
Chapter 12

Topological Insulators with Ultracold Atoms

Indubala I. Satija and Erhai Zhao

Abstract Ultracold atom research presents many avenues to study problems at the
forefront of physics. Due to their unprecedented controllability, these systems are
ideally suited to explore new exotic states of matter, which is one of the key driving
elements of the condensed matter research. One such topic of considerable impor-
tance is topological insulators, materials that are insulating in the interior but con-
duct along the edges. Quantum Hall and its close cousin Quantum Spin Hall states
belong to the family of these exotic states and are the subject of this chapter.

12.1 Topological Aspects: Chern Numbers and Edged States

Quantum engineering, i.e., preparation, control and detection of quantum systems, at
micro- to nano-Kelvin temperatures has turned ultracold atoms into a versatile tool
for discovering new phenomena and exploring new horizons in diverse branches of
physics. Following the seminal experimental observation of Bose Einstein conden-
sation, simulating many-body quantum phenomena using cold atoms, which in a
limited sense realizes Feynman’s dream of quantum simulation, has emerged as an
active frontier at the cross section of AMO and condensed matter physics. There
is hope and excitement that these highly tailored and well controlled systems may
solve some of the mysteries regarding strongly correlated electrons, and pave ways
for the development of quantum computers.

The subject of this chapter is motivated by recent breakthroughs in creating “ar-
tificial gauge fields” that couple to neural atoms in an analogous way that electro-
magnetic fields couple to charged particles [11]. This opens up the possibility of
studying Quantum Hall (QH) states and its close cousin Quantum Spin Hall (QSH)
states, which belong to the family of exotic states of matter known as Topological
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Fig. 12.1 Figure illustrates distinction between ordinary band insulator (left), QH (middle) and
QSH (right) insulators in the energy spectrum. Connecting the conduction and valence bands are
the edge states

12.1.1 Topological Aspects of QH and QSH States

Topological insulators (TI) are unconventional states of matter [6] that are insulat-
ing in the bulk but conduct along the boundaries. A more general working definition
of TI, applicable to the case of neutral atoms, is that they are band insulators with
a bulk gap but robust gapless boundary (edge or surface) modes (Fig. 12.1). These
boundary modes are protected against small deformations in the system parame-
ters, as long as generic symmetries such as time-reversal or charge-conjugation are
preserved and the bulk gap is not closed. Such states arise even in systems of non-
interacting fermions and are considerably simpler than topological states of strongly
interacting electrons, such as the fractional QH effect. Despite such deceiving sim-
plicity, as we will show in this chapter, the subject is very rich and rather intricate,
with plenty of open questions.

We will consider two prime examples of TIs in two dimension, the QH and QSH
states. A topological insulator is not characterized by any local order parameter, but
by a topological number that captures the global structures of the wave functions.
For example, associated with each integer quantum Hall state is an integer num-
ber, the Chern number. The Chern number also coincides with the quantized Hall
conductance (in unit of e2/!) of the integer QH state. The quantization of the Hall
conductance is extremely robust, and has been measured to one part in 109 [10].
Such precision is a manifestation of the topological nature of quantum Hall states.
A quantum Hall state is accompanied by chiral edge modes, that propagate along
the edge along one direction and their number equals the Chern number. Semi-
classically, these edge states can be visualized as resulting from the skipping orbits
of electrons bouncing off the edge while undergoing cyclotron motion in external
magnetic field. The edge states are insensitive to disorder because there are no states
available for backscattering, a fact that underlies the perfectly quantized electronic
transport in the QHE. This well known example demonstrates the “bulk-boundary
correspondence”, a common theme for all topological insulators.

The QSH state is time-reversal invariant [8]. It is characterized by a binary Z2

topological invariant ν = 1. The edge modes in this case come in the form of
Kramers pairs, with one set of modes being the time-reversal of the other set. In
the simplest example, spin up electron and spin down electron travel in opposite
direction along the edge. A topologically non-trivial state with ν = 1 has odd num-
ber of Kramers pairs at its edge. Topologically trivial states have ν = 0, and even



12 Topological Insulators with Ultracold Atoms 203

number of Kramers pairs, the edge states in this case are not topological stable. This
is another manifestation of the “bulk-boundary correspondence”. Recent theoret-
ical research has achieved a fairly complete classification, or “periodic table”, for
all possible topological band insulators and topological superconductors/superfluids
in any spatial dimensions [9, 15, 16]. Several authoritative reviews of this rapidly
evolving field now exist [6, 13, 14], which also cover the fascinating subject of how
to describe TIs using low energy effective field theory with topological (e.g., Chern-
Simons or θ -) terms.

12.1.2 Experimental Realization

QH and QSH effect usually requires magnetic field and spin-orbit coupling, respec-
tively. In contrast to electrons in solids, cold atoms are charge neutral and interact
with external electromagnetic field primarily via atom-light coupling. Artificial or-
bital magnetic field can be achieved by rotating the gas [2]. In the rotating frame,
the dynamics of atoms becomes equivalent to charged particles in a magnetic field
which is proportional to the rotation frequency. To enter the quantum Hall regime
using this approach requires exceedingly fast rotation, a task up to now remains a
technical challenge. In this regard, another approach to engineer artificial magnetic
field offers advantages. This involves engineering the (Berry’s) geometric phase of
atoms by properly arranging inhomogeneous laser fields that modify the eigenstates
(the dressed states) via atom-light coupling [3]. Such geometric phase can mimic for
example the Aharonov-Bohm phase of orbital magnetic field. Because the dressed
states can be manipulated on scales of the wavelength of light, the artificial gauge
fields can be made very strong. For example, the phase acquired by going around the
lattice unit cell can approach the order of π . This gives hope to enter the quantum
Hall regime. The strength of this approach also lies in its versatility. Artificial gauge
fields in a multitude of forms, either Abelian (including both electric and magnetic
field) or non-Abelian (including effective spin-orbit coupling), can be introduced
for continuum gases or atoms in optical lattices [3]. Recent NIST experiments have
successfully demonstrated artificial magnetic field [11] as well as spin-orbit cou-
pling [12] for bosonic Rb atoms and experiments are underway to reach QH and
QSH regimes.

12.2 The Hofstadter Model and Chern Number

For a moderately deep square optical lattice, the dynamics of (spinless) fermionic
atoms in the presence of an artificial magnetic field is described by the tight binding
Hamiltonian known as the Hofstadter model [7],

H = −
∑

nm

txc
†
n+1,meiθn+1,m:n,mcn,m + tyc

†
n,m+1e

iθn,m+1:n,mcn,m + h.c. (12.1)
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Fig. 12.2 The energy spectrum as function of the magnetic flux α per plaquette, commonly re-
ferred as the butterfly spectrum, for the Hofstadter model with λ = ty/tx = 1,2 respectively

where cn,m is the fermion annihilation operator at site (n,m), with n/m is the site
index along the x/y direction, tx and ty are the nearest-neighbor hopping along the
x and the y-direction respectively. The anisotropy in hopping is described by dimen-
sionless parameter λ = ty/tx . The phase factor θn,m:n′,m′ is given the line integral of
the vector potential A along the link from site (n′,m′) to (n,m), (2πe/ch)

∫

A · dl.
The magnetic flux per plaquete measured in flux quantum is labeled α, and rep-
resents the strength of magnetic field perpendicular to the 2D plane. The energy
spectra for λ = 1,2 are shown in Fig. 12.2. At commensurate flux, i.e., α is a ra-
tional number α = p/q with p and q being integers, the original energy band splits
into q sub-bands by the presence of magnetic field, and the spectrum has q − 1
gaps. For incommensurate flux, namely when α is an irrational number, the fractal
spectrum contains a hierarchy of sub-bands with infinite fine structures. As shown
in Fig. 12.2, varying anisotropy changes the size of the gaps without closing any
gap.

In the Landau gauge, the vector potential Ax = 0 and Ay = −αx and the unit
cell is of size q × 1 and the magnetic Brillouin zone is −π/q ≤ kx ≤ π/q and
−π ≤ ky ≤ π (the lattice spacing is set to be 1). The eigenstates of the system can
be written as Ψn,m = eikxn+ikymψn where ψn satisfies the Harper equation [7],

eikx ψ r
n+1 + e−ikx ψ r

n−1 + 2λ cos(2πnα + ky)ψ
r
n = −Eψ r

n. (12.2)

Here ψ r
n+q = ψ r

n , r = 1,2, . . . , q , labels linearly independent solutions. The prop-
erties of the two-dimensional system can be studied by studying one-dimensional
equation (12.2). For chemical potentials inside each energy gap, the system is in an
integer quantum Hall state characterized by its Chern number cr and the transverse
conductivity σxy = cre

2/h, where the Chern number of r-filled bands is given by,

cr = Im
r

∑

l=1

∫

dkxdky

q
∑

n=1

∂kx

(

ψ l
n

)∗
∂ky ψ

l
n. (12.3)

Here the integration over kx, ky is over the magnetic Brillouin zone.
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Fig. 12.3 Left: energy spectrum for λ = 10, α = 13/21. The red dots indicate dimerized states at
the band edges. Middle: the wave function of a state localized at a single site, with energy away
from the band edge (black), and the dimerized wave function that localizes at two distinct sites
at a distance of four-lattice spacing apart for state at band edge near a gap with Chern number 4
(red). Figure on the right shows the two point correlation function C(l) that vanishes unless l = 4
resulting in almost sinusoidal momentum distribution with period 4

12.3 Chern-Dimer Mapping in the Limit of Large U

As illustrated in Fig. 12.2, the hopping anisotropy changes the size of the gaps,
without ever closing the gap. Hence the topological aspects of the underlying states
are preserved, as λ is continuously tuned. In the limit λ & 1, the problems becomes
tractable using degenerate perturbation theory [4]. For λ → ∞, the q bands have
dispersion Er(ky) = −2ty cos(2παr + ky), r ∈ {1, . . . , q}. These eigenstates are ex-
tended along y but localized to single sites as a function of x, with wave function
ψ r

n = δn,r . These cosine bands shifted from each other intersect at numerous de-
generacy points k∗

y . For finite λ, the hopping term proportional to tx hybridizes the
two states at each crossing, resulting an avoided crossing as shown in Fig. 12.3.
Near each degeneracy point the system is well described by a two-level effective
Hamiltonian [4],

H(k) = +,

[

cos(kx,)σx + sin(kx,)σy

]

+ v,

(

ky − k∗
y

)

σz. (12.4)

Here σx,y,z are the Pauli matrices in the space of localized states |r〉 and |r ′〉, and , =

r ′ − r is the spatial separation between these two localized states. The expression for
+, and v, are given in Ref. [18]. The eigenstates are equal-weight superpositions of
|r〉 and |r ′〉,

ψ±
n =

1
√

2

(

δn,r + eiβ±δn,r ′
)

, (12.5)

where β+ = −,(kx +π)+π and β− = −,(kx +π) are relative phases for the upper
and lower band edges, respectively. We call such dimerized state “Chern-dimers”.
Starting from Eq. (12.5), it is straightforward to show [4] that the corresponding
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Chern number is related to the phase factor eikx,, and simply given by cr = ,. Thus,
for sufficiently anisotropic hopping, dimerized states form at the band edges with
its spatial extent along x equal to the Chern number of the corresponding gap. Such
one-to-one correspondence between the Chern number and the size of the real space
dimer (in the Landau gauge) will be referred to as “Chern-dimer mapping”. While
calculation of Chern number in this limit is not new, this mapping has not been
elucidated and emphasized until our work [18].

The formation of Chern-dimers of size , = cr at the edges of the r-th gap implies
a “hidden spatial correlation”. The correlation function

C(l) =
∑

n,m

〈

c†
n,mcn+l,m

〉

(12.6)

will peak at l = , = cr . For chemical potential in the r-th gap, as λ → ∞ (Fig. 12.3),
C(l) asymptotes to a delta function C(l) → δ(l − ,), due to the contribution of
Chern-dimers at the lower edge of the r-th gap. Note that the net contribution to
C(l) from all other dimerized states associated with gaps fully below the Fermi
energy is zero, because β+ −β− = π for each of these crossings. Remarkably, C(l),
or more precisely its Fourier transform n(kx), is directly accessible in the time-of-
flight (TOF) image, and routine observable in cold atom experiments.

In the time-of-flight experiments, the artificial gauge field is first turned off
abruptly. This introduces an impulse of effective electric field that converts the
canonical momentum of atoms (when gauge field was on) into the mechanical mo-
mentum (these subtleties are discussed in [18]). Then the optical lattice and trap
potential are turned off, the density of the atomic cloud n(x) is imaged after a pe-
riod of free expansion tTOF. The image is a direct measurement of the (mechanical)
momentum distribution function with k = mx/!tTOF,

n(k) =
∑

r,r′

〈

c†
rcr′

〉

eik·(r−r′), (12.7)

where the site label r = mx̂ +nŷ, and for simplicity we neglect the overall prefactor
and the Wannier function envelope. Thus, from TOF images, the 1D momentum
distribution can be constructed by integrating n(k) over ky , n(kx) =

∫ π

−π
dkyn(k),

which is nothing but the Fourier transform of C(l). Thus, in the limit of large λ, C(l)

becomes a delta function, and the 1D momentum distribution function becomes

n(kx) = r ±
1

2
cos(crkx) + · · · . (12.8)

It assumes a sinusoidal form, with oscillation period given by the Chern number.
Note the sign depends on which gap the chemical potential lies in [18], and the off-
set r comes from the contribution from the filled bands below the Fermi energy. In
summary, we have arrived at the conclusion that Chern numbers can be simply read
off from n(kx) as measured in TOF, in the large anisotropy limit.
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Fig. 12.4 Momentum distribution as anisotropy parameter varies from 1–10, for α = 0.45 for
Chern numbers 1 (top-left), 2 (top-right), 3 (bottom-left), and 4 (bottom-right)

12.4 Traces of Chern Number in Time-of-Flight Images

This begs the question whether it is still possible to extract cr from TOF when away
from the large λ limit. Note that, while the Chern number does not change inside
the same gap as λ is tuned, n(kx) is not topologically invariant. There is a prior
no reason to expect Chern number continues to leave its fingerprints in n(kx). Mo-
tivated by these considerations, we have carried out detailed numerical studies of
momentum distribution in the entire α − λ parameter plane, going well beyond the
“Chern-dimer regime”. Figure 12.4 highlights our results with various λ but fixed
α and Chern number. As λ is reduced, n(kx) gradually deviates from the sinusoidal
distribution. Yet, the local maxima (peaks) persist. In the limit of isotropic lattice,
n(kx) shows pronounced local peaks. For a wide region of parameters, we can sum-
marize our finding into an empirical rule: the number of local peaks in n(kx) within

the first Brillouin zone is equal to the Chern number. Note that this rule is not al-
ways precise, as seen in Fig. 12.4 for the case of Chern number 3 for intermediate
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Fig. 12.5 Left: n(kx ,µ) in false color for a 50 × 50 lattice with isotropic hopping and flux
α = 0.05. Right: n(kx) for chemical potential µ/t = −3.4,−2.8,−2.4,−1.8,−1.5 respectively
(bottom to top). The corresponding Chern number is 1, 2, 3, 4, and 5

values of λ where local peaks become a broad shoulder-like structure. Despite this,
it is valid in extended regions including both large λ and λ = 1. In fact, given the
reasoning above, our empirical rule seems to work surprisingly well. But this is an
encouraging result for cold atoms experiments. From these distinctive features in
n(kx), the Chern number can be determined rather easily by counting the peaks,
especially for the major gaps with low Chern number.

The Chern-dimer mapping provides a simple, intuitive understanding of n(kx) in
the limit of large λ. For the isotropic case, there is no dimerization, why are there
pronounced peaks in n(kx), and why is the peak number precisely equal to the Chern
number? To obtain further insight, we considered the low flux limit, α → 0, where
the size of the cyclotron orbit is large compared to the lattice spacing, and the system
approaches the continuum limit. The spectrum then can be approximated by discrete
Landau levels. For r filled Landau levels, n(kx) can be obtained rather easily,

n(kx) =

r−1
∑

ν=0

(

2νν!
)−1

H 2
ν (kx)e

−k2
x , (12.9)

where Hν is the Hermite polynomial, and kx is measured in the inverse magnetic
length

√
eB/!c. n(kx) is given by the weighted sum of consecutive positive-definite

function, H 2
ν (kx). The node structure of Hν is such that n(kx) has exactly r local

maxima (peaks) for r filled Landau levels. This nicely explains the numerical results
for the Hofstadter model at low (but finite) flux α = 1/q , where the Chern number
cr = r in the r-th gap, and n(kx) has precisely r peaks (see Fig. 12.5). Note that this
calculation does not directly explain the feature shown in Fig. 12.4 for α = 0.45 and
λ = 1. As α increases, for µ residing within the same energy gap, the distinctive
features of n(kx) are generally retained, so the counting rule is still valid. Compared
to the low flux regime, however, the local peaks (except the one at kx = 0) move to
higher momenta.
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12.5 Chern Tree at Incommensurate Flux

While it is numerically straightforward to investigate the n(kx) or σxy for QHE at
incommensurate flux α, analytical analysis of the Chern number for this case rep-
resents a conceptual as well as a technical challenge. In fact, for irrational α, the
system no longer has translational symmetry, and the notion of magnetic Brillouin
zone or Bloch wave function lose their meaning. The incommensurability acts like
correlated disorder. The TKNN formula for a periodic system is not directly ap-
plicable. In addition, the energy spectrum becomes infinitely fragmented (a Cantor
set). One expects then a dense distribution of Chern numbers even within a small
window of energy. Then two questions arise. First, will these Chern numbers largely
random or are there deterministic patterns governing their sequence as µ is contin-
uously varied? Second, what is the experimental outcome of n(kx) or σxy when
measured with a finite energy resolution?

We address some of these questions here for the isotropic lattice (λ = 1) us-
ing the golden-mean flux, α = (

√
5 − 1)/2, as an example. We will employ a well

known trick, and approach the irrational limit by a series of rational approxima-
tion αn = Fn/Fn+1, where Fn is the n-th Fibonacci numbers. Explicitly, the series
3/5,5/8,8/13,13/21,21/34,34/55,55/89, . . . approaches the golden-mean with
increasing accuracy. At each stage of the rational approximation, the energy spec-
trum and the corresponding sequence of Chern numbers can be determined. Higher
Chern numbers are typically associated to smaller gaps in the asymptotically fractal
spectrum. At first sight, the Chern number associated with the r-th gap seems an
irregular function of r as shown in Fig. 12.6 for α = 34/55. This is in sharp contrast
with the case of α = 1/q , where cr = r for the r-th gap.

Now we show analytically that there actually exists a deterministic pattern under-
lying the sequence of Chern numbers. This pattern follows from the solutions of the
Diophantine equation (DE) [17], r = crp + srq , where r is the gap index, cr is the
Chern number, at each level of the rational approximation, p = Fn, q = Fn+1. We
first classify all the Chern numbers into two classes, the Fibonacci Chern numbers
and the non-Fibonacci Chern numbers. All the solutions to the DE, which determine
the Chern number, can be exhausted by following two simple rules, labeled as I, II
and explicitly stated below.

(I) Fibonacci Chern numbers occur at gaps labeled by a Fibonacci index r = Fm:
for α = Fn−1/Fn, cr=Fm = −(−1)n−mFn−m. Here r = 1 corresponds to the first
gap near the band edge with Chern number Fn−2 = (−1)nf (q − p), while the last
Fibonacci gap near the band center has a Chern number (−1)nf where nf counts
the number of Fibonacci numbers less than |q/2|. The Fibonacci Chern numbers
increases monotonically in magnitude as one moves from the center towards the
edge of the band (see Fig. 12.6).

(II) The rest are the non-Fibonacci Chern numbers. The Chern number for the
r-th gap and its neighboring gaps (r ± 1) obey the recursion relation,

cr = (cr+1 + cr−1)/2,

cr+1 = cr + (−1)nf (q − p),

cr−1 = cr − (−1)nf (q − p).
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Fig. 12.6 The Chern tree at golden-mean flux showing four consecutive rational approximations:
α = 3/5,8/13,13/21,34/55 starting with Chern number −1. The horizontal axis is not to scale
and only shows the correct order of Chern numbers. Top-left figure shows Fibonacci (red) and
non-Fibonacci (blue) Chern numbers vs the gap index r for α = 34/55. Top-right shows momen-
tum distribution for three different topological states characterized by Chern numbers 1 (red), 7
(blue) and −9 (green). Figure illustrates self-averaging aspect of the momentum distribution: states
7 and −9 that reside in close proximity to the state with Chern number unity have ripples that tend
to cancel each other

Following these rules, we can construct an exhaustive list of all Chern numbers at
each level of rational approximation. We have numerically checked that the Chern
numbers computed from the TKNN formula are consistent with the predictions from
the DE above. This procedure yields a hierarchy of Chern numbers, which can be
neatly organized into a tree structure, thanks to the recursion relation above. A sub-
set of this tree hierarchy is shown in Fig. 12.6. Most notably, we find the average
of the left and right neighboring Chern number is exactly the Chern number in the
middle.

This property helps to understand the measurement outcomes of real experi-
ments, which inevitably involves average of states with energy very close to each
other. In the context of cold atoms, due to the overall trap potential, the local chemi-
cal potential slowly varies in space. These local contributions sum up in TOF images
according to the local density approximation. The self-averaging property to some
degree ensures that such average yields definite result, and the infinitely fine details
in the energy spectrum are largely irrelevant. This aspect is illustrated in Fig. 12.6
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Fig. 12.7 Left: the quantized conductance cr = σxy/(e2/h) versus the chemical potential µ for

λ = 1 and α = (
√

5 − 1)/2. Right: the blow up for µ close to zero showing an extended plateau at
cr = 4. cr is computed for a four-terminal quantum Hall bar of width W = 20a (inset). The device
is connected to four semi-infinite leads of the same material with inelastic scattering rate 0.005t

for the Chern tree shown in Fig. 12.6. The momentum distribution n(kx) in the av-
erage sense for α = 3/5,8/13,13/21,34/55 will be essentially the same.

Similar consideration applies to σxy . One may see a robust plateau, which
may not be perfectly quantized, in a region of chemical potential due to the self-
averaging. We have numerically computed σxy using the Landauer-Buttiker formal-
ism [1] for a mesoscopic quantum Hall bar (inset of Fig. 12.7) at golden-mean
flux and connected to four semi-infinite leads. The transmission coefficients Tij

are obtained by solving for the Green’s function of the sample and the level width
functions of each leads. The transverse conductivity at golden-mean flux is shown
in Fig. 12.7. One clearly sees a conductance plateau with cr = 4, in addition to
cr = 1,2,3.

12.6 Quantum Spin Hall Effect for Ultracold Atoms

In solid state, the QSH effect is closely related to spin-orbit coupling. In a recent
study [5], it was shown that the effect of spin-orbit coupling can be achieved for
cold atoms by creating SU(2) artificial gauge fields.

The theoretical model that captures the essential properties of this system is given
by a Hamiltonian describing fermions hopping on a square lattice in the presence of
an SU(2) gauge field

H = −t
∑

mn

c
†
m+1,ne

iθx cm,n + c
†
m,n+1e

iθy cm,n + h.c.

+ λstag(−1)mc†
m,ncm,n (12.10)
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Fig. 12.8 Shows the bulk (red) and surface spectrum (black), near half-filling, for α = 1/6,
γ = 0.25, λ = 1, and λstag = 0.5 (left) and λstag = 1.5 (right). The presence of gapless edge modes
for λstag = 0.5 and their absence for λstag = 1.5 shows that these two respectively correspond to
topologically non-trivial and trivial phases. The bottom caption shows the corresponding Phase
diagram in γ − λstag plane

where cm,n is the 2-component field operator defined on a lattice site (m,n), and
λstag is the onsite staggered potential along the x-axis. The phase factors θm,n cor-
responding to SU(2) gauge fields are chosen to be,

θx = 2πγ σ x,

θy = 2πxασ z,
(12.11)

where σ x,z are Pauli matrices. The control parameter γ is a crossover parameter be-
tween QH and QSH states as γ = 0 describes uncoupled double QH systems while
γ = π/2 corresponds to the two maximally coupled QH states. It should be noted
that the Hamiltonian (12.10) is invariant under time-reversal. The two components
of the field operators correspond in general to a pseudo-spin 1/2, but could also refer
to the spin components of atoms, such as 6Li, in an F = 1/2 ground state hyperfine
manifold. For γ = 0 case, spin is a good quantum number and the system decou-
ples into two subsystems which are respectively subjected to the magnetic fluxes α

and −α.
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Fig. 12.9 Figure illustrates quantum phase transition from topologically non-trivial state (indi-
cated by gapless edge modes) to normal insulating state: for γ = 0.25, λ = 5, and λstag = 5
(top-left) and λstag = 10 (right). In the bottom caption, green and blue show the local density
of the two-component state at all sites. For normalized spinor wave function, a density of 0.25
shows the existence of a dimerized state for each component of the spinor

For isotropic lattices, this Multiband system has been found to exhibit [5] a series
of quantum phase transitions between QSH, normal insulator and metallic phases
in two-dimensional parameter space for various values of chemical potential. Fig-
ure 12.8 shows the landscape of the phases near half-filling for α = 1/6. The transi-
tions from topologically non-trivial quantum spin Hall (QSH) to topologically triv-
ial normal band insulator is signaled by the disappearance of gapless Kramer-pair
of chiral edge modes.

Motivated by the fact that anisotropic lattices, reveal a novel type of encoding
of non-trivial topological states in the form of “Chern-Dimers”, for U(1) gauge
systems, we present our preliminary results of QSH states for anisotropic lattices.
As shown in Fig. 12.8, anisotropic lattices subjected to SU(2) gauge fields exhibit
quantum phase transitions from QSH to normal insulating state by tuning the stag-
gered potential. In contrast to the QH system, the avoided crossings in QSH system
need not be isolated as seen near ky = 1/3. However, there are states, such as those
near ky = 0 where one sees an isolated avoided crossing.

Our preliminary investigation as summarized in Fig. 12.9 shows that for
anisotropic lattices, in QSH phase, both components of the spinor wave function



214 I.I. Satija and E. Zhao

are dimerized near an isolated avoided crossings. It is the existence of this double or
spinor-dimer that distinguishes QSH state from a normal insulator. In other words,
each component of the wave function of topologically non-trivial insulating phase
localizes at two distinct sites, which is in contrast to the topologically trivial phase,
where the components of the wave functions localize at a single site. For normalized
states, the existence of a double-dimer can be spotted by density approaching 0.25
as illustrated in Fig. 12.9. The distinction between the QSH and normal insulator,
characterized by spinor-dimer and its absence suggests that such topological phase
transitions may be identified by time of flight images.

12.7 Open Questions and Outlook

Identifying topological states in time of flight images would be a dream measure-
ment for cold atom experimentalists. Therefore, our result that the momentum dis-
tribution carries fingerprints of non-trivial topology is important.

Our studies raise several open questions regarding topological states and its man-
ifestations. Firstly, our detailed investigation suggests that the features of topological
invariant (Chern number) in momentum distribution are quite robust. Is there a rig-
orous theoretical framework that can establish this connection even for parameters
beyond Chern-dimer regime? Secondly, the sign of the Chern number can not be
directly determined from the momentum distribution. It remains an open question
whether some other observable can detect its sign.

Another natural question is: how generic is the existence of dimerized states in
topological states of matter? Somewhat analogous to edge states, the size of the
dimerized states in our example is a robust (topologically protected) quantity. Fur-
thermore, are edge states and dimerized states related to each other? Naively, one
expects a dimer of size N in bulk will result in N -possible types of defects at open
boundaries. These “defects” quite possibly will manifest as edge states inside the
gap. It is conceivable that the topological aspect of the dimers of size N is inti-
mately related to N -edge states in QH systems. Further work is required to test
these speculations, even in special cases.

To investigate the generality of the dimer framework in topological states, we
have studied QSH states for anisotropic lattices. Our preliminary studies suggest that
the topological phase transition from QSH to normal insulating state is accompanied
by the absence of dimerized states and hence may be traceable in time of flight
images. Detailed characterization of Z2 invariance within the framework of spatially
extended objects, however remains appealing but open problem.

The subject of topological states of matter is an active frontier in physics. Lessons
learned from their realizations in ultracold atoms will help to advance the funda-
mental understanding, and inspire new material design or technological applica-
tions. Ultracold topological superfluids, Mott insulators with non-trivial topology,
and non-equilibrium topological states are most likely to bear fruit in reasonably
near future.
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