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ARTICLE

Topological flat bands in frustrated kagome lattice
CoSn
Mingu Kang 1, Shiang Fang 2,3,4, Linda Ye 1, Hoi Chun Po1, Jonathan Denlinger5, Chris Jozwiak 5,

Aaron Bostwick 5, Eli Rotenberg5, Efthimios Kaxiras 2,3, Joseph G. Checkelsky 1 & Riccardo Comin 1✉

Electronic flat bands in momentum space, arising from strong localization of electrons in real

space, are an ideal stage to realize strongly-correlated phenomena. Theoretically, the flat

bands can naturally arise in certain geometrically frustrated lattices, often with nontrivial

topology if combined with spin-orbit coupling. Here, we report the observation of topological

flat bands in frustrated kagome metal CoSn, using angle-resolved photoemission spectro-

scopy and band structure calculations. Throughout the entire Brillouin zone, the bandwidth of

the flat band is suppressed by an order of magnitude compared to the Dirac bands originating

from the same orbitals. The frustration-driven nature of the flat band is directly confirmed by

the chiral d-orbital texture of the corresponding real-space Wannier functions. Spin-orbit

coupling opens a large gap of 80meV at the quadratic touching point between the Dirac and

flat bands, endowing a nonzero Z2 invariant to the flat band. These findings demonstrate that

kagome-derived flat bands are a promising platform for novel emergent phases of matter at

the confluence of strong correlation and topology.
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E
lectronic correlations are a hallmark of condensed matter
systems with many-body character. Localizing electrons in
real space is often considered as a route to enhance corre-

lation effects and engineer emergent phases of matter. Most well-
known examples include d-electron systems, where the subtle
balance between kinetic energy and localization-enhanced Cou-
lomb interaction leads to collective electron behavior and rich
many-body physics encompassing unconventional super-
conductivity, metal–insulator transitions, density-wave instabil-
ities, and quantum spin liquids1. In band-like systems, electrons
can still be confined in real space in lattices supporting dis-
persionless electronic excitations (i.e., flat bands) in momentum
space. Due to the prominence of the interaction energy scale over
the quenched kinetic energy, flat bands represent a versatile
platform to explore exotic correlated electron phenomena.
Notable examples include f-electron systems with Kondo physics
and heavy fermions2, Landau levels under high magnetic fields
and the fractional quantum Hall effect3, and, more recently,
magic-angle twisted bilayer graphene superlattices with Mott-
insulating phase and unconventional superconductivity4,5.

A known experimental route to engineering electronic con-
finement and flat bands relies on the destructive quantum phase
interference of fermion hopping paths in certain networks,
including the dice, Lieb, kagome, and decorated square lattices6–12.
Here we focus on the case of the kagome lattice depicted in Fig. 1a.
In the simplest nearest-neighbor electronic hopping model of the
s-orbital kagome lattice H= Σ<i,j>c

y
i cj+ h.c., one can construct

real-space eigenfunctions with alternating phases at neighboring
corners of the hexagon (Fig. 1a). This electronic state is geome-
trically confined within the single hexagon since any hopping to
neighboring cells is hindered by the destructive phase interference
as shown in Fig. 1a. This real-space electronic localization trans-
lates into momentum–space (Bloch) eigenfunctions with no
energy dispersion, namely flat bands (Fig. 1b). In the tight-binding
model of kagome lattice, this dispersionless excitation materializes
alongside a pair of Dirac bands that are protected by the lattice

symmetry similar to the case of the honeycomb lattice. Both the
linear band crossing at K and quadratic band touching point at Γ
become gapped once spin–orbit coupling (SOC) is included, and
the Dirac and flat bands become topologically nontrivial10–15. This
peculiar band structure of the kagome lattice has recently attracted
significant interest, not only in the context of electronic topology—
topological insulator, Chern insulator, and fractional quantum
Hall phases10–15—but also as a platform to realize many-body
electronic phases—density waves, magnetism, Pomeranchuk
instability, and superconductivity16–18.

While the lattice-born flat bands have been recently observed in
optical and engineered atomic Lieb lattices, their experimental rea-
lization in a solid-state system has remained elusive19,20. Unlike the
ideal case shown in Fig. 1b, the dispersion of the flat band in real
kagome compounds is modified by additional factors, such as in-
plane next-nearest-neighbor hopping, interlayer coupling, and
multiple orbital degrees of freedom. Therefore, the experimental
realization of the kagome flat band requires careful and systematic
material design. Prior scanning tunneling microscopy (STM) studies
on kagome compounds Fe3Sn2 and Co3Sn2S2 reported the evidence
of flat bands from the enhancement of the momentum-integrated
density of states (DOS)21–23. However, detailed band structure
calculations revealed that the region of existence of these dis-
persionless excitations is rather limited in the momentum space21,24,
due to complex hopping pathways distorting the flat dispersions in
these compounds. These calculations are consistent with the rela-
tively weak enhancement of the DOS in STM measurements
compared to the ideal flat band case (see the Supplementary Fig. 1
for details)21–23. Accordingly, angle-resolved photoemission spec-
troscopy (ARPES) experiments have been carried out on Fe3Sn2 and
Co3Sn2S2, but no robust evidence for flat bands have been
detected24,25. The unambiguous momentum–space identification of
the kagome-based flat band and analysis of its topological character
have, therefore, remained the subject of ongoing investigations.

In the present study of kagome metal CoSn, we combine
ARPES and band structure calculations to report the presence of
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Fig. 1 Electronic confinement and flat band in ideal kagome lattice and kagome metal CoSn. a Confinement of electron in kagome lattice with nearest-

neighbor hopping. Plus and minus signs indicate the phase of flat band eigenstate at neighboring sublattices. Any hoppings outside the hexagon (arrows)

are canceled by destructive quantum interferences, resulting in the perfect localization of electron in the blue-colored hexagon. b Tight-binding band

structure of kagome lattice featuring flat band (blue solid line) and two Dirac bands with linear crossing at K (black solid lines). Inclusion of spin–orbit

coupling gaps both Dirac crossing and quadratic touching between the flat band and the Dirac band (dotted lines). c In-plane structure of kagome layer in

CoSn consists of kagome network of Co atoms and space-filling Sn atoms. d Three-dimensional structure of CoSn with alternating stacking of the kagome

layer A and Sn layer S. e Relativistic density functional theory (DFT) band structure of CoSn. Orange, cyan, and brown-colored regions highlight the

manifestation of the kagome flat band flat bands with different d-orbital characters. Inset shows the bulk Brillouin zone of CoSn. The DFT Fermi level is

shifted down by 140meV to fit the experimental Fermi level.
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topological flat bands with suppressed bandwidth in all three
momentum–space directions. CoSn belongs to the family of
binary kagome metals TmXn (T: 3d transition metals, X: Sn, Ge,
m:n= 3:1, 3:2, 1:1), wherein the kagome network is constructed
upon 3d transition metals as shown in Fig. 1c. Compounded with
the variety of magnetic ground states and topological electronic
structures, this material family has been recently spotlighted as a
versatile platform for novel correlated topological phases25–29.
For example, previous studies on Mn3(Sn/Ge), Fe3Sn2, and FeSn
have revealed band singularities ranging from three-dimensional
Weyl points to two-dimensional (2D) Dirac points, which, in
combination with intrinsic magnetism, generate large and
intrinsic anomalous Hall conductivity25–29. Among the series, TX
compounds (m:n= 1:1) have been suggested as viable hosts for
the prototypical kagome electronic structure because of their
spatially decoupled quasi-2D kagome planes (Fig. 1d)26. In FeSn,
for example, the kagome-derived 2D Dirac band structure has
been observed by ARPES, as well as a dispersionless band below
the Fermi level, whose relationship with the observed Dirac bands
has not be resolved26. Consequently, the presence of a gap at the
quadratic band touching points between the Dirac and flat bands
could not be examined, despite its central role for the topological
character of the flat band. The replacement of Co at the transition
metal site suppresses the formation of local moments and
magnetic ordering in this compound, presumably due to a higher
d-orbital filling30, while, at the same time, it shifts the overall
band structure below the Fermi energy, so that all kagome-
derived electronic excitations (both Dirac the flat bands) can
be accessed by ARPES. Consequently, we could directly visualize
the kagome-derived flat band as well as the large SOC gap at the
quadratic band touching point between Dirac and flat bands,
which endows nontrivial topology to the flat band as long pre-
dicted theoretically.

Results
Visualization of kagome flat bands using ARPES. Figure 2
summarizes the experimental band structure of CoSn as measured
using ARPES. The data in Fig. 2a–h were acquired using 92 eV
photoexcitation, which maximizes the signal from kagome band
structures. Figure 2a shows the Fermi surface of CoSn and its
characteristic hexagonal symmetry (the surface Brillouin zone is
marked by the white dashed lines) as expected from the underlying
symmetry of the kagome lattice. In Fig. 2b–f we display a series of
energy–momentum dispersions measured at ky= 0.0, 0.40, 0.79,
and 1.19 Å−1 (corresponding to orange, brown, green, and cyan
traces in Fig. 2a, respectively) across various high-symmetry
points. As shown in Fig. 2b, c, the energy–momentum dispersion
along the �Γ– �M high-symmetry direction displays a strikingly
nondispersive band near the Fermi level at −0.27 ± 0.05 eV, which
manifests itself independently of photon polarization. The dis-
persion of the flat band in this specific direction is lower than the
experimental broadening of the band, which is below 50meV. As
shown in Fig. 2d–f, the nondispersive nature of the flat band spans
most of the Brillouin zone, and acquires a small dispersion only
close to the �K point. We note that the acquisition of a small but
finite bandwidth near the �K point is typical for realistic kagome
models due to next-nearest-neighbor hopping14,22,31. Even using
conservative estimates, the bandwidth of the flat band over the
entire Brillouin zone does not exceed 150meV, suggesting that the
electron kinetic energy is strongly quenched by quantum inter-
ference effects, preventing delocalization of the wave function
across the lattice.

To further examine the lack of dispersion of the flat band, we
present in Fig. 2g the experimental band structure measured
along the �Γ–�K– �M high-symmetry direction. Near the K point, a

linearly dispersing Dirac band is found (see also Fig. 2d, e and
Supplementary Fig. 2 for further characterization of the Dirac
bands), which is also characteristic of the kagome band structure
as previously observed in Fe3Sn2 and FeSn25,26. The Dirac point is
located at −0.57 ± 0.05 eV, and only one branch of the Dirac cone
could be observed along �Γ–�K direction due to the matrix element
effect associated to the chirality of the Dirac fermion similar to
graphene26,32. The velocity of the Dirac band is (1.8 ± 0.1) × 105

m/s, which is renormalized by 23% from the density functional
theory (DFT) value (see below) similar to magnetic 3d metals Fe
and Ni33,34. With the yellow dashed boxes and red and blue bars
of Fig. 2g, we directly compare the bandwidth of the Dirac and
flat bands. The bandwidth of Dirac band extends over a range of
1.5 eV, which is typical for 3d-electron systems, such as elemental
transition metals and cuprates35–37. In contrast, the reduced
bandwidth of the flat band (<0.15 eV) is highly unusual, and can
be regarded as a direct consequence of quantum phase
interference effects in the kagome lattice as introduced in Fig. 1a.

A defining trait of the flat band is a diverging DOS, which often
sets the stage for emergent electronic phases characterized by
collective electronic, magnetic, and superconducting orders16–18.
The high DOS from the flat band in CoSn can be captured (if we
neglect the photoemission matrix element effect) from the
momentum-integrated energy distribution curves shown in
Fig. 2h. Here, colored lines are the momentum-integrated spectra
from the energy–momentum sections in Fig. 2c–f, while the black
line is obtained by integration over the full first Brillouin zone. All
integrated energy distribution curves show a sharp and intense
peak near the fixed flat band energy −0.27 ± 0.05 eV), reflecting
the high DOS associated to the nondispersive flat band. In
contrast, the spectral weight from all other bands (including the
Dirac bands) is spread out in energy and further modulated as a
function of ky.

In Fig. 2i–m we present the evolution of the flat band as a
function of out-of-plane momentum kz as measured using
photon-energy-dependent ARPES. The flat band displays negli-
gible dispersion (<50 meV) along Γ–A as shown in Fig. 2i, while
fully retaining its in-plane flatness as shown in the representative
cuts of Fig. 2j–m, measured at kz= 0, π/3, 2π/3, and π (mod 2π).
The flat band can thus be considered flat also along the kz
direction. Even though the bandwidth-canceling mechanisms are
different for the in-plane and out-of-plane directions—the former
is quenched by quantum phase interference, while the latter is
suppressed by virtue of quasi-2D layered structure (see Fig. 1d)—
the flat dispersion is realized along all three momentum
directions in CoSn. This is indeed at variance with the limited
momentum range of the flat bands in previously studied kagome
compounds21–24. Accordingly, the kinetic energy of flat band
electrons in CoSn is strongly quenched, and interaction-driven
many-body ground states are naturally expected once this lattice-
born flat band is tuned to the Fermi level. In other words, if we
start from a simple Hubbard model H=−tΣ<i,j>c

y
i cj+UΣini↑ni↓,

where t is the hopping integral and U is the on-site interaction,
the large U/t value essential to promote strong electronic
correlations can be attained even with relative small U value
owing to the quenched t of the flat bands. We calculate U ≈ 5–6
eV for Co 3d electrons, based on the linear response
approach38 (see Methods), confirming that the interaction energy
scale indeed dominates the kinetic energy scale of the flat band
electrons as measured by the quenched bandwidth of the flat
bands (<0.2 eV). The realization of strongly correlated phases
based on the flat band electrons has been recently demonstrated
in magic-angle twisted Moiré superlattices, whose flat minibands
serve as a basis for Mott-insulating, superconducting, and
magnetic ground states4,5,39. Similar correlated states of matter
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have been also theoretically investigated based on the flat band of
the kagome lattice16,17,40–43. Here, we experimentally identify a
candidate material to extend this research avenue to real kagome
systems.

DFT calculations and Wannier function analysis. To under-
stand the origin of the observed flat band, we use relativistic DFT
to calculate the theoretical band structure of CoSn as shown in
Fig. 1e. Despite the complexity inherent to the presence of mul-
tiple d-orbital degrees of freedom, the calculations closely capture
the experimental manifestation of the kagome band structure. For
example, in the kz= 0 plane, a strongly dispersing Dirac bands
(with Dirac points at K) is reproduced between −0.3 and −1.8 eV
with a 1.1–1.5 eV bandwidth. At the same time, two flat bands
(with bandwidth quenched below 0.2 eV) appear above the Dirac
bands (highlighted with orange and cyan boxes), in close corre-
spondence to Fig. 1b. Our analysis of orbital character in Sup-
plementary Fig. 3 reveals that the two flat bands arise from
different orbital degrees of freedom: the upper (lower) flat band in

the orange (cyan) box is mainly formed by dxy/dx2− y2 (dxz/dyz)
orbitals. These flat bands also have suppressed dispersion along kz
direction (see Γ–A direction for example), consistent with
experimental observations. We also found a flat band at kz= π

(brown box in Fig. 1e), which arises from dz2 orbital. However,
due to its out-of-plane orbital character, the band is not effec-
tively localized in the kz direction, exhibiting a bandwidth >1 eV.
We note that the steep kz dispersive bands may account for the
low out-of-plane resistivity and positive out-of-plane Hall coef-
ficient observed in our transport measurements on CoSn (see the
Supplementary Note 1 and Supplementary Fig. 4).

For a detailed comparison between experiment and theory, we
tune the photon energy to 128 eV to visualize the in-plane
electronic structure at the kz= 0 (mod 2π) plane and acquire
high-resolution energy–momentum maps of the flat band. As
shown in Fig. 3a, c, we could directly detect the two flat bands
with dispersion <0.1 eV along Γ–M and <0.2 eV along Γ–K–M.
The experimental dispersion closely follows the theoretical
dispersion shown in Fig. 3b, d (which are shifted up by
140 meV to match the experimental Fermi level), confirming
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the assignment of these features to the two flat bands arising from
different d-orbital degrees of freedom as discussed above. The
Dirac point is again observed at K, and positioned at slightly
higher binding energy 0.73 ± 0.05 eV due to small but finite
dispersion of the Dirac bands along kz. We note that the flat band
highlighted in Fig. 2 corresponds to the lower flat band (cyan)
with dxz/dyz orbital characters. Below, we will focus on these
prototypical flat bands at kz= 0 to analyze their localization and
topology.

At this point, an important outstanding question is how the
localization mechanism in the simple s-orbital kagome tight-
binding model (Fig. 1a, b) manifests in the realistic d-orbital
kagome lattice of CoSn. To address this aspect, we derived a DFT-

based ab initio tight-binding model of CoSn (Supplementary
Fig. 5), and use the kz= 0 flat bands to construct the real-space
effective Wannier functions on the 2D kagome plane (see the
Supplementary Note 3 for details). We construct the flat band
Wannier function to retain the highest degree of symmetries
possible (except those abandoned by the topological obstructions
associated with nontrivial Z2 invariant and mirror Chern number;
see “Discussion” below), which include a subset of important
symmetries of the kagome lattice such as C6 rotational symmetry,
xz/yz mirror symmetry, combined inversion/time-reversal sym-
metry, and combined xy mirror/time-reversal symmetry. As
such, the Wannier functions we derived could serve as a basis for
future analyses of interaction effects within the flat bands. The
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e, f Orbital textures of the effective Wannier states constructed from the flat bands with dxz/dyz and dxy/dx2− y2 orbitals, respectively. Length scale of the

orbitals at each site is proportional to the orbital wave functions in the majority spin channel. Insets of e, f display the decay of total charge density

(including the contribution from other orbitals) of the Wannier functions away from the central hexagon.
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real-space orbital textures of the constructed flat band Wannier
functions are displayed in Fig. 3e, f, while the corresponding spin
textures are displayed in Supplementary Fig. 6. Several important
points are apparent: (1) Due to the finite dispersion of the flat
bands in CoSn, we could observe a finite charge density leaking
out of the central hexagon unlike the ideal case in Fig. 1a.
Nonetheless, the charge density rapidly and exponentially decays
away from the central hexagon (insets in Fig. 3e, f), and 85% of
total charge are confined in the first to third sites from the center.
This provides the length scale of the localization ≈7 Å. (2) If we
focus on the states at the central hexagon, chiral orbital textures
could be observed around the hexagon, in which the d orbitals at
the neighboring corners are aligned antiphase toward the site
outside the hexagon. This is in reminiscence of the alternating
phases in the compact localized states of s-orbital kagome model
in Fig. 1a. In the Supplementary Note 3 and Supplementary
Fig. 10, we have demonstrated that such orbital textures
combined with fine-tuned multiorbital hopping parameters in
the kagome lattice geometry suppress the charge leakage outside
the hexagon and localize the real-space electronic wave functions.
This finding implies that the destructive quantum phase
interference from alternating phases in the s-wave kagome
tight-binding model is transferred to the real-space chiral orbital
textures in realistic d-orbital kagome model. This analogy
unequivocally confirms the frustration-driven origin of the
observed flat bands in CoSn. (3) The Wannier functions centered
at the hexagon of the kagome lattice effectively forms a triangular
lattice. We estimate the hopping t between Wannier functions at
neighboring triangular lattice sites to be ≈15meV reflecting
suppressed kinetic energy of the flat band electrons (Supplemen-
tary Table 4). In this context, the exotic electronic phases recently
derived from the Hubbard model on triangular lattices, including
spiral magnetic orders, unconventional superconductivity, and
quantum or chiral spin liquids, might be relevant to the flat bands
in kagome lattice44–46.

Nontrivial topology of the kagome flat bands. After demon-
strating the realization of the kagome-derived flat band in CoSn,
we examined the SOC-induced gap opening at the quadratic
touching point (at Γ) between the Dirac band and the flat band. In
the viewpoint of the prototypical tight-binding framework for the
kagome lattice, the gap at the quadratic band touching point is
responsible for rendering the flat band topologically nontrivial (see
Figs. 1b and 4c), endowing nonzero Chern number/Z2 invariant
under the time-reversal breaking/symmetric condition10–15.
Figure 4a highlights the band dispersion near the Γ point obtained
by averaging three spectra taken at the first, second, and third
Brillouin zone to minimize the influence of photoemission matrix
element effect to the intensity distributions. The band dispersion
closely follows the DFT calculation shown in Fig. 4b, and in
particular, it exhibits a quadratic band that emerges from the
Dirac band at K (see also Fig. 3c, d) and touches the flat band at Γ.
Focusing on this quadratic band and the flat band with same
orbital origin (dxz/dyz orbitals, cyan-colored lines Fig. 4b), the
detailed analysis of the energy distribution curves in Fig. 4d clearly
reveals the spin–orbit-induced gap opening at the quadratic
touching point. The SOC gap size could be quantified to be
ΔARPES= 80 ± 20meV (ΔDFT= 57meV), which is considerably
larger than the gap observed at the linear band crossing of Fe3Sn2
≈30meV25. The direct observation of the SOC gap between the
Dirac and the flat band strongly signals the nontrivial topology of
the observed flat band at kz= 0.

To support this, we use the DFT-derived Wannier tight-
binding model to analyze the parity eigenvalue of the flat bands at
the kz= 0 plane following the Fu–Kane formula47. This analysis

yields a topological index Z2= 1 for both flat bands confirming
their topological nature (Fig. 5a). We note that the nontrivial
topology of the flat bands is also reflected in the spin texture of
the constructed Wannier wave functions (Supplementary Fig. 6),
where time-reversal symmetry has to be implemented in a
nontrivial/nonlocal manner due to the Z2 obstruction48. To
exemplify the manifestation of the nontrivial flat band topology
on bulk properties, we also calculated the band- and momentum-
resolved spin Hall conductivity (SHC) of CoSn (Fig. 5c, d). As
displayed in Fig. 5c, the in-plane momentum-resolved SHC is
concentrated near the lifted degeneracy point between the Dirac
and flat bands, which connects to the topological nature of the
latter. The kz-resolved SHC in Fig. 5d additionally demonstrates
that, owing to the two-dimensionality of the flat band in CoSn
(Figs. 1e and 2i–m), its contribution to the SHC is fairly kz
independent for ~40% of the Brillouin zone, before it hybridizes
with other kz-dispersive bands. When extended to the 2D limit of
a single kagome sheet, the 2D topological insulator state can be
realized based on the topological flat band exactly at the Fermi
level (Fig. 5b), where helical edge states and quantized SHC are
expected inside the SOC gap. Overall, our experimental
observation of the SOC gap between the Dirac and flat bands
confirms the realization of another defining properties of 2D
kagome band structure in CoSn, which endows nontrivial
topological character to the correlated flat band electrons as
supported by our calculations.

In sum, we have successfully discovered and characterized the
topological flat bands in the frustrated kagome lattice CoSn. An
important future research direction is to raise the kagome flat
band to the Fermi level to observe the proposed lattice-borne
correlated topological phases. Potential routes to this include bulk
doping (e.g., by Co1− xFexSn, ref. 49), monolayer fabrication, and
application of compressive in-plane strain as suggested by our
DFT calculations (Supplementary Figs. 7–9). Altogether, the
observation of topological flat bands in the kagome lattice opens
up a new avenue to study correlation-driven emergent electronic
phenomena on the background of topological nontriviality.

Methods
Synthesis of CoSn single crystals. Single crystals of CoSn were synthesized using
an Sn self-flux method. Cobalt powder (Alfa Aesar, 99.998%) and tin pieces (Alfa
Aesar, 99.9999%) were mixed with a molar ratio of 1:9 and loaded in an alumina
crucible and sealed in a quartz tube under high vacuum. The tube was heated to
950 °C and maintained for 5 h, and was gradually cooled to 650 °C with a typical
cooling rate of 2–3 °C/h. At 650 °C the tube was removed from the furnace and
centrifuge dissociation was performed to separate the crystals from flux. Crystals
with a hexagonal prismatic shape were obtained with the longest dimension
(6–8 mm) typically along [001].

Angle-resolved photoemission spectroscopy. ARPES experiments were per-
formed at Beamline 4 (MERLIN) and Beamline 7 (MAESTRO) of the Advanced
Light Source equipped with R8000 and R4000 hemispherical electron analyzers
(Scienta Omicron), respectively. For ARPES measurements, surface of CoSn was
prepared in two different ways, one by ex situ fine polishing followed by in situ Ar+

ion sputtering and annealing at 1000 °C and the other by in situ low-temperature
cleaving. The experiments were performed below ≈60 K and under the ultrahigh
vacuum ≈4 × 10−11 torr. The photon energy was scanned in the range from 30 to
160 eV, which covers more than two full three-dimensional Brillouin zone of CoSn.
Corresponding kz momentum was calculated by assuming nearly free-electron final
state with inner potential 5.5 eV. We used s-polarized photons unless specified,
which maximize the signal from the flat bands. The convoluted energy and
momentum resolutions of the beamline and the analyzer were better than 30 meV
and 0.01 Å−1, respectively. Termination dependence or the effect of surface
polarity have not been observed in our ARPES experiment.

Electronic structure calculation from the first principles. DFT calculations were
performed with the Vienna Ab initio Simulation Package50,51. The pseudo-potentials
are of the Projector Augmented Wave52 type with exchange-correlation energy
functional parameterized by Perdew, Burke, and Ernzerhof53 within the generalized
gradient approximation. The bulk DFT calculations are converged with plane-wave
energy cut-off 350 eV and a reciprocal space Monkhorst–Pack grid sampling of size
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15 × 15 × 11. The SOC terms are included for the electronic band structure. The
calculation of the effective interaction parameters U in CoSn is performed based on
the linear response approach following ref. 38 (see the Supplementary Fig. 14 for
details). We note that the theoretical Fermi level from the DFT needs to be shifted
down by 140meV to fit the experimental band structure, presumably due to a
slight Sn off-stoichiometry in our crystals. Such shifting has been applied in the
calculations presented in Figs. 1e, 2h, 3b, d, 4b, and 5c, d, and Supplementary Figs. 3,
5, and 13.

Wannier tight-binding model of CoSn. To interpret the first-principle calcula-
tions, the post-process Wannier90 code54 is used to convert the extended periodic
Bloch wave function basis in the DFT into the localized Wannier functions basis in
the real space55. With this Wannier transformation, the effective tight-binding
Hamiltonian for a selected group of bands of the material can be constructed. The
construction gives both the accurate DFT bands and physically transparent pictures
of localized atomic orbitals and their mutual hybridizations. Here, we have
included Co 3d states, and Sn 5s and 5p states in the Wannier construction for the
bands around the Fermi level. The Wannier model is first constructed without
SOC. The SOC interactions are modeled with atomic terms, which capture the
essential feature of the DFT bands with SOC. With these Wannier models, the
symmetry properties and the topological index could be directly computed. In the
Supplementary Fig. 5a, b, we show the band structure comparison between the full
DFT calculations and the interpolated Wannier tight-binding model with and
without SOC modeling, respectively. The extracted SOC strength λ~L �~S has λCo ≈
70 meV for Co atoms and λSn ≈ 290 meV for Sn atoms. Hybridization between Co
and Sn orbitals may account for the larger mass of the Dirac electrons at K (see
Supplementary Figs. 3a and 5b) compared to related kagome compounds Fe3Sn2
and FeSn25,26. The constructed Wannier tight-binding model for CoSn allows us to
perform ab initio calculations for the SHC and the k-resolved contributions from
each band, using the Kubo formula following refs. 56,57.

Data availability
The data that support the plots within this paper and other findings of this study are
available from the corresponding author upon reasonable request.
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