-convex maps

classical results in [] and their generalizations. Their proofs are similar to those pre-

sented there for convex-valued � and are left to the reader.

Theorem  Assume that � is u.s.c. with non-empty compact ∞-proximally connected

values and that φ : X → (–∞, ] is an l.s.c. convex functional.Assume also that there exists

a compact convex subset C of X with non-empty interior relative to X such that for each

u ∈ ∂X(C) there exists v ∈ intX(C) with infy∈�(u)〈y,u – v〉 ≥ φ(v) – φ(u).

Then:

() MCP has a solution provided φ() =  and φ(λu) = λφ(u), ∀(λ,u) ∈ [, +∞)×X .

() ∃û ∈ C, ∃ŷ ∈ �(û)∩X∗ with  ≤ 〈ŷ, û〉 ≤ –φ(û) provided φ() =  and

φ(u + v)≤ φ(u), ∀(u, v) ∈ X ×X .

As an example of a by-product of Theorem , we obtain a generalization of known

results that could be applied to finding stationary points of the Kuhn-Tucker type for non-

smooth programming problems with general objective functions. Assume that E = R
n,

X =R
n
+, and φ : X → (–∞, ] is an l.s.c. convex functional with φ() =  and φ(λu) = λφ(u),

∀(λ,u) ∈ [, +∞)×X. Let g be a locally Lipschitz real function onX, and let us assume that

�(u) := h(∂f (u)) is a homeomorphic image, lying in X, of the Clarke generalized gradient

[] of g at u (such amapping� is of course u.s.c. and has non-empty compact contractible

values). If there exist a constant β >  and a vector d ∈ X such that

∀u ∈
{

u ∈ X; 〈d,u〉 = β
}

,∃v ∈
{

u ∈ X; 〈d,u〉 < β
}

,

with min
y∈�(u)

〈y,u – v〉 ≥ φ(v) – φ(u),

then, with C := {u ∈ X; 〈d,u〉 ≤ β} (a compact set), one immediately obtains the solvability

of MCP. Note that our coercivity condition above is independent of the mapping f (which

could be of the form f (u, y) :=Mu + y + r,M ∈R
n×n, r ∈ R

n, as in [], or not).

Corollary  Let X be a closed convex cone in R
n, and let � : X ⇒ R

n be such that for

any compact convex subset C of X, the restriction �|C is compact-valued u.s.c. and ap-

proachable. Assume that f (u, y) = y, φ = , and that ∃α >  such that 〈y – z,u〉 ≥ α‖u‖,

∀(u, y) ∈ graph(�), ∀z ∈ �(). Then MCP has a solution.

5 Generalized variational inequalities and co-equilibria on Lipschitzian ANRs

The last section of this work establishes the existence of a solution for generalized vari-

ational inequalities as a co-equilibrium for an upper hemicontinuous non-self map with

convex values defined on a Lipschitzian ANR.

Recall that, given a closed subset X of a normed space E, an element x ∈ X is an equi-

librium for a set-valuedmap� : X ⇒ E if  ∈ �(x) (i.e., x is a zero for�). Naturally, such

solvability theorems are always subject to tangency boundary conditions. In the absence

of convexity, concepts of tangent and normal cones of non-smooth analysis are required.

We briefly recall few facts about the contingent and circatangent cones (see, e.g., Mor-

dukhovich [], Aubin-Frankowska [], Aubin-Cellina []).
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Definition 

(i) The Bouligand-Severi contingent cone TX(x) to X at x is the upper limit in the sense

of Painlevé-Kuratowski when t ↓  of the family { 
t
(X – x)}t>.

(ii) The Clarke circatangent tangent cone TC
X (x) is the lower limit (i.e., the set of all limit

points) when t ↓  and x′ →X x of the family { 
t
(X – x′)}t>,x′∈X .

A useful characterization of the Clarke cone is

TC
X (x) :=

{

v ∈ E : d
X(x)(v) = 

}

,

where d
X(x)(v) is the Clarke directional derivative (see []) of the locally Lipschitzian

distance function x �→ dist(x;X) at x in the direction vs.

TC
X (x) is a closed convex cone contained in the closed cone TX(x). At interior points of

X, TC
X (x) = TX(x) = E, the whole space. If X is locally convex at x ∈ X, then TC

X (x) = TX(x) =

TR
X (x) = cl(

⋃

t>

t
(X – x)) the tangent cone of convex analysis.

Definition The setX is said to be sleek at a point x ∈ X if the set-valuedmap x �→ TX(x)

is l.s.c. at x. X is sleek if it so at each of its points.

If X is sleek at x, then TC
X (x) = TX(x) (hence, X is regular at x), both cones being convex

and closed cones; moreover, the Clarke’s normal coneNC
X (x) = TC

X (x)
– = (∂ dist(x;X)–)– =

cl(
⋃

λ> λ∂ dist(x;X)), where ∂ is the Clarke’s generalized gradient. Most importantly:

Proposition  If X is sleek, then the map NC
X : X ⇒ E′ has a closed graph and closed

convex values.

The existence of an equilibrium is subject to the boundary condition of the Bolzano-

Poincaré-Halpern type being satisfied:

∀x ∈ ∂X, �(x)∩ TC
X (x) �= ∅. ()

This tangency condition always implies a Ky Fan type condition expressed in terms of

the normal cone NC
X (x) = TC

X (x)
– (the negative polar cone to TC

X (x)):

∀x ∈ ∂X
(

p ∈NC
X (x)

(

or p ∈ ∂ dist(x;X)
)

�⇒ inf
y∈�(x)

〈p, y〉 ≤ 
)

.

The reader is referred to [] for a detailed discussion on equilibria for set-valued maps

on non-smooth domains.

In view of the characterizations () and () of generalized variational inequalities, one

introduces the following concept.

Definition  An element x ∈ X is a co-equilibrium for � if it solves the generalized

variational inequality  ∈ �(x) –NC
X (x).

Remark 

(i) Clearly, an interior co-equilibrium is an equilibrium since, for such a point,

NC
X = {}.
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(ii) Observe that x is a co-equilibrium for � if and only if the maps � and NC
X

coincide at x, i.e., �(x)∩NC
X (x) �= ∅. As NC

X (x) = TC
X (x)

–, this coincidence

implies the infsup inequality infy∈�(x) supv∈TC
X (x)〈y, v〉 ≤ .

(iii) Conversely, infy∈�(x) supv∈TC
X (x)〈y, v〉 ≤  implies that x is a co-equilibrium for �,

provided �(x) is weakly compact. Indeed, the extended real-valued function

y �→ supv∈TC
X (x)〈y, v〉 is l.s.c. and convex, hence weakly l.s.c. Thus it achieves its

infimum on �(x) at some y verifying 〈y, v〉 ≤ , ∀v ∈ TC
X (x), i.e., y ∈NC

X (x).

For simplicity, assume in this section, that the underlying space is a real Hilbert space

(E, 〈·, ·〉) identified with its dual.t By aHilbert space pair wemean a pair (X,E) with E a real

Hilbert space and X a closed subset of E. Recall that a map � is upper hemicontinuous on

X (u.h.c.) if for each p ∈ E′, the support functional x �→ σ�(x)(p) = supy∈�(x)〈p, y〉 is upper

semicontinuous as an extended real-valued function on X. Always u.s.c. �⇒ u.h.c. The

converse holds whenever � has convex weakly compact values. Define

H(X,E) := {� : X ⇒ E :� is u.h.c. with non-empty closed convex values},

H∂ (X,E) :=
{

� ∈ H(X,E) :� verifies the boundary condition ()
}

.

Definition  Let us say that a Hilbert space pair (X,E) has the equilibrium property for

the class H∂ if and only if any map � ∈ H∂ (X,E) has an equilibrium in X.

Theorem  Assume that a Hilbert pair (X,E) has the equilibrium property for the

classH∂ . If X is sleek, then any compactmap� ∈H(X,E) has a co-equilibrium, i.e., ∃x ∈ X

solving the generalized variational inequality  ∈ �(x) –NC
X (x).

Proof The image �(X) of � is contained in a closed disk D centered at the origin with

radius M >  in E. Consider the map � : X ⇒ E given by �(x) := �(x) – (NC
X (x) ∩ D). By

Proposition  and since X is sleek, the map NC
X : X ⇒ E has a closed graph. The values

NC
X (x) ∩ D are closed, convex, and bounded, hence weakly compact. Thus, the map x �→

NC
X (x) ∩ D is u.h.c. with closed convex and bounded values. Being a linear combination

of u.h.c.maps, � is also u.h.c. As the sum of a compact convex set and a closed bounded

convex set, �(x) is closed and convex for each x ∈ X, i.e., � ∈ H(X,E). We verify that �

verifies the boundary condition (). For any given x ∈ ∂X, since the cone TC
X (x) is closed

and convex, by theMoreau decomposition theorem, any y ∈ �(x) has the form y = yT + yN

with yT = ProjTC
X (x)(y) and yN = ProjNC

X (x)(y), 〈yN , yT 〉 = . Therefore,  = 〈yN , yT 〉 = 〈yN , y –

yN 〉 = 〈yN , y〉 – ‖yN‖. By the Cauchy-Schwarz-Bunyakowsky inequality, ‖yN‖ ≤ ‖y‖ ≤ M,

that is, yT = y– yN ∈ �(x) – (NC
X (x)∩D), i.e., �(x)∩TC

X (x) �= ∅. The fact that (X,E) has the

equilibrium property for H∂ ends the proof. �

Recall that a subset X of ametric space (E,d) is an L-retract (of E) if there is a continuous

neighborhood retraction r : U → X (U an open neighborhood of X in E) and L >  such

that d(r(x),x) ≤ Ldist(x;X) for all x ∈ U . An L-retract is clearly a neighborhood retract of

E and, in particular, is closed in E. The class of L-retracts is quite large and contains many

subclasses of non-convex sets of interest in analysis and topology, e.g., closed subset of

normed spaces that are bi-Lipschitz homeomorphic to closed convex sets, epi-Lipschitz

subsets of normed spaces, prox-regular sets, etc. (see [] and []). The following general



Latif and Ben-El-Mechaiekh Fixed Point Theory and Applications  ( 2015)  2015:85 Page 23 of 26

variational inequality on L-retracts follows at once from Theorem  above and Theo-

rem . in [], which establishes that compact L-retracts belong to H∂ (X,E).

Corollary  If X is a compact L-retract in a Hilbert space E with E(X) �= , and � ∈

H(X,E) is a compact-valued map, then � has a co-equilibrium.

Note that one can make use of a generalizedMoreau decomposition theorem in Banach

spaces to prove that Corollary  holds true in a Banach space E.

5.1 Solvability for GOCP on compact epi-Lipschitz domains

Given an interval I inR, a closed subsetX in a separable Banach space E, amap F : I×X ⇒

E, let SF (t,u) be the solutions viable in X for the Cauchy problem

⎧

⎨

⎩

y′(t) ∈ F(t, y(t)),

y(t) = u ∈ X,
t ∈ I, y(t) ∈ X

(assuming such solutions exist). Starting at a point u ∈ X, consider the journey along a

trajectory y(t) followed by a path to a point v in a return set �(u) ⊂ X. Assume that a cost

ϕ(u, y, v) is associated to this journey (e.g., ϕ(u, y, v) = ϕ(u, y) + ϕ(y, v)). We are interested

in the particular control problem GOCP (see Section ; we may assume with no loss in

generality that t is fixed)

⎧

⎨

⎩

∃û ∈ X, û ∈ �(û),∃ŷ ∈ SF (û) such that

ϕ(û, ŷ, û) = infv∈�(û) ϕ(û, ŷ, v).

Consider for an illustration the particular case treated in [] where F(t, y(t)) = Ay(t) +

R(t, y(t)) withA = limt↓

t
(U(t)– IdE) being a closed densely defined linear operator which

is the infinitesimal generator of aC-semigroupU = {U(t)}t≥ of bounded linear operators

on E such that U (X) ⊆ X. Let R : I × X ⇒ E be a Carathéodory mapu with linear growth

(i.e., supz∈R(t,y) ‖y‖ ≤ μ(t)(+‖y‖) for someμ ∈ Lloc(I,E)). The set ofmild solutions SF (t,u)

is the fixed point set of the composition

C(I,E)
NR

⇒ Lloc(I,E)
M(t ,u,·)
−→ C(I,E),

where NR(y) := {f ∈ Lloc(I,E) : f (t) ∈ R(t, y(t)) a.a. t ∈ I} is the Nemetskij operator associ-

ated to R, and M(t,u; f )(t) := U(t – t)u +
∫ t

t
U(t – s)f (s)ds is the mild solution of the

Cauchy problem y′(t) ∈ Ay(t) + f (t), y(t) = u. The solvability of GOCP is based on two

crucial observations on the qualitative properties of the solution set of by Bothe [] and

Kryszewski [].

Theorem 

(i) ([]) Assume that the semigroup U is compact and R maps precompact subsets of

I ×X into compact sets in E. If the tangency condition with the Bouligand-Severi

cone R(t, y)∩TX(y) �= ∅ a.e. t ∈ I for all y ∈ X holds, then the map S : I ×X ⇒ C(I,X)

given by S(t,u) = SF (t,u) is u.s.c. and has non-empty compact values.
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(ii) ([]) If in addition X is epi-Lipschitz in E, and the more restrictive tangency

condition with the Clarke’s cone R(t, y)∩ TC
X (y) �= ∅ for a.a. t ∈ I and all y ∈ X holds,

then the values of the map S are also Rδ sets.

These properties are set-valued generalizations to differential inclusions in infinite di-

mensions of Aronszajn’s celebrated theorem on the Rδ-set structure of the solution set of

the classical single-valued Cauchy problem with continuous right-hand side []. They

extend results by Plaskacz [] where X was a non-empty closed proximate retractv ofRn.

We conclude the paper with an extension of Theorem . in [] for the solvability of

GOCP.

Theorem  Assume that X is a compact epi-Lipschitz set in a separable Banach space E

with E(X) �=  and that the above hypotheses on F(t, y(t)) = Ay(t) + R(t, y(t)) hold with the

semigroup U being compact. If � : X ⇒ X is l.s.c. with AR values and ϕ is continuous on

X ×C(I,E)×X, and quasiconvex with respect to the return variable v. Then GOCP has a

solution provided � verifies the tangency condition

R(t, y)∩ TC
X (y) �= ∅ for a.a. t ∈ I,∀y ∈ X.

Proof Apply Theorem  with � = SF which is a u.s.c. compact approachable map by Ex-

ample . �
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Endnotes
a One could thus reasonably argue that variational inequalities go as far back as the establishment of optimality

conditions for minimization problems, i.e., to Pierre de Fermat’s necessary optimality condition for an equilibrium.
b Continuity: ∃C > 0, |a(u, v)| ≤ C‖u‖‖v‖, ∀u, v ∈ E. Coercivity: a(u,u)≥ α‖u‖2 , ∀u ∈ E.
c Using the Banach contraction principle presents a clear computational advantage of approximation by Picard

iterations.
d A Ky Fanmap has convex values and open pre-images. Boundedness of domain (thus weak compactness) follows

from the coercivity of a.
e Based on Ky Fan’s extension of the Knaster-Kuratowski-Mazurkiewicz principle to vector spaces of arbitrary

dimension.
f That is a pair of real vector spaces E, F together with a bilinear form 〈·, ·〉 : F × E → R such that ∀x ∈ E \ {0}, ∃y ∈ F

with 〈y, x〉 �= 0 and ∀y ∈ F \ {0}, ∃x ∈ E with 〈y, x〉 �= 0.
g A real function f on a convex subset of a vector space is quasiconvex if f (z)≤max{f (x), f (y)} for all z ∈ [x, y]. It is

semi-strictly quasiconvex if f (x) > f (y)�⇒ f (x) > f (z) for all z ∈ ]x, y].
h The strict inequality cannot be replaced by a large inequality as the quasiconvex differentiable function f (x) = x3 ,

x ∈ [–1, 1] indicates. The strict inequality can be replaced by the large inequality for the smaller class of differentiable
pseudoconvex functions (which includes convex functions). In such a case,
[∃û ∈ X ,∀v ∈ X , 〈∇f (û), v – û〉 ≥ 0]⇐⇒ f (û) = minX f (v).

i Note that if f is semistrictly quasiconvex and l.s.c., then cl(Sf<(u)) = Sf≤(u) for all u ∈ X\ argmin f . Indeed, if y ∈ Sf≤(u)
and f (y) = f (u), consider y1 ∈ X with inf f ≤ f (y1) < f (y) = f (u). By semistrict quasi-convexity, f (yi) < f (y) = f (u) for any
net {yi} converging to y along the line segment [y1 , y)⊂ X .
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j A map � : X ⇒ Y of two topological spaces X and Y is said to be upper semicontinuous at a point x0 ∈ X if for any
open neighborhood V of �(x0) in Y , there exists an open neighborhood U of x0 in X such that �(U)⊂ V . The map
� is said to be upper semicontinuous (u.s.c. for short) on X if it is upper semicontinuous at every point of X . Note
that � is u.s.c. on X if and only if the upper inverse image {x ∈ X ;�(x) ⊂ V} of any open subset V of Y is open in X .

k Note that since topological spaces are assumed to be Hausdorff, a neighborhood retract A of X is closed in X .
l The inclusions are strict. A Euclidean sphere is an ANR but not an AR. The set

Ŵ := {(x, sin( 1
x
)) ∈R

2 : 0 < x ≤ 1} ∪ {(0, y) : –1≤ y ≤ 1} is an AANR but not an ANR (it is not locally contractible!).
m It is well known that all homology, cohomology, homotopy, and cohomotopy groups of an AR are trivial. Also, every

retract of an AR is also an AR.
n An Rδ set is the intersection of a countable decreasing sequence of compact contractible metric spaces.
o A point xω ∈ X such that, for some yω ∈ �(xω ), both xω and yω belong to a common memberW of ω.
p For the definition of the nerve of a covering, see Definition 5.3, p.172 in Dugundji [43]. Given a topological space Y

and an open cover ω of Y , two mappings f ,g : X → Y are said to be ω-near if for each x ∈ X , {f (x),g(x)} ⊂ W for
some memberW of ω. They are said to be ω-homotopic if there exists a deformation h : X × [0, 1]→ Y joining f and
g satisfying ∃W ∈ ω with h({x} × [0, 1])⊂W ∀x ∈ X . If Y is an ANR, every open cover ω of Y admits a refinement α
such that any two continuous mappings f ,g : X → Y that are α-near are ω-homotopic (Lemma 7.2 in [42]).

q The Euler-Poincaré characteristic E (X) of a space X is assumed to be a homotopy invariant. This is the case when X is
compact, with E (X) being the signed finite sum of Betti numbers

∑

i≥0(–1)
iβi , βi = dimHi(X ;Q), where the

cohomology graded linear space {Hi(X ;Q)} is of finite type. It turns out that, in this case, E (X) = λ(idX ) the Lefschetz
number of the identity mapping on X . A homotopically invariant Euler characteristic can be defined for large classes
of non-compact spaces, e.g., finite unions of convex sets, non-compact complex algebraic varieties, n-dimensional
hyperbolic Riemannian manifolds with finite volume, etc. (see, e.g., Chen [63], Gromov [64], and Harder [65]).

r If a set-valued map � is l.s.c. and a real function f (u,w) is u.s.c., then the marginal function g(u) = infw∈�(u) f (u,w) is
u.s.c. (see [56]).

s The mapping v �→ d0X (x)(v) is finite, positively homogeneous, subadditive, and Lipschitz continuous on E. In
addition, (x, v) �→ d0X (x)(v) is u.s.c. on X × E. The generalized gradient ∂0 dist(x;X) is the convex weak∗-convex set of
linear forms {p ∈ E′ : 〈p, v〉 ≤ d0X (x)(v)}.

t The results below remain valid with a dual pair (E, E′) of a normed space and its topological dual.
u That is, R has convex values, is measurable in t for all y, and is u.s.c. in y for a.a. t ∈ I.
v That is, there exists a continuous neighborhood retraction r : U → X with r(x) = x, ∀x ∈ X and ‖r(x) – x‖ = dist(x,X),

∀x ∈ U.
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