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Abstract— The paper deals with the problem of identifying
the topological structure of a network of dynamical systems.
The dependencies among the measured signals are assumed
linear and the approach is non causal, that is data are assumed
to be analized off-line. A distance function is defined in order
to evaluate the “closeness” of two processes and a few useful
mathematical properties are derived. Theoretical results to
guarantee the correctness of the identification procedure are
provided as well.

I. INTRODUCTION

In the recent years, under the influence of improved
numerical tools, a significant interest for complex systems
has been shown in many scientific fields. In particular,
attention has been focused on networks, highlighting the
emergence of complicated phenomena resulting from the
connection of simple models. To this regard, a relevant
impulse has been provided by the advances in neural
networks theory, that has contributed to underline the
importance of connectivity and link topology in the
realization of complex dynamics [1]. As a consequence,
graph theory [2] has been succesfully exploited to perform
novel modeling approaches in several fields, such as
Economy (see e.g. [3], [4], [5]), Biology (see e.g. [6],
[7]) and Ecology (see e.g. [8], [9], [10]), especially when
the investigated phenomena were characterized by spatial
distribution.
In this paper, we will focus our attention on tree topology
networks. Though its reduced complexity with respect to
cyclic link structures, the tree connection model turns out
to be particularly suitable to represent a large variety of
processes. In particular, the tree network scheme results
effective in the description of systems with transportation,
such as water and power supply, air and rail trafic, vascular
systems of living organisms and channel and drainage
networks (see e.g. [11], [9], [12], [13], [14]). It is worth
to highlight that this kind of models is deeply related to
the idea of delay, that characterizes the connections as
transportation media. Moreover, it is important to recall that
in linear dynamical system theory the transfer function is
a powerful representation tool for delayed processes [15],
[16].
In this manuscript we will develope a rigorous mathametical
method to exactly identify the connections scheme of
a tree topology network of linear dynamical systems,
providing a theoretical background for linear network

modeling. In particular, in Section II we will introduce
definitions and preliminary results, which are useful to
characterize the mathematical framework. In Section III
the main results about topology reconstruction will be
presented and a method for the exact connection scheme
identification will be reported as well. In Section IV
a practical implementation of the proposed techinque
will be illustrated by means of some numerical examples.
Some final conclusions in Section V will end the manuscript.

Notation:
E[·]: mean operator;
RXY (τ) .= E[X(t)Y (t + τ)]: cross-covariance function of
stationary processes;
RX(τ) .= RXX(τ): autocovariance;
ρXY

.= RXY√
RXRY

: correlation index;
Z(·): Zeta-transform of a signal;
ΦXY (z) .= Z(RXY (τ)): cross-power spectral density;
ΦX(z) .= ΦXX(z): power spectral density;
with abuse of notation, ΦX(ω) = ΦX(eiω);
d·e and b·c: ceiling and floor function respectively;
(·)∗: complex conjugate.

II. PROBLEM SET UP

Let us consider a network of n time-discrete SISO lin-
ear dynamical systems affected by additive noises. Then,
let Hj(z) be the transfer function of the j-th system,
{Xj(k)}k∈Z and {Uj(k)}k∈Z respectively its output and in-
put signals and {%j(k)}k∈Z a zero-mean wide-sense station-
ary noise. Hence, each system can be represented according
to the model:

Xj(k) = Hj(z)Uj(k) + %j(k) ∀j = 1, . . . , n . (1)

We stress that no assumptions on the causality of Hj(z) have
been done. Moreover, it holds that:

E[%j%i] = 0 ∀j 6= i . (2)

Then, let us suppose that the systems of the network are
connected to form a tree topology, so that the input signal
Ui of each node results the output of another process and
the presence of cycles is prevented.
In this paper we will formally address this kind of network
according to the following definition.
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Definition 1: Consider the ensemble of a rooted tree
topology of n nodes Nj and a corresponding set of n linear
time-discrete SISO systems affected by noise, described
according to the model (1). Namely, assume Ni as the root
node. Moreover, let {%j}j=1,...,n be zero-mean wide-sense
stationary random processes satisfying (2), i.e. mutually
not correlated zero-mean noises. Then, we define Linear
Cascade Model Tree (LCMT) a dynamical network defined
by the equation system X1 = H1(z)Xπ(1) + %1

. . .
Xn = Hn(z)Xπ(n) + %n ,

(3)

where Hi(z) ≡ 0 and π : I .= {1, . . . , n} → I is such that
the map πk has the unique fixed point i ∀k ∈ N.

Definition 2: A LCMT is well-posed if Φ%j (ω) > 0 for
all %j , and for all ω

Assuming to have a complete knowledge of each stochas-
tic process {Xi}i=1,...,n, we are interested in the identifica-
tion of the links, which describe the tree characterizing the
network topology.
To this aim, let us recall some preliminary mathematical
results, which will turn out to be useful in the following
developments.

Let us consider two stochastic processes Xi, Xj and let
Wji(z) be a time-discrete SISO transfer function. Hence,
consider the quadratic cost

E
[
(εQ)2

]
(4)

where

εQ
.= Q(z)(Xj −Wji(z)Xi)

and Q(z) is an arbitrary stable and causally invertible time-
discrete transfer function weighting the error

eji
.= Xj −Wji(z)Xi .

Then, the computation of the transfer function Ŵ (z) that
minimizes the quadratic cost (4) is a well-known problem
in scientific literature and its solution is referred to as the
Wiener filter [16].

Proposition 3 (Wiener filter): The Wiener filter modeling
Xj by Xi is the linear stable filter Ŵji minimizing the
filtered quantity (4). Its expression is given by

Ŵji(z) =
ΦXiXj (z)
ΦXi(z)

(5)

and it does not depend upon Q(z). Moreover, the minimized
cost is equal to

minE
[
ε2
Q

]
=

=
1

2π

∫ π

−π
|Q(ω)|2

(
ΦXj (ω)− |ΦXjXi(ω)|2Φ−1

Xi
(ω)
)
dω .

Moreover, the corresponding error

êji
.= Xj − Ŵji(z)Xi

is uncorrelated to Xi, i.e.

E[êjiXi] = 0 . (6)
Proof: See, for example, [16].

Since the weighting function Q(z) does not affect the
Wiener filter, but only the energy of the filtered error, we
can choose Q(z) equal to Fj(z), the inverse of the spectral
factor of ΦXj (z), that is

ΦXj (z) = F−1
j (z)(F−1

j (z))∗ . (7)

In particular, it is worth to recall that Fj(z) is stable and
causally invertible [17]. Therefore, the minimum of cost (4)
assumes the value

minE[ε2
Fj ] =

1
2π

∫ π

−π

(
1−

|ΦXjXi(ω)|2

ΦXi(ω)ΦXj (ω)

)
dω . (8)

Observe that, due to such choice of Q(z), the cost turns out
to explicitly depend on the coherence function of the two
processes:

CXiXj (ω) .=
|ΦXjXi(ω)|2

ΦXi(ω)ΦXj (ω)
. (9)

Let us underline that the coherence function is not negative
and symmetric with respect to ω. Moreover, it is also well-
known that the cross-spectral density satisfies the Schwartz
inequality and, thus, the coherence function results limited
between 0 and 1. Therefore, according to the previous results,
the cost (8) turns out to be adimensional and not depending
on the energy of the stochastic processes Xi and Xj .

The following result holds.
Proposition 4: The binary function

d(Xi, Xj)
.=
[

1
2π

∫ π

−π

(
1− CXiXj (ω)

)
dω

]1/2

(10)

is a metric.
Proof: The only non trivial property to prove is the

triangle inequality. Let Ŵji(z) be the Wiener filter between
Xi, Xj computed according to (5) and eji the relative error.
The following relations hold:

X3 = Ŵ31(z)X1 + e31

X3 = Ŵ32(z)X2 + e32

X2 = Ŵ21(z)X1 + e21.

Since Ŵ31(z) is the Wiener filter between the two processes
X1 and X3, it performs better at any frequency than any
other linear filter, such as Ŵ32(z)Ŵ21(z). So we have

Φe31(ω) ≤ Φe32(ω) + |Ŵ32(ω)|2Φe21(ω)+

+ Φe32e21(ω)Ŵ ∗32(ω) + Ŵ32(ω)Φe21e32(ω) ≤
≤ (
√

Φe32(ω) + |Ŵ32(ω)|
√

Φe21(ω))2 ∀ ω ∈ R.
For the sake of simplicity we neglect to explicitly write
the argument ω in the following passages. Normalizing with
respect to ΦX3 , we find

Φe31
ΦX3

≤ 1
ΦX3

(
√

Φe32 + |Ŵ32|
√

Φe21)2

and considering the 2-norm properties(∫ π

−π

Φe31
ΦX3

dω

) 1
2

≤

≤
(∫ π

−π

Φe32
ΦX3

dω

) 1
2

+
(∫ π

−π

|ΦX3X2 |2

ΦX3ΦX2

Φe21
ΦX2

dω

) 1
2
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where we have substituted the expression of Ŵ32. Finally,
considering that

0 ≤ |ΦX3X2 |2

ΦX3ΦX2

≤ 1,

we find

d(X1, X3) ≤ d(X1, X2) + d(X2, X3).

III. MAIN RESULT

In this section we show the main theoretical contributions
of the paper. In particular the aim is to provide sufficient
conditions to guarantee the exact reconstruction of the net-
work topology. We first need to introduce a few definitions
and technical lemmas.

Definition 5: We define “path” from Ni to Nj a finite
sequence of l > 0 nodes Nπ1 , ..., Nπl such that
• Nπ1 = Ni
• Nπl = Nj
• Nπi and Nπi+1 are linked by an arc of the tree for
i = 1, ..., l − 1

• Nπi 6= Nπj for i 6= j.
The topology we are considering is given by a rooted tree
(that is the pair made of a tree and one of its nodes Nr,
named as “root”). Since a tree is a connected graph there
is always a path between two nodes and, since the are no
cycles, such a path is also unique.
The presence of a special node labeled as “root” induces a
natural relation of “order” among the nodes in the following
way

Definition 6: Given a rooted tree, consider the path from
Nr to another node Nj . A node Ni is said to be an ancestor
of Nj if Ni 6= Nj and if it belongs to the path from Nr to
Nj . Alternatively, we say that Nj is a descendant of Ni.
We also say that Ni is a parent of Nj (or that Nj is a child
of Ni) if, in addition, Nj and Ni are connected by an arc.
It is straightforward to prove that the root is an ancestor to all
the other nodes and that every node but the root has exactly
one parent. A useful result is the following, showing that,
in an LMCT, if Nj is a descendant of Ni the signal Xi is
uncorrelated with the noise %j

Lemma 7: Given a LMCT T , consider a node Nj and a
node Ni 6= Nj which is not a descendant of Nj . Then it
holds that E[%jXi] = 0.

Proof: Let Nr be the root of T and Nπ1 , ..., Nπl the
path from Nr to Ni. Exploiting the linear dependencies
among the signals of the LMCT, Xi can be espressed in
terms of the noises %π1 , ..., %πl

Xi =
l∑

q=1

Wiπq%πq (11)

where

Wiπq =
l−1∏
h=q

Hπh . (12)

Since Ni is not a descendant of Nj and Ni 6= Nj , we have
that %πq 6= %j for q = 1, ..., l, thus

E[%jXi] = E

[
%j

l∑
q=1

Wiπq%πq

]
= 0 (13)

The two following lemmas provide two important inequal-
ities about the coherence functions related to the network
signals.

Lemma 8: Consider a LCMT T and three nodes Ni, Nj
and Nk such that
• Nk is a descendant of Nj
• Ni is not a descendant of Nj and Ni 6= Nj

Then we have that CXiXj ≥ CXiXk . Moreover, if T is well-
posed then the inequality is strict.

Proof: Consider the path from Nj to Nk described by
the sequence Nπ1 , ..., Nπl . Exploiting the linear relations (1
), the process Xk can be expressed in terms of Xj and of
the noises acting on the nodes Nπ2 , ..., Nπl which are all
descendants of Nj .

Xk = Wkπ1Xj +
l∑

q=2

Wkπq%πq (14)

where Wiπq is defined as in (12). Now, we intend to evaluate
the coherence between Xi and Xj . From the assumption on
Ni, it follows that Ni is not on the path from Nj to Nk. In
other words, Ni is not a descendant of Nπq and Ni 6= Nπq
for q = 1, ..., l. We can write

CXiXk =
|ΦXiXk |2

ΦXiΦXk
= (15)

=
|Wkπ1 |2|ΦXiXj |2

ΦXi [ΦXj |Wkπ1 |2 +
∑l
q=2 |Wkπq |2Φ%πq ]

(16)

where the last equality holds because of lemma 7 . Collecting
the factor ΦXj |Wkπ1 |2, we obtain

CXiXk =
|ΦXiXj |2

ΦXiΦXj

[
1 +

Pl
q=2 |Wkπq |2Φ%πq
ΦXj |Wkπ1 |2

] ≤ CXiXj
(17)

where the inequality is strict if
∑l
q=2 |Wkπq |2Φ%πq > 0.

Lemma 9: Consider a LCMT T and three different nodes
Ni, Nj and Nk such that
• Nk is a child of Nj
• Ni 6= Nj , Nk and it is not a descendant of Nk

Then CXjXk ≥ CXiXk . Moreover, if T is well-posed the
inequality is strict.

Proof: Assume that Xk = HkjXj + %k and let us
distinguish two possible scenarios.
Case A. First, consider the case where Nj is a descendant
of Ni. Consider the path from Ni to Nj described by the
sequence of l nodes Nπ1 , ..., Nπl where Nπ1 = Ni and
Nπl = Nj . The process Xj can be expressed in terms of
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Xi and of the noises acting on the nodes Nπ2 , ..., Nπl which
are all descendants of Ni.

Xj = Wjπ1Xi +
l∑

q=2

Wjπq%πq . (18)

Exploiting Lemma 7 we can evaluate the following quantities

CXiXk =
|ΦXiXk |2

ΦXiΦXk
=
|Wjπ1 |2|Hkj |2|ΦXi |2

ΦXiΦXk
=

=
|Wjπ1 |2|Hkj |2ΦXi

ΦXk
(19)

and

CXjXk =
|ΦXjXk |2

ΦXjΦXk
=
|Hkj |2|ΦXj |2

ΦXjΦXk
=

=
|Hkj |2

ΦXk

[
ΦXi |Wjπ1 |2 +

l∑
q=2

|Wjπq |2Φ%πq

]
.

(20)

By inspection we have the assertion.
Case B. Now we are left to consider the case where Nj is
not a descendant of Ni. Then, also Nk is not a descendant
of Ni. By hypothesis, Ni is not a descendant of Nk, either.
Thus, they must have a common ancestor Nd, such that the
two paths from Nd to Nk and from Nd to Ni have only Nd
in common. Consider the path from Nd to Ni, such that it
is possible to write

Xi = Wiπ1Xd +
l∑

q=2

Wiπq%πq . (21)

Exploiting Lemma 7, we have

CXiXk =
|ΦXiXk |2

ΦXiΦXk
= (22)

=
|ΦXkXd |2

ΦXk
[
ΦXd+

∑l
q=2 |Wjπq |2Φ%πq

] ≤ (23)

≤ CXkXd (24)

If Nd = Nj , we have the assertion. If Nd 6= Nj , then Nj
must be a descendant of Nd. We are in a situation equivalent
to case A: there is a node Nd such that Nj is one of its
descendants. As a consequence, we can state that

CXkXd ≤ CXkXj . (25)

Combining the last two inequalities, we conclude that the
lemma holds also in this case.
All the previous lemmas are functional to the show that the
coherence distance (10) is minimal between two contiguous
nodes, as summarized in this theorem.

Theorem 10: Given a LCMT T , consider a node Na and
a node Nb 6= Na which is not directly linked to it. Then
there exists a node Nc directly linked to Na such that

d(Na, Nc) ≤ d(Na, Nb) (26)

where the inequality is strict if T is well-posed.
Proof: First, consider the case where Nb is a descendant

of Na. Name Nc the child of Na on the path linking it to

Nb. Since Nc is directly linked to Na, we have Nb 6= Nc.
Moreover Nb is a descendant of Nc. We are allowed to apply
Lemma 8 with Ni = Na, Nj = Nc and Nk = Nb to have
the assertion.
Now, consider the case where Nb is not a descendant of Na.
Na can not be the root, otherwise Nb would be one of its
descendants. Thus Na has a parent and let us name it Nc.
Nb can not be Nc because it is not directly linked to Na.
Applying Lemma 9 with Ni = Nb, Nj = Nc and Nk = Na
and by the definition of the coherence distance (10), we have
the assertion.

When we are performing our observations during a time
horizon t which approaches infinity the estimates of the
spectral and cross-spectral densities converge to the actual
values. Hence, for t “sufficiently large” such quantities can
be assumed “exact”. Since we are dealing with stochastic
processes such a working hypothesis is necessary and quite
reasonable.
We are ready to show the main contribution of the paper

Theorem 11: Consider a well-posed LCMT T and assume
to observe the signals Xj during a time horizon t. Com-
pute an estimate of the coherence based distances dij =
d(Xi, Xj) among the nodes Nj and evaluate the relative
Minimum Spanning Tree (MST). When t approaches infinity,
the corresponding topology is equivalent to the unique MST
T associated to the coherence metric.

Proof: The proof consists in showing that the MST T
associated to the distance (10) is unique and corresponds to
the LCMT topology. We will prove this result by induction
on the number n of nodes of the LCMT.
The basic induction step consists in observing that theorem
is true for n = 2.
Now assume the theorem true for a LCMT with n nodes.
Given a LCMT T with n + 1 nodes, remove one of its
“leaves”. By leaf we mean a non-root node with no descen-
dants. This operation is always possible since any rooted tree
with at least two nodes has at least one leaf. Without loss of
generality, let the removed leaf be Nn+1 and let Ni be its
parent. Now we have a LCMT T ′ with n nodes and with the
same topology of T apart from the removed arc (i, n + 1).
Using the induction hypothesis, we know that the topology
of T ′ is given by the unique MST T ′ obtained considering
the distances among the nodes N1, ..., Nn. Now compute

i∗ = arg min
j<N+1

d(Xi, Xn+1). (27)

The solution of such a minimization problem is unique since
the LCMT T is well posed. Because of Theorem 10, the arc
(i∗, N + 1) belongs to the topology of T , so we conclude
i∗ = i. Let T be the spanning tree obtained by adding the arc
(i,N+1) to T ′. So far, we have shown that T represents the
topology of T . We have to prove that T is the unique MST
related to the distance (10) among the nodes N1, ..., Nn+1.
Suppose, by contradiction, that there is a minimum spanning
tree T̄ 6= T with weight lesser or equal than the weight of
T . The only arc of T̄ incident to the node Nn+1 is (i, n+1).
If there were another arc (k, n + 1) in T̄ we could replace
it with the arc (k, i) obtaining a spanning tree with inferior
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cost. Indeed, by Lemma 9, we would have

d(Xk, Xi) < d(Xn+1, Xi). (28)

So, if T̄ is a minimum spanning tree, then Xn+1 can be
connected only to Xi. Let T̄ ′ be the tree obtained by T̄
removing the arc (i, n + 1). T̄ ′ is the minimum spanning
tree for the nodes N1, ..., Nn since it has been obtained from
T̄ removing the node Nn+1 which has a single connection.
However, by the induction hypothesis, there is a unique MST
T ′ among the nodes N1, ..., Nn. Thus we have that T̄ ′ = T ′.
It immediately follows the contradiction that T̄ = T .
So far, we have assumed that the dynamics of the network is
described by a rooted tree. Moreover, the previous theorem
proves that the topology structure can be correctly identified
evaluating the MST according to the distance (10). However,
no information is recovered about the root node. The follow-
ing result shows that such an information is not necessary.
Indeed, from a modeling point of view, the choice of the
root can be arbitrary (as far as we are considering non-causal
transfer functions linking the processes Xj).

Theorem 12: Given a LCMT T whose root is the node
Nj and given one of its children Ni, it is possible to define
another LCMT T ∗ with the same tree structure and described
by the same processes Xk, k = 1, ..., n, such that its root is
Ni.

Proof: Consider the Wiener Filter Wji modeling the
signal Xj , seen as the output, when Xi is the input

Xj = WjiXi + eji. (29)

Now, consider a rooted tree with the same topology of T
but with Ni as the root. Define H∗k = Hk and %∗k = %k for
all k 6= i, j. Conversely, define

H∗j = Wji %∗j = eji (30)
%∗i = Xi. (31)

To show that the new dynamical network with Ni as root
and described by the filters H∗k is an LCMT, we need to
prove that, for h 6= k,

E[%∗h%
∗
k] = 0. (32)

There are three possible scenarios.
If h = i and k = j or h = j and k = i, then

E[%∗h%
∗
k] = 0. (33)

because of the Wiener Filter properties.
If h = i, j and k 6= i, j (or equivalently h 6= i, j and k =
i, j), then lemma 7 can be applied.
If h 6= i, j and k 6= i, j, then

E[%∗h%
∗
k] = E[%h%k] (34)

and we have the assert because %h and %k are two noise
signals of the original LCMT T .
It is straightforward to show that, starting from an LCMT T ,
we can arbitrary define a LCMT T ∗ having an arbitrary node
as root. Indeed it is sufficient to iteratively apply theorem 12
along the path starting from the original root to the new one.

1

2

3

4

5

6
7

8

9

10

Fig. 1. The figure illustrates the topology of the 10 nodes network analyzed
in the numerical examples paragraph. Each node is responsable for a process
Xj , while the arcs describe the connections among them, according to the
linear SISO model (??). For the data generation we have considered only
transfer functions of at most the second order. The noises %j have been
assumed to provide half the power of the affected processes. The samples
have been collected over 1000 time steps.

IV. NUMERICAL EXAMPLES

In this section we introduce a suitable framework to
illustrate the application of the previous theoretical results to
numerical analysis. It is worth to observe that the previous
results have been developed for the most general class of
linear models. Indeed, no assumptions have been done on
the order and causalty property of the considered transfer
functons.
Moreover, let us hiligth that the coherence based analysis
must be realized “off-line”, since the processes have to be
evaluated over their entire time span. Thus, because the
coherence function can be numerically computed only over
limited intervals, in the following examples we will consider
sufficently long time spans to reduce the numerical error.

Hence, let us build the original dynamical networks ac-
cording the following rules:
• each system is described according to the model (1);
• each transfer function Hj is randomly generated and

such that it is causal and at most of the second order;
• the tree topology is randomly chosen;
• the noises %j are numerically generated with a pseudo-

random algorithm;
• the noise-to-signal ratio of each system is equal to one.

Then, such networks are simulated over 1000 time steps
and the related data Xj are collected. The corresponding
coherence based distances are evaluated and used for the
extraction of the MST, that defines the link topology.

The above procedure will be first applyed to a ten node
network. In particular, to test the numerical reliability of the
topological identification technique, we repeat such analysis
several times, so that a significant number of network con-
figurations is considered. The corresponding results fit the
expectations and the real topology is correctly identified each
time. In Fig. 1 one of the considered network configurations
is depicted, while the related coherence based distance matrix
is reported in Table I.

To provide a further test, a new set of similar simulations
is performed with a network of fifty dynamical systems,
under the same assumptions used in the previous case. Fig.
2 presents one of the considered network configurations. For
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X1 X2 X3 X4 X5 X6 X7 X8 X9 X10

X1 0 0,7299 0,6675 0,7351 0,8316 0,8542 0,8297 0,7055 0,6549 0,8298
X2 0,7299 0 0,8065 0,8353 0,6934 0,7358 0,8786 0,8483 0,8299 0,8717
X3 0,6675 0,8065 0 0,8216 0,8744 0,8807 0,8750 0,8262 0,7841 0,8821
X4 0,7351 0,8353 0,8216 0 0,8662 0,8722 0,7404 0,8502 0,8198 0,7039
X5 0,8316 0,6934 0,8744 0,8662 0 0,8540 0,8919 0,8995 0,8730 0,8846
X6 0,8542 0,7358 0,8807 0,8722 0,8540 0 0,8934 0,8984 0,8796 0,8944
X7 0,8297 0,8786 0,8750 0,7404 0,8919 0,8934 0 0,8838 0,8694 0,8346
X8 0,7055 0,8483 0,8262 0,8502 0,8995 0,8984 0,8838 0 0,8167 0,8908
X9 0,6549 0,8299 0,7841 0,8198 0,8730 0,8796 0,8694 0,8167 0 0,8715
X10 0,8298 0,8717 0,8821 0,7039 0,8846 0,8944 0,8346 0,8908 0,8715 0

TABLE I
THE COHERENCE BASED DISTANCE MATRIX ASSOCIATED TO THE NETWORK TOPOLOGY DEPICTED IN FIG. 1

Fig. 2. A representative topological configuration of the 50 nodes network
case considered of the numerical examples paragraph. The example has
been designed according to the same assumptions of the ten node network
of Figure 1.

a space limitation issue, we do not report in this manuscript
the corresponding coherence based distance matrix. Nonthe-
less, the computation of the related MST has succesfully
identified the real network topology in any of the performed
simulations.

V. CONCLUSIONS

This work has illustrated a simple but effective procedure
to identify the structure of a network of linear dynamical
systems when the topology is described by a tree. To the
best knowledge of the authors, the problem of identifying a
network has not yet been tackled in scientific literature. The
approach followed in this paper is based on the definition
of a distance function in order to evaluate if there exists a

direct link between two nodes. A few theoretical results are
provided, in particular to guarantee the correctness of the
identification procedure.
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