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We study the Floquet edge states in arrays of periodically curved optical waveguides described by the modulated

Su-Schrieffer-Heeger model. Beyond the bulk-edge correspondence, our study explores the interplay between

band topology and periodic modulations. By analyzing the quasienergy spectra and Zak phase, we reveal that,

although topological and nontopological edge states can exist for the same parameters, they cannot appear in the

same spectral gap. In the high-frequency limit, we find analytically all boundaries between the different phases and

study the coexistence of topological and nontopological edge states. In contrast to unmodulated systems, the edge

states appear due to either band topology or modulation-induced defects. This means that periodic modulations

may not only tune the parametric regions with nontrivial topology, but may also support novel edge states.

DOI: 10.1103/PhysRevA.98.013855

I. INTRODUCTION

Recently, topological photonics has emerged as a new

approach to manipulate properties of light under continuous

deformations [1]. Electromagnetic topological states have been

found in both microwave [2–4] and optical [5–7] regimes.

Similar to topological insulators for electrons, photonic topo-

logical insulators have also been created [1–16]. Beyond con-

ventional topological phenomena in linear Hermitian systems,

topological gap solitons have been found in nonlinear optical

systems [17], and it was shown that topological states can

survive in non-Hermitian systems [18]. Moreover, periodic

modulations can bring several novel topological properties

usually absent in their nonmodulated analogs [9,19–26].

Bulk-edge correspondence [27,28] is a well-established

principle for two-dimensional (2D) topological systems. It

establishes the exact correspondence between bulk states sub-

jected to periodic boundary conditions (PBCs) and edge states

in the systems with open boundary conditions (OBCs). Up to

now, topological edge states have been found in several 2D pho-

tonic systems [10,13,29,30]. However, for one-dimensional

(1D) lattice models, edge states have been shown to appear

in periodically modulated but nontopological lattices [31,32].

This suggests that edge states can be induced by either

topology or periodic modulations. Here, we wonder whether

topological and nontopological edge states may coexist and, if

they may coexist, how to distinguish between topological and

nontopological edge states.

*Corresponding author: lichaoh2@mail.sysu.edu.cn; chleecn

@gmail.com

In this work, we study the Floquet edge states (FESs) in

arrays of periodically curved optical waveguides described

by a periodically modulated Su-Schrieffer-Heeger (SSH)

model [33]. We analyze the interplay between band topology

and periodic modulations, and describe the coexistence of both

topological and nontopological edge states supported by the

same parameters. Our results show that, for a specific gap, the

Zak phase ZGm
is either zero or π , so that the topological

edge states appear only in the gap of ZGm
= π . Through

controlling both modulation frequency and amplitude, we may

drive the system from nontopological to topological regime,

and vice versa. We demonstrate analytically that periodic

modulations induce a virtual defect at the boundary—the

key mechanism for the formation of nontopological edge

states.

The paper is organized as follows. In Sec. II, we introduce

our physical model and derive its coupled-mode equations. In

Sec. III, we calculate the quasienergy spectra under OBC. In

Sec. IV, by employing the multiscale perturbation analysis, we

give the effective coupled-mode equations and demonstrate

that the periodic modulations can induce virtual defects at

boundaries. The FESs include defect-free surface states and

Shockley-like surface states, which are induced by virtual

defects and the alternating strong and weak couplings between

waveguides, respectively. In Sec. V, we analytically obtain the

asymptotic phase boundary and numerically give the phase

diagram of appearing FESs, respectively. We explore the

topological nature of all FESs via the calculation of the bulk

topological invariant Zak phase. We find that Shockley-like

surface states are topological FESs and defect-free surface

states are nontopological FESs. A brief summary is given in

Sec. VI.
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FIG. 1. Schematic diagram of waveguide arrays curved along the

propagation direction of light (z axis). The center-to-center spacing

along the x axis is fixed as �x, and the one along the y axis is

either zero or �y intermittently. The coupling strength is either τ1

or τ2 intermittently. (a) τ1/τ2 < 1 with τ2 = τ and (b) τ1/τ2 > 1 with

τ1 = τ .

II. MODEL

We consider an array of coupled optical waveguides, where

the waveguides are periodically curved along the longitudinal

propagation direction; see Fig. 1. The light field ψ (x, y, z)

obeys the paraxial wave equation

−i
∂ψ

∂z
=

λ′

4πn′

( ∂2

∂x2
+

∂2

∂y2

)
ψ +

2π

λ′ ν(x, y, z)ψ, (1)

where λ′ is the optical wavelength in vacuum, n′ is the medium

refractive index, and ν(x, y, z) describes the refractive index

at (x, y, z). The waveguide centers xn(z) = xn(z + T ) are

periodically curved along the longitudinal direction with the

curving period T much larger than the interwaveguide distance

�x. Here we set xn(z) = n�x + A[cos(ωz) − 1] with the

modulation amplitude A and the modulation frequency ω.

By implementing the coordinate transformation [ẑ = z, ŷ =
y, x̂(z) = x − x0(z)], we have ∂x = ∂x̂ , ∂y = ∂ŷ , and ∂z = ∂ẑ −
ẋ0∂x̂ . Therefore, the field ψ (x̂, ŷ, ẑ) obeys

−i
∂ψ

∂ẑ
= −iẋ0

∂ψ

∂x̂
+

2π

λ′ νψ +
λ′

4πn′

( ∂2

∂x̂2
+

∂2

∂ŷ2

)
ψ.

By applying the gauge transformation

ψ = φ exp

{
i
πn′

λ′

(
2ẋ0(ẑ)x̂(ẑ) −

∫ ẑ

0

x̂2
0 (ξ )dξ

)}
,

the paraxial wave equation (1) can be written as

−i
∂φ

∂ẑ
=

λ′

4πn′

( ∂2

∂x̂2
+

∂2

∂ŷ2

)
φ +

2π

λ′ νφ −
2πn′

λ′ ẍ0x̂φ.

Expanding the field into a superposition of the single-mode

fields in individual waveguides

φ(x̂, ŷ, ẑ) =
∑

n

ϕn(ẑ)an(x̂, ŷ ),

we obtain the coupled-mode equations

−i
dϕn

dz
= τnϕn+1 + τn−1ϕn−1 + Dnϕn − ηẍ0nϕn,

where η = 2πn′/λ′ as a normalized optical frequency, and

τn =
2π

λ′

∫∫
a∗

n (x̂, ŷ )ν(x̂, ŷ, ẑ)an+1(x̂, ŷ )dx̂ dŷ,

Dn =
2π

λ′

∫∫
a∗

n (x̂, ŷ )ν(x̂, ŷ, ẑ)an(x̂, ŷ )dx̂ dŷ.

By performing a transformation

ϕn = exp[iηAωx̂n sin(ωz) + iDnz]un,

we derive the coupled-mode equations as

−i
dun

dz
= τn exp[iηAω(x̂n+1 − x̂n) sin(ωz)]un+1

+ τn−1 exp[−iηAω(x̂n − x̂n−1) sin(ωz)]un−1.

(2)

Here η = 2πn′/λ′; un denotes the complex field amplitude for

the nth waveguide with n being the waveguide index. As the

center-to-center waveguide spacing along the x axis is constant

(i.e., x̂n+1 − x̂n = x̂n − x̂n−1 = �x̂ = 1) and one along the y

axis is either zero or �y intermittently, the hopping strengths

can be written as τn = 1
2
{[1 − (−1)n]τ1 + [1 + (−1)n]τ2} and

the maximum hopping strength τ = max{τ1, τ2} is fixed. By

adjusting the distance �ŷ, one may tune the values of τn.

Without loss of generality, we set η = 1 and τ = 1. There-

fore, the system can be described by the periodically modulated

SSH-like Hamiltonian

H (z) =
2N∑

n=1

{τn exp[iAω sin(ωz)]u∗
nun+1 + H.c.}, (3)

with 2N being the total number of optical waveguides.

Chiral symmetry is represented by the sublattice operator

Ŵ =
∑N

n u∗
2n−1u2n−1 −

∑N
n u∗

2nu2n, which is unitary, Hermi-

tian, and local. Obviously, ŴHŴ = −H ; this means that

this periodically modulated SSH-like Hamiltonian has chiral

symmetry [34]. On the other hand, the above Hamiltonian

also has time reversal symmetry, i.e., it is invariant under the

transformation [z → −z, i → −i].

III. FLOQUET ENERGY SPECTRUM

Since the system is invariant under z → z + T , according to

the Floquet theorem [20], the steady states of the coupled-mode

equation (2) follow

un(z) = e−iEz

+∞∑

χ=−∞
e−iχωzcn,χ ,

where cn,χ is the amplitude of the χ th Floquet state. Sub-

stituting the above Floquet expansion into the coupled-mode

equations, one obtains the quasienergy equation in the Floquet

013855-2
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FIG. 2. Quasienergy spectra under open boundary condition. (a)

Scaled quasienergy E/ω vs the scaled modulation amplitude A/A0.

(b) Enlarged rectangular region of (a). (c) The Floquet edge states

corresponding to the square, triangle, and diamond points in the three

gaps (G+1, G0, G−1) at A/A0 = 0.98 marked in (b). The parameters

are chosen as τ1/τ2 = 1.2, 2π/ω = 3, A0ω ≃ 2.405 [which gives

J0(A0ω) = 0], the total lattice number 2N = 80, and the truncation

number Y = 13.

space:

Ecn,χ =
+∞∑

χ ′=−∞

τn−1e
−iηAω sin(ωz)e−i(χ ′−χ )ωzcn−1,χ ′

+
+∞∑

χ ′=−∞

τne
iηAω sin(ωz)e−i(χ ′−χ )ωzcn+1,χ ′

+
+∞∑

χ ′=−∞

χ ′ω e−i(χ ′−χ )ωzcn,χ ′

+
∑

χ ′ �=χ

e−i(χ ′−χ )ωzEcn,χ ′ .

We introduce the average over one modulation period for all

z-dependent quantities and obtain the quasienergy eigenmode

equation

Ecn,χ =
+∞∑

χ ′=−∞

τn−1Jχ−χ ′cn−1,χ ′

+
+∞∑

χ ′=−∞

τnJχ ′−χcn+1,χ ′ + χωcn,χ , (4)

where Jχ ′−χ is the Bessel function Jχ ′−χ (Aω). To obtain the

quasienergy spectrum, one needs to truncate the Floquet space.

In our calculation, we choose χ ′, χ ∈ [−X,X] and Y = 2X +
1 is the truncation number.

Now we discuss the quasienergy spectra under OBC. In

Figs. 2(a) and 2(b), we show the scaled quasienergyE/ω versus

the scaled modulation amplitude A/A0. In our calculation,

A0 is given by the first zero point of J0(A0ω), τ1/τ2 = 1.2,

2π/ω = 3, and the total lattice number 2N = 80. In the energy

gap G0, there appear isolated zero-energy levels under some

parameter ranges. Because the quasienergies have periodicity

in Floquet space, similar isolated levels can also appear in

gaps G±2,±4,.... In the energy gaps G−1 and G1, isolated

nonzero-energy levels appear aroundA/A0 ∼ 1 and the similar

isolated levels can also appear in gap G±3,±5,.... Below, we

concentrate our discussion on the quasienergy ranges −1/2 �

E/ω � 1/2. In particular, isolated zero- and nonzero-energy

levels can coexist in the same parametric region; see Fig. 2(b).

The eigenstate profiles, which localize at two edges, indicate

that these isolated levels are FESs [see Fig. 2(c)]. We know

that the topological edge states in a static SSH model always

appear as zero-energy modes. However, in our modulated

system, there appear both zero- and nonzero-energy edge

states. Naturally, there arises an open question: are all FESs

induced by topology?

IV. MULTISCALE ANALYSIS

To understand how FESs appear in the high-frequency limit,

we employ the multiscale perturbation analysis [31,35]. We

rewrite Eq. (2) as

−i
dun

dz
=

∑

m

W (z; n,m)um, (5)

with

W (z; n,m) =
1 + (−1)n

2

[
δn,m+1τ1e

−iAω sin(ωz)

+ δn,m−1τ2e
iAω sin(ωz)

]

+
1 − (−1)n

2

[
δn,m+1τ2e

−iAω sin(ωz)

+ δn,m−1τ1e
iAω sin(ωz)

]
.

For the open boundary condition, we have un<1 ≡ 0 and

un>2N ≡ 0, in which 2N is the total lattice number. Therefore,

W (z; n,m) can be rewritten as

W (z; n,m) =
1 + (−1)n

2

[
δn,m+1τ1e

−iAω sin(ωz)

+ (1 − δn,2N )δn,m−1τ2e
iAω sin(ωz)

]

+
1 − (−1)n

2

[
(1 − δn,1)δn,m+1τ2e

−iAω sin(ωz)

+ δn,m−1τ1e
iAω sin(ωz)

]
. (6)

Because the waveguide axes are periodically curved along the

longitudinal propagation (z direction), we have W (z; n,m) =
W (z + T ; n,m), whereT = 2π/ω. In the high-frequency limit

(ω ≫ 1), we can introduce a small parameter ε, which satisfies

T = O(ε). Thus the solution of Eq. (5) can be given as the

series expansion

un(z) = Un(z0, z1, z2, . . .) + εvn(z−1, z0, z1, z2, . . .)

+ ε2wn(z−1, z0, z1, z2, . . .)

+ ε3ζn(z−1, z0, z1, z2, . . .) + O(ε4), (7)
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where zl′ = εl′z. Then the differentiation is performed accord-

ing to the usual convention:

d

dz
= ε−1 ∂

∂z−1

+
∂

∂z0

+ ε
∂

∂z1

+ ε2 ∂

∂z2

+ · · · . (8)

In the series solution, the function Un describes the averaged

behavior

〈un〉 = Un,

〈
dun

dz

〉
=

dUn

dz
, (9)

in which the average notation

〈•〉 = εT −1

∫ ε−1(z+T )

ε−1z

(•)(z−1)dz−1.

It is worth noting that Un does not depend on the “fast” variable

z−1; this means that

〈Un〉 = Un,

〈
dUn

dz

〉
=

dUn

dz
. (10)

From Eqs. (9) and (10), we have

〈vn〉 = 〈wn〉 = 〈ζn〉 ≡ 0,
〈
∂vn

∂zl′

〉
=

〈
∂wn

∂zl′

〉
=

〈
∂ζn

∂zl′

〉
≡ 0, (11)

for l′ = −1, 0, 1, 2, . . ..

Substituting Eq. (7) into Eq. (5) and collecting terms with

different orders of ε, we obtain

−i
∂Un

∂z0

= i
∂vn

∂z−1

+
∑

m

W (z; n,m)Um, (12)

for the order ε0. Using the conditions Eq. (10) and Eq. (11)

and averaging Eq. (12), we have

−i
∂Un

∂z0

=
∑

m

W0(n,m)Um, (13)

where W0(n,m) = 〈W (z; n,m)〉. Then substituting Eq. (13)

into Eq. (12), we can obtain the equation for vn

−i
∂vn

∂z−1

=
∑

m

[W (z; n,m) − W0(n,m)]Um. (14)

Thus through integrating the above equation, we derive an

explicit expression for the function vn

vn = iε−1
∑

m

M (z; n,m)Um, (15)

with M (z; n,m) =
∫

[W (z; n,m) − W0(n,m)]dz. Here, the

function M is periodic and has average zero value

M (z; n,m) ≡ M (z + T ; n,m); 〈M (z; n,m)〉 = 0. (16)

For the order ε1, we have

−i
∂Un

∂z1

= i
∂vn

∂z0

+ i
∂wn

∂z−1

+
∑

m

W (z; n,m)vm. (17)

Substituting Eqs. (15) and (13) into Eq. (17), we obtain

−i
∂Un

∂z1

= −iε−1
∑

m,j

M (z; n, j )W0(j,m)Um + i
∂wn

∂z−1

+ iε−1
∑

m,j

W (z; n, j )M (z; j,m)Um. (18)

Using the conditions (10), (11), and (16) and averaging

Eq. (18), we have

−i
∂Un

∂z1

= iε−1
∑

m,j

〈W (z; n, j )M (z; j,m)〉Um. (19)

Substituting Eq. (19) into Eq. (18), we can obtain the equation

for wn:

−i
∂wn

∂z−1

= −iε−1
∑

m,j

M (z; n, j )W0(j,m)Um

+ iε−1
∑

m,j

[W (z; n, j )M (z; j,m)

−〈W (z; n, j )M (z; j,m)〉]Um. (20)

Similarly, by performing integration, we can derive the explicit

expression for wn.

For the order ε2, we have

−i
∂Un

∂z2

= i
∂vn

∂z1

+ i
∂wn

∂z0

+ i
∂ζn

∂z−1

+
∑

m

W (z; n,m)wm. (21)

Using Eqs. (10) and (11) and averaging Eq. (21), we obtain

−i
∂Un

∂z2

=
∑

q

〈W (z; n, q )wq〉, (22)

where the second term

〈W (z; n, q )wq〉 = 〈[W (z; n, q ) − W0(n, q )]wq〉

= −ε−1

〈
M (z; n, q )

∂wq

∂−1

〉
. (23)

Then using Eqs. (20) and (11), we can rewrite Eq. (22) as

−i
∂Un

∂z2

= ε−2
∑

q,m,j

〈M (z; n, q )[W (z; q, j )

−W0(q, j )]M (z : j,m)〉Um

+ ε−2
∑

q,m,j

〈M (z; n, q )[W0(q, j )M (Z; j,m)

−M (z; q, j )W0(j,m)]〉Um. (24)

By combining Eqs. (13), (19), and (24) and using Eq. (8),

we obtain a closed-form equation for Un:

−i
dUn

dz
=

∑

m

Ws (n,m)Um. (25)

Here the effective coupling coefficients are given as

Ws (n,m) = W0(n,m) +
∑

j

W1(n, j,m)

+
∑

q,j

W2(n, q, j,m), (26)

013855-4
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with

W0(n,m) = 〈W (z; n,m)〉 =
1 + (−1)n

2
[δn,m+1τ1

+ (1 − δn,2N )δn,m−1τ2]J0(ηAω)

+
1 − (−1)n

2
[(1 − δn,1)δn,m+1τ2

+ δn,m−1τ1]J0(ηAω),

∑

j

W1(n, j,m) = i
∑

j

〈W (z; n, j )M (z; j,m)〉 = 0,

∑

q,j

W2(n, q, j,m) =
∑

q,j

〈M (z; n, q )[W (z; q, j )

−W0(q, j )]M (z; j,m)〉

+
∑

q,j

〈M (z; n, q )[W0(q, j )M (z; j,m)

−M (z; q, j )W0(j,m)]〉

=
1 + (−1)n

2
{δn,m+1[(τ1/τ2)2 − 1](τ1/τ2)

+ δn,m−1[1 − (τ1/τ2)2]}�

+
1 − (−1)n

2
{δn,m+1[1 − (τ1/τ2)2]

+ δn,m−1[(τ1/τ2)2 − 1](τ1/τ2)}�

+
τ1

2τ2

(δn,1δm,2 + δn,2δm,1

+ δn,2Nδm,2N−1 + δn,2N−1δm,2N )�,

with

� = −ω−2τ 3
2

∑

m�=0

∑

j �=0,−m

Jj (Aω)

× Jm(Aω)Jj+m(Aω)j−1m−1.

Finally, the effective equations for the slowly varying functions

Un(z) read as

−i
dU2n−1

dz
= τaU2n + τbU2n−2 + δ(2n−1,1)τcU2

+ δ(2n−1,2N−1)τcU2N ,

−i
dU2n

dz
= τbU2n+1 + τaU2n−1 + δ(2n,2)τcU1

+ δ(2n,2N )τcU2N−1, (27)

with Kronecker’s delta function δ(n,m). Here, the effective

couplings are given as

τa = τ1J0 − (τ1/τ2)�,

τb = τ2J0 + �,

τc = τ1�/(2τ2), (28)

with � = −ω−2τ 3
2

∑
m�=0

∑
j �={0,−m}

JjJmJj+mj−1m−1 and � =

[1 − (τ1/τ2)2]�. The effective couplings τc describe the virtual

defects at boundaries, as shown in the schematic diagram in

Fig. 4.

Based on the above discussions, the periodically modulated

system can be described by effective static SSH-like coupled-

mode Eqs. (27). The major difference is the existence of virtual

defects at boundaries in the effective model. Similar to a surface

perturbation, the virtual defects can form defect-free surface

states (or FESs) [31]. On the other hand, if τc = 0, the static

SSH-like coupled-mode equations reduce to the conventional

SSH model [33] and the defect-free surface states disappear.

However, the 1D conventional SSH model belonging to the

BDI symmetry class [36], which satisfies time reversal and

chiral symmetry, can support an Z topological index (the

integer Z index can only take values zero or 1) [37]. For

|τa|/|τb| < 1, this system is topologically nontrivial and has

one zero-energy mode localized at each edge—the zero-energy

edge mode also called Shockley-like surface states [38]. For

|τa|/|τb| > 1, the system is topologically trivial with no edge

modes. If change τc �= 0, the static SSH-like coupled-mode

equations still satisfy time reversal and chiral symmetry, which

illustrates that the multiscale perturbation analysis does not

change the symmetry of the system. Similar to the static

system, the relation between Shockley-like and Tamm-like

surface states has been discussed in [38–40]. Their results show

that the transitions between Shockley-like and Tamm-like

surface states are observed by tuning the surface perturbation

(embedded defects). In our system, without any embedded or

nonlinearity-induced defects, the surface perturbation (virtual

defects) is induced by periodical modulations. In the next

section, we will give the parameter regions of FESs and explore

their topological nature.

V. NONTOPOLOGICAL VS TOPOLOGICAL EDGE STATES

A. Asymptotic phase boundary

To estimate the cutoff values (phase boundaries) for the

regions of FESs caused by virtual defects. We now consider

stationary solutions in the form of Un(z) = Un(0)eiEz with E

being the propagation constant. Substituting it into Eq. (27),

we obtain

EU2n−1 = τaU2n + τbU2n−2

+ (δ2n−1,1τcU2 + δ2n−1,2N−1τcU2N ),

EU2n = τbU2n+1 + τaU2n−1

+ (δ2n,2τcU1 + δ2n,2NτcU2N−1). (29)

For an infinite lattice, we have

EU2n−1 = τaU2n + τbU2n−2,

EU2n = τbU2n+1 + τaU2n−1. (30)

The solution of Eqs. (30) can be given as the ansatz

U2n−1 = a1Qeikn + a2P e−ikn,

U2n = a1P eikn + a2Qe−ikn, (31)

where a1 and a2 are arbitrary nonzero constants. Substituting

Eqs. (31) into Eqs. (30), we obtain

E

[
P

Q

]
=

[
0 τa + τbe

ik

τa + τbe
−ik 0

][
P

Q

]
. (32)
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Then we can have

P

Q
=

E

τa + τbe−ik
=

τa + τbe
ik

E
. (33)

Therefore, the propagation constant is given as

E2 = τ 2
a + τ 2

b + 2τaτb cos(k), (34)

for k ∈ [−π, π ].

For a finite but sufficiently large number of lattices (2N =
80 in our calculation), considering the two edges, we have

EU2 = (τa + τc )U1 + τbU3,

EU1 = (τa + τc )U2,

EU2N = (τa + τc )U2N−1,

EU2N−1 = (τa + τc )U2N + τbU2N−2. (35)

Besides U1 and U2N , the coupling equations are consistent

with Eqs. (30). So that we should rewrite the ansatz, similar to

Eqs. (31), we have

U2n−1 = U1 (n = 1),

U2n−1 = a1Qeikn + a2P e−ikn (1 < n � N ),

U2n = a1P eikn + a2Qe−ikn (1 � n < N ),

U2n = U2N (n = N ). (36)

First, we consider the left boundary of lattices and we can give

a set of equations

EU2 = (τa + τc )U1 + τbU3,

EU1 = (τa + τc )U2,

EU2(N−1) = τaU2(N−1)−1 + τbU2(N−1)+1. (37)

Combining Eqs. (36) and Eqs. (37), we have

e−ik2(N−1)

eik2(N−1)

=
[
τb

P
Q

e−ik + (τa+τc )2

E
− E

](
E P

Q
− τbe

ik − τae
−ik

)
[
E P

Q
− τbeik − (τa+τc )2

E
P
Q

](
τb

P
Q

e−ik − E + τa
P
Q

eik
) .

(38)

We set k = −i̺ and have e−ik2(N−1)

eik2(N−1) = e−4̺(N−1), where ̺ is a

real number. If ̺ > 0, when N → ∞ we have e−4̺(N−1) ≃ 0

and equivalent to
[
τb

P

Q
e−̺ +

(τa + τc )2

E
− E

](
E

P

Q
− τbe

̺ − τae
−̺

)
≃ 0.

(39)

If ̺ < 0, when N → ∞ we have e−4̺(N−1) ≃ ∞ and equiva-

lent to
[
E

P

Q
− τbe

̺ −
(τa + τc )2

E

P

Q

]

×
(

τb

P

Q
e−̺ − E + τa

P

Q
e̺

)
≃ 0. (40)

Combining Eq. (33) and Eq. (39), we have

e̺ =
τc(τc + 2τa )

τaτb

= eik = d. (41)

Similarly, combining Eq. (33) and Eq. (40), we have

e−̺ =
τaτb

τc(τc + 2τa )
= e−ik = d−1. (42)

Thus in the vicinity of the self-collimation point [J0(A0ω) =
0], as the couplings (τa, τb ) are very weak, the edge states

induced by the virtual defects with the quasienergies Es are

given as

E2
s = τ 2

a + τ 2
b + τaτb[eik + e−ik]

= τ 2
a + τ 2

b + τaτb[d + d−1]. (43)

On the other hand, when we consider the right boundary of

lattices, we can also obtain the surface energy Es which is in

agreement with Eq. (43).

Obviously, whenE2
s > max(E2), FESs appear in the energy

gaps G−1 and G1. Otherwise, when E2
s < min(E2), FESs

appear in the gap G0. Obviously, max(E2) and min(E2) are

given by | cos(k)| = 1. From cos(k) = +1, one can obtain the

cutoff values

A1,2
cs

/
A0 ≃ 1 −

τ1τ̃c ± Fa

τ1τ2

. (44)

From cos(k) = −1, one can obtain the cutoff values

A3,4
cs

/
A0 ≃ 1 −

−τ1τ̃c ± Fb

τ1τ2

. (45)

Here, A0 is the first root of the Bessel function J0(Aω) = 0,

Fa =
√

(τ1τ̃c )2 + τ1τ2M+, Fb =
√

(τ1τ̃c )2 + τ1τ2M−, τ̃c =
τ1

2τ2
�̃, M± = τ1

τ2
[1 − ( τ1

τ2
)2]�̃{[1 − ( τ1

τ2
)2]�̃ ∓ 2τ̃c} ± (τ̃c )2,

and �̃ = �|A→A0
. These cutoff values define the boundaries

between the regions with and without FESs; see the dashed

blue curves in Figs. 4(a) and 4(b), which are also called

defect-free surface states [31]. Since Fb is a purely imaginary

number for all 2π/ω when τ1/τ2 = 1.2, in Fig. 4(a), there are

no cutoff values A3,4
cs /A0. When 2π/ω → 0, all cutoff values

gradually converge into one point at A/A0 = 1, and there are

no FESs caused by the virtual defects.

On the other hand, as the effective model Eq. (27) is an

SSH-like model, the system changes from topological to non-

topological when the effective coupling is tuned from |τa| <

|τb| to |τa| > |τb|. The effective couplings (τa, τb ) depend

on the original couplings (τ1, τ2) and the driving parameters

(A,ω). We show the effective coupling strengths (|τa|, |τb|)
versus the scaled modulation amplitude A/A0 for 2π/ω = 2

and τ1/τ2 = 1.2; see the inset in Fig. 4(a). There appear two

intersection points at |τa| = |τb| when A/A0 increases. In the

regions of |τa| < |τb|, topological FESs appear (the relevant

cumulative phase being π ), which is also called Shockley-like

surface states [38]. The intersection points, where topological

phase transition points occur, are given by

A5,6
ct

/
A0 ≃ 1 +

(1 ± τ1/τ2)2
�̃

τ2

. (46)

See the dashed blue curves 5 and 6 in the inset of Fig. 4(b).

Similarly, when 2π/ω → 0, these two curves also gradually

converge into one point at A/A0 = 1. Thus, in the limit of

2π/ω = 0, the effective couplings vanish when A/A0 = 1 and

the modulation does not change the topological feature when

A/A0 is tuned through A/A0 = 1.
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B. Zak phase

To distinguish topological and nontopological FESs, we

calculate the bulk topological invariant—the Zak phase [41].

The Zak phase can predict the existence (with the relevant

cumulative phase being π ) or absence (vanishing cumulative

phase) of topological FESs in specific gaps.

For a modulated SSH system of N cells (i.e., 2N lattices)

under PBC, by implementing a Fourier transform

c2n−1,χ =
1

√
N

∑

k

eik(2n−1)c1,k,χ ,

c2n,χ =
1

√
N

∑

k

eik2nc2,k,χ , (47)

we obtain the quasienergy spectra and the eigenstates by

diagonalizing the quasienergy equation

El

(
c

(l)
1,k,χ

c
(l)
2,k,χ

)
=

∑

χ ′

R̂(k)

(
c

(l)
1,k,χ ′

c
(l)
2,k,χ ′

)
+ χωÎ

(
c

(l)
1,k,χ

c
(l)
2,k,χ

)
,

with the 2 × 2 unit matrix Î and the matrix

R̂(k) =
(

0 PF (k)

P̃F (k) 0

)
.

Here, PF = τ1Jχ ′−χeik + τ2Jχ−χ ′e−ik , P̃F = τ1Jχ−χ ′e−ik +
τ2Jχ ′−χeik , and k denotes the quasimomentum.

To compute the Zak phase for the Floquet quasienergy

spectrum one needs to truncate the Floquet space. The number

of replicas needs to be chosen so that all relevant transitions

at the desired energy are kept. The Zak phase ZGm
for a

specific gap is given by summing up Z(l) for all bands below

the gap, where Z(l) = i
∮
k
〈c(l)

k |∂k|c(l)
k 〉dk and the eigenstates

|c(l)
k 〉 =

∑
α,χ c

(l)
α,k,χ |α, k, χ〉 for the lth band are superposition

states of different Floquet-Bloch states |α, k, χ〉. For a gap

between the (Y + m)th and (Y + m + 1)th bands, its Zak

phase ZGm
is defined as

ZGm
=

Y+m∑

l=1

Z(l) =
Y+m∑

l=1

[
i

∮

k

〈
c

(l)
k

∣∣∂k

∣∣c(l)
k

〉
dk

]
. (48)

For example, the Zak phase ZG1
can be calculated by summing

up all Z(l) for the bands below the gap G1; see in Fig. 3.

C. Phase diagram

To verify the above analytical results, we numerically cal-

culate the quasienergy spectra. From the quasienergy spectra

under OBC, we indeed find several FESs appear. We then

calculate Zak phases of the corresponding bulk states under

PBC and find that the Zak phase ZGm
for a specific gap is

either zero or π and topological FESs only appear in a gap of

nonzero ZGm
.

In Fig. 4, we show the phase diagram of all possible

FESs in the parameter plane (2π/ω,A/A0). The appearance

of topological FESs (red regions) and nontopological FESs

(yellow regions) and their coexistence (mesh regions) sensi-

tively depends on the coupling ratio τ1/τ2 and the modulation

parameters (ω,A/A0). In the absence of modulation, topo-

logical edge states appear only if τ1/τ2 < 1; otherwise, no
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FIG. 3. Quasienergy spectrum in the quasimomentum space and

the Zak phase for the gap G1.

edge state appears. However, by applying a proper modulation,

topological FESs may appear even if τ1/τ2 > 1 and also may

disappear even if τ1/τ2 < 1. In addition to the regions of

topological and nontopological FESs, there exists the region

of no edge states. When 2π/ω → 0, topological FESs appear

if τ1/τ2 < 1 and all nontopological FESs gradually vanish

at the zero point of the Bessel function J0(A0ω) = 0. Our

numerical results clearly show all phase boundaries (the solid

curves) gradually converge into one point at A/A0 = 1 when

2π/ω → 0, which well agree with our analytical results (the

dashed blue curves).

D. Noncoexistence of nontopological and topological Floquet

edge states in the same gap

Although nontopological and topological FESs can be

supported by the same parameters, we find that they cannot

appear in the same energy gap. In this section, we only

consider the quasienergy ranges −1/2 � E/ω � 1/2, so that

the topological FESs (Zak phase ZG0
= π ) only possibly

appear in gap G0. We will prove that nontopological and

topological FESs cannot coexist in the gap G0. For the whole

Floquet spaces, due to the periodicity of quasienergy, this

proves indirect reflection the topological FESs cannot appear

in the gap G±1,±3,±5,...; in addition the nontopological and

topological FESs cannot coexist in the gap G0,±2,±4,....

If nontopological FESs appear in the gap G0, the edge state

quasienergy Es and the bulk-state quasienergy E will satisfy

the condition E2
s < min(E2). From Eq. (34), the condition

E2
s < min(E2) reads

E2
s < min

(
τ 2
a + τ 2

b − 2τaτb, τ
2
a + τ 2

b + 2τaτb

)
, (49)

which requests the parameters obeying τc(τc + 2τa ) < 0. As

the nontopological FESs appear around A/A0 ∼ 1, we have

τc = τ1

2τ2
� < 0, so that the above inequality is equivalent to

2τ1J0(Aω) − 2
τ1

τ2

[
1 −

(
τ1

τ2

)2
]
� +

1

2

(
τ1

τ2

)
� > 0. (50)
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FIG. 4. Phase diagram of the Floquet edge states. Top: schematic diagram for the effective model Eq. (27). (a),(b) Phase diagrams for (a)

τ1/τ2 = 1.2 and (b) τ2/τ1 = 1.2. The red regions only support topological FESs, the yellow regions only support nontopological FESs, and

the mesh regions support both topological and nontopological FESs. The curves 1, 2, 3, and 4 respectively correspond to the nontopological

FES cutoff values A1
cs/A0, A2

cs/A0, A3
cs/A0, and A4

cs/A0, while the curves 5 and 6 respectively correspond to the topological transition points

A5
ct/A0 and A6

ct/A0, where the inset in (b) is the enlarged region nearby A/A0 ∼ 0. The system changes from topological to nontopological

when the effective couplings are tuned from |τa | < |τb| to |τa | > |τb|; see the inset in (a) for 2π/ω = 2.

Below we separately discuss the two cases: (I) τ2 > τ1 > 0 and

(II) τ1 > τ2 > 0.

Case I: τ2 > τ1 > 0. Without loss of generality, one can set

τ2 = 1.

As τa < 0 always contradicts the condition (50), the appear-

ance of nontopological FESs in the gap G0 requests

τa = τ1J0(Aω) − τ1[1 − (τ1)2]� > 0,

τb = J0(Aω) + [1 − (τ1)2]� < 0,

2τ1J0(Aω) − 2τ1[1 − (τ1)2]� +
1

2
τ1� > 0 (51)

or

τa = τ1J0(Aω) − τ1[1 − (τ1)2]� > 0,

τb = J0(Aω) + [1 − (τ1)2]� > 0,

2τ1J0(Aω) − 2τ1[1 − (τ1)2]� +
1

2
τ1� > 0. (52)

On the other hand, in the vicinity of A0, we have J0(Aω) <

0 when A → A+
0 and J0(Aω) > 0 when A → A−

0 . Therefore,

from the condition (51), one can obtain (C1) (0 < τ1 <√
1 − ̥) ∩ (0 < τ1 <

√
3/4 + ̥) when A → A−

0 and (C2)

(0 < τ1 <
√

3/4 + ̥) when A → A+
0 . Here, the parameter

̥ is given as ̥ = ω2J0(Aω)

4J 2
1 (Aω)J2(Aω)

. However, under the con-

dition (C2), one can find that E2
s < 0; this means that the

condition (C2) does not support nontopological FESs in the

gap G0. As we always have τb < 0 when A → A+
0 , from

the condition (52), we drive the condition (C3): (
√

1 − ̥ <

τ1 <
√

3/4 + ̥) whenA → A−
0 . Therefore, the appearance of

nontopological FESs in the gap G0 always request A → A−
0

(where τa > 0).

As the effective model (27) is a SSH-like model, under

the condition of |τa|/|τb| < 1, the topological FESs are zero-

energy modes and always appear in the gapG0. WhenA → A−
0

(where τa > 0), from |τa|/|τb| < 1, one can obtain (D1) (0 <

τ1 < 1 −
√

̥) for τb < 0 and (D2) (0 < τ1 <
√

̥ − 1) for
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FIG. 5. Scaled quasienergy E/ω vs coupling ratio τ1/τ2. (a)

Band-gap structure of the effective model (27). (b) Band-gap structure

of the original model (2). (c) Effective coupling strengths (|τa |, |τb|) vs

the coupling ratio τ1/τ2. (d) The Zak phases for the gap G0, in which

the black and dashed blue lines correspond to the effective and original

models, respectively. The parameters are chosen as A/A0 = 0.98,

2π/ω = 3, A0ω ≃ 2.405, the total lattice 2N = 80, and the truncation

number Y = 13.

τb > 0. However, under the conditions (D1) and (D2), one can

find that E2
s < 0, which means the absence of nontopological

FESs. That is to say, the nontopological and topological FESs

cannot coexist in the gap G0.

Case II: τ1 > τ2 > 0. Without loss of generality, one can

set τ1 = 1.
As τa < 0 always contradicts the condition (50), the exis-

tence of nontopological FESs in the gap G0 requests τa > 0.
On the other hand, in the vicinity of A0, we have J0(Aω) < 0
when A → A+

0 and J0(Aω) > 0 when A → A−
0 . When τ1 >

τ2 > 0, we always have τa < 0 when A → A+
0 , so that the

appearance of nontopological FESs in the gap G0 always
requests A → A−

0 . Moreover, when A → A−
0 , we always have

τb = τ2J0(Aω) + [1 − ( 1
τ2

)2]� > 0. Thus the appearance of
nontopological FESs in the gap G0 requests

τa =J0(Aω)−
1

τ2

[
1−

(
1

τ2

)2
]
� > 0,

τb = τ2J0(Aω) +

[
1−

(
1

τ2

)2
]
� > 0,

2J0(Aω)−2
1

τ2

[
1−

(
1

τ2

)2
]
� +

1

2

(
1

τ2

)
�>0. (53)

The above condition (53) requests ( 2√
3

√
1 − ̥ < τ2 < 1).

However, under this condition, one can find that E2
s < 0,

which means the absence of nontopological FESs. This means
that nontopological FESs cannot appear in gap G0 when
τ1 > τ2 > 0 and so there is no coexistence of nontopological
and topological FESs.

In order to explore how the ratio τ1/τ2 affects the FESs, we
show how the scaled quasienergy spectrum depends on τ1/τ2.
The quasienergy spectra and Zak phases show that, even when
the modulation frequency is not very high, the effective model
may well explain the behaviors in the original system. The devi-

ation between the effective and original models decreases with
the modulation frequency and gradually vanishes in the high-
frequency limit. In Fig. 5, we show the quasienergy spectra,
the effective couplings, and Zak phases for A/A0 = 0.98 and
2π/ω = 3. Although the quasienergies have small differences,
the band-gap structures are almost the same, in which both
zero and nonzero FESs may appear in different gaps; see
Figs. 5(a) and 5(b). From the effective model, topological
FESs are always zero-energy modes and only appear in the
gap G0 when |τa|/|τb| < 1; see Figs. 5(a) and 5(c). In addition
to the topological FESs, due to the modulation-induced virtual
defects, there also exist nontopological FESs in different gaps.
Moreover, the band-gap structures show that topological and
nontopological FESs cannot appear in the same gap, which
confirms our previous analytical analysis. From the Zak phases,
the effective and original models show similar topological
phase transitions, but the transition points show small devia-
tions dependent upon the modulation frequency; see Fig. 5(d).

VI. CONCLUSION

In summary, we have studied the Floquet edge states in ar-
rays of curved optical waveguides described by the periodically
modulated SSH model. According to the Floquet theorem, we
give the quasienergy spectra under OBC and find several FESs.
To understand how FESs appear, we employ the multiscale
perturbation analysis and find the periodic modulations can
induce virtual defects at boundaries. Similar to a surface
perturbation, the virtual defects can form FESs (defect-free
surface states) [31]. On the other hand, by changing the ratio
of |τa|/|τb|, one can also obtain FESs (Shockley-like surface
states).

In order to explore the topological nature of all FESs, we
have calculated the quasienergy spectra and the Zak phases.
Our results indicate that the Shockley-like surface state is a
topological FES and the defect-free surface state is a nontopo-
logical FES. However, in our system, although topological and
nontopological edge states can exist for the same parameters,
they cannot appear in the same spectral gap. Without any
embedded or nonlinearity-induced defects, these edge states
originate from the interplay between the bulk band topology
and periodic modulations. We have derived analytically the
boundaries between different topological phases and have ver-
ified these results numerically. We believe our work provides
perspectives for topological photonics governed by periodic
modulations, and can be employed for a control of topological
phase transitions. Although our analysis has been performed
for arrays of periodically curved optical waveguides, it can
be applicable to other lattice systems such as ultracold atoms
in optical lattices [42,43], photonic crystals [18], and discrete
quantum walks [44,45].

At last, we would like to point out that, if a local defect
is introduced, unlike our Floquet edge states, topological and
nontopological edge states may appear in the same spectral
gap [46].
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