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Abstract

The notion of topological phases extended to dynamical systems stimulates extensive studies, of which the
characterization of nonequilibrium topological invariants is a central issue and usually necessitates the information of
quantum dynamics in both the time and momentum dimensions. Here, we propose the topological holographic
quench dynamics in synthetic dimension, and also show it provides a highly efficient scheme to characterize photonic
topological phases. A pseudospin model is constructed with ring resonators in a synthetic lattice formed by
frequencies of light, and the quench dynamics is induced by initializing a trivial state, which evolves under a
topological Hamiltonian. Our key prediction is that the complete topological information of the Hamiltonian is
encoded in quench dynamics solely in the time dimension, and is further mapped to lower-dimensional space,
manifesting the holographic features of the dynamics. In particular, two fundamental time scales emerge in the
dynamical evolution, with one mimicking the topological band on the momentum dimension and the other
characterizing the residue time evolution of the state after the quench. For this, a universal duality between the quench
dynamics and the equilibrium topological phase of the spin model is obtained in the time dimension by extracting
information from the field evolution dynamics in modulated ring systems in simulations. This work also shows that the
photonic synthetic frequency dimension provides an efficient and powerful way to explore the topological
nonequilibrium dynamics.

Introduction

The discovery of topological quantum phases has revolu-

tionized the understanding of the fundamental phases of

quantum matter and ignited extensive research in condensed

matter physics over the past decades1–5. In addition to the

great progress made for equilibrium phases, the none-

quilibrium quantum dynamics can exhibit exotic beha-

viors6,7, and the notion of topological phases has been

extended to far-from-equilibrium dynamical systems, with

novel topological physics being uncovered, such as the

anomalous topological states in Floquet systems8–14 and

dynamical topology emerging in quantum quenches15–29.

In particular, a universal dynamical bulk-surface

correspondence was predicted when quenching a system

across topological transition14,30–32, showing that the bulk

topology of an equilibrium topological phase has a one-to-

one correspondence to quench-induced dynamical topolo-

gical patterns emerging on the lower-dimensional momen-

tum subspaces called band inversion surfaces (BISs). The

dynamical bulk-surface correspondence connects the equili-

brium topological phases with far-from-equilibrium quan-

tum dynamics, which was further extended to correlated

system33, high-order regimes34,35, and to generic non-

adiabatic quenches36. This opens the way to characterize

equilibrium topological phases by nonequilibrium quench

dynamics, and inversely, to classify nonequilibrium quantum

dynamics by topological theory, with the experimental stu-

dies having been widely reported recently37–44. The none-

quilibrium topological invariants are typically defined via

time dimension and momentum space, and their character-

ization naturally necessitates the information of quantum

dynamics in both the time and spatial dimensions.
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In order to go beyond the spatial degree of freedom and

capture the extensive information of quantum dynamics,

the synthetic dimensions45–47 were proposed and opened

an intriguing avenue towards the quantum simulation of

exotic topological physics beyond physical dimensions48–

50. Following the numerous theoretical proposals on

synthetic dimensions using a different degree of freedoms

such as the frequency or the orbital angular momentum

of light51–54, and the hyperfine levels of atoms55, experi-

ments have been recently performed to demonstrate the

two-dimensional topological insulator56 and the Hall

ladder57 in the synthetic space, where the effective mag-

netic field for photons is generated, and visualize the edge

states58,59. Further, the high-dimensional physics can be

studied in a photonic platform with lower dimension-

ality53,60–64. More recently, the experimental platforms for

generating the synthetic dimension along the frequency

axis have also been proposed and demonstrated using the

ring resonator52,53,57,65,66, in which the photonic modes at

equally spanned frequencies are coupled through the

dynamic modulation. In this system, the band structure in

the synthetic dimension can be measured in the static

steady-state regime in the experiment65. On the other

hand, with the synthetic dimensions the novel optical

phenomena and applications have been proposed,

including the realizations of unidirectional frequency

translation67, pulse narrowing68, active photon storage69,

and topological laser70. Therefore, synthetic dimensions

in photonics not only provide a unique way to simulate

quench dynamics but also can find many novel applica-

tions for light. In particular, the reciprocal dimension of

the frequency axis of light is the time dimension, which

naturally arises the question: how to understand the

quench dynamics in the synthetic frequency dimension.

Successful answering of this question can also trigger

further studies of quench dynamics of the complicated

model in higher dimensions on modulated ring systems.

In this article, we combine the concepts of dynamical

classification and synthetic dimension and propose a

highly efficient scheme to characterize topological phases

by holographic quench dynamics. The topological holo-

graphic quench dynamics refer to a procedure of the

quench dynamics simulated by encoding the complete

topological information of light fields in a time dimension,

which is further mapped to a lower-dimensional subspace

through the bulk-surface duality. We construct a one-

dimensional pseudospin model in a photonic synthetic

lattice in the frequency domain and investigate the

quench dynamics by initializing a trivial phase, which

evolves under a topological Hamiltonian. We show that

the full dynamical evolution is featured by two funda-

mental time scales, with which the quench dynamics

exhibit universal topological patterns. In particular, one

time scale mimics the Bloch momenta of the topological

band and the other (i.e., the round-trip number of light

circulating inside rings) characterizes the residue time

evolution after the quench. By extracting information of

the field onto two time scales in simulations, we find the

dynamical topological patterns obtained on BISs, which

render an emergent dynamical bulk-surface duality and

provide a holographic characterization of the topological

spin model, with the complete information being encoded

in the single variable, i.e., the time evolution, in sharp

contrast to the conventional nonequilibrium topological

states. The dynamical topology is robust against disorders

and has high experimental feasibility. This work shows

advantages in exploring the topological phases with

holographic quench dynamics in the synthetic dimensions

and provides an insight into classifying the far-from-

equilibrium dynamics with nontrivial topology based on

the synthetic photonic crystals.

Results

Model

We start with illustrating our idea of using ring resonators

under dynamic modulations to artificially engineer a tight-

binding lattice of pseudospin states along the frequency axis

of light. As shown in Fig. 1a, the system under the study in

this work contains three ring resonators, with each hosting

a set of resonant frequency modes. Two of the resonators

(A and C) will be used to mimic a pseudospin-1/2 system.

Let the group velocity dispersion be zero in the waveguide

that constructs the ring. We set ring A such that it supports

a set of resonant modes at frequencies ωA;m ¼ mΩ, which

refer to a general carrier optical frequency ω0 � Ω that we

omit for simplicity, wherem is an integer andΩ ¼ 2πc=Lng
is the free spectral range of the ring. Here, c is the speed of

light, L is the circumference of ring A, and ng is the effective

refractive index. The resonant modes in the ring C with the

same circumference L have frequencies ωC;m ¼ mΩþΩ=4
, which refer to ω0. We use ring B with the circumference

4L to serve as an auxiliary ring71. Ring B has shifted reso-

nant modes at frequencies ωB;m ¼ mΩ=4þΩ=8, which
refer to ω0. Hence, although there are evanescent couplings

between nearby rings, the field resonantly circling inside

ring A(C) is not resonant in the auxiliary ring B.

The couplings between modes in the ring resonators are

engineered by properly setting the phase modulators. We

place one phase modulator [labeled as PM A(C) in Fig. 1a]

inside ring A(C). The light that transmits through the

modulator in ring A(C) undergoes dynamical modulation

with the transmission coefficient as72:

TAðCÞ ¼ eiκ cos½Ω0tþϕAðCÞ� ð1Þ

where κ is the modulation strength, Ω0 is the modulation

frequency, and ϕAðCÞ is the modulation phase in the
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modulator PM A(C). We consider the resonant modula-

tion, i.e., Ω0 ¼ Ω, so each modulator couples the

nearest-neighbor resonant modes in two rings in the

first-order approximation. Ring B contains two

phase modulators, which are labeled as PM BA and PM

BC with the corresponding transmission coefficients T1

and T2:

T1ð2Þ ¼ eiκ
0 cosðΩ1ð2ÞtþϕBAðBCÞÞ ð2Þ

where κ0 is the modulation strength, Ω1;2 are the

modulation frequencies, and ϕBA and ϕBC are modulation

phases in PM BA and PM BC, respectively. We set Ω1 ¼
5Ω=4 so that the field component at the frequency ωA;m

couples with the component at ωC;mþ1. Similarly, for

Ω2 ¼ 3Ω=4, the component at ωA;mþ1 couples with the

component at ωC;m.

The pseudospin-1/2 system is realized by modulating

the resonator couplings. The field in ring A(C) is coupled

with the field in ring B through the evanescent wave. The

corresponding coupling equation is described by the

coupling matrix between input electric field amplitudes

Ea, Eb and output amplitudes E0
a and E0

b labeled in Fig. 1a:

E0
a

E0
b

� �

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� γ2
p

�iγ

�iγ
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� γ2
p

 !

Ea

Eb

� �

ð3Þ

Here, γ is the coupling strength. The coupling matrix

between ring B and ring C follows the same expression.

With the above ingredients, we can map the setting to the

diagram described in Fig. 1b, which gives our lattice

model as shown below. Here, the description of external

waveguides used for the input source and output detec-

tions in simulations are not included.

The coupling between resonant modes in rings A and C

are mediated by ring B, as illustrated in Fig. 1b. The

physics is described below. The energies of the resonant

modes Am leak into the temporary nonresonant compo-

nent (labeled as BAm) in ring B, which may decay quickly.

However, the modulations characterized in Eq. (2) in ring

B convert the energies of these components BAm to other

nonresonant components (labeled as BCm), and the latter

components are transferred to resonant modes Cm in ring

C. Hence, the couplings to the auxiliary ring B serve as an

0
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Fig. 1 Schematics of the model. a A schematic design of the ring-resonator system with phase modulators. External waveguides are used to input
(output) signal. b The diagram shows couplings between modes Am (red solid dot) and BAm (red dashed dot) at frequencies ωA;m ¼ mΩ and modes

Cm (blue solid dot) and BCm (blue dashed dot) at frequencies ωC;m ¼ mΩþΩ=4. Modulators induce nearest-neighbor couplings (solid line)
between nearby modes along the frequency axis of light; modes in different rings are coupled through the evanescent wave (dashed line). Red (blue)
solid lines denote couplings induced by modulator PM BA (BC). For the nontrivial case, ϕA ¼ ϕBC ¼ π and ϕC ¼ ϕBA ¼ 0 in modulators give
negative and positive couplings, respectively. c The effective tight-binding model of the pseudospin lattice in the nontrivial case (ϕ ¼ π). d Time
sequences of input source (tS) and modulation (tM) in simulations. tO is the turn-on/turn-off time
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intermediate process that mediates a second-order cou-

pling between resonant modes Am and Cm. This process

mimics the second-order Raman process between two

states through virtual transitions to an intermediate state

in quantum mechanics. On the other hand, the resonant

modes with frequencies ωA;m (labeled as Am) in ring A

couple between each other through the dynamic mod-

ulation characterized in Eq. (1), forming a synthetic lattice

for A itself in the frequency dimension, similar to reso-

nant modes Cm in ring C.

We now turn to the effective model of the coupled ring

system. The modulations including modulation phases

inside rings have high tunability71. We choose modulation

phases to be either 0 or π. For example, we can set ϕ �
ϕA ¼ ϕBC ¼ π, which gives the corresponding negative

coupling, or ϕC ¼ ϕBA ¼ 0, which gives the positive cor-

responding coupling. By analyzing the field changes of

each frequency component at specific positions inside

ring systems after it propagating each full circle, one can

obtain effective temporal differential coupled-mode

equations and hence obtain effective Hamiltonian under

the first-order perturbation67,73. Such Hamiltonian of the

system reads

H ¼
P

m

ω0 þ ωA;m

� �

aymam þ ω0 þ ωC;m

� �

cymcm

þ κTB cos Ωt þ ϕð Þ aymamþ1 þ a
y
mþ1am

� �h

þ cos Ωtð Þ cymcmþ1 þ c
y
mþ1cm

� �i

þ ηTB cos 5Ωt=4ð Þ aymcmþ1 þ c
y
mþ1am

� �h

þ cos 3Ωt=4þ ϕð Þ cymamþ1 þ a
y
mþ1cm

� �i

ð4Þ

where a (ay) and c (cy) are the annihilation (creation)

operators for resonant modes Am and Cm in rings A and

C, respectively, κTB ¼ κ=TR, ηTB ¼ κ0γ2=4TR for the

weakly coupling case, and ϕ can be either π or 0,

depending on what model we are going to study. TR �
2π=Ω. For the case of ϕ ¼ π, it corresponds to

the diagram shown in Fig. 1c. The Hamiltonian can

be rewritten under the rotating-wave approximation

(κ; κ0; γ � 1 and Ω≪ ω0):

Hr ¼
X

m

κTB e�iϕaymamþ1 þ eiϕa
y
mþ1am

� �

þ κTB cymcmþ1 þ c
y
mþ1cm

� �h

þ ηTB aymcmþ1 þ c
y
mþ1am

� �

þ ηTB e�iϕcymamþ1 þ eiϕa
y
mþ1cm

� �i

=2

ð5Þ

Equation (5) with ϕ ¼ π describes a topological

Hamiltonian of a one-dimensional pseudospin-1=2 lattice

model (with the modes A and C denoting the spin-up and

spin-down, respectively) along the synthetic frequency

dimension as shown in Fig. 1c32. One notes that the

Hamiltonian in Eq. (5) is only for an illustrative purpose.

In the following, we proceed to study the quench

dynamics and shall also show how the dynamical topo-

logical patterns emerge in a nontrivial way from simula-

tions using a realistic model based on the setting in

Fig. 1a.

Results analysis

Now, we show the feasibility of directly measuring the

bulk topology of the system by the quench dynamics

process. The detailed simulation procedure is summar-

ized in “Methods.” To this purpose, we first prepare the

initial state of the system by injecting a monochromic

light at the center frequency ωC;0 into the input external

waveguide C. This source field has the temporal form with

a normalized field amplitude s

EC;in
0 ¼ s tanh 0:05 t þ tS � tO=2ð Þ½ � þ tanh 0:05 �tO=2� tð Þ½ �f g

ð6Þ

where tO is the turn-on/turn-off time and tS is the pulse

temporal duration. This choice of the input source only

excites the mode Cm¼0 in ring C. No mode in ring A is

prepared at t ¼ 0. Thus, the initial excitation of the ring

system is fully polarized, giving an initial deep trivial

state30. The modulations are then turned on at t ¼ 0 in

the time sequence diagram shown in Fig. 1d with the

modulation time tM. Signals from output external

waveguides are collected for further analysis in our

simulations. The turning-on of the modulations makes

the system be characterized by the nontrivial pseudospin-

1/2 lattice model described in Fig. 1(c), and the quench

dynamics is induced with the initial state evolving under

the topological Hamiltonian of Eq. (5).

For the simulation, we set both ring A and ring C such

that each contains 81 resonant modes (m ¼
�40;�39; ¼ ; 40). The parameters designed in the ring-

resonator system in Fig. 1a are: κ ¼ 0:0025, κ0 ¼ 0:2, γ ¼
0:1, γ 0 ¼ 0:003, respectively. We also choose tS ¼ 1000TR

, tO ¼ 200TR, and tM ¼ 15; 000TR.

Signals are collected from t ¼ 0 to t ¼ tM for

all the frequency components EA;out
m ðtÞ and EC;out

m ðtÞ at

both output waveguides. Therefore, the total electric

field amplitudes of the signals, ψAðtÞ and ψCðtÞ, can be

retrieved by ψA tð Þ ¼
P

m EA;out
m ðtÞe�iωA;mt , and ψC tð Þ ¼

P

m EC;out
m ðtÞe�iωC;mt . We plot normalized ψAðtÞj j and

ψCðtÞ
	

	

	

	 under the time evolution in Fig. 2a, b, respectively,

which show nearly periodic patterns over the short time

[see the zoom-in plots in both figures]. Nevertheless, the

dynamics does not show the periodic stability over a long

time, which is an evidence for the steady-state solution of

the system65. With the collected signal, one can further

construct the spin textures σz tð Þh i ¼ ψAj j2� ψC

	

	

	

	

2
and
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σy tð Þ

 �

¼ �iψ�
A � ψCe

iΩt=4 þ iψ�
Ce

�iΩt=4 � ψA, with which

we shall show the essential prediction of this work that the

two time fundamental scales emerge in the dynamics and

the novel topological patterns are resulted (see also Sup-

plementary Note 1 for details). Time evolution of normal-

ized σzðtÞh i and σyðtÞ

 �

are plotted in Fig. 2c, d. Note that

the raw pseudospin dynamics characterized by σzðtÞh i and

σyðtÞ

 �

do not exhibit topological feature explicitly because

the BIS, which characterizes the topological feature in the

quench dynamic, is not explicitly shown in the plots in

Fig. 2c, d. However, σzðtÞh i and σyðtÞ

 �

actually contain the

complete information as presented below.

Topological quench dynamics in the synthetic frequency

dimension

A novel observation is that two fundamental time scales

emerge in the time evolution of the pseudospin polar-

ization, denoted as the slow time variable T and the fast

time variable τ, respectively. The real time reads t ¼
TTR þ τ, with TR ¼ 2π=Ω. Thus, T is the round-trip

numbers, which is a discrete nonnegative integer ðT ¼

0; 1; 2; ¼ Þ, and τ 2 0;TR½ Þ is the round-trip time, which

denotes the time within each round-trip. Note that for

the synthetic dimension along the frequency axis of light,

the round-trip time τ corresponds to the Bloch

momentum kf , i.e., the wave vector reciprocal to the

frequency65. For studies modeling a static system, the

transmission of light versus τ at the periodicity TR can

give the steady-state band structure of the synthetic lat-

tice along the frequency axis of light57,65. However, in our

present study, the topological quench dynamics is

extracted from the two emergent time scales in the time

dimension, of which τ mimics the Bloch momentum and

T denotes the residue time evolution of the state.

Therefore, at each T , an individual band structure versus

τ (kf ) can be retrieved, and then by varying T , the evo-

lution of the band structure can be re-built, which leads

to the dynamical pattern by using the field information

only on t.

We therefore represent results σzðtÞh i and σyðtÞ

 �

by

defining σzðT ; τÞh i and σyðT ; τÞ

 �

, which give the quench

dynamics at the Bloch momenta kf ¼ τ evolving over the

discrete residue time T . The dynamical classification
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Fig. 2 The electric field amplitudes and spin texture from simulations. a, b The normalized electric field amplitudes ψAj j and ψCj j versus discrete
time collected from the output waveguides. One hundred and sixty data points are collected in one round-trip (TR). c, d The time evolution of

normalized spin textures ( σzh i and σy

 �

). Right panels are the corresponding zoom-in plots, where data points are connected with lines, showing

that ψAj j, ψCj j, σzh i, and σy

 �

are evolving continuously along the time dimension
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theory30 states that the quench dynamics exhibit non-

trivial topology captured by the time-averaged spin tex-

ture in momentum space. Unlike the previous theory,

here we define the averaged spin polarization σzðT ; τÞh i
and σyðT ; τÞ


 �

over the residue time T , given by

hσy;zðT ; τÞi ¼
1

T þ 1

X

T

T 0¼0

hσy;zðT
0; τÞi ð7Þ

We show hσy;zðT ; τÞi and the overall spin polarization

hσy;zðτÞi � limT!1 hσy;zðT ; τÞi in Fig. 3a, b. The plots

exhibit nontrivial dynamical pattern characterized via the

two time scales τ and T . Firstly, the overall averaged

polarizations vanish hσy;zðτÞi ¼ 0 at two special points

with τ1 ¼ 0:25TR and τ2 ¼ 0:75TR. Such two character-

istic points are known as band inversion points in the 1D

Brillouin zone30. Secondly, we define a new dynamical

spin texture in the following way:

~gðτÞ ¼
ð1=NÞ∂τh~σðτÞi; τ ¼ τ1;2

ðs=NÞh~σðτÞi; other τ points

(

ð8Þ

where N is the normalization factor, the derivative

direction is chosen from the area in-between the two band

inversion points to that out of them if τ is at band inversion

points, and s =−1 (þ1) if τ is in the region in-between (out

of) the two band inversion points for other τ points. One

finds that at the two band inversion points gz τ1;2
� �

¼ 0,

while gy τ1ð Þ ¼ �gy τ2ð Þ ¼ �1 points in opposite directions

[see Fig. 3b], giving a nonzero dynamical topological

number, i.e., the zeroth Chern number C0 ¼ ½gy τ2ð Þ �
gy τ1ð Þ�=2 being a 0D invariant defined via the two band

inversion points30 and equal to the 1D bulk topology of the

post-quench Hamiltonian of the synthetic lattice con-

structed in Fig. 1c. This manifests the emergent dynamical

correspondence between the 1D bulk topology of the

a
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point to values of gyðτ1;2Þ
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equilibrium phase and 0D dynamical topology emerging in

band inversion points. As a comparison, we consider the

same system with the modulation phase ϕ ¼ 0, and show

the numerical results in Fig. 3c, d. The emergent dynamical

field~gðτÞ exhibits no topological feature. In particular,~gðτÞ
is same at the two band inversion points [Fig. 3d],

corresponding to the trivial case.

The above results of quench dynamics can be under-

stood from the tight-binding model given in Eq. (5), which

further takes the form in the momentum k-space

Hk ¼ κTB a
y
kake

ikde�iϕ þ a
y
kake

�ikdeiϕ þ c
y
kcke

ikd þ c
y
kcke

�ikd
� �

=2

þ ηTB a
y
kcke

ikd þ a
y
kcke

�ikdeiϕ þ c
y
kake

�ikd þ c
y
kake

ikde�iϕ
� �

=2

ð9Þ

with d the lattice constant. For ϕ ¼ π, the above

Hamiltonian gives a 1D topological phase known as

AIII class insulator and is characterized by a 1D

winding number21,74 (see also details in Supplementary

Note 2). The dynamical topological number defined

through ~gðτ1;2Þ in quench dynamics precisely corre-

sponds to the 1D winding number of the above Bloch

Hamiltonian. On the other hand, for ϕ ¼ 0 the above

Hamiltonian gives a 1D gapless spin–orbit coupled

band with trivial topology (see comparison with

calculations based on the tight-binding model in

Supplementary Note 2).

We emphasize the highly nontrivial features of the

topological quench dynamics, which provide the holo-

graphic characterization of the topological phase rea-

lized in the ring-resonator system, namely, the quench

dynamics solely in the time dimension carries the

complete information. The single variable, i.e., the time

t, automatically splits into two fundamental time scales,

mimicking the Bloch momenta τ of the topological

band and the residue time evolution T after quench,

respectively, with which the bulk topology of the system

is completely determined (Supplementary Movies 1).

Specifically, the pseudospin dynamics averaged over the

time scale T manifest BIS structure depicted via τ. The

derivative of the T-averaged spin dynamics with respect

to τ across BIS points determines the bulk topology

through the bulk-surface duality. This result is in sharp

contrast to the previous characterization of equilibrium

topological phases through the nonequilibrium topo-

logical invariants30–36, which necessitates the informa-

tion in both the time dimension and momentum space.

On the other hand, this prediction also shows the

novelty of classifying topological theory by the none-

quilibrium dynamics, whose raw features are quite

complicated and depend on system details (Fig. 2), but

are actually classified by the underlying universal

topological patterns (Fig. 3) through the characteriza-

tion scheme given above (see Supplementary Movies 1).

Topological quench dynamics with disorders in the phase

modulator

Next, we consider the perturbation of topological

quench dynamics from disorders in phase modulators.

Such disorders in the phase modulation can be reflected

in modulation strengths, κ and κ0. We consider that κ and

κ0 undergo a random perturbation continuously, which is

varying over time and can be described by κ tð Þ ¼ κ0 � f ðtÞ,
κ0 tð Þ ¼ κ00 � f ðtÞ, where κ0 ¼ 0:0025 and κ00 ¼ 0:2. Here

f tð Þ ¼ 1þ δ � rðtÞ is the disorder function, where rðtÞ is a
time-varying random function with a range ½�0:5; 0:5�
and δ represents the disorder intensity.

Simulations are performed with parameters for Fig. 3a,

b and δ ¼ 10% and 50%, respectively, and results of

σy T ; τð Þ

 �

together with hσyðτÞi and gyðτÞ are plotted in

Fig. 4, with the corresponding f ðtÞ. Compared to the

dynamical pattern in Fig. 3(b), evolutions of σy T ; τð Þ

 �

with different disorder δ show relatively similar profiles.

The averaged spin-polarization pattern and the nontrivial

dynamical spin texture preserve when phase modulators

include temporal disorders. This result can be understood

since the temporal disorder in κ and κ0 does not break the

symmetry feature in the Hamiltonian in Eq. (9), and hence

the bulk topology of the Hamiltonian preserves.

Topological quench dynamics with disorders in the input

source

In the simulation for Fig. 3a, b, we prepare the initial state

of the system by injecting a monochromic light at the center

frequency ωC;0. Here, we consider the injected light has a

disorder in both intensities and phases for all frequency

modes. Such disorder in the input source can be described by

EC;in
0 ¼ ð1� δ � RÞ � s � ftanh½0:05ðt þ tS � tO=2Þ� þ tanh½0:05ð�tO=2� tÞ�g

EC;in
m≠0 ¼ δ � R � ei2πR; 0 	 t 	 tS

(

ð10Þ
where δ is the disorder intensity and R gives a random

number in the range ½�0:5; 0:5�.
We perform simulations with the same parameters for

Fig. 3a, b, and the input source in Eq. (10) with δ ¼ 5%

and 10%, respectively. The corresponding evolutions of

σy T ; τð Þ

 �

together with hσyðτÞi and gyðτÞ are plotted in

Fig. 5. Although the disorder in the input source affects

more largely the topological quench dynamics for the

case with larger δ, the overall spin polarization in

hσyðτÞi as well as the nontrivial dynamical spin texture

gyðτÞ still capture the topological feature of the studied

system.

Experimental feasibility

The quench dynamics is induced by initializing a

deep trivial phase for the topological Hamiltonian,

which in principle has high experimental feasibility in

comparison with the currently achieved band structure
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measurement for the resonator ring systems65,66. In the

present study, we do not need to prepare the initial

system to be in the eigenstates of the Hamiltonian, nor

to scan the frequency to match the band energies,

which are, however, required and were the major

challenges for the conventional band mapping techni-

ques. This essential difference makes the present

quench study be of high feasibility.
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Fig. 4 The time evolution of the normalized spin textures with disorders in the phase modulator. The evolution of averaged spin polarization

hσyðT ; τÞi, the overall spin polarization hσyðτÞi, the dynamical spin texture gyðτÞ, respectively, with parameters for Fig. 3a, b and disorder function

f ðtÞ in κðtÞ and κ′ðtÞ with δ ¼ 10% (a) and 50% (b), respectively. Black arrows point to values of gyðτ1;2Þ
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Further, the proposed ring-resonator system can be

achieved in both fiber-based platforms57,65,66 and on-

chip lithium niobate photonic designs75,76, where the

parameters in the system can be realized in experi-

ments. In both systems, the conversion efficiency of the

electro-optic modulators can reach up to 
2%76–79,

which is sufficient for the proposed system here. The

quality factor for the ring is potentially possible at the

order of 
107 � 108 with an amplifier for compensa-

tion in fiber rings57,65 or the state-of-art integrated

lithium niobate technology80. The frequency shift in

rings A and C is feasible by slightly changing the length

of one ring given the case that we consider frequency

components in the optical regime and modulations at

the order of MHz to GHz. In both experimental plat-

forms, light is injected through the coupling waveguide

into rings, and signals are collected from two drop-off

ports. With the interference of fields from two output

waveguides [see

Fig. 1a], the spin textures are then collected for

obtaining dynamical spin texture through further

digital data analysis. Therefore, our proposal provides

an experimental feasible platform for measuring the

quench dynamics and the topological invariants

directly from the temporal optical signal in a ring

resonator, which can lead to significant simplification

for performing dynamical characterization of topolo-

gical quantum phases in different synthetic models.

Discussions

In summary, we have proposed the topological holo-

graphic quench dynamics by investigating the far-from-

equilibrium topological physics in a 1D spinful lattice model

synthesized in the frequency dimension of ring resonators.

In particular, we showed that the quench dynamics in time

dimensions is novelly characterized with two emergent

fundamental time scales, with one mimicking the Bloch

momentum of the lattice and the other characterizing the

residue time evolution. From this characterization, the

quench dynamics carry the complete topological informa-

tion and exhibit universal dynamical topological patterns

that correspond to the equilibrium topological phase of the

spin model. The topological quench dynamics is robust

against disorders and of high feasibility in experimental

realization. We note that the approach proposed in this

work is generic, and the study can be readily extended to

topological phases in synthetic high-dimensions, e.g., to the

2D Haldane model71. In that case, we expect that the mul-

tiple fundamental time scales would emerge in the holo-

graphic quench dynamics, with some mimicking the high-

dimensional Bloch momenta and the remaining character-

izing the residue time evolution, for which the complex

quench dynamics can be classified by the exotic dynamical

topology and has a profound connection to the bulk

topology of the post-quench Hamiltonian through the

dynamical bulk-surface duality. This work showed a unique

way to study the holographic far-from-equilibrium dynam-

ics, with the rich and complex topological physics being

encoded in only the single variable, i.e., the time evolution,

and shall provide the insight into the exploration of the

high-dimensional topological phases with quench dynamics

in the synthetic photonic crystals.

Materials and methods

Simulation method

We perform simulations using the realistic model based

on the setting in Fig. 1a. The simulation has been used to

successfully describe the dynamics of the ring-based sys-

tem in the synthetic space and is discussed in detail in

refs. 52,67,71. Here, we briefly summarize the procedure.

The electric field inside the waveguide is81

E t; r?; xð Þ ¼
X

m

Em t; xð ÞEm r?ð Þeiω
0
mt

ð11Þ

where x is the propagation direction along the waveguide

that composes the ring resonator, r? is the perpendicular

directions of x, ω0
m is either ωA;m or ωC;m, Emðr?Þ is the

modal profile for the ring A or C as well as the auxiliary

ring B, and Emðt; xÞ is the associated modal amplitude in

different rings. Under the slowly varying envelope

approximation, Eq. (11) satisfies the wave equation:

∂

∂x
þ iβ ω0

m

� �

� 

Em þ
ng

c

∂

∂t
Em ¼ 0 ð12Þ

where β is the wavevector. The ring has the periodic

boundary condition Em t; xþ Lð Þ ¼ Emðt; xÞ for rings A

and C, and Em t; xþ 4Lð Þ ¼ Emðt; xÞ for ring B.

When the light passes through the phase modulation

inside the waveguide, the field undergoes dynamic mod-

ulation and modal amplitudes obey82:

EAðCÞ
m tþ; x

aðcÞ
0

� �

¼ J0 κð ÞEAðCÞ
m t�; x

aðcÞ
0

� �

þ J1 κð ÞE
AðCÞ
m�1 t�; x

aðcÞ
0

� �

eiϕAðCÞ

� J1 κð ÞE
AðCÞ
mþ1 t�; x

aðcÞ
0

� �

e�iϕAðCÞ

ð13Þ

where t ± ¼ t þ 0± , x
aðcÞ
0 represents the position of the

modulator in the ring A or C in Fig. 1a, and J0 and J1 are

the zeroth- and first-order Bessel functions, respectively.

Here we take the first-order approximation and only

consider the nearest-neighbor couplings, which turns out

to be fine in this model and also in other works for weak

modulations52,67,71. Similarly, dynamic modulations on

both PM BA and PM BC at positions xba0 and xbc0 ,
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respectively, are described by the following equations:

EBA BCð Þ
m tþ; x

ba bcð Þ
0

� �

¼ J0 κ0ð ÞEBA BCð Þ
m t�; x

ba bcð Þ
0

� �

� J1 κ0ð ÞE
BC BAð Þ
mþ1 t�; x

ba bcð Þ
0

� �

e�iϕBA BCð Þ

EBA BCð Þ
m tþ; x

bc bað Þ
0

� �

¼ J0 κ0ð ÞEBA BCð Þ
m t�; x

bc bað Þ
0

� �

þ J1 κ0ð ÞE
BC BAð Þ
m�1 t�; x

bc bað Þ
0

� �

eiϕBC BAð Þ

ð14Þ

We keep only the field components that have fre-

quencies resonant in either ring A or C, but omit com-

ponents that are nonresonant in all three rings because

the energies of these nonresonant modes diminish quickly

after circulating several roundtrips inside the ring. Equa-

tion (13) and (14) reflect transmission coefficients in Eqs.

(1) and (2), respectively, i.e., E tþ; r?; x0ð Þ ¼ TE t�; r?; x0ð Þ.
The coupling in Eq. (3) between fields in rings A and B

through the evanescent wave at corresponding positions

in Fig. 1a can be described by:

EA BAð Þ
m tþ; x

a bað Þ
1

� �

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� γ2
p

EA BAð Þ
m t�; x

a bað Þ
1

� �

� iγEBA Að Þ
m t�; x

ba að Þ
1

� �

ð15Þ

The coupling between fields in rings C and B is similarly

described.

In simulations, the four external waveguides coupling

rings A and C, as shown in Fig. 1a, are applied to input the

source fields (which can also be decomposed to the fre-

quency component EA;in
m and EC;in

m ) and detect the output

signal (EA;out
m and EC;out

m ). The input/output coupling

between the waveguide and the ring is also described by

the similar Eq. (15) with the coupling strength γ 071.
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