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Dirac semimetals (DSMs) are an important class of topological states of matter. Here, focusing
on DSMs of band inversion type, we investigate their boundary modes from the effective model
perspective. We show that in order to properly capture the boundary modes, k-cubic terms must
be included in the effective model, which would drive an evolution of surface degeneracy manifold
from a nodal line to a nodal point. Using first-principles calculations, we demonstrate that this
feature and the topological hinge modes can be clearly exhibited in β-CuI. We further extend the
discussion to magnetic DSMs and show that the time-reversal symmetry breaking can gap out the
surface bands and hence help to expose the hinge modes in the spectrum, which could be beneficial
for the experimental detection of hinge modes.

I. INTRODUCTION

The study of topological states and topological ma-
terials is an important research topic in the past two
decades [1–10]. An important property of topological
states is the bulk-boundary correspondence, i.e., the non-
trivial topology in the bulk of a system would manifest
as protected modes at the boundary. For example, a
two-dimensional (2D) quantum anomalous Hall insulator
features chiral zero-modes at its 1D edges [11]. As an-
other example, 3D Weyl semimetals have protected sur-
face Fermi arcs connecting the protections of bulk Weyl
points with opposite chirality [10, 12]. The existence of
surface Fermi arcs can be argued by considering a cylin-
drical surface in the Brillouin zone (BZ) that encloses one
Weyl point [12]. By the Gauss Law, this 2D sub-system is
essentially a 2D quantum anomalous Hall insulator, and
the corresponding chiral zero-mode traces out a Fermi arc
on the surface when we vary the radius of the cylinder.

Dirac semimetals (DSMs) are an important class
of topological states that are closely related to Weyl
semimetals [13–15]. In a DSM, the bands cross at iso-
lated Dirac points at Fermi level. Each Dirac point is
fourfold degenerate and can be regarded as formed by
merging together a pair of Weyl points with opposite
chirality. Because of this, a Dirac point does not have
a net chirality (or a nontrivial Chern number). Previ-
ous works have shown that there are two types of Dirac
points according to their formation mechanism [10, 13].
One type is the essential Dirac points, whose existence is
enforced by certain nonsymmorphic space group symme-
try [13, 16]. The other type is the accidental Dirac points,
which is associated with band inversion in a region of the
BZ [14, 15]. On the experimental side, the latter type
attracted more interest, because it finds good material
realizations, such as Na3Bi and Cd3As2, and also be-
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cause it hosts interesting boundary modes [17–24]. Ini-
tial first-principles calculations showed that Na3Bi and
Cd3As2 have surface Fermi arcs connecting the projec-
tions of bulk Dirac points [14, 15], similar to those in
Weyl semimetals. However, subsequent studies pointed
out that such surface arcs are not protected [25]. More
recently, with the development of the concept of higher-
order topology[26–37], Wieder et al. found that these
DSMs actually have a second-order topology with hinge
Fermi arcs [34].

In this work, we focus on this type of DSMs with band
inversions and investigate the evolution of boundary
modes from low-energy effective models. We show that
in order to correctly capture the topology and boundary
modes, the effective model must include terms beyond
the second order in the momentum. Particularly, with
the inclusion of k-cubic terms, there is an evolution of
the surface degeneracy manifold from an open nodal line
to a nodal point. This understanding offers guidance to
search for materials with hinge modes that can be more
readily probed in practice. We show that this is the case
for β-CuI. Its hinge modes are directly exposed in first-
principles calculations. We further extend the discussion
to magnetic DSMs and show that the time reversal sym-
metry breaking can completely gap out the surface bands
while maintaining the hinge modes, which could be bene-
ficial for the experimental detection of hinge states. Since
effective models are widely used for understanding topo-
logical states, our findings have important implications
on theoretical studies based on the such models. The re-
sults also point to concrete materials for which the topo-
logical hinge modes can be verified in experiment.

II. EFFECTIVE MODEL ANALYSIS

DSMs with band inversions such as Na3Bi and Cd3As2

share similar low-energy band structures [14, 15]. They
feature band inversion around a high-symmetry point
(such as Γ) in the BZ, and a pair of Dirac points are
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protected on a rotational axis that passes through the
high-symmetry point. The commonly used low-energy
effective model to study these DSMs is

H0(k) = ε(k) +M(k)σzs0 +Akxσxsz −Akyσys0, (1)

where the momentum k is measured from the band inver-
sion high-symmetry point, σi and si are two sets of Pauli
matrices, the functions ε(k) = C0 +C1k

2
z +C2(k2

x + k2
y),

M(k) = M0 −M1k
2
z −M2(k2

x + k2
y), and C’s, M ’s, and

A are real model parameters. This model is expanded to
the k-square order, which can describe the band inversion
feature at the k = 0 point if we require the M ’s share
the same sign. Without loss of generality, we assume
M0,M1,M2 > 0.

As we shall show in a while, the conventional model
in (1) is not sufficient to capture the second-order topol-
ogy and the correct boundary modes. To remedy this,
expansion beyond the k square order is needed. Here, we
shall include the k cubic terms, which are sufficient for
the task.

Obviously, the form of the k cubic terms depends on
the crystal symmetry of the material to be considered.
To be specific, let’s consider the constraint of D6h point
group symmetry, which applies to the material Na3Bi.
In Appendix B, we also present the analysis for the
D4h point group (applying to Cd3As2), which leads to
slightly different terms, but the qualitative results re-
garding their influence on the topology are not affected.
Considering the constraint from time-reversal symme-
try T = −iσ0syK (K the complex conjugation) and the
generators of the D6h group: P = σzs0, Mx = iσ0sx
and C6z = ei(π/3)Ĵz/~ = ei(π/3)(2σ0−σz)sz , the symmetry-
allowed k cubic terms include

H1(k) = Bkz[(k
2
x − k2

y)σxsx + 2kxkyσxsy], (2)

with B a real parameter. Note that besides H1, there
are additional k-cubic terms proportional to the last two
terms in (1) timed by k2

i . However, these terms are not
important for our discussion, so they are neglected here.

The spectrum of the effective model H = H0 +H1 can
be readily solved, which is given by

E±(k) = ε(k)±
√
M(k)2 +A2k+k− + |Bkzk2

+|2, (3)

where k± = kx±iky, and each band is doubly degenerate
due to the PT symmetry. The bands cross at two Dirac
points located at (0, 0,±kD) on the high-symmetry axis,

with kD =
√
M0/M1. Around each Dirac point, the band

dispersion is linear in k at the leading order. For example,
expanding the dispersion at (0, 0,+kD), we have E(q) =

±
√
A(q2

x + q2
y) + 4M0M1q2

z ∼ q, where q and the energy

are measured from the Dirac point.
Now, we analyze the boundary modes of this effective

model. First, it is noted that the k-cubic terms in H1

do not affect the bulk Dirac point features. For instance,
if we put B = 0 in (3), one finds that the location of
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FIG. 1. DSM effective model without the k-cubic terms
[Eq. (1)]. (a) We discretize the model on a 3D hexagonal
lattice. (b) The corresponding BZ. (c) Bulk band structure.
Here, each band is twofold degenerate. (d) Surface band dis-
persion on a side surface. There is a surface nodal line form
by the crossing of surface bands, which connects the projec-
tions of two bulk Dirac points. (e) The corresponding surface
spectrum along high symmetry path and (f) the constant en-
ergy slice at Fermi level. Here, we take the model parame-
ters as C0 = 1, C1 = 0.2, C2 = 0,M0 = 1,M1 = 0.5,M2 =
0.5, and A = 1.

the Dirac points and the leading order dispersion are not
affected at all, which seems to imply that H1 is inessen-
tial. Hence, let’s first consider the surface spectrum by
neglecting the H1 term. The calculation results are pre-
sented in Fig. 1. Here, to study a surface, we discretize
the model on a hexagonal lattice as in Fig. 1(a). The
bulk band structure in Fig. 1(c) captures the low-energy
features, particularly the Dirac points on the Γ-A path.
In Fig. 1(d, e), we plot the calculated spectrum for the
side surface normal to ŷ, where the projections of the two
bulk Dirac points can be well distinguished. In Fig. 1(f),
one clearly observes a pair of surface Fermi arcs con-
necting the two projected Dirac points, which are simi-
lar to the previous first-principles results on Na3Bi and
Cd3As2 [14, 15]. These Fermi arcs are formed by the
cutting of Fermi energy with the surface bands indicated
in Fig. 1(e). One can see that the surface bands linearly
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cross on the Γ̄-Z̄ path in the surface BZ between the sur-
face protections of Dirac points at (0,±kD), which form
a nodal line connecting the projected Dirac points in the
surface band structure. This picture can be better vi-
sualized in Fig. 1(d), which maps out the surface band
dispersion.

The surface spectrum for H0 can be understood in the
following. Consider a slice in the BZ with constant kz =
λ for H0, which constitutes a 2D sub-system H̃λ

0 (kx, ky)
labeled by λ. We have

H̃λ
0 = ε(kx, ky, λ)+M(kx, ky, λ)σzs0+Akxσxsz−Akyσys0.

(4)
One finds that this 3D model has exactly the same form
as the famous Bernevig-Hughes-Zhang model [38] for 2D
topological insulators. Particularly, the model is topo-
logically nontrivial for |λ| < kD, i.e., for a 2D slice in the
region between the two Dirac points, which is consistent
with the assumed band inversion feature around k = 0.
Thus, each constant kz slice between the two Dirac points
is effectively a 2D topological insulator, which has a pair
of 1D edge bands forming a Dirac type crossing. The
crossing traces out the surface nodal line connecting the
two Dirac points on a side surface. This clarifies the ori-
gin of the surface spectrum of H0 in Fig. 1(d-f).

It must be noted that a conventional topological in-
sulator requires the protection of the time reversal sym-
metry. In the 2D model H̃λ

0 , we have an anti-unitary
symmetry T ∗ = −iσ0syK, which resembles but is not
the true time reversal symmetry for kz 6= 0, because in
the 3D system, time reversal operation should also re-
verse the sign of kz. It follows that the surface spectrum
in Fig. 1(d) is enabled by an emergent symmetry (T ∗)
limited to H0, but not protected by any true symmetry
of the original system. As a result, the surface bands
with a nodal line represents a critical state susceptible to
perturbations from higher-order terms.

Next, we show that restoring the k-cubic terms in H1

helps to capture the correct topology. Note that by
putting kz = λ in H1, we obtain its contribution to the
2D sub-system of a constant kz slice:

H̃λ
1 = Bλ[(k2

x − k2
y)σxsx + 2kxkyσxsy]. (5)

Clearly, H̃λ
1 breaks the emergent symmetry T ∗ of H̃λ

0 .

In other words, if we treat H̃λ
0 as describing a 2D T ∗-

invariant topological insulator, H̃λ
1 can be regarded as

perturbations that break the effective time reversal sym-
metry. Consequently, the 1D Dirac type crossing in the
edge bands for H̃λ

0 would open a gap. This is confirmed
by the calculated surface spectrum in Fig. 2(b) by includ-
ing the H1 term, which destroys the surface nodal line. It
should be noted that the kz = 0 slice is special as it pre-
serves the true time reversal symmetry, so it remains a
2D topological insulator with gapless edge bands. For the
3D system, this means that although the surface nodal
line is destroyed, there is still a robust nodal point of the
surface bands at Γ̄.
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FIG. 2. DSM effective model with cubic terms included
[Eq. (2) + Eq. (1)]. (a) Bulk band structure. (b) Surface
band dispersion on a side surface. There is a Dirac cone at
the surface BZ center. (c) Surface spectrum and (d) constant
energy slice at Fermi level for the side surface. (e) Spectrum
of a 1D hexagonal tube geometry (with 30 cell length of an
edge) as shown in (f). The hinge modes are indicated by the
red lines. (f) Spatial distribution of the hinge mode marked
by the star in (e). Here, we take the parameters as C0 =
1, C1 = 0.2, C2 = 0,M0 = 1,M1 = 0.5,M2 = 0.5, and A = 1.

This feature can also be understood from another per-
spective. Note that the bulk Dirac points are protected
by the rotational symmetry on the kz axis. They can be
gapped out by breaking the rotational symmetry while
preserving T . Then the system would transform to a 3D
strong topological insulator because of the assumed band
inversion at Γ. It is well known that a 3D topological in-
sulator features Dirac-cone type surface bands. This ex-
plains the Dirac type surface dispersion in Figs. 1(b-d),
and the nodal point is just the neck point of the sur-
face Dirac cone. This discussion clarifies the important
role played by H1, under which the surface bands evolve
from Fig. 1(d) with a nodal line to Fig. 2(b) with a Dirac
cone. Inspecting the Fermi contour at the surface, the
Fermi arcs in Fig. 1(f) would generally transform into a
closed loop in Fig. 2(d), similar to that in a 3D strong
topological insulator.
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FIG. 3. Results for the effective 2D Hamiltonian H̃λ(kx, ky) =

H̃λ
0 +H̃λ

1 when λ = π/3. (a) Evolution of the Wannier centers
for the occupied bands. (b) Nested Berry phase when λ varies
along kz. The system has a nontrivial second-order topology
for λ between the two Dirac points. (c, d) Spectra for the

nanodisk geometry (c) without and (d) with H̃λ
1 . The insets

show the distribution of the states marked in red in the spec-
tra. Here, we take the parameters as C0 = 1, C1 = 0.2, C2 =
0,M0 = 1,M1 = 0.5,M2 = 0.5, and A = 1.

We have shown that by including the k-cubic terms,
the 2D sub-system described by H̃λ(kx, ky) = H̃λ

0 + H̃λ
1

with |λ| < kD and λ 6= 0 is no longer a 2D conven-
tional topological insulator. Both its bulk and its edge
are gapped. Nevertheless, the band inversion feature is
still maintained in the model, and we will show that
H̃λ corresponds to a 2D second-order topological insu-
lator. The second-order topology can be inferred from
the nested Wilson loop calculation [27]. In Fig. 3(b), we
plot the obtained nested Berry phase as a function of
λ. One observes that the result is nontrivial (trivial) for
|λ| < kD (> kD). Thus, each constant kz(6= 0) slice of
the BZ between the two Dirac points is effectively a 2D
second-order topological insulator.

A 2D second-order topological insulator should have
protected corner modes. We implement H̃λ on a hexag-
onal lattice and plot the calculated spectrum for a nan-
odisk geometry in Fig 3(c, d). Here, we take λ = π/3.
When we put B = 0, i.e., drop the k-cubic terms, the
zero-modes are distributed throughout the edge of the
disk [Fig. 3(c)]. This is the critical state, for which the
system resembles the conventional topological insulator
with gapless edge modes. As soon as we turn on the
k-cubic terms, the edge becomes gapped and the zero-
modes are localized at the corners of the disk [Fig. 3(d)],
confirming the second-order topology.

Since H̃λ is a constant kz slice of the DSM, its cor-
ner modes would constitute the hinge modes at hinges

between the side surfaces of a 3D DSM. To explic-
itly demonstrate this, we consider a tube geometry as
shown in Fig. 2(f). The obtained spectrum in plotted in
Fig. 2(e), in which the hinge modes are marked with red
color. In Fig. 2(f), we verify that these modes are indeed
distributed at the hinges between the side surfaces of the
system.

From the model study, we have seen that the k-cubic
terms are indispensable for describing the correct bound-
ary modes of the DSM. On the 2D surface, the generic
Fermi contour is a Fermi loop from the Dirac-cone surface
bands. The bulk band inversion leads to second-order
topology with hinge modes bounded by the projected
Dirac points on the 1D hinges between side surfaces.

III. MATERIAL EXAMPLE

The analysis in the last section shows that to better
visualize the hinge modes, the system needs to have siz-
able k-cubic terms. In materials Na3Bi and Cd3As2, the
cubic terms are relatively small, which makes the surface
Fermi contour still close to Fermi arcs. And the hinge
modes there coexist in energy with the surface modes for
a fixed kz, making it difficult to resolve the hinge modes
in the spectrum.

Here, we show that β-CuI is a good candidate to probe
the hinge modes. The previous work by Le et al. [39]
has revealed β-CuI as a DSM formed by band inversion.
Here, we find that this material has sizable k-cubic terms,
and we shall directly investigate its hinge modes.

As illustrated in Fig. 4(a), the structure of β-CuI be-
longs to the space group R3̄m (No. 166), same as the
famous topological insulator Bi2Se3 family. From the
crystal field environment, one observes that the iodine
atoms can be classified as two types denoted as I1 and
I2, where I1 is octahedrally coordinated by six Cu atoms
forming a sandwich ABC tri-layer stacking, while I2 con-
nects two Cu atoms parallel to the c axis separating the
Cu-I1-Cu sandwich layer. The relaxed lattice constants
are a = 4.3710 Å and c = 20.8611 Å in the hexagonal
lattice description (see Appendix A for the computation
approach), which are in good agreement with the exper-
imental results (a = 4.2986Å, c = 21.4712 Å) [40]. The
Wyckoff positions of Cu, I1 and I2 are 6c (0, 0, 0.1246),
3a (0, 0, 0) and 3b (0, 0, 0.5), respectively.

In β-CuI, the p orbitals of I1 atoms and the pz or-
bitals of I2 atoms are strongly affected by the crystal
fields from the surrounding Cu atoms and are repelled
away from the Fermi level. Meanwhile, due to the pos-
itive valence of Cu, the d orbitals of Cu are completely
filled and are located at around −2.5 eV. Therefore, near
the Fermi level, the valence and conduction bands are
mainly contributed by the I2-5px,y and Cu-4s orbitals.
Our first-principles result confirms this analysis. Fig-
ure 4(c) shows the band structure and projected density
of states (PDOS) of β-CuI without spin-orbit coupling
(SOC). Around the Fermi energy, there is an energy band
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FIG. 4. (a) Crystal structure of hexagonal β-CuI. (b) The
first BZ of β-CuI and its projected surface BZ on (010) planes.
(c, d) Band structure of β-CuI (c) without and (d) with spin-
orbit coupling.

inversion at the Γ point, caused by the Cu-4s and the
I2-5px,y orbitals. The Cu-4s bands are about 0.47 eV
lower than the I2-5px,y bands, and there is a band cross-
ing point along the Γ-Z line. After turning on SOC, the
band inversion at Γ is enhanced to 0.77 eV, and the band
crossing along Γ-Z still exists [Fig. 4(d)]. Each band here
is doubly degenerate due to PT . The irreducible repre-
sentations of the two crossing bands belong to Γ4 and
Γ5⊕Γ6 of C3v group along Γ-Z, respectively. Therefore,
the crossing point is a fourfold Dirac point, consistent
with the previous result [39].

Now, we turn to the surface spectrum of β-CuI. Fig-
ure 5(a) shows the calculated surface spectrum for the
(100) surface. One observes features similar to those in
Fig. 2(c). Particularly, one can see the large splitting of
the nodal line on the Γ̄-Z̄ path between the projected
Dirac points, and the Fermi contour takes the form of a
loop rather than arcs [Fig. 5(b)]. These evidences indi-
cate sizable k-cubic terms which break the effective T ∗
symmetry.

The surface spectrum in Fig. 5(a) suggests that there
is a good chance to resolve the hinge modes in the sys-
tem. To calculate the hinge spectrum, we consider the
tube geometry shown in Fig. 5(d). The result is plot-
ted in Fig. 5(c). Indeed, we find two hinge bands within
the surface band gap bounded by the projected Dirac
points. By checking the wave function distribution, we
verify that these modes are located at the hinges of the
sample, as shown in Fig. 5(d). These hinge modes man-
ifest the second-order topological character of β-CuI.

Finally, let’s construct the k · p effective model for β-
CuI. β-CuI has the D3d point group symmetry. The
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FIG. 5. (a, b) Projected spectrum and the Fermi contours
for the (010) surface. (c) Spectrum for the 1D tube geometry
of β-CuI as shown in (d). Here, each side of the tube cross
section has a length of 60 unit cells. The hinge modes are
highlighted by the red lines. (d) Spatial distribution of two
hinge modes marked in (c).

symmetry-constrained model is slightly more compli-
cated than that discussed in the last section, but the
qualitative features are the same. Choosing the basis at
Γ as |S+

1/2,±1/2〉 and |P−3/2,±3/2〉, the symmetry gener-

ators are represented as P = σzs0, Mx = iσ0sx, C3z =

ei(2π/3)Ĵz/~ = ei(2π/3)(2σ0−σz)sz and T = −iσ0syK.
Then, the symmetry allowed effective model can be

obtained as

H(k) = H0 +H1, (6)

where H0 contains terms up to k-square order

H0 = ε(k) +M(k)σzs0 +A0 (kxσxsz − kyσys0)

+D0 (kxσxsx − kyσxsy) ,
(7)

and H1 contains k-cubic terms

H1 = B1kz[(k
2
x − k2

y)σxsx + 2kxkyσxsy]

+B2kz[(k
2
x − k2

y)σxsz + 2kxkyσys0]

+ [A1k
2
z +A2(k2

x + k2
y)](kxσxsz − kyσys0)

+ [D1k
2
z +D2(k2

x + k2
y)](kxσxsx − kyσxsy).

(8)

Here, ε(k) and M(k) have the same expression as in
Eq. (1). The model parameters can be obtained from fit-
ting the first-principles band structure in Fig. 4(d). We

obtain that C0 = −0.0518 eV, C1 = 0.6661 eV · Å
2
,

C2 = 3.1243 eV · Å2
, M0 = 0.1930 eV, M1 = 4.9640 eV ·

Å
2
, M2 = 0.8866 eV · Å

2
, A0 = −1.5556 eV · Å,
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FIG. 6. (a) Illustration of the lattice model for magnetic
DSM. (b) Bulk band structure. (c) Surface spectrum of the
model [Eq. (9)] along high symmetry paths for the side surface
normal to y. (d) Surface band dispersion. (e) Spectrum of a
1D tube geometry shown in (f). Each side of the cross section
has a length of 40 cells. The hinge modes are highlighted by
the red lines. (f) Spatial distribution of the model marked by
star in (e). Here, we take the parameters as m0 = 2,m1 =
m2 = w = 0.5, v = 1,m3 = 0.2, and all other parameters are
set to zero.

A1 = −0.0937 eV · Å3
, A2 = −0.8030 eV · Å3

, D0 =

0.2264 eV ·Å, D1 = −0.0570 eV ·Å3
, D2 = 8.9368 eV ·Å3

,

B1 = 6.7806 eV ·Å3
, and B2 = 1.4844 eV ·Å3

. The result
shows that the k-cubic terms are sizable for β-CuI.

IV. MAGNETIC DIRAC SEMIMETAL

Since time-reversal symmetry is not a necessary con-
dition for the existence of Dirac points, in this section
we discuss hinge modes in DSMs with broken T , i.e., in
magnetic DSMs [41, 42]. Compared to the nonmagnetic
DSMs discussed so far, magnetic DSMs exhibit an im-
portant difference in the surface spectra. As discussed
in Sec. II, a nonmagnetic DSM has Dirac-cone type sur-
face bands protected by the T symmetry. In a magnetic

DSM, the T symmetry is broken, so the surface Dirac
cone is generally gapped.

To explicitly demonstrate this point, we construct a
four-band lattice model which follows the P4/m′mm
magnetic space group symmetry (No. 123.341 in Belov-
Neronova-Smirnova notation). As shown in Fig. 6(a),
we take a simple tetragonal lattice with two sites in a
unit cell, labeled as A and B sites. At A site, we put
two basis orbitals |s ↑〉 and |s ↓〉; and at B site, we put
|p− ↑〉 and |p+ ↓〉 as basis (p± = px ± ipy). In these four
bases, the generators of the space group are represented
by PT = −iσzsyK,Mx = iσ0sx, C4z = ei(π/4)(2σ0−σz)sz .
Then, we construct the following minimal model that re-
spects these symmetries:

H = ε(k)σ0s0 +m(k)σzs0 + v(sin kxσxsz + sin kyσys0)

+ w(cos kx − cos ky)σxsx,
(9)

where ε(k) = 2ε1 cos kz +4ε2 cos kx cos ky+ε3 sin kz, and
m(k) = m0 + 2m1 cos kz + 4m2 cos kx cos ky + m3 sin kz.
Here, ε0 and m0 represent on-site energy, with v, w, ε’s
and m’s being real parameters. With properly chosen
parameters, this model describes a DSM state as shown
in Fig. 6(b), which has a pair of Dirac points along the
kz axis. Here, the T symmetry is broken by the w term.
If we drop the w term, the model would reduce to a
nonmagnetic DSM similar to the ones discussed in Sec. II.
To see this, we expand the lattice model (9) at the Γ point
for small k (the diagonal term ∼ σ0s0 is dropped since
it does not affect the topology). Then, we obtain the
following k · p model up to k-quadratic terms:

Heff =M(k)σzs0 +Azkzσzs0 +Akxσxsz +Akyσys0

+B(k2
x − k2

y)σxsx,
(10)

where M(k) = M0 −M1k
2
z −M2(k2

x + k2
y), M0 = −m0 +

2m1 + 4m2, M1 = m1, M2 = 2m2, Az = m3, A = v,
and B = w/2. This model is very similar to model (1)
except for the last term. Importantly, unlike the k-cubic
term in (2), the B(k2

x − k2
y)σxsx term opens a gap in

the 2D subsystem H(kx, ky) for any fixed kz, including
the kz = 0 slice, because this term derives from the T -
symmetry breaking w term. It follows that the surface
Dirac cone (as in Fig. 2(b-d)) will be gapped out.

This feature is confirmed by our numerical results
shown in Fig. 6(c) and (d). One observes that as ex-
pected, the Dirac cone at Γ̄ is removed and the surface
bands are gapped. Meanwhile, the existence of the hinge
modes, as corresponding to the second-order topology, is
not affected. As shown in [Fig. 6(e, f)], due to the ab-
sence of the surface Dirac cone, the hinge modes can be
more clearly observed in the spectrum. This could be an
advantage for the detection of hinge modes.
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V. CONCLUSION

In this work, we have discussed how to capture the
topological boundary modes in the effective model ap-
proach to DSMs. We show that the k-cubic terms, which
are often neglected in such models, are in fact essential
for capturing the correct boundary-mode topology. Us-
ing the effective model, we can understand the evolution
of surface spectrum driven by the k-cubic terms. Based
on such understanding, we show that the surface Dirac
cone and the topological hinge modes can be clearly ex-
hibited in β-CuI. Furthermore, we show that in mag-
netic DSMs, the breaking of T symmetry can gap out
the surface Dirac cone while preserving the hinge modes.
This could be an advantage for the detection of hinge
modes. Our finding clarifies the key features of the topo-
logical boundary modes of DSMs. It has important im-
plications on theoretical studies on DSMs using the ef-
fective model approach. Our result also suggests β-CuI
and magnetic DSMs as good candidates for probing the
topological hinge modes.
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Appendix A: Computation Method

The first-principles calculations have been carried out
based on the density-functional theory (DFT) as im-
plemented in the Vienna ab initio simulation package
(VASP) [43, 44], using the projector augmented wave
method [45] and Perdew-Burke-Ernzerhof (PBE) [46]
exchange-correlation functional approach. The plane-
wave cutoff energy was set to 500 eV. The Monkhorst-
Pack k-point mesh [47] of size 8× 8× 8 was used for the
BZ sampling in bulk calculations. The surface spectrum
of β-CuI was calculated by constructing the maximally
localized Wannier functions (MLWF) [48, 49] and sur-
face Green’s function methods [50, 51] implemented in
wanniertools [52].

Appendix B: Effective model with D4h symmetry

Here, we consider the effective model constrained by
the D4h symmetry: P = σzs0, Mx = iσ0sx and C4z =

ei(π/2)Ĵz/~ = ei(π/4)(2σ0−σz)sz . Using the approach dis-
cussed in the main text, we find that the model expanded
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FIG. B1. (a, b) Projected spectrum and the Fermi contour
on the (010) surface. The projection of bulk Dirac points are
indicated by two white points. (c) Spectrum of a 1D tube
geometry as shown in (d). Each side of the cross section has
a width of 40 cells. The hinge modes are highlighted by the
red color. (d) Spatial distribution of the hinge mode marked
by star in (c). In the calculation, we take the parameters as
C0 = 1, C1 = 0.25, C2 = 0,M0 = 1,M1 = 0.5,M2 = 0.5, A0 =
1, A1 = A2 = 0, B1 = B2 = 0.5.

up to k-cubic order reads

H = H0 +H1,

H0 = ε(k) +M(k)σzs0 +A(k)kxσxsz −A(k)kyσys0,

H1 = B1kz(k
2
x − k2

y)σxsx + 2B2kxkyσysx.

(B1)

The functions ε, M , and A have the same form as in
model [Eq. (1)]. One can see that the main difference
from model [Eq. (1)] is that there is one more indepen-
dent parameter in H1. The qualitative features of the
surface and hinge spectra are the same as discussed in
the main text [see Fig. B1].
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