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Topological insulator materials for advanced optoelectronic devices

Abstract

Topological insulators are quantum materials that have an insulating bulk state and a topologically protected
metallic surface state with spin and momentum helical locking and a Dirac-like band structure [1-3]. Two-
dimensional (2D) topological insulators are associated with gapless edge states, and three-dimensional (3D)
topological insulators with gapless surface states [4]. A variety of compounds have been identified as 2D or
3D topological insulators, including HgTe/CdTe, Bi2Se3, Bi2Te3, Sb2Te3, BiTeCl, Bi1.5Sb0.5Te1.8Se1.2,
SmB6 and so on [5-8]. The topological surface (edge) states in these materials have been mainly investigated
by first-principle theoretical calculation, electronic transport, angle-resolved photoemission spectroscopy
(ARPES), and scanning tunneling microscopy (STM) [6]. Unique and fascinating electronic properties, such
as the quantum spin Hall effect, quantum anomalous Hall effect, topological magnetoelectric effect, magnetic
monopole image, and Majorana fermions, have been observed in the topological insulator materials [9, 10].
With these unique properties, topological insulator materials have great potential applications in spintronics
and quantum information processing, as well as magnetoelectric devices with higher efficiency and lower
energy consumption [11, 12].
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Abstract 

Topological insulators are quantum materials that have an insulating bulk state 
and a topologically protected metallic surface state with spin and momentum 
helical locking and a Dirac-like band structure.(1-3) Unique and fascinating 
electronic properties, such as the quantum spin Hall effect, topological 
magnetoelectric effects, magnetic monopole image, and Majorana fermions, are 
expected from topological insulator materials.(4, 5) Thus topological insulator 
materials have great potential applications in spintronics and quantum 
information processing, as well as magnetoelectric devices with higher 
efficiency.(6, 7) Three-dimensional (3D) topological insulators are associated 
with gapless surface states, and two-dimensional (2D) topological insulators with 
gapless edge states.(8) The topological surface (edge) states have been mainly 
investigated by first-principle theoretical calculation, electronic transport, angle-
resolved photoemission spectroscopy (ARPES), and scanning tunneling 
microscopy (STM).(9) A variety of compounds have been identified as 2D or 3D 
topological insulators, including HgTe/CdTe, Bi2Se3, Bi2Te3, Sb2Te3, SmB6, 
BiTeCl, Bi1.5Sb0.5Te1.8Se1.2, and so on.(9-12) 

 

On the other hand, topological insulator materials also exhibit a number of 

excellent optical properties, including Kerr and Faraday rotation, ultrahigh bulk 

refractive index, near-infrared frequency transparency, unusual electromagnetic 

scattering and ultra-broadband surface plasmon resonances. In details, Dirac 

plasmon excitations have been observed in Bi2Se3 micro-ribbon arrays at the THz 

frequency.(13) Ultraviolet and visible frequency plasmonics have been observed 

in nanoslit and nanocone arrays of Bi1.5Sb0.5Te1.8Se1.2 crystals.(14, 15) High 

transparency has been observed in nanometer scale Bi2Se3 nanoplates. Ultrahigh 

refractive index has been observed in the bulk of Bi1.5Sb0.5Te1.8Se1.2 crystals and 

Sb2Te3 thin films.(15, 16) These excellent optical properties enable topological 
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insulator materials being capable of designing various optoelectronic devices, 

including plasmonic solar cells, ultrathin holograms, plasmonic and Fresnel lens, 

broadband photodetectors, and nanoscale waveguides. In this chapter, we focus 

on the excellent electronic and optical properties of topological insulator 

materials and their wide applications in advanced optoelectronic devices.(17) 

 

1. Excellent electronic properties 

1.1 Quantum spin Hall effect 

The quantum spin Hall effect in 2D topological insulators was firstly proposed 
by Kane and Zhang.(18, 19) Then, the novel effect was predicted in mercury 
telluride–cadmium telluride (HgTe/CdTe) semiconductor quantum wells by 
König et al. in 2006.(4) The HgTe/CdTe quantum wells have well-known strong 
spin-orbital coupling. When the thickness of the HgTe layer is smaller than 6.3 
nm, the 2D electronic states have the normal band order, but when the thickness 
is larger than 6.3 nm, the 2D bands have an inversion with a quantum phase 
transition between the trivial insulator and the quantum spin Hall insulator.  

Molenkamp et al. experimentally realized the quantum spin Hall effect in HgTe 
quantum wells in 2007.(20) In the quantum well, two edge states with opposite 
spin polarization counter propagate at opposite edges. And, the quantum well also 
has non-local edge channel transport in the quantum spin Hall regime at zero 
external magnetic field.(21) These measurements confirm that the quantum 
transport through the helical edge channels is non-dissipative. And the 
topological protection of the edge states can’t be destroyed by weak time reversal 
symmetric perturbations. The electrons in edge states are the absence of elastic 
backscattering and robustness against disorder for surface transport.  

1.2 Topological magnetoelectric effects 

Topological magnetoelectric effect is the phenomenon of magnetic polarization 
induced by applying an external electric field, or electric polarization induced by 
applying an external magnetic field. To obtain the topological magnetoelectric 
effect, a time-reversal-symmetry-breaking gap for the side surface is 
necessary.(22) A ferromagnetic layer with magnetization pointing out of the 
cylinder’s surface induces a gap on the surface of the topological insulator, which 
has a fixed Hall conductance, σH = (n +1/2) e2/h. When an electric field is applied 
parallel to the cylinder, a circulating current j can be induced on the interface. 
This current is identical to the current generated by a constant magnetization M 
which is anti-parallel to the electric field E. On the contrary, when a magnetic 
field B is applied parallel to the cylinder, a circulating current is produced parallel 
to the interface, which induces a Hall current j parallel or anti-parallel to the 
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magnetic field B. As a result, charge density is accumulated on the top and bottom 
surfaces and induces the charge polarization.(2) 

1.3 Magnetic monopole image 

The topological magnetoelectric effect can be used to generate magnetic 
monopole image through putting an electric charge near a topological surface 
state.(23) When an electric charge is put on the surface of a 3D topological 
insulator with gapped surface states by time-reversal-symmetry breaking, the 
electric charge will polarize the bulk dielectric, and an image electric charge 
appears inside the topological insulator. An image magnetic monopole will also 
appear inside the topological insulator.(23) 

The magnetic field generated by the image magnetic monopole has been 
experimentally measured and can be observed by a magnetic force microscope. 
A scanning magnetic force microscope tip can be applied to detect the magnetic 
field distribution of the image monopole. The magnetic field contribution from 
the magnetic monopole can also dominate and be distinguished from the 
contribution from surface impurities and roughness. 

1.4 Topological superconductors 

When topological insulators connect with ordinary superconductors, topological 
superconductors appear due to the correlated interface states and the proximity 
effect.(24) Such topological superconductors are predicted to host Majorana 
fermion excitations.(1) A Majorana fermion is a fermion that is its own 
antiparticle and was first predicted in the 1930s. The zero energy Majorana bound 
state is the simplest non-Abelian excitation and is associated with a vortex in a 
spinless superconductor. A Majorana zero mode has been proposed that can be 
realized in a superconducting vortex core by making use of the surface states of 
3D topological insulators.(25) Topological protection and non-Abelian exchange 
statistics make the Majorana fermions promising for quantum computing. 
Signatures of Majorana fermions have been reported in quantum wires coupled 
to conventional superconductors.(26-28) Many experiments have been conducted 
to observe the elusive Majorana states.(27, 29)  

Recently, chiral Majorana fermion modes was observed in a quantum anomalous 
Hall insulator–superconductor structure.(30) He et al. demonstrated the existence 
of one-dimensional chiral Majorana fermion modes in the hybrid system of a 
quantum anomalous Hall insulator thin film coupled with a superconductor. They 
conducted the transport measurements and found half-integer quantized 
conductance plateaus at the locations of magnetization reversals.  The transport 
signature provided a strong evidence of the Majorana fermion modes. The 
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discovery of Majorana fermion could pave a way for producing future topological 
quantum computing. 

1.5 Quantum Anomalous Hall effects 

The topological surface states of 3D topological insulators are protected by time-
reversal symmetry and are robust against non-magnetic disorder. Nevertheless, 
surface states open up a gap in the presence of time-reversal symmetry breaking 
perturbations, and the Dirac electrons become massive. Magnetic impurities such 
as Fe, Co, and Mn dopants will induce a surface state gap. Moreover, theoretically, 
the quantized anomalous Hall effect can emerge in magnetic topological 
insulators.(31)  

Such a quantum anomalous Hall effect was observed experimentally soon after it 
was theoretically predicted in thin films of chromium-doped (Bi,Sb)2Te3.(32)  
The gate-tuned anomalous Hall resistance reaches the predicted quantized value 
of h/e2 at zero magnetic field. Under a strong magnetic field, the longitudinal 
resistance vanishes whereas the Hall resistance remains at the quantized value. 
The realization of the quantum anomalous Hall effect could lead to the 
development of next generation low-power-consumption electronics. 

1.6 Giant magnetoresistance effects 

Electronic transports are significant not only for the fundamental understanding 
of electronic properties of materials but also for promoting their applications in 
practical electronic and optoelectronic devices.(33, 34) Giant magnetoresistance 
was reported in a variety of 3D topological insulators.(35-41) The Dirac fermions 
of surface states suggest enhanced quantum corrections of 
magnetoconductance.(42) Spin-momentum locked surface states always show 
weak antilocalization effect effects due to strong spin-orbit coupling. Aharonov–
Bohm oscillations have also been observed in Bi2Se3 and Bi1−xSbx topological 
insulators.(43, 44) Non-saturating positive linear magnetoresistance at high fields 
was observed in Bi2Te3 films and Bi2Se3 nanoribbons.(45-47) Room temperature 
giant and linear MR were observed in the topological insulator Bi2Te3 in the form 
of nanosheets with a few quintuple layers.(48) The giant, linear 
magnetoresistance that was achieved was as high as over 600% at room 
temperature, without any sign of saturation at measured fields up to 13 T. The 
observed linear magnetoresistance was attributed to the quantum linear 
magnetoresistance model developed by Abrikosov.(49, 50) 

 Actually, the transport behavior of topological insulators reflects the combined 
contributions of surface states and bulk states due to the metallic bulk. A weak 
localization effect emerges when the time reversal symmetry is broken and a gap 
opens in surface states.(51-53) Competition between weak antilocalization effect 
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and weak localization effect has been observed in the topological insulator thin 
film Bi2-xCrxSe3 and (Bi0.57Sb0.43)2Te3.(54-56) The weak localization effect has 
been attributed to the 2D quantized channels of bulk states.(56) 

1.7 Shubnikov-de Haas (SdH) effects 

The surface states of 3D topological insulators have high carrier mobility and the 

Shubnikov-de Haas effect can appear in the presence of very intense magnetic 

fields.(57) The Shubnikov-de Haas effect is a macroscopic manifestation of the 

inherent quantum mechanical nature of matter. The Shubnikov-de Haas effect is 

a convincing tool for characterizing quantum transport in electronic materials.(58) 

It can be used to isolate the surface carriers and to determine their mobility and 

effective mass.(59) Shubnikov-de Haas effects were first observed in 3D 

topological insulator Bi2Te3 single crystals.(43) The surface mobility of up to 

9000 to 10,000 cm2/V·s was obtained based on Shubnikov-de Haas quantum 

oscillations, which is substantially higher than in the bulk. The obtained Fermi 

velocity of 4 × 105 m/s agrees with the results from angle-resolved photoemission 

measurements. Shubnikov-de Haas quantum oscillations have also been observed 

in 3D topological insulators, Bi2Te2Se crystals, Bi2Te3 nanowires, and YPdBi 

crystals.(57, 60, 61) 

 

2. Excellent optical properties 

2.1 Ultrahigh bulk refractive index 
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Figure 1. Optical parameters of Bi1.5Sb0.5Te1.8Se1.2 single crystals. (a-b) Refractive 
index n, extinction coefficient k, and dielectric function ε of the insulating bulk 
of Bi1.5Sb0.5Te1.8Se1.2 crystals. (c-d) Refractive index n, extinction coefficient k, 
and dielectric function ε of the metallic surface of Bi1.5Sb0.5Te1.8Se1.2 crystals. 
Reprinted with permission from [Yue, 2016], Science Advances 2 (2016) 
e1501536. © 2017, AAAS.  

Optical constants are the basic optical parameters of materials that define the 
interaction of incident light and materials. Yue, et al. measured the refractive 
index n and extinction coefficient k of cleaved flat Bi1.5Sb0.5Te1.8Se1.2 crystal 
sheets by using a spectroscopic ellipsometer.  They discovered that 
Bi1.5Sb0.5Te1.8Se1.2 crystal holds low refractive index in the surface but ultrahigh 
refractive index in the bulk in near infrared frequency.(15) This excellent optical 
property makes topological insulator materials promising for designing novel 
near-infrared optoelectronic devices.  

 

Figure 2. Physical mechanism of the Sb2Te3 thin film cavity. Diagram of 

internal light multiple reflections in the resonant cavity of the Sb2Te3 thin film. 

The refractive index n and extinction coefficient k of the surface and bulk of 

Sb2Te3 thin film. Reprinted with permission from [Yue, 2017], Nature 

Communications, (2017) 15354. © 2017 Macmillan Publishers Limited, part of 

Springer Nature. 

In additions, Yue, et al. also discovered that the unequal refractive index in 

surface and bulk of topological insulator thin films could generate intrinsic 

resonant cavity.(16, 62, 63) The multilayer structure of the Sb2Te3 thin film on 

a Si substrate is schematically shown in Figure 2(a). The dielectric bulk of the 

Sb2Te3 thin film is sandwiched within the two metallic surface layers. The 

refractive index n and extinction coefficient k of the surface layers and the bulk 

are unequal due to different electronic property.(63) With the unequal 

refractive index, the Sb2Te3 thin film acts as an intrinsic optical resonant 

cavity.(64) Two surface layers serve as two reflectors. The bulk behaves as an 

optical resonant cavity. Thus an incident light beam can be reflected multiple 

times between two surface layers and partially be confined in the bulk. The 

phase modulation of the reflected light beam from the resonant cavity can be 

enhanced. 

https://www.nature.com/articles/ncomms15354#f2
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2.2 Near-infrared transparency 

 

Figure 3. Spectroscopy characterization of the Bi2Se3 nanosheets on thin mica 
sheet substrates. Ultraviolet–visible-infrared spectra of Bi2Se3 nanosheets with 
different thickness, mica substrate, indium tin oxide (ITO) and fluorine tin oxide 
(FTO). The obvious oscillatory in the transmission spectra may result from 
Fabry–Perot interference effects. Reprinted with permission from [Yue, 
2017].(65). 

Peng, et al. demonstrated near-infrared transparent flexible electrodes based on 
few-layer Bi2Se3 nanostructures on mica. They found that the Bi2Se3 nanosheets 
exhibit a transparency of more than 70% over a wide range of wavelengths. 
Furthermore, the Bi2Se3 nanosheets were used for as transparent electrodes. The 
electrodes show high chemical and thermal stabilities as well as excellent 
mechanical durability. These features make the Bi2Se3 nanosheets promising 
candidates for novel optoelectronic devices. (65) 

2.3 Faraday rotation and unusual electromagnetic scattering 

Faraday rotation was predicted in topological insulator surface.(22) It results from 

topological magnetoelectric effects in magnetic topological insulators. In 

principle, it is possible to find a topological insulator with a larger gap which can 

support an accurate measurement of Faraday rotation. Similar proposals as above 

can also be worked out for the rotation of reflected wave Kerr effect. In additions, 

replace the ferromagnetic layers by paramagnetic materials with large 

susceptibilities and apply an external magnetic field to polarize them. In this case 

the magnetization is proportional to magnetic field, such that the Faraday rotation 

contributed by the bulk is also proportional to magnetic field. Unusual 

electromagnetic scattering was predicted from topological insulator 

nanoparticles.(66) 
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2.4 Ultra-broadband plasmon excitations 

 

Figure 4. Extinction coefficients of the microribbon arrays of topological 

insulator Bi2Se3 in the terahertz range. (a) Optical microscope image of the 5 

patterned films with different width and period. (b-c) Extinction coefficient of the 

5 patterned films with the radiation electric field applied parallel and 

perpendicularly to the ribbons. Reprinted with permission from [Yue, 2017], (13). 

Plasmons are quantized collective oscillations of electrons and have been mainly 

observed and investigated in noble metals. Plasmons have been widely applied in 

various optical devices from ultraviolet to THz frequency.(67-69) Dirac plasmons 

from massless electrons are promising for novel tunable plasmonic devices.(70) 

They exist in 2D materials like grapheme and semiconductors. Dirac plasmon 

excitations have also been observed in binary Bi2Se3 at the THz frequency.(13)  

The Bi2Se3 was prepared in thin micro-ribbon arrays of different widths and 

periods. The linewidth of the plasmon was found to remain nearly constant at 

temperatures between 6 K and 300 K. 
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Figure 5. Simulation of electromagnetic field distribution in Bi1.5Sb0.5Te1.8Se1.2 

nanocone arrays using the Finite-difference time-domain (FDTD) method. The 

plasmon resonances are localized and enhanced on the surfaces of 

Bi1.5Sb0.5Te1.8Se1.2 nanocones. Nanocone arrays have variable diameter and 

period. Reprinted with permission from [Yue, 2016], Science Advances 2 (2016) 

e1501536. © 2017, AAAS. 

Ultraviolet and visible frequency plasmonics have been observed in nanoslit 

arrays and grating of bulk-insulating Bi1.5Sb0.5Te1.8Se1.2 crystals.(14, 15) Yue, et 

al. reported a conic nanostructure made of Bi1.5Sb0.5Te1.8Se1.2 crystals. They 

showed that the insulating bulk had an ultrahigh refractive index of up to 5.5 in 

the near-infrared frequency range. The metallic surface presented plasmonic 

excitations and strong backward light scattering in visible frequency range. 

Through integrating the nanocone arrays into a-Si thin film solar cells, up to 15% 

enhancement of light absorption was obtained.  

Zhao, et al. have studied actively tunable visible surface plasmons in Bi2Te3 

nanoplates electron energy-loss spectroscopy and cathodoluminescence 

spectroscopy.(71, 72) The observed plasmons in the visible range were mainly 

from metallic surface states of Bi2Te3. Infrared Yuan, et al. have investigated 

infrared nanoimaging of surface metallic plasmons in of Bi2Te3 nanoplates using 
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scattering-type scanning near-field optical microscopy.(73)  They discovered 

near-field patterns of bright outside fringes also originated from the surface-

metallic plasmonic behavior at mid-infrared frequency. 

With the metallic surface and insulating bulk, topological insulator materials 

provide an excellent platform for the realization of a new type of nanostructures 

that could combine the fascinating properties of plasmonic metallic 

nanostructures and dielectric nanostructures. With these features, the plasmonic 

topological insulator nanostructures pave a way for designing low-loss and high-

performance optical devices, like visible to infrared detectors or sensors.(74) 

2.5 Polarized light induced photocurrent 

Mclver, et al. reported the control of topological insulator photocurrents with 

light.(75) They showed that illuminating the Bi2Se3 with circularly polarized light 

generates a photocurrent that originates from topological helical Dirac fermions, 

and that reversing the helicity of the light reverses the direction of the 

photocurrent. They also observe a photocurrent that is controlled by the linear 

polarization of light and argue that it may also have a topological surface state 

origin. This approach may allow the probing of dynamic properties of topological 

insulators and lead to novel opto-spintronic devices. 

2.6 Broadband optical nonlinear response 

Chen, et al. studied the nonlinear response of Bi2Te3 at both the optical and 

microwave band. They demonstrated optical saturable absorption property of 

Bi2Te3 from 800 nm to 1550 nm. Bi2Te3 shows a saturation intensity of ~12 

μW/cm2 and a normalized modulation depth of ~70%. They argued that the 

optical saturable absorption in TI is a natural consequence of the Pauli-blocking 

principle of the electrons filled in the bulk insulating state.(76)  

Giorgianni, et al. demonstrates an electromagnetic-induced transparency in 

Bi2Se3 under the application of a strong THz electric field. This effect, 

concomitantly determined by harmonic generation and charge-mobility 

reduction, is exclusively related to the presence of Dirac electron at the surface 

of Bi2Se3, and opens the road towards tunable THz nonlinear optical devices 

based on TI materials.(77) 

The third order nonlinear optical property of Bi2Se3 was investigated under 

femto-second laser excitation.(78) When excited at 800 nm, the TI Bi2Se3 exhibits 

saturable absorption with a saturation intensity of 10.12 GW/cm2 and a 

modulation depth of 61.2%, and a giant nonlinear refractive index of 10−14 m2/W. 

This work suggested that the Bi2Se3 is a promising nonlinear optical material and 

can find potential applications from passive laser mode locker to optical Kerr 

effect based photonic devices. 



Book Chapter for <<Advanced Topological Insulators>>  

11 

 

3. Advanced optoelectronic devices 

3.1 Plasmonic solar cells 

 

Figure 6. Plasmon resonances enhanced light absorption in ultrathin a-Si solar 

cells simulated using FDTD. (a) Structure of ultrathin a-Si solar cells with 

Bi1.5Sb0.5Te1.8Se1.2 nanocone arrays. The arrays achieve broadband enhancements 

of light absorptions in the visible frequency range. Reprinted with permission 

from [Yue, 2016], Science Advances 2 (2016) e1501536. © 2017, AAAS. 

3.2 Nanometric holograms 

Yue, et al. discovered that nanometric topological insulator thin films act as an 

intrinsic optical resonant cavity due to the unequal refractive indices in their 

metallic surfaces and bulk.(16, 63) The resonant cavity leads to enhancement 

of phase shifts and thus the holographic imaging. They calculated phase 

diagram of original images and print on Sb2Te3 thin film using direct laser 

writing methods, which is often used for 3D printing.(79-81) They achieved 

high quality holographic imaging on nanometric holograms. The work paves a 

way towards integrating holography with flat electronic devices for optical 

imaging, data storage and information security. 
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Figure 7. Nanometric Sb2Te3 thin film holograms and reconstructed images. (a) 
Original image of the dinosaur object. (b-c) SEM images of the laser printed 
hologram patterns. (d-f) Holographic images captured by illuminating the 
nanometric holograms using 445, 532 and 632 nm continuous wavelaser beams. 
Reprinted with permission from [Yue, 2017], Nature Communications, (2017) 
15354. © 2017 Macmillan Publishers Limited, part of Springer Nature. 
 

3.3 Ultrathin flat lens 

An ultrathin double-focusing lens, capable of simultaneously generating a 

plasmonic focus in the near-field region and a Fresnel-zone-plate based 

diffraction-limited focal spot in the far-field region, was designed using Sb2Te3 

thin films. The Sb2Te3 thin films hold high-index in the bulk and plasmonic 

excitations on the surface.(82) The double-focusing flat lens opens new 

opportunities for future compact devices with versatile functionalities, with 

potential applications ranging from optical imaging and information technology. 

3.4 Near-infrared photodetector 

Photodetectors are sensors of light, which can convert light photons into 

photocurrent or photovolatge.(83-86) Topological insulators have an energy gap 

in the bulk and a gapless surface state consisting of a single Dirac cone. Low-

frequency optical absorption due to the surface state is universally determined by 

the fine-structure constant. When the thickness of these 3D topological insulators 

is reduced, they become quasi-two-dimensional insulators with enhanced 

absorbance. The two-dimensional insulators can be topologically trivial or 

nontrivial depending on the thickness, and we predict that the optical absorption 

is larger for topological nontrivial case compared with the trivial case. Since the 

surface state is intrinsically gapless, we propose its potential application in wide 

bandwidth, high-performance photodetection covering a broad spectrum ranging 

from terahertz to infrared. The performance of photodetection can be dramatically 
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enhanced when the thickness is reduced to several quintuple layers with a widely 

tunable band gap depending on the thickness.(17) 

Plank et al. demonstrated terahertz/infrared radiation induced photogalvanic 

effect in 3D TI (Bi1−xSbx)2Te3.(87) They found that which the observed 

photogalvanic effect is sensitive to the surface symmetry and scattering details 

and can be applied to study the high frequency conductivity of the surface states. 

In particular, measuring the polarization dependence of the photogalvanic current 

and scanning with a micrometre sized beam spot across the sample, provides 

access to topographical inhomogeneities in the electronic properties of 

the surface states and the local domain orientation. 

Zheng, et al. fabricated a near infrared (NIR) light photodetector based on a Sb2Te3 

thin film, which was grown on sapphire by molecular beam epitaxy (MBE). 

Electrical analysis reveals that the resistance of the TIdecreases with increasing 

temperature in the temperature range of 8.5–300 K. Further optoelectronic 

characterization showed that the as-fabricated photodetector exhibits obvious 

sensitivity to 980 nm light illumination. The responsivity, photoconductive gain and 

detectivity were estimated to be 21.7 A/W, 27.4 and 1.22 × 1011 Jones, respectively, 

which are much better than those of other topological insulators based devices. This 

study suggests that the present NIR photodetector may have potential application in 

future optoelectronic devices.(88) 

Sharma et al. reported a high performance broadband photodetector based on Bi2Se3 

nanowires. (89) They fabricated the Bi2Se3 nanowires using focused ion beam (FIB) 

and found they can be used for ultrasensitive visible-NIR photodetectors. They 

observed efficient electron hole pair generation in the Bi2Se3 nanowire under 

the illumination of visible (532 nm) and IR light (1064 nm). They observed 
photo-responsivity of up to 300 A/W. 

3.5 Saturable absorber 

Yu, et al. demonstrates that topological insulator can modulate the operation of 

a bulk solid-state laser by taking advantage of its saturable absorption. Their 

result suggests that topological insulators are potentially attractive as broadband 

pulsed modulators for the generation of short and ultrashort pulses in bulk solid-

state lasers, in addition to other promising applications in physics and 

computing.(90) 



Book Chapter for <<Advanced Topological Insulators>>  

14 

 

 

 

Figure 8. Ultra-short pulse generation by topological insulator material Bi2Te3 

that works as a saturable absorber. (a) The near infrared linear absorption spectra 

of the Bi2Te3. (b) A typical Z-scan peak curve of Bi2Te3 at 1550 nm. (c) The 

corresponding nonlinear saturable absorption curve. (d) Schematic of the fiber 

laser. Reprinted with permission from [Yue, 2017]. (91). 

Zhao, et al. showed that the topological insulator material Bi2Te3 is a saturable 

absorber with high modulation depth at 1.55 μm. The Bi2Te3 based saturable 

absorber device was fabricated and used as a passive mode locker for ultrafast 

pulse formation at the telecommunication band.(91) 3-μm mid-infrared pulse 

was also generated using the Bi2Te3 as the saturable absorber.(92) The Bi2Te3 

shows a low saturable peak intensity of 2.12  MW/cm2 and a high modulation 

depth of 51.3%. Lee, et al. found that the bulk-structured Bi2Te3 layer can provide 

sufficient nonlinear saturable absorption for femtosecond mode-locking.(93) 

They used the Bi2Te3 as an ultrafast mode-locker to generate femtosecond pulses 

from an all-fiberized cavity. They presented that stable soliton pulses with a 

temporal width of ~600 femtosecond can be produced at 1.55 μm from an erbium 

fiber ring cavity.  

Large energy, wavelength tunable Q-switched erbium-doped fiber laser was 

fabricated using the Bi2Te3.(94) The saturating intensity was ~57 MW/cm2 and 

the modulation depth was ~22%. The single pulse energy is ~1.5 μJ and the 

saturable absorption operation from ~1.51 μm to ~1.58 μm. 2 GHz passively 

harmonic mode-locked fiber laser was also achieved by a microfiber-based 

Bi2Te3 saturable absorber.(95) The fiber laser could operate at the pulse 

repetition rate of 2.04 GHz under a pump power of 126 mW. 
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Bi2Te3 nanoparticles have shown the broadband saturable absorption at 0.8 μm 

and 1.57 μm. They were employed as nonlinear saturable absorbers to passively 

mode-lock the erbium-doped fiber lasers for sub-400 fs pulse 

generations.(96) Xu, et al. reported that the Bi2Te3 exhibited a nonlinear 

absorption response.(97) They showed that the Bi2Te3 sheets have saturation 

absorption intensity of 1.1 W/cm2 at 1.0 μm. A Q-switching pulsed laser was 

made in a 1.0 μm Nd:YVO4 laser where the threshold absorbed pump power 

was 31 mW. A pulse duration of 97 ns was observed with an average power of 
26.1 mW. A Q-switched laser at 1.3 μm was also realized with a pulse duration 
of 93 ns.  

Wavelength-tunable picosecond soliton fiber laser was achieved using 

topological insulator material Bi2Se3 as a mode locker.(98) An optical pulse 

with ~660 fs was generated at wavelength of 1.55 μm. A modulation depth of 98% 

and a saturation intensity of 0.49 GW/cm2 were observed. Femtosecond pulse 

was also generated from Bi2Se3 mode-locked fiber laser.(99) The used 

Bi2Se3 saturable absorber has a low saturable optical intensity of 12 MW/cm2 and 

a modulation depth of ~3.9%. The mode-locking operation was realized at 25 

mW.  

Dou, et al. demonstrated a mode-locked ytterbium-doped fiber laser based on the 

Bi2Se3.(100) The measured modulation depth of the Bi2Se3 film was 5.2%. When 

the Bi2Se3 film was used in the Yb-doped fiber laser, the mode locked pulses have 

pulse energy of 0.756 nJ, pulse width of 46 ps and the repetition rate of 44.6 MHz. 

The maximum average output power was 33.7 mW. When the pump power 

exceeded 270 mW, the laser can operate in multiple pulse state that six-pulse 

regime can be realized.  

Yu, et al. showed a high-repetition-rate Q-switched fiber laser using the Bi2Se3 

film.(101) The Bi2Se3 film had a low saturable optical intensity of 11 MW/cm2. 

By inserting the absorber film into an Erbium-doped fiber laser, a high-repetition 

Q-switched laser with the repetition rates from 459 kHz to 940 kHz was made. 

The maximum output power was 22.35 mW with the shortest pulse duration of 

1.9 μs.  

Luo, et al. demonstrated that a 1.06μm Q-switched ytterbium-doped fiber laser 

using few-layer Bi2Se3 as a saturable absorber.(101) The few-layer Bi2Se3 has a 

low saturable optical intensity of 53 MW/cm2. By inserting Bi2Se3 into the YDF 

laser cavity, stable Q-switching operation at 1.06 μm is achieved. The Q-switched 

pulses have the pulse duration of 1.95 μs, the pulse energy of 17.9 nJ and a tunable 

pulse-repetition-rate from 8.3 to 29.1 kHz.  

Gao, et al. reported a Q-switched mode-locked erbium-doped fiber laser based 

on the  Bi2Se3 deposited fiber taper.(102) Due to the low saturation intensity, 
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stable Q-switched mode-locked fiber lasers centered at 1.56 μm can be generated 

at a pump power of 10 mW. 

These results exhibit that the topological insulator materials Bi2Te3 and Bi2Se3 

are promising optical materials for constructing broadband, miniature and 

integrated high-energy pulsed laser systems with low power consumption.  
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