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Abstract

Exploring topological properties of human brain network has become an exciting topic in neuroscience research. Large-
scale structural and functional brain networks both exhibit a small-world topology, which is evidence for global and local
parallel information processing. Meanwhile, resting state networks (RSNs) underlying specific biological functions have
provided insights into how intrinsic functional architecture influences cognitive and perceptual information processing.
However, topological properties of single RSNs remain poorly understood. Here, we have two hypotheses: i) each RSN also
has optimized small-world architecture; ii) topological properties of RSNs related to perceptual and higher cognitive
processes are different. To test these hypotheses, we investigated the topological properties of the default-mode, dorsal
attention, central-executive, somato-motor, visual and auditory networks derived from resting-state functional magnetic
resonance imaging (fMRI). We found small-world topology in each RSN. Furthermore, small-world properties of cognitive
networks were higher than those of perceptual networks. Our findings are the first to demonstrate a topological
fractionation between perceptual and higher cognitive networks. Our approach may be useful for clinical research,
especially for diseases that show selective abnormal connectivity in specific brain networks.
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Introduction

Exploring topological properties of the human brain network

provides information about its organization and function [1,2].

The human brain network has been widely demonstrated to have

optimized small-world architecture [3,4] in structural and

functional domains, and at multiple temporal and spatial scales

[5,6,7,8,9,10,11,12]. The small-world architecture not only

reflects brain functional organization principles of local special-

ization and global integration [13], but also maximizes the

efficiency of information processing at a low wiring cost [4].

Small-world topology might reflect a general organization

principle of human brain at either large-scale or voxel-scale level

[14,15,16].

Resting-state networks (RSNs) derived from resting-state

functional magnetic resonance imaging (fMRI) data provided

evidence for a large-scale organization of intrinsic spontaneous

brain activity [17,18] into systems related to sensory, motor,

language, social-emotional, and cognitive functions

[19,20,21,22,23,24,25]. Previous task-related studies suggested

functional fractionations of the brain, and in particular a

dichotomy between lower-level perceptual (e.g., visual, auditory

and somato-motor) and higher-level cognitive networks (e.g.,

attention, central-execution, and default-mode) during active

behavior [19,26,27,28,29]. Different anatomical and connectional

properties may partially explain the functional differences

observed between these groups of networks [30,31]. For example,

Zielinski et al. revealed by structural covariance MRI techniques

different development trajectories between perceptual networks

and higher cognitive networks across developmental stages [32].

It is still unclear whether the dichotomy between lower-level

perceptual and higher-level cognitive networks can be observed in

resting state data. An increasing number of studies have focused

on interactions between RSNs [33,34,35], documenting that each

of them is involved in different levels of processing [31,36].

Interestingly, Jann et al. revealed putative psycho-physiological

dissimilarities between these two groups of networks, as reflected in

the pattern of correlations between RSN time-courses and EEG

power fluctuations [37].

Both structural and functional brain networks exhibit optimized

small-world architecture at the whole-brain level. However, little

experimental evidence exists for the topological properties of single

RSNs. In the present study, we have two hypotheses: i) each RSN

has optimized small-world architecture; ii) perceptual and higher

cognitive networks have different network organization properties.

On the basis of the aforementioned hypotheses, we first identified

the RSNs using independent component analysis (ICA) and

further applied graph theoretical analysis to investigate the

topological properties of RSNs.
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Materials and Methods

Subjects
A total of 38 right-handed healthy volunteers (20 females, age:

19–26 years) were recruited in this study. All subjects had no

history of neurological disorder or psychiatric illness, and no gross

brain abnormalities. Before MRI scanning, written informed

consents was obtained from all the participants. The study was

approved by the local medical ethics committee in Jinling

Hospital, Nanjing University School of Medicine.

Image acquisition
Imaging data collection was performed with a SIEMENS Trio

3T MR scanner (Erlangen, German) at Jinling Hospital, Nanjing,

China. During data acquisition, the subjects were instructed to keep

their eyes closed, relax, and remain as motionless as possible. Foam

pads and earplugs were used to reduce head motion and attenuate

scanner noise, respectively. Functional data were collected by using

a single-shot, gradient-recalled echo planar imaging (EPI) sequence

(TR=2000 ms, TE=30 ms and flip angle= 90u). Thirty transverse

slices (FOV=2406240 mm2, in-plane matrix = 64664, slice thick-

ness= 4 mm, inter-slice gap= 0.4 mm, voxel size= 3.756

3.7564 mm3), aligned along the anterior commissure-posterior

commissure (AC-PC) line were acquired. For each subject, a total of

255 volumes were acquired and the first five volumes were

discarded to ensure steady-state longitudinal magnetization.

Subsequently, high-resolution T1-weighted anatomical images were

acquired in the sagittal orientation using a magnetization-prepared

rapid gradient-echo (MPRAGE) sequence (TR=2300 ms,

TE=2.98 ms, flip angle= 9u, FOV=2566256 mm2, matrix

size= 2566256 and zero filled and interpolated to 5126512, slice

thickness = 1 mm, without inter-slice gap, voxel si-

ze = 0.560.561 mm3, and 176 slices).

Data preprocessing
Preprocessing of functional images was carried out using the

SPM8 software (http://www.fil.ion.ucl.ac.uk/spm). First, the 250

volumes were corrected for the temporal difference in acquisition

among different slices; then, they were realigned to the first volume

for head-motion correction. No dataset was excluded according to

the criteria that head motion was less than 1.5 mm of

displacement or 1.5 degree of rotation in any direction. Next,

the realigned images were spatially normalized to the Montreal

Neurological Institute (MNI) echo-planar imaging template and

re-sliced to 3-mm cubic voxels. Then, they were spatially

smoothed by convolution with an isotropic Gaussian kernel

(FWHM=8 mm) to attenuate spatial noise.

Independent component analysis
Group spatial ICA was performed using the GIFT software

(http://icatb.sourceforge.net/, version 1.3 h) [38]. First, the

optimal number of independent components (ICs) was estimated

to be 35 using the minimum description length (MDL) criterion

[39,40]. Then, fMRI data from all subjects were concatenated and

the temporal dimension of this aggregate data set was reduced to

35 by using principal component analysis (PCA). ICs were

estimated using the FastICA algorithm [41]. IC time-courses

and spatial maps for each subject were back-reconstructed, using

the aggregated components and the results from the data

reduction step [38,39].

RSN identification
Six ICs corresponding to the RSNs of auditory, somato-motor,

visual, central-executive, dorsal attention, default mode networks

were selected using spatial-template correlation analysis [39,42].

Specifically, our selected RSNs corresponded to the cerebral ICs

with the largest spatial correlations with the network templates

from our previous studies [25,34,43,44]. The ICs corresponding to

six RSNs were also extracted from single subject. A random-effect

analysis was calculated on the spatial maps of corresponding RSNs

from single subject, by using one-sample t-tests. Thresholds were

set at p,0.01 (corrected for multiple comparison using the FWE

criterion).

Voxels time-courses extraction
For each subject, we extracted time-courses from gray matter

voxels belonging to each RSN. Since RSNs partly overlap [22,45],

we excluded voxels belonging to more than one RSN from

subsequent analyses. The voxel time-courses were first processed

by linear regression to remove several sources of spurious variance

and their temporal derivatives: (1) six motion parameters obtained

by rigid body head motion correction, (2) white matter signal

averaged from white matter, (3) ventricular signal averaged from

ventricles, and (4) global brain signal averaged across gray and

white matter voxels. The residuals of these regressions were

temporally band-pass filtered (0.01–0.08 Hz) to reduce low-

frequency drift and high-frequency noise, related to respiratory

and other physiological processes [10,11,46].

Power spectrum analysis of RSNs time-courses
Fourier power spectrum analysis on the entire frequency range

(0–0.25 Hz) was performed for the averaged time-courses within

each RSN in each subject. We calculated the relative power by

dividing the power spectrum by its maximum value. We defined

the contribution in the low-frequency bandwidth (0.01–0.08 Hz)

as the ratio of the energy in this low-frequency range compared to

that in the entire frequency range.

Correlation matrix and functional network construction
To measure the voxel-level functional connectivity of each RSN

[47], we calculated the Pearson correlation coefficients between

the time-courses of RSN voxels. We thresholded the resulting

correlation matrix to obtain an undirected binary graph (network).

For a voxel-level network, a node represents a voxel, whereas an

edge represents a link between voxels. Next, we analyzed the

constructed networks using graph theoretical approaches.

Graph theoretical analysis
Topological properties of the voxel-level functional

brain connectivity networks. The topological properties of

the functional brain connectivity networks were defined on the

basis of a N6N (N represents the number of voxels in a RSN and is

different in different RSN) binary graph, G, consisting of nodes

and undirected edges:

eij~
1, r(i,j)§T

0, otherwise0

�

where eij refers to the undirected edge between node i and node j

in the graph. In general, if r(i,j) (Pearson correlation coefficient) of

a pair of nodes, i andj, exceeds a given threshold T , an edge is said

to exist; otherwise it does not exist. A subgraph Gi is defined as the

graph including the nodes that are the direct neighbors of the ith

node, i.e. directly connected to the ith node with an edge. The

degree of each node, Ki,i~1,2, � � �N , is defined as the number of

nodes in the subgraph Gi.

Topological Fractionation of RSNs
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The clustering coefficient of a node depicts the level of

connectedness of the direct neighbors of this node. The clustering

coefficient Ci of voxel i is defined as the ratio of the number of

actually existing connections to the number of all possible

connections in the subgraph Gi:

Ci~
Ei

Ki Ki{1ð Þ0

where Ei is the number of edges in the subgraph Gi. The

clustering coefficient of a network is the average of the absolute

clustering coefficient over all voxels in the network [4,48]:

Cnet~
1

N

X

i[G

Ci:

Cnet is a measure of the extent of the local efficiency or cliquishness

of information transfer on the network.

The mean shortest path length of a node is:

Li~
1

N{1

X

i=j[G

min Li,j

� �

,

where min Li,j

� �

is the shortest path length between node i and

node j, and the path length is the number of edges included in the

path connecting two nodes. The mean shortest path length of a

network is the average of the shortest path lengths between the

nodes:

Lnet~
1

N

X

i[G

Li:

Lnet is a measure of the extent of global efficiency or the capability

for parallel information propagation of the network.

In a network, Cnet and Lnet are key characteristics, and permit

to define whether the network is a random network or small-world

network. Random networks are characterized by a low clustering

coefficient Crandom and a typical shortest path length Lrandom.

Compared with random networks, small-world networks have

similar shortest path lengths but higher clustering coefficients, that

is c~Cnet=Crandomw1, l~Lnet=Lrandom&1 [4]. These two

conditions can also be summarized into a scalar quantitative

measurement, small-world-ness, s~c=l, which is typicallyw1 for

networks with a small-world organization [10,11,49,50]. To

examine small-world properties, the value of Cnet and Lnet of

the functional connectivity network need to be compared with

those of a random network (Crandom and Lrandom). The theoretical

values of these two measures for random networks are

Crandom~K=N, and Lrandom&ln Nð Þ=ln Kð Þ [3,49,51]. However,

as suggested by Stam et al. [51], statistical comparisons should

generally be performed between networks that have equal (or at

least similar) degree sequences; however, theoretical random

networks have Gaussian degree distributions that may differ from

the degree distribution of brain networks. To obtain a better

control for the functional brain networks [11], we generated 30

random networks for each individual network keeping the same

degree for each node by using a Markov-chain algorithm [52,53].

This procedure was repeated until the topological structure of the

original matrix was randomized, resulting in a random graph with

a degree distribution similar to that of the original matrix. We then

averaged all 30 generated random networks to obtain mean values

of Crandom and Lrandom.

Computation of network properties. The network

topological properties are influenced by the choice of a threshold

value. Conservative thresholds (increasing correlation coefficient

threshold T ) will generate sparsely connected graphs; more lenient

thresholds (decreasing correlation coefficient threshold T ) will

generate more densely connected graph. Since there is currently no

formal consensus regarding selection of thresholds, here we selected a

range of correlation coefficient threshold (0.125#T#0.55,

step=0.025) for exploring the topological properties of functional

connectivity graphs in all RSNs. The minimum correlation

coefficient threshold T was chosen to exclude weak and potentially

non-significant connections. Thus, it was set to 0.125, corresponding

to p,0.05 (uncorrected) in the voxel-level correlation matrix. The

maximum T was empirically set to 0.55, ensuring that the largest

subgraph included at least 90% voxels in the networks over all six

RSNs and all subjects [10]. For each subject, the characteristics Cnet

and Lnet from the functional connectivity graph of each RSN were

computed for different T . In order to compare accurately the

topological properties of functional connectivity graphs among RSNs,

we calculated c, l and the small-world index s at the conservative

threshold T~0:375(corresponding to p,0.05, Bonferroni-

corrected). This correlation coefficient threshold was used to reduce

the chance of false positive connections of voxel-level correlation

matrix across all six RSNs and all subjects. Generally, RSNs with

different number of nodes may result in different network topological

properties. To eliminate this potential confounding effect, we tested

the sensitivity of the results (see Text S1 for detailed analysis).

Results

RSNs identification
The spatial maps of the six selected RSNs were obtained using

the group spatial ICA analysis implemented in the GIFT software

(http://icatb.sourceforge.net/, version 1.3 h) [38]. These were

retrieved by means of a spatial-matching procedure. The RSNs,

illustrated in Fig. 1, can be described as follows: 1) the auditory

network (AN) primarily encompassed the bilateral middle and

superior temporal gyrus, Heschl gyrus, insular cortex, and

temporal pole; 2) the somato-motor network (SMN) included

pre- and postcentral gyrus; 3) the visual network (VN) included the

inferior, middle and superior occipital gyrus, and temporal-

occipital regions along with superior parietal gyrus; 4) the central-

executive network (CEN) included the dorsal lateral prefrontal and

the posterior parietal cortices; 5) the dorsal attention network

(DAN) primarily involved middle and superior occipital gyrus,

parietal gyrus, inferior and superior parietal gyrus, as well as

middle and superior frontal gyrus; 6) the default mode network

(DMN) encompassed posterior cingulate cortex, bilateral inferior

parietal gyrus, angular gyrus, middle temporal gyrus, superior

frontal gyrus and medial frontal gyrus. On the basis of previous

studies [31,32,34,37], we partitioned the six RSNs into two

groups: higher cognitive networks (CEN, DAN and DMN) and

perceptual networks (SMN, AN and VN).

Power spectrum of RSNs
The relative power and the power contribution of the low-

frequency band (0.01–0.08 Hz) on the entire frequency range for

each RSN are shown in Fig. 2. The power contribution in the low-

frequency band was largest for the DMN, following VN, CEN,

Topological Fractionation of RSNs
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DAN, SMN and AN. We found a significant difference across

RSNs in the low-frequency band, as assessed by a one-way analysis

of variance (ANOVA) (p,0.01, Bonferroni-corrected). The higher

level cognitive networks showed significantly greater low-frequen-

cy power than the perceptive networks (two-way ANOVA,

p,0.01, Bonferroni-corrected) (Fig. 2). The measure of the power

contribution in the low-frequency band corresponded to that of

fractional amplitude of low-frequency fluctuations (fALFF)

[45,54]. We found indeed that higher cognitive networks exhibited

higher fALFF than perceptual networks (Fig. S1).

Clustering coefficient and shortest path length
The average shortest path length (Lnet) and their dependence on

correlation coefficient threshold T for each RSN are illustrated in

Fig. 3A. As expected, Lnet increased for larger values of the

correlation coefficient threshold T , due to an increased number of

paths. Over the range of threshold values (0.125–0.55), we observed

similar Lnet values among higher cognitive networks (CEN, DAN

and DMN), and among perceptual networks (SMN, AN and VN).

The values of the former group were significantly larger than those of

the latter group (two-way ANOVA, p,0.01, Bonferroni-corrected).

The average clustering coefficient (Cnet) and their dependence on

correlation coefficient threshold T for the voxel-level functional

network in each RSN are illustrated in Fig. 3B. Cnet decreased for

larger values of the correlation coefficient threshold. As for Lnet, Cnet

values of higher cognitive networks were clearly lower than those of

perceptual networks. In summary, both Lnet or Cnet confirmed a

dichotomy between the two groups of networks. To assess the

sensitivity of the results with respect to the number of nodes in each

RSN, we recomputed Lnet and Cnet for RSNs with equalized

number of nodes (Fig. S2). Importantly, we observed results similar

to those obtained without the node-normalization procedure.

Figure 1. Cortical representation of the six RSNs. For each RSN, Left: lateral and medial views of left hemisphere; Center: dorsal view; Right:
lateral and medial views right hemisphere.
doi:10.1371/journal.pone.0026596.g001

Topological Fractionation of RSNs

PLoS ONE | www.plosone.org 4 October 2011 | Volume 6 | Issue 10 | e26596



Statistical analysis of network properties
After the analysis of Lnet and Cnet at different correlation

coefficient threshold T , we examined in more detail network

properties for each RSN using the correlation coefficient threshold

T~0:375. In particular, we calculated Cnet, Lnet, c, l and the

small-world index s. The related results are shown in Fig. 4 and

Table 1. Both s and c were significantly larger than 1 for each

RSN and l was not different from 1 (p,0.01, Bonferroni-

corrected), suggesting a small-world organization (Table 1). We

used a one-way ANOVA was used to test for significant differences

of Cnet, Lnet, c, l and s across RSNs; then, we tested the

differences between the two network groups (higher cognitive vs.

perceptual) by a two-way ANOVA. As shown in Fig. 4, Cnet of

higher cognitive networks was significantly lower than those of

perceptual networks (p,0.01, Bonferroni-corrected) (Fig. 4A).

Lnet, c, l and s are also significantly different between groups

(p,0.01, Bonferroni-corrected), the values of higher cognitive

being larger than those of perceptual networks (Fig. 4B–E).

Furthermore, we calculated network properties for RSNs with

equalized node number (Fig. S3 and Table S1). Each normalized

RSN exhibited small-world topology, confirming all results

obtained from RSNs without the node-normalization procedure.

Figure 2. Spectral analysis of the RSNs’ time-courses. (Main frame) Mean relative spectral distribution of the voxel-averaged time-courses of
each RSN. (Embedded frame) Power contribution in the low-frequency band (0.01–0.08 Hz) for each RSN. Error bars correspond to SD. Asterisks
indicate statistically significant differences between the groups of higher cognitive and perceptual networks (two-way ANOVA, p,0.01, Bonferroni-
corrected).
doi:10.1371/journal.pone.0026596.g002

Figure 3. Mean path length and clustering coefficient for each RSN. (A) Shortest path length, Lnet, and (B) clustering coefficient, Cnet , for each
RSN as a function of correlation threshold T (0.125–0.55). Error bars correspond to SEM.
doi:10.1371/journal.pone.0026596.g003

Topological Fractionation of RSNs
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Discussion

We investigated the network properties of six well-documented

RSNs by combining ICA and graph theoretical analysis. Our

results showed that each RSN had robust small-world properties,

as evidenced by cw1 and l&1 (Fig. 1 and Table 1). Both power in

low-frequency band (between 0.01 and 0.08 Hz) and small-world

index of the higher cognitive networks (CEN, DAN and DMN)

were significantly greater than those of perceptual networks (AN,

SMN and VN) (p,0.01, Bonferroni-corrected). For the first time,

these findings provide quantitative evidence for the dichotomy

between higher cognitive and perceptual networks [31,36].

To define large-scale intrinsic brain networks we used ICA, a

data-driven analysis. This approach is particularly valuable for the

investigation of brain networks modulated by task performance

[26], but also at rest [19,23,25]. The so-called resting state

networks (RSNs) [21,22] are supposed to reflect intrinsic energy

demands and synchronizations of neuronal populations within a

set of neuroanatomically and functionally organized brain regions

[21,55]. In this study, we focused on 3 perceptual (AN, SMN and

VN) and 3 higher cognitive (CEN, DAN and DMN) networks to

investigate similarities and differences in their network properties.

The RSNs obtained from our data were consistent with previous

resting-state fMRI studies [19,22,23,25,34].

In the power spectrum analysis, the higher cognitive networks

exhibited significantly greater low-frequency power than the

perceptual networks. This finding confirms the suggested dissoci-

ation between elementary level and higher level networks

[31,32,37]. Furthermore, those findings support the concept that

perceptual networks and higher cognitive networks are involved at

different levels of functional processing [34,36], with a different

allocation of brain energy between the two groups. Not

surprisingly, the DMN exhibited the largest low-frequency power

among the others [18,56,57,58] It is also possible that the DMN

integrates information from other RSNs [34], which would also

support the current findings.

All six RSNs were characterized by small-world topology [4],

confirming and expanding findings from previous studies on the

whole human brain network. The two key features of small-world

topology, i.e. high clustering and short paths, reflect global and

Figure 4. Statistical analysis of network properties for higher cognitive and perceptual networks. The group of higher cognitive
networks includes DMN, DAN and CEN; the group of perceptual networks includes SMN, VN and AN. Binary graphs were calculated using the
correlation threshold T~0:375. (A) Mean clustering coefficient, Cnet ; (B) shortest path length, Lnet ; (C) small-world index, s; (D) normalized clustering
coefficient, c; (E) normalized shortest path length, l. Error bars correspond to SD. Asterisks indicate statistically significant differences between the
two network groups (two-way ANOVA, p,0.01, Bonferroni-corrected).
doi:10.1371/journal.pone.0026596.g004

Table 1. Summary of network measures for each RSN.

RSN N E(mean±std) Cnet(mean±std) Lnet(mean±std) s(mean±std) c(mean±std) l(mean±std)

CEN 2842 1.38e+660.35e+6 0.7060.05 1.7460.12 1.3160.25w 1.3760.28w 1.0560.02q

DAN 3003 1.47e+660.36e+6 0.6860.04 1.7560.13 1.5060.31w 1.5860.37w 1.0460.03q

DMN 7534 8.17e+662.07e+6 0.6660.05 1.8060.10 1.3560.25w 1.4260.28w 1.0560.02q

SMN 1653 0.70e+660.20e+6 0.7860.08 1.5160.16 1.2060.22w 1.2160.23w 1.0160.01q

AN 1980 1.01e+660.27e+6 0.7660.07 1.5060.15 1.1860.19w 1.1960.20w 1.0160.01q

VN 1819 1.05e+660.24e+6 0.8360.06 1.3860.15 1.1360.14w 1.1460.15w 1.0160.01q

N: number of voxels (nodes) in each RSN; E: number of edges in each RSN.
w: Significantly larger than 1 (one sample t-test, p,0.01, Bonferroni-corrected).
q: No significant difference compared to 1 (one sample t-test).
doi:10.1371/journal.pone.0026596.t001

Topological Fractionation of RSNs
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local parallel information processing [3]. Recently, small-world

characteristics have been found in large-scale structural [59,60]

and functional brain networks [3,61], and at a wide range of

spatial and temporal scales. However, these studies mainly focused

on whole-brain networks [5,8,10,62,63]. Exploring the topological

attributes of specific RSNs may shed light on the architecture of

the human brain. Small-world topology might reflect a principle of

optimal architecture in the human brain [64]. Our data suggests

that information is efficiently transferred not only in the whole

brain network, but also within specific sub-networks, such as the

RSNs.

We clearly found a difference in small-world characteristics

between higher cognitive and perceptual networks, confirming our

study hypothesis. Higher level cognitive networks, such as the

DMN, DAN and CEN, are thought to occupy a different

hierarchy in brain structure compared to perceptual networks

[65]. In synaptic hierarchy, the lower synaptic levels mainly

participate in encoding information from visual, auditory and

somato-motor cortex, while the higher synaptic levels relate to

cognitive processing, such as attention, emotion, working memory

and mental imagery [31]. In addition, previous works have

revealed that higher cognitive networks mature through ontogeny,

while sensory networks were well-developed in early childhood

[32,66,67].

Previous studies suggested competition between RSNs, as for

example between the task-negative network (i.e. DMN) and task-

positive networks [46]. To better understand the dissociation

found between higher cognitive and perceptual networks, we

examined the presence of competition by correlation analysis (see

Text S2). Our data showed anti-correlations between these two

network groups (Fig. S4A). By further exploring the correlations

among RSNs, we also found selective differences, and the presence

of competition within groups. For instance, the DMN was

negatively correlated with the CEN, DAN and the perceptual

networks (Fig. S4B), as already suggested by previous studies

[46,68,69]. Taken together, the correlation results further

demonstrate the fractionation between perceptual and higher

cognitive networks, and suggest the presence of competition

processes between the two network groups. Further work will be

necessary to elucidate mechanisms of competition between RSNs,

and how they relate to topological properties.

The main limitation of the present study is related to the spatial

resolution and signal-to-noise ratio of the functional images, which

may have an effect on the network topology measures. In this

regard, we focus on two methodological considerations in

particular. First, we collected the fMRI data at about 4-mm

resolution, and resliced them to 3-mm cubic voxels after non-

linear spatial transformation to a template space (MNI space). For

subjects’ with brain larger than the standard template, the

normalization procedure deforms the original sampling grid at

4 mm to an inhomogeneous grid with resolution locally below

4 mm. We therefore resampled our data at 3 mm isotropic to

preserve the spatial specificity of our data, as suggested previously

[70,71]. Importantly, the resampling at a resolution lower than the

native one does not induce a loss of information, in compliance

with the Nyquist–Shannon sampling theorem. Second, we applied

spatial smoothing before network construction, to reduce noise in

the functional images. It has been demonstrated that, for

anatomically-defined areas, spatial smoothing may introduce

(local) artificial correlations between ROIs [10,11]. In this study,

however, we calculated network properties at a voxel level, using

the spatial extent of ICA-based RSNs to define functional ROIs.

So far, no study has examined whether smoothing could introduce

artificial connectivity at the network level [72]. For this reason, we

examined the network topological properties in RSNs calculated

without the smoothing step. Importantly, we found results very

similar to those with smoothing (Fig. S5). We concluded that, in

the present study, spatial smoothing had only minimal influence

on RSN network construction.

In summary, we robustly found small-world properties in RSNs.

For the first time, we showed quantitative evidence for the

topological fractionation between perceptual and higher cognitive

networks. This suggests that RSNs may occupy different

hierarchical levels within the intrinsic functional architecture of

the human brain. Our approach to investigate topological

properties in RSNs may be extended to clinical research, especially

to diseases that show selective abnormal connectivity in specific

brain networks.

Supporting Information

Text S1 Reliability test.

(DOC)

Text S2 Correlation matrix between perceptual and

higher cognitive networks.

(DOC)

Figure S1 Fractional amplitude of low-frequency fluc-

tuation (fALFF) for each RSN. Fractional ALFF values were

defined as the ratio of total power within the low-frequency range

(0.01–0.08 Hz) to that of the entire detectable frequency range.

fALFF can provide specific measure of low-frequency spontaneous

fluctuations in the BOLD signal. The vertical coordinates indicate

the value of fALFF for each RSN. Error bars correspond to SD.

We found that higher cognitive networks (CEN, DAN and DMN)

exhibited higher fALFF values than perceptual networks (SMN,

AN and VN) (two-way ANOVA, p= 0.0153).

(TIF)

Figure S2 Mean path length and clustering coefficient

for each RSN with equalized node number. (A) Mean

shortest path length, Lnet, and (B) clustering coefficient, Cnet, for

each RSN as a function of correlation threshold T (0.125–0.55).

Error bars correspond to SEM.

(TIF)

Figure S3 Statistical analysis of network properties for

higher cognitive and perceptual networks after the node-

normalization procedure. The group of higher cognitive

networks includes DMN, DAN and CEN; the group of perceptual

networks includes SMN, VN and AN. Binary graphs were

calculated using the correlation threshold T~0:375. (A) Mean

clustering coefficient, Cnet; (B) shortest path length, Lnet; (C) small-

world index, s; (D) normalized clustering coefficient, c; (E)

normalized shortest path length, l. Error bars correspond to SD.

Asterisks indicate statistically significant differences between the

two network groups (two-way ANOVA, p,0.01, Bonferroni-

corrected).

(TIF)

Figure S4 Correlation matrix of RSN time-courses. The

mean correlation matrix obtained by averaging a set of correlation

matrices across subjects between the two network groups (higher

cognitive and perceptual networks, respectively) (A), and among

the six RSNs (B). Higher cognitive networks were significantly

anti-correlated to perceptual networks. In line with previous

findings, DMN (task-negative) was negatively correlated to other

cognitive (task-positive) networks (i.e. CEN and DAN) and

perceptual networks (SMN, AN and VN).

(TIF)
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Figure S5 Statistical analysis of network properties for

higher cognitive and perceptual networks, defined

without using spatial smoothing. The group of higher

cognitive networks includes DMN, DAN and CEN; the group of

perceptual networks includes SMN, VN and AN. Binary graphs

were calculated using the correlation threshold T~0:375. (A) Mean

clustering coefficient, Cnet; (B) shortest path length, Lnet; (C) small-

world index, s; (D) normalized clustering coefficient, c; (E)

normalized shortest path length, l. Each RSN had robust small-

world properties, as evidenced by s and c significantly larger than 1

(C and D), and l not different from 1 (p,0.01, Bonferroni-

corrected) (E) for each RSN. Error bars correspond to SD. Asterisks

indicate statistically significant differences between the two network

groups (two-way ANOVA, p,0.01, Bonferroni-corrected).

(TIF)

Table S1 Summary of network measures for each RSN

after the node-normalization procedure.

(DOC)
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