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Abstract: The degree-based topological indices are numerical graph invariants which are used to correlate
the physical and chemical properties of a molecule with its structure. Para-line graphs are used to represent
the structures of molecules in another way and these representations are important in structural chemistry.
In this article, we study certain well-known degree-based topological indices for the para-line graphs of V-
Phenylenic 2D lattice, V-Phenylenic nanotube and nanotorus by using the symmetries of their molecular
graphs.
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1 Introduction
Chemical graph theory is a �eld of mathematical chemistry in which we implement the tools from graph
theory to model chemical aspects mathematically. It is recorded in [1, 2] that the structure of a molecule
is strongly related to its chemical properties such as strain energy, boiling point and heat of formation.
Molecular graphs can be used to model the molecules and molecular compounds by considering atoms as
vertices and the chemical bonds between the atoms as edges. Topological index (TI) is a kind of numerical
graph invariant which is used to correlate the physical and chemical properties of a molecular graph. In this
sense, topological indices perform a signi�cant role in chemical graph theory.
Consider the molecular graph G having vertex set VG and edge set EG. Let IGp be the set of edges of G that
are incident with a vertex p ∈ VG, then the degree, dp , of p is de�ned as the cardinality of set IGp and
Sp =

∑
q∈Np dq , where dq is the degree of vertex q and the set Np consists of all neighbor vertices of p i.e.

Np = {q ∈ VG|pq ∈ EG}. For any natural number t, we de�ne Vt = {p ∈ VG | Sp = t}. The subdivided graph of
G is denoted by S(G) and de�ned by replacing each of its edge with the path having length 2. The line graph
of G is symbolized by L(G). This graph is constructed by taking the vertex set VL(G) = EG and the edge set
EL(G) which has the property that for two vertices p, q ∈ VL(G), pq ∈ EL(G) ⇐⇒ p, q ∈ EG have a common
vertex. The line graph of subdivided graph L(S(G)) is termed as the para-line graph of G.
Para-line graphs are used to understand the structure of a molecular graph and in this sense they receive
much attention in structural chemistry. The atomic hybrid orbitals in a molecular graph corresponds to the
vertices of its para-line graph and the strong links between the pairs of these orbitals correspond to the edges
of its para-line graph. Klein et al. [3] presented some applications and basic properties of the para-line graphs
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in chemical graph theory.
Generally, topological indices can be categorized in three classes: degree-based, distance-based and
spectrum-based indices. Among them,degree-based indiceshave great applications in chemical graph theory
[4, 5] and they can be de�ned in two ways as

TI(G) =
∑

pq∈E(G)

F(dp , dq) (1)

TI(G) =
∑

pq∈E(G)

F(Sp , Sq) (2)

where the sum runs over all pairs of adjacent vertices of G and F = F(x, y) is a suitably selected function.
Milan Randić proposed in 1975 a structural descriptor called the branching index [6] which is applicable
for rating the degree of branching of the carbon-atom skeleton of saturated hydrocarbons. This index was
renamed as the Randić connectivity index, which is de�ned as the sum of the Randić weights (dpdq)−

1
2 for

all edges. The generalization of the Randić index for any real number α, is termed as the general Randić
connectivity index and is de�nedby taking F = (dpdq)α in equation (1). Li and Zhaopresented the �rst general
Zagreb index in [7], which is de�ned as Mα(G) =

∑
p∈V(G)(dp)

α. The sum-connectivity index was presented
in [8] and was modi�ed to the general sum-connectivity index in [9], which is formulated by selecting
F = (dp +dq)α in equation (1). It is recorded in [10] that the general Randić connectivity and sum-connectivity
indices correlate greatly with the π-electron energy of benzenoid hydrocarbons. Estrada et al. [11] presented
the atom bond connectivity index (ABC). This index is de�ned by choosing F =

√
(dp + dq − 2)/dpdq in

equation (1). D. Vukičević and B. Furtula [12] proposed the geometric-arithmetic (GA) index that is de�ned
by setting F = 2

√
dpdq/(dp + dq) in equation (1). The fourth ABC index was presented by Ghorbani and

Hosseinzadeh [13] and is de�ned by choosing F =
√
(Sp + Sq − 2)/SpSq in equation (2). The �fth GA index

(GA5)was presented by Graovac et al. [14] which is de�ned by setting F = 2
√
SpSq/(Sp + Sq) in equation (2).

The explicit expressions of Zagreb indices for the para-line graphs of ladder, tadpole and wheel graphs, was
presented by Ranjini et al. [15]. Su and Xu [16] studied general sum-connectivity indices for these para-line
graphs. Nadeem et al. [17] presented the ABC4 and GA5 indices for these para-line graphs. In [18], they also
studied ABC, ABC4, GA, GA5, general Zagreb, generalized Randić and general sum-connectivity indices for
the para-line graphs of 2D-lattice TUC4C8(R), TUC4C8(R) nanotube and TUC4C8(R) nanotorus.
Recently, Akhter et al. [19] and Mufti et al. [20] computed ABC, ABC4, GA, GA5, �rst general Zagreb, general
sum-connectivity and general Randić connectivity indices for the para-line graphs of certain benzenoid
structures. In this paper, we present these indices for the para-line graphs of V-phenylenic 2D-lattice, V-
phenylenic nanotube and nanotorus.

2 V-Phenylenic Nanostructures
ThePhenylenes belong to the family of polycyclic non-benzenoid alternate conjugatedhydrocarbons inwhich
the carbon atoms form hexagons and squares. Each square is adjacent to two detached hexagons. From
this, some larger compounds can be formed such as V-phenylenic 2D lattice, V-Phenylenic nanotube and
nanotorus.
Let TUC4C6C8[m, n] represents the V-phenylenic nanostructures where m denotes the number of hexagons
in a row and n denotes the number of rows of hexagons in V-Phenylenic 2D-lattice, V-Phenylenic nanotube
andnanotorus as presented respectively in Figure 1 (a), (b) and (c). The order and size of these nanostructures
are given in Table 1.
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(a) (b) (c)

Figure 1: (a) The 2D-lattice TUC4C6C8[3, 3]; (b) The TUC4C6C8[3, 3] nanotube; (c) The TUC4C6C8[3, 3] nanotorus.

Table 1: The order and size of V-phenylenic nanostructures.

Graph Order Size
2D-lattice TUC4C6C8[m, n] 6mn 9mn − m − 2n
TUC4C6C8[m, n] nanotube 6mn 9mn − m
TUC4C6C8[m, n] nanotorus 6mn 9mn

3 Main Results
In this section, we derive the topological indices for the para-line graphs of V-Phenylenic nanostructures by
using their symmetric structures. The para-line graphs of these structures are presented in Figure 2 (a), (b)
and (c) respectively.

(a) (b) (c)

Figure 2: (a) The para-line graph G; (b) The Para-line graph H; (c) The Para-line graph K.

3.1 TI’s of the para-line graph of 2D-lattice TUC4C6C8[m, n]

Theorem 1. Consider the graph G of 2D-lattice TUC4C6C8[m, n]. Then

Rα(G) = 2.4α(m + 3n + 2) + 4.6α(m + n − 2) + 9α(27mn − 11m − 20n + 4)
Mα(G) = 2α+2(m + 2n) + 2.3α+1(3mn − m − 2n)
χα(G) = 2.4α(m + 3n + 2) + 4.5α(m + n − 2) + 6α(27mn − 11m − 20n + 4)

ABC(G) =
√
2(3m + 5n − 2) + 18mn − 22

3 m − 40
3 n +

8
3

GA(G) = −9m − 14n + 8 + 8
5(m + n − 2)

√
6 + 27mn
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Proof. The para-line graph G of 2D-lattice TUC4C6C8[m, n] is presented in Figure 2 (a). It can easily be
checked that |VG| = 2(9mn − m − 2n). Among them, there are 4(m + 2n) and 6(3mn − m − 2n) vertices of
degree 2 and 3 respectively. By using the handshaking lemma, we have

4(m + 2n)(2) + 6(3mn − m − 2n)(3) = 2|EG|
|EG| = 27mn − 5m − 10n

So, we have the following disjoint edge partite subsets of EG with respect to the degree of the end vertices.

E(2,2) = {pq ∈ EG|dp = dq = 2}
E(2,3) = {pq ∈ EG|dp = 2 and dq = 3}
E(3,3) = {pq ∈ EG|dp = dq = 3}

We use cardinalities of partite sets given in Table 2 and by choosing the corresponding function F(dp , dq) in

Table 2: The cardinalities of the edge partite subsets of EG with respect to degree of end vertices.

E(p,q) E(2,2) E(2,3) E(3,3)
|E(p,q)| 2p + 6q + 4 4p + 4q − 8 27pq − 11p − 20q + 4

equation (1) to obtain the required results.

Theorem 2. Consider the graph G of 2D-lattice TUC4C6C8[m, n]. Then for m > 1 and n ≥ 1

ABC4(G) =
√
6
2 (n + 4) + 2

√
35
5 n + 4

√
2

5 (m − 2) +
√
110
5 (m + n − 2)

+2
√
30
3 (m + n − 2) + 12mn − 76

9 m − 112
9 n + 80

9

GA5(G) = −17m − 26n + 16
√
5

9 n + 16
√
10

13 (m + n − 2) + 96
√
2

17 (m + n − 2) + 27mn + 24

Proof. For m > 1 and n ≥ 1, it can easily be checked from Figure 2 (a) that in G |V4| = 4(n + 2), |V5| =
4(m + n − 2), |V8| = 4(m + n − 2) and |V9| = 2(9mn − 5m − 8n + 4). So, we have the following disjoint edge
partite subsets of EG which consist of edges having end vertices labeled by the degree sumof adjacent vertices
and their cardinalities are given in Table 3.

δ(4,4) = {pq ∈ EG|Sp = Sq = 4}
δ(4,5) = {pq ∈ EG|Sp = 4 and Sq = 5}
δ(5,5) = {pq ∈ EG|Sp = 5 and Sq = 5}
δ(5,8) = {pq ∈ EG|Sp = 5 and Sq = 8}
δ(8,9) = {pq ∈ EG|Sp = 8 and Sq = 9}
δ(9,9) = {pq ∈ EG|Sp = Sq = 9}

By using Table 3 and choosing the corresponding function F(Sp , Sq) in equation (2), we get the required
results.

3.2 TI’s of the para-line graph of TUC4C6C8[m, n] nanotube

Theorem 3. Consider the para-line graph H of TUC4C6C8[m, n] nanotube. Then for m ≥ 1 and n ≥ 1

Rα(H) = 2.4αm + 4.6αm + 9α(27mn − 11m)
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Table 3: The cardinalities of the edge partite subsets of EG with respect to degree sum of adjacent vertices.

δ(p,q) δ(4,4) δ(4,5) δ(5,5) δ(5,8) δ(8,9) δ(9,9)
|δ(p,q)| 2(n + 4) 4n 2(m − 2) 4(m + n − 2) 8(m + n − 2) 27mn − 19m − 28n + 20

Table 4: The cardinalities of the edge partite subsets of EH with respect to degree of end vertices.

E(p,q) E(2,2) E(2,3) E(3,3)
|E(p,q)| 2m 4m 27mn − 11m

Mα(H) = 2α+2m + 2.3α+1(3mn − m)
χα(H) = 2.4αm + 4.5αm + 6α(27mn − 11m)

ABC(H) = 3
√
2m +

√
7
3 (27mn − 11m)

GA(H) = −9m + 8
√
6

5 m + 27mn

Proof. The para-line graph H of TUC4C6C8[m, n] nanotube and is presented in Figure 2 (b). One can easily
verify that |VH | = 2(9pq−p). Among them, there are4m and6m(3n−1) vertices of degree2 and3 respectively.
By using the handshaking lemma, we have

4m(2) + 6m(3n − 1)(3) = 2|EH |
|EH | = 27mn − 5m

Therefore, we get the following disjoint edge partite subsets of EH and present its cardinalities in Table 4.

E(2,2) = {pq ∈ EH |dp = dq = 2}
E(2,3) = {pq ∈ EH |dp = 2 and dq = 3}
E(3,3) = {pq ∈ EH |dp = dq = 3}

We apply equation (1) to the information in Table 4 by choosing the corresponding functions F(dp , dq) and
get the desired results.

Theorem 4. Consider the para-line graph H of TUC4C6C8[m, n] nanotube. Then for m ≥ 1 and n ≥ 1

ABC4(H) = 12mn + 4
√
2

5 m +
√
110
5 m + 2

√
30
3 m − 76

9 m

GA5(H) = 27mn − 17m + 16
√
10

13 m + 96
√
2

17 m

Proof. For m ≥ 1 and n ≥ 1, it can easily be checked from Figure 2 (b) that in H, |V5| = 4m, |V8| = 4m and
|V9| = 2(9mn − 5m). So, we have the following edge partite subsets of EH which consist of edges having end
vertices labeled by the degree sum of adjacent vertices and their cardinalities are given in Table 5.

δ(5,5) = {pq ∈ EG|Sp = 5 and Sq = 5}
δ(5,8) = {pq ∈ EG|Sp = 5 and Sq = 8}
δ(8,9) = {pq ∈ EG|Sp = 8 and Sq = 9}
δ(9,9) = {pq ∈ EG|Sp = Sq = 9}

We apply equation (2) to Table 5 by taking the corresponding function F(Sp , Sq) and get the desired indices.
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Table 5: The cardinalities of the edge partite subsets of EH with respect to degree sum of adjacent vertices.

δ(p,q) δ(5,5) δ(5,8) δ(8,9) δ(9,9)
|δ(p,q)| 2m 4m 8m 27mn − 19n

3.3 TI’s of the para-line graph of TUC4C6C8[m, n] nanotorus

Theorem 5. Consider the para-line graph K of TUC4C6C8[p, q] nanotorus. Then

Rα(G) = 27.9αmn
Mα(G) = 18.3αmn
χα(G) = 27.6αmn

ABC(K) = 18pq
GA(K) = 27pq

Proof. The para-line graph of TUC4C6C8[m, n] nanotorus and its para-line graph K is presented in Figure
2 (c). One can easily check that in K, |VK | = 18mn and all these vertices are of degree 3. By using the
handshaking lemma, we have |EK | = 27mn. So, we have exactly one edge partition of EK which is given
by

E(3,3) = {pq ∈ EK |dp = dq = 3}

and clearly |E(3,3)| = |EK | = 27mn.
With this cardinality, we apply equation (1) by setting the corresponding function F(dp , dq) and get the
desired indices.

Theorem 6. Consider the para-line graph K of TUC4C6C8[p, q] nanotorus. Then

ABC4(K) = 12mn
GA5(K) = 27mn

Proof. It is easy to see from Figure 2 (c) that |V9| = 18mn. So, we have exactly one edge partition with respect
to end vertices labeled by degree sum of adjacent vertices, given by

δ(9,9) = {pq ∈ EK |Sp = Sq = 9}

and clearly |δ(9,9)| = |EK | = 27mn.
With this cardinality, we apply equation (2) by choosing the corresponding function F(Sp , Sq) and obtain the
required results.

4 Conclusion
In this article, well-known degree-based topological indices such as �rst general Zagreb, general Randić
connectivity, general sum-connectivity, ABC, ABC4, GA and GA5 indices are studied. These indices correlate
many chemical properties such as stability, heat of formation, boiling point and strain energy of chemical
compounds. By using the symmetric structure property of V-phenylenic nanostructures, we present these in-
dices for their para-line graphs which will help the people to interpret and analyze the underlying topologies
of these nanostructures.
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